TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	iv
LIST OF ABBREVIATIONS	viii
INTRODUCTION	1
OBJECTIVES	3
LITERATURE REVIEW	4
MATERIALS AND METHODS	39
Materials	39
Methods	40
RESULTS AND DISCUSSION	49
CONCLUSION AND RECOMMEDATION	128
Conclusion	128
Recommendation	132
LITERATURE CITED	133
APPENDIX	143
APPENDIX A	144
APPENDIX B	160
CURRICULUM VITAE	162

LIST OF TABLES

Table		Page
1	Structural properties of amylose from rice	6
2	Structural properties of amylopectin from rice	9
3	Chemical composition of dry-milled and wet-milled rice flour	
	and rice starch from three rice varieties	50
4	Gelatinization properties dry-milled and wet-milled rice flour	
	and rice starch from three rice varieties	64
5	Swelling power of rice flours and rice starch from three rice	
	varieties	72
6	Solubility of rice flours and rice starch from three rice varieties	78
7	Pasting properties of dry- and wet- milled rice flour and rice	
	starch from three rice varieties	83
8	Degree of relative crystallinity (%) of rice flour and rice starch	
	from three rice varieties	91
9	Molecular size distribution and average molecular weight from	
	total starch fraction (TSF) of rice flour and rice starch and hot-	
	water-soluble fraction (HWSF) of rice flour from three rice	
	varieties	97
10	Correlation between chemical properties, starch molecular	
	properties and physicochemical properties of rice flour and	
	starch	106
11	Cooking properties of rice noodle prepared from dry- and wet-	
	milled rice flour from three rice varieties	109
12	Textural properties of rice noodle prepared from dry- and wet-	
	milled rice flour from three rice varieties	111
13	Sensory evaluation of rice noodle prepared from dry- and wet-	
	milled rice flour from three rice varieties	114
14	Correlation between rice noodle properties and some chemical	
	properties and starch molecular properties of rice flour	118

LIST OF TABLES (Continued)

Table		Page
15	Correlation between rice noodle properties and some physical properties of rice flour	124
Appen	dix Table	
1	Correction factors for blue values not measured at 20 °C	148
2	Correlation between chemical properties, starch molecular	
	properties and physicochemical properties of rice flour and rice	
	starch	161

LIST OF FIGURES

Figure		Page
1	Rice starch granules magnified x5,000 at 5 μ m by a scanning	
	electron microscope	4
2	Schematic representation of starch granule structure: (a) a single	
	granule with alternating amorphous and semicrystalline layers,	
	representing growth ring; (b) expanded view of the	
	semicrystalline layer of a growth ring, consisting of alternating	
	crystalline and amorphous lamellae; (c) the cluster structure of	
	amylopectin within the semicrystalline layer of the growth ring	5
3	Cluster model of amylopectin. \emptyset = Reducing chain-end. Solid	
	lines indicate (1 \rightarrow 4)- α -D-glucan chain; arrows indicated α -	
	$(1\rightarrow 6)$ linkage	8
4	Temperature sweep data for gelatinization of 25% TCW70 (a),	
	waxy rice and TCS10 (b), normal rice with amylose content of	
	17.1% rice starch suspension. Symbols: G' (- \blacktriangle -), G" (- Δ -) and	
	tan δ (-*-)	16
5	Amylograms of rice flour at 10% solids in water with and without	
	dithiothreitol (DTT) added, (b) incubated 2 hours before analysis	
	in water or a solution containing chymotrypsin, pronase, or	
	bovine serum albumin (BSA)	21
6	Manufacture of rice flour and their applications	23

LIST OF FIGURES (Continued)

Figure

7	Model of part of an amylopectin molecule showing possible	
	fracture point following mechanical damage: crystalline domains	
	formed by double helices are shaded grey, and α -1, 6-glycosidic	
	branch points are showed by small arrow heads. (a) A single	
	break in a B ₂ , B ₃ , or B ₄ chain traversing the narrow amorphous	
	zone between two consecutive clusters of helices, giving low	
	molecular weight fragments of amylopectin (LMWAP) of DP	
	50-80 approximately; (b) breaks in one A-chain and B-chain	
	immediately above the double helix; and (c) a single break in a	
	B-chain that would release LMWAP of DP 20-30	27
8	The effect of ball-milling treatment on pasting characteristics of	
	TNuS19 and TCW70 rice starch	29
9	SEM of the outer endosperm of rice kernel. (a) Before soaking,	
	(b) soaked at 25°C for 10 min, (c) soaked at 25°C for 60 min, (d)	
	soaked at 5°C for 7 days	33
10	Isolation of rice starch from dry- and wet-milled rice flour	42
11	SEMs of dry-milled and wet-milled Pathum Thani 1 rice flour	
	with and without α -amylase treatment at magnificent (1,000X)	
	and (3,000X)	56
12	SEMs of dry-milled and wet-milled Pathum Thani 1 rice starch	
	with and without α -amylase treatment at magnificent (1,000X)	
	and (3,000X)	57
13	SEMs of dry-milled and wet-milled RD 7 rice flour with and	
	without α -amylase treatment at magnificent (1,000X) and	
	(3,000X)	58

Page

LIST OF FIGURES (Continued)

Figure		Page
14	SEMs of dry-milled and wet-milled RD 7 rice starch with and	
	without α -amylase treatment at magnificent (1,000X) and	
	(3,000X)	59
15	SEMs of dry-milled and wet-milled Leuang 11 rice flour with	
	and without α -amylase treatment at magnificent (1,000X) and	
	(3,000X)	60
16	SEMs of dry-milled and wet-milled Leuang 11 rice starch with	
	and without α -amylase treatment at magnificent (1,000X) and	
	(3,000X)	61
17	Swelling power of rice flour (a) and rice starch (b) (PD= dry-	
	milled Pathum Thani 1, PW=wet-milled Pathum Thani 1, RD =	
	dry-milled RD 7, RW=wet-milled RD 7, LD=dry-milled Leuang	
	11, LW=wet-milled Leuang 11)	71
18	Solubility of rice flour (a) and rice starch (b) (PD= dry-milled	
	Pathum Thani 1, PW=wet-milled Pathum Thani 1, RD = dry-	
	milled RD 7, RW=wet-milled RD 7, LD=dry-milled Leuang 11,	
	LW=wet-milled Leuang 11)	77
19	RVA viscographs of dry- and wet-milled rice flour and rice	
	starch samples from three rice varieties (a) Pathum Thani 1 (b)	
	RD 7 and (c) Leuang 11	82
20	X-ray diffraction patterns of rice flour and rice starch from three	
	rice varieties (a) Pathum Thani 1 (b) RD 7 and (c) Leuang 11	90

LIST OF FIGURES (Continued)

Figure 21 Starch molecular size distributions (dots are molar mass, solid line is RI profile) of total starch fraction of dry- and wet-milled rice flour from three rice varieties; (a) Pathum Thani 1 (b) RD 7 and (c) Leuang 11 (---) dry-milled and (---) wet-milled rice flour 94 22 Starch molecular size distributions (dots are molar mass, solid line is RI profile) of total starch fraction of dry- and wet-milled rice starch from three rice varieties; (a) Pathum Thani 1 (b) RD 7 and (c) Leuang 11 (---) dry-milled and (---) wet-milled rice flour 95 23 Starch molecular size distributions (dots are molar mass, solid line is RI profile) of hot-water-soluble fraction of dry- and wetmilled rice flour from three rice varieties; (a) Pathum Thani 1 (b) RD 7 and (c) Leuang 11 (---) dry-milled and (---) wet-milled rice flour 96

Appendix Figure

1	X-ray diffraction spectra for rice flour showing crystalline (abo	
	the smooth curve) and amorphous regions	154
2	Force vs. time plot from the measurement of rice noodle	
	firmness	156
3	Force vs. time plot from the measurement of rice noodle tensile	
	strength	158

Page

LIST OF ABBREVIATIONS

DP	=	Degree of polymerization
DSC	=	Differential scanning calorimeter
g	=	Gram
MALLS	=	Multi-angle light scattering
mL	=	Milliliter
Mw	=	Molecular weight
QDA	=	Quantitative data analysis
RI	=	Reflective index
RVA	=	Rapid visco analyzer
RVU	=	Rapid visco unit
SEC	=	Size exclusion chromatography
SEM	=	Scanning electron microscopy
SP	=	Swelling power
TPA	=	Texture profile analysis
μm	=	Micrometer
WAI	=	Water absorption index