ADMICELLAR POLYMERIZATION IN A CONTINUOUS STIRRED TANK REACTOR: EFFECTS OF SURFACTANT AND INITIATOR LOADINGS

Mr. Teerapong Kaitdamneon-ngam

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003 ISBN 974-17-2309-1

I21097203

Thesis Title:	Admicellar Polymerization in a Continuous Stirred Tank Reactor:		
	Effects of Surfactant and Initiator Loadings		
By:	Teerapong Kaitdamneon-ngam		
Program:	Petrochemical Technology		
Thesis Advisors:	Assoc. Prof. Sumaeth Chavadej	Prof. Jeffrey H. Harwell	
	Asst. Prof. Pramoch Rangsunvigit	Assoc. Prof. John H. O'Haver	
	Dr. Nuchanat Na-Ranong		

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahiat. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

livud

(Assoc. Prof. Sumaeth Chavadej)

Pranoch R.

(Asst. Prof. Pramoch Rangsunvigit)

Ancharat Na-Raning

(Dr. Nuchanat Na-Ranong)

(Prof. Jeffrey H. Harwell)

(Assoc. Prof. John H. O'Haver)

(Asst. Prof. Pomthong Malakul)

lifipat Semanorof

(Dr. Kitipat Siemanond)

ABSTRACT

4471033063 : PETROCHEMICAL TECHNOLOGY PROGRAM Teerapong Kaitdamneon-ngam: Admicellar Polymerization in a Continuous Stirred Tank Reactor: Effects of Surfactant and Initiator Loadings Thesis Advisors: Assoc. Prof. Sumaeth Chavadej, Asst. Prof. Pramoch Rangsunvigit, Dr. Nuchanat Na-Ranong, Assoc. Prof. John H. O'Haver, Prof. Jeffrey H. Harwell, 75 pp. ISBN 974-17-2309-1

Keywords : Silica/ Admicellar Polymerization/ Natural Rubber/ Continuous Stirred Tank Reactor/ Surfactant/ Initiator

A filler is normally added to a rubber to improve its performance in commercial applications. The use of silica as a filler in rubber compounds provides beneficial properties such as improved tensile strength and abrasion resistance. However, a major problem with using silica as a filler is its poor compatibility with rubber. Better compatibility between the two components can be achieved by using admicellar polymerization of organic monomers (e.g. styrene and isoprene) solubilized inside surfactant bilayers adsorbed onto the silica surface, thus giving silicas modified with co-monomers. In this work, surfactant and initiator loadings were optimized to reduce the amounts of both materials needed. Admicellar polymerization on silica fillers was carried out in a continuous reactor. Hi-Sil[®]255, cetyltrimetylammonium bromide, styrene and isoprene were used as filler, surfactant and co-monomers, respectively. Scanning electron micrographs and FT-IR results confirmed the presence of polymer on the silica surface. The amount of polymer formed correlated with the amounts of surfactant and initiator used. The modified silica was tested for rubber compounding and the rubber specimens with different modified silicas were tested for mechanical properties. The results showed that the rubber properties can be maintained by reducing the amounts of surfactant and initiator used.

บทคัดย่อ

ธระพงษ์ เกียรติดำเนินงาม : วิธีแอดไมเซลลาร์โพลีเมอไรเซชั่นในเครื่องปฏิกรณ์ แบบต่อเนื่อง: ผลกระทบของปริมาณสารลดแรงตึงผิวและสารก่อปฏิกิริยา (Admicellar Polymerization in a Continuous Stirred Tank Reactor: Effects of Surfactant and Initiator Loadings) อ. ที่ปรึกษา : รศ. คร. สุเมธ ชวเคช, ผศ. คร. ปราโมช รังสรรค์วิจิตร, คร. นุชนาฏ ณ ระนอง, รศ. คร. จอห์น เฮช โอ เฮเวอร์ และ ศ. คร. เจฟฟรี เฮช ฮาร์เวลล์ 75 หน้า ISBN 974-17-2309-1

้โดยปกติมีการเดิมสารเติมแต่งถูกเติมลงไปในยางเพื่อปรับปรุงคุณสมบัติในเชิงพาณิชย์ ้สารเติมแต่งชนิดหนึ่งที่นิยมใช้ ได้แก่ ซิลิกา การใช้ซิลิกาในสารประกอบของยาง ทำให้เกิดผลดี ต่อคุณสมบัติของยาง เช่น เพิ่มการเสริมแรง และค่าต้านทานการขัดถู อย่างไรก็ดี ปัญหาหลักใน การใช้ซิลิกาเป็นสารเติมแต่งคือ ผลของความเป็นเนื้อเดียวกันกับยางที่ไม่ดี อย่างไรก็ดี การเพิ่ม การรวมเป็นเนื้อเคียวกันของส่วนประกอบทั้งสองนี้ ทำได้โดยอาศัยกระบวนการแอดไมเซลลาร์ โพลีเมอไรเซชั่นของโมโนเมอร์ (เช่น สไตรีน และไอโซพรีน) ละลายในชั้นของสารลดแรงตึงผิว ซึ่งดูดซับบนพื้นผิวของซิลิกาเพื่อให้เกิดการปรับปรุงซิลิกาด้วยโค-โมโนเมอร์ ในงานวิจัยนี้ ได้ลด ปริมาณของสารลดแรงตึงผิวและสารก่อปฏิกิริยา เพื่อศึกษาผลกระทบดังกล่าวต่อคุณสมบัติของซิ ลิกาที่ได้รับการปรับปรุงและยาง การทดลองนี้ ใช้เครื่องปฏิกรณ์แบบต่อเนื่องโดยวิธีแอดไมเซล ลาร์โพลีเมอไรเซชั่นกับสารเติมแต่งซิลิกา ใช้ซิลิกาไฮซิล 255 เซติลไตรเมทธิลแอมโมเนียมโบร ไมด์ สไตรีนและไอโซพรีน เป็นสารเติมแต่ง สารลดแรงตึงผิวและโค-โมโนเมอร์ ตามลำคับ ผล ของสแกนนิ่งอิเล็คตรอนไมโครกราฟและฟูเรียทรานฟอร์มอินฟาเรค พิสูจน์ว่ามีพอลิเมอร์ปรากฏ บนผิวของซิลิกา ปริมาณของพอลิเมอร์ที่ปรากฏมีความสัมพันธ์กับปริมาณของสารลดแรงตึงผิว และสารก่อปฏิกิริยาที่ใช้ ซิลิกาที่ได้รับการปรับปรุงแล้วได้ถูกนำทดสอบคุณสมบัติของยางทางกล ศาสตร์ จากผลการทดลองแสดงให้เห็นว่า คุณสมบัติของยางยังคงเดิม เมื่อลดปริมาณของสารลด แรงตึงผิวและสารก่อปฏิกิริยาที่ต้องใช้

ACKNOWLEDGEMENTS

I would like to express my deepest sincere gratitude to the following individuals and organizations that are, always, my inspiration to complete this work.

Firstly, out of the sense of gratefulness, I am deeply indebted to my advisor from the University of Mississippi, Assoc. Prof. John H. O'Haver, for all the time he has contributed to this work, his helpful advices and constant encouragement. All his invaluable mails as well as wonderful friendship are more than I could expect. I am also impressed the days he and his crews visited the college.

Also, I would like to give my special thank to Assoc. Prof. Sumaeth Chavadej for his guidance, creative discussion and for the opportunity throughout of my thesis work. Moreover, I am most obliged to Asst. Prof. Pramoch Rangsunvigit for his invaluable suggestions, useful recommendation, encouragement and for proofreading my thesis. Furthermore, I would like to thank Dr. Nuchanart Na-Ranong for her kindness, invaluable advices in rubber compound physical properties part and also her encouragement.

Moreover, I would like to extend my sincere thank to Asst. Prof. Pomthong Malakul and Dr. Kitipat Siemanond for being my committee.

I would like to thank the staff at The Rubber Research Institute of Thailand for their assistance to success of my work. And, to all faculty and staff at the Petroleum and Petrochemical College for their helpful advices during my two years.

To PPG-Siam Silica Co., Ltd. for providing the silicas during my experimental work. And, I'm grateful for the partially funded of the thesis work provided by Postgraduate Education and Research Programs in Petroleum, Petrochemical and Polymer under the Petroleum and Petrochemical Consortium supported by the Minister of University Affairs.

A special thanks to all my colleagues for their friendship, cheerfulness and mindfulness along two years here, as well as the enjoyable work environment.

Most of all, I would like express my deepest gratitude to my family for their forever love, understanding, endless encouragement, being a constant source of inspiration and the greatest role in my success.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	V
Table of contents	vi
List of Tables	viii
List of Figures	ix

CHAPTER

Ι	INTRODUCTION	1
п	BACKGROUND AND LITERATURE SURV	/EY 3
	2.1 Natural rubber	3
	2.3 Surfactant Structure	4
	2.4 Cationic Surfactants	6
	2.5 Surfactant Adsorption	8
	2.6 Solubilization	12
	2.7 Adsolubilization	13
	2.8 Ultra-Thin Film Formation	14
	2.9 Silica	18
ш	EXPERIMENTAL	20
	3.1 Materials	20
	3.2 Experimental Set-up	20
	3.3 Experimental Procedures	20
	3.3.1 Adsorption Isotherm of CTAB onto	
	Silica Hi-Sil [®] 255	20
	3.3.2 Surface Modification Procedure	21
	3.3.3 Testing Procedure	22

CHAPTER

IV	RESULTS AND DISCUSSION	26
	4.1 Surface Characterization of Modified Silicas	26
	4.1.1 Morphology of Modified Silicas	26
	4.1.2 BET Surface Area	30
	4.1.3 Mean Agglomerate Particle Size	30
	4.1.4 Verification of the Existence of polymeric	c
	Material on Silica	31
	4.1.5 Verification of the Existence of	
	Poly(styrene-isoprene)	46
	4.2 Rubber Compound Physical Properties	52
V	CONCLUSIONS AND RECOMMENDATIONS	65
	5.1 Conclusions	65
	5.2 Recommendations	65
	REFERENCES	66
	APPENDICES	69
	Appendix A	70
	Appendix B	71
	CURRICULUM VITAE	75

LIST OF TABLES

TABLE

3.1	Silica test methods	23
3.2	Rubber compound formation	24
3.3	Rubber compound test methods	25
4.1	Amount of polymer on the silicas before and after	
	the THF extraction	45
4.2	Rubber compound physical properties using different modified	
	silicas obtained from the present study compared to the modified	
	silicas of the previous batch system (Thammathadanukul et al., 1996)	53
4.3	Qualitative summary of surface-modified silica rubber physical	
	properties compared to the modified silicas of the previous batch	
	system (Thammathadanukul et al., 1996)	61
4.4	Percent improvement of surface-modified silica rubber physical	
	properties compared to the modified silicas of the previous batch	
	system (Thammathadanukul et al., 1996)	62
4.5	Rubber compound physical properties of modified silicas	63
4.6	Qualitative summary of rubber physical properties using different	
	modified silicas	64
Al	Calculation of the amount of co-monomer loading for the surface	
	modification	70
A2	Calculation of pump flow rate for 30 min retention times of the	
	surface modification	70
B1	BET surface area raw data with various surfactant and initiator	
	loadings	71
B2	Particle size raw data with various of surfactant and initiator	
	loadings	72
B3	Calculation of the amount of polymer from TGA data of	
	the modified silica	73

LIST OF FIGURES

FIGURE		PAGE
2.1	Chemical structure of NR (cis-1,4-polyisoprene)	3
2.2	Surfactant structure	5
2.3	Cetryltrimethylammoniumbromide (CTAB)	6
2.4	Fatty amine salts	7
2.5	Surfactant molecules lean to adsorb to the surface of oil droplets.	
	The hydrophilic heads expose to the water phase, while the	
	hydrophobic tails stick into the oil phase	8
2.6	Adsorption isotherm for an ionic surfactant on an oppositely	
	charged substrate	9
2.7	Surfactant bilayer	11
2.8	Structure of micelles	12
2.9	Phenomena of solubilization and adsolubilization	14
2.10	Admicellar polymerization process for the formation of a thin	
	polymer film	16
2.11	Silinol reaction by hydrogen bonding	18
3.1	Continuous admicellar polymerization system	21
4.1	Scanning electron micrographs of unmodified silica, Hi-Sil [®] 255	26
4.2	Scanning electron micrographs of modified silica, 146 g of	
	surfactant loading, at 500X magnification	
	A. 146A	
	B. 146B	
	C. 146C	27
4.3	Scanning electron micrographs of modified silica, 175 g of	
	surfactant loading, at 500X magnification	
	A. 175A	
	B. 175B	
	C. 175C	28

FIGURE

4.4	Scanning electron micrographs of modified silica, 200 g of			
	surfactant loading, at 500X magnification			
	A. 200A			
	B. 200B			
	C. 200C	29		
4.5	BET surface areas of modified silicas as the effects of surfactant			
	and initiator loadings	30		
4.6	Mean agglomerate particle size of modified silicas as the effects			
	of surfactant and initiator loadings	31		
4.7	TGA results of unmodified silica Hi-Sil [®] 255	33		
4.8	TGA results of Hexadecyltrimethylammonium bromide (CTAB)	33		
4.9	TGA results of silica Hi-Sil [®] 255 adsorbed with CTAB			
	(Chaisirimahamorakot, 2001)	34		
4.10	TGA results of silica Hi-Sil [®] 255 adsorbed with polystyrene			
	(Chaisirimahamorakot, 2001)	34		
4.11	TGA results of poly(styrene-isoprene) polymerized in CTAB			
	(Chaisirimahamorakot, 2001)	35		
4.12	TGA results of modified silica 146A			
	A. Modified silica before extraction			
	B. Modified silica after extraction	36		
4.13	TGA results of modified silica 146B			
	A. Modified silica before extraction			
	B. Modified silica after extraction'	37		
4.14	TGA results of modified silica 146C			
	A. Modified silica before extraction			
	B. Modified silica after extraction	38		
4.15	TGA results of modified silica 175A			
	A. Modified silica before extraction			
	B. Modified silica after extraction	39		

410		
4.10	TGA results of modified silica 175B	
	A. Modified silica before extraction	
	B. Modified silica after extraction	40
4.17	TGA results of modified silica 175C	
	A. Modified silica before extraction	
	B. Modified silica after extraction	41
4.18	TGA results of modified silica 200A	
	A. Modified silica before extraction	
	B. Modified silica after extraction	42
4.19	TGA results of modified silica 200B	
	A. Modified silica before extraction	
	B. Modified silica after extraction	43
4.20	TGA results of modified silica 200C	
	A. Modified silica before extraction	
	B. Modified silica after extraction	44
4.21	The amount of %carbon of polymer of modified silicas as	
	a function of surfactant and initiator loadings	45
4.22	FT-IR spectrum of unmodified silica (SiO ₂)	46
4.23	FT-IR spectrum of Hexadecyltrimethylammonium bromide (CTAB)	47
4.24	FT-IR spectrum of Poly(styrene-co-isoprene), ABA block copolymer	
	from Aldrich 18,292-3	47
4.25	FT-IR spectrum of the extracted material (poly146A)	48
4.26	FT-IR spectrum of the extracted material (poly146B)	48
4.27	FT-IR spectrum of the extracted material (poly146C)	49
4.28	FT-IR spectrum of the extracted material (poly175A)	49
4.29	FT-IR spectrum of the extracted material (poly175B)	50
4.30	FT-IR spectrum of the extracted material (poly175C)	50
4.31	FT-IR spectrum of the extracted material (poly200A)	51
4.32	FT-IR spectrum of the extracted material (poly200B)	51
	FT-IR spectrum of the extracted material (poly200C)	52
	$\mathbf{r} = \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$	

FIGURE

4.34	Cure time of modified silicas as a function of surfactant and	
	initiator loadings as compared to the previous work	54
4.35	100% Modulus @ before aging of modified silicas	
	as a function of surfactant and initiator loadings as compared	
	to the previous work	55
4.36	200% Modulus @ before aging of modified silicas	
	as a function of surfactant and initiator loadings as compared	
	to the previous work	55
4.37	300% Modulus @ before aging of modified silicas	
	as a function of surfactant and initiator loadings as compared	
	to the previous work	56
4.38	Tensile Strength @ before aging of modified silicas	
	as a function of surfactant and initiator loadings as compared	
	to the previous work	57
4.39	Tear Strength @ before aging of modified silicas	
	as a function of surfactant and initiator loadings as compared	
	to the previous work	58
4.40	Abrasion of modified silicas as a function of surfactant and	
	initiator loadings as compared to the previous work	58
4.41	Resilience of modified silicas as a function of surfactant and	
	initiator loadings as compared to the previous work	59
4.42	Compression set of modified silicas as a function of surfactant	
	and initiator loadings as compared to the previous work	59