PERFORMANCE OF MIXED MATRIX MEMBRANE FOR C₈-AROMATICS, OLEFINS, AND PARAFFINS SEPARATION

Ms. Parichart Santiworawut

A Thesis Submitted in Partial Fulfilment of the Requirements For the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University In Academic Partnership with The University of Michigan, The University of Oklahoma, And Case Western Reserve University 2003 ISBN 974-17-2291-5

121096260

Thesis Title:	Performance of Mixed Matrix Membrane for C ₈ -aromatics,
	Olefins, and Paraffins Separation
By:	Ms. Parichart Santiworawut
Program:	Petrochemical Technology
Thesis Advisor:	Dr. Santi Kulprathipanja
	Asst. Prof. Pramoch Rangsunvigit
	Assoc. Prof. Thirasak Risksomboon

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science

K. Bunyachint-

College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Sout Lupzalhip (Dr. Santi Kulprathipanja)

Pramoch R.

(Asst. Prof. Pramoch Rangsunvigit)

Thinklin

(Assoc. Prof. Thirasak Risksomboon)

(Prof. Somchai Osuwan)

(Asst. **F**rof. Pomthong Malakul)

ABSTRACT

4471018063 : PETROCHEMICAL TECHNOLOGY PROGRAM
Parichart Santiworawut: Performance of Mixed Matrix Membrane for C₈-aromatics, Olefins and Paraffins Separation.
Thesis Advisors: Dr. Santi Kulprathipanja, Asst. Prof. Pramoch Rangsunvigit, and Assoc. Prof. Thirasak Risksomboon, 49 pp. ISBN 974-17-2291-5

Keywords : Mixed matrix membrane/ Polyimide/ C₈-aromatics/ Olefins/ Paraffins/ Extraction/ Pervaporation

Separation using membranes has emerged as an alternative for the separation of olefins, paraffins and aromatics due to its low-energy consumption and low capital investment. In this study, polymer-based membranes and Mixed Matrix Membranes (MMM's) were prepared. The former was cast from polyimide, while the latter was cast from polyimide incorporated with silicalite, NaY, or activated The membranes were tested for the separation of C₈-aromatics in an carbon. extractor, and for the separation of olefins, paraffins and p-xylene in a pervaporation unit. Results from the extraction unit showed that the polyimide membrane and polyimide-based MMM's were selective for C₈-aromatics over n-nonane. Among the C₈-aromatics, all membranes tested were selective for p-xylene, ethylbenzene and m-xylene. To enhance the efficiency of the separation, the pervaporation unit, which is a continuous system, was used to test the membranes. For p-xylene/n-octane separation, both polyimide membrane and polyimide-based MMM's were selective for p-xylene. This result is consistent with that from the extraction unit. The results further indicated that polyimide-based MMM's were selective for n-octane over noctene. In addition, the separation was little affected by the temperatures studied, i.e. 21, 40, and 70°C.

บทคัดย่อ

ปาริชาติ สันติวรวุฒิ: การศึกษาความสามารถในการแยกโอเลฟินส์ พาราฟินส์ และอะ โรเมติกส์คาร์บอนแปดอะตอมโดยใช้เยื่อเลือกผ่านเนื้อผสม (Performance of Mixed Matrix Membrane for C₈-aromatics, Olefins and Paraffins Separation) อ. ที่ปรึกษา: คร. สันติ กุลประทีปัญญา, ผศ. คร. ปราโมช รังสรรค์วิจิตร และ รศ. คร. ธีรศักดิ์ ฤกษ์สมบูรณ์ 49 หน้า ISBN 974-17-2291-5

เยื่อเลือกผ่านเป็นอีกทางเลือกหนึ่งในกระบวนการแยกสารจำพวกโอเลฟินส์ พาราฟินส์ และอะโรเมติกส์ เนื่องจากสิ้นเปลืองพลังงานน้อยและใช้ต้นทุนการผลิตต่ำ เยื่อเลือกผ่านเนื้อผสม ใด้ถูกสร้างและพัฒนาขึ้นเพื่อเพิ่มความสามารถในการแขกของเทคโนโลยีเยื่อเลือกผ่าน ในการ ้ศึกษานี้ได้เตรียมเยื่อเลือกผ่านโพลิเมอร์และเยื่อเลือกผ่านเนื้อผสม โดยเยื่อเลือกผ่านโพลิเมอร์ทำ ้งากโพลิอิมีด ส่วนเยื่อเลือกผ่านเนื้อผสมทำงากการผสมซิลิคาไลท์ ซิโอไลท์วายโซเดียมไอออน หรือ ถ่านกัมมันต์ ลงในโพลิอิมีค เยื่อเลือกผ่านถูกทคสอบในการแยกอะโรเมติกส์คาร์บอนแปค ้อะตอมโดยใช้เครื่องสกัดแยก และ ทคสอบการแยกโอเลฟินส์ พาราฟินส์ และ พาราไซลีน โดยใช้ ้เครื่องแยกไอ ผลจากการสกัดแยกพบว่า ทั้งเยื่อเลือกผ่านโพลิอีมีคและเยื่อเลือกผ่านเนื้อผสมโพลิอี มืดขอมให้อะโรเมติกส์ผ่านไปได้ดีกว่าโนเนน สำหรับการแขกไอโซเมอร์ของอะโรเมติกส์ พารา ใซลีน เอทธิลเบนซีน และ เมธาไซลีน ผ่านไปได้ดีกว่าออโทไซลีน เพื่อเพิ่มความสามารถของการ การแยกไอซึ่งเป็นระบบต่อเนื่องได้ถูกนำมาใช้ในการทดสอบการแยกของเยื่อเลือกผ่าน แยก ้สำหรับการแขกพาราไซลีนและออกเทน พบว่าทั้งเยื่อเลือกผ่านโพลิอีมีคและเยื่อเลือกผ่านเนื้อผสม โพลิอีมีดขอมให้พาราไซลีนผ่านไปได้ดีกว่า ซึ่งผลนี้สอดคล้องกับผลจากการใช้เครื่องสกัดแขก แต่ ถ้าเปรียบเทียบระหว่างออกเทนและออกทีน ออกเทนผ่านไปได้ดีกว่า และในการศึกษาผลของ อุณหภูมิต่อการแขกสาร พบว่า มีผลน้อยมาก

ACKNOWLEDGEMENTS

First of all, I do wish to thank and express my appreciation for Dr. Santi Kulprathipanja, my US advisor, who originated this thesis and was most helpful in providing the useful information, the research experiment, many techniques of problem solving, encouragement throughout this research work, and the great opportunity to do my research at UOP LLC for 2 months. I also would like to thank Mrs. Apinya Kulprathipanja, Dr.Santi's wife, for her kindness.

I would like to thank Asst. Prof. Pramoch Rangsunvigit and Assoc. Prof. Thirasak Rirksomboon, my Thai advisors, for their encouragements and constructive advice throughout this research work.

I would like to especially thank UOP LLC for funding support and all facilities. I also want to thank all staff of UOP for their help and suggestion during 2 months.

Furthermore, I would like to thank, all advisors, staff and my friends at PPC, especially Ms. Raweewan Klaewkla who gave me suggestions, comments and the very warm support.

Specially, I would like to thank PPC for all research-work supports. This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Finally, I would like to acknowledge my family who is my inspiration.

TABLE OF CONTENTS

Title page	
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	viii
List of Figures	x

CHAPTER

Ι	INTRODUCTION	1
II	BACKGROUND AND LITERATURE REVIEW	3
	2.1 Background	3
	2.1.1 Membrane Technology	3
	2.1.2 Mixed Matrix Membranes	6
	2.1.3 Extraction	7
	2.1.4 Pervaporation	8
	2.1.5 Theory of Solution-diffusion for Liquid Mixtures in	
	Membrane	9
	2.2 Literature Review	11
III	EXPERIMENTAL	15
3.1 Materials		15
	3.2 Equipment	15
	3.3 Methodology	
	3.3.1 Membrane Selection	15
	3.3.2 Mixed Matrix Membrane Preparation	16
	3.3.3 Extraction Testing	16

PAGE

	3.3.4 Pervaporation Testing	17
IV	RESULTS AND DISCUSSION	20
	4.1 Membrane Selection	20
	4.2 Extraction Experiments	21
	4.3 Pervaporation Experiments	22
V	CONCLUSIONS AND RECOMMENDATIONS	30
	5.1 Conclusions	30
	5.2 Recommendations	30
	REFERENCES	31
	APPENDICES	33
	Appendix A Material properties	33
	Appendix B Membrane separation results from extraction unit	35
	Appendix C Membrane separation results from	
	pervaporation unit	39

CURRICURUM VITAE	49
CURRICURUM VITAE	47

LIST OF TABLES

TABLE	FABLEP	
Al	Physical Properties of the chemicals used in the experiments	33
A2	Physical, chemical, stability, and reactivity properties of	
	polyimide (Ultem 1000)	34
B1	Concentration of each component (wt%) in the retentate and	
	permeate versus time from the extraction unit using polyimide	
	membrane	35
B2	Concentration of each component (wt%) in the retentate and	
	permeate versus time from the extraction unit using 20	
	wt%silicalite/polyimide membrane	36
B3	Concentration of each component (wt%) in the retentate and	
	permeate versus time from the extraction unit using 20 wt%	
	KY/polyimide membrane	37
B4	Concentration of each component (wt%) in the retentate and	
	permeate versus time from the extraction unit using 20 wt%	
	NaX/polyimide membrane	38
C1	Concentration of each component (wt%) in the charger and	
	permeate from the pervaporation unit using polyimide membrane	
	with the feed mixtures of octane, octene, n-C ₉ , EB, PX, MX, and OX	39
C2	Separation factors of polyimide membrane from the pervaporation	
	unit using polyimide membrane with the feed mixtures of octane,	
	octene, n-C ₉ , EB, PX, MX, and OX	40
C3	Concentration of each component (wt%) in the charger and	
	permeate from the pervaporation unit using polyimide membrane	
	with the feed mixtures of octane, octene, and PX	41
C4	Separation factors of polyimide membrane from the pervaporation	
	unit using polyimide membrane with the feed mixtures of octane,	
	octene, and PX	42

C5	Concentration of each component (wt%) in the charger and	
	permeate from the pervaporation unit using 20%NaY/polyimide	
	membrane with the feed mixtures of octane, octene, and PX	43
C6	Separation factors of polyimide membrane from the pervaporation	
	unit using 20%NaY/polyimide membrane with the feed mixtures of	
	octane, octene, and PX	44
C7	Concentration of each component (wt%) in the charger and	
	permeate from the pervaporation unit using 20%silicalite/polyimide	
	membrane with the feed mixtures of octane, octene, and PX	45
C8	Separation factors of polyimide membrane from the pervaporation	
	unit using 20%silicalite/polyimide membrane with the feed mixtures	
	of octane, octene, and PX	46
C9	Concentration of each component (wt%) in the charger and	
	permeate from the pervaporation unit using 20%AC/polyimide	
	membrane with the feed mixtures of octane, octene, and PX	47
C10	Separation factors of polyimide membrane from the pervaporation	
	unit using 20%AC/polyimide membrane with the feed mixtures	
	of octane, octene, and PX	48

ix

LIST OF FIGURES

FIGURE

2.1	General membrane process.	3
2.2	Imide molecule.	5
2.3	Aromatic heterocyclic polyimide and linear polyimide.	5
2.4	Schematic diagrams of pervaporation.	9
2.5	Concentration profiles for solute transport through membranes,	
	liquid mixture with a nonporous membrane.	9
3.1	MMM preparation method.	17
3.2	Schematic diagram of the extraction unit.	18
3.3	Schematic diagram of the pervaporation unit.	19
4.1	Polyetherimide (ULTEM 1000).	21
4.2	Retentate concentration of C8-aromatics from the extraction	
	unit equipped with polyimide membrane.	25
4.3	Retentate concentration of n-nonane from the extraction unit	
	equipped with polyimide membrane.	25
4.4	Retentate concentration of C8-aromatics from the extraction unit	
	equipped with 20%silicalite/polyimide membrane.	26
4.5	Retentate concentration of n-nonane from the extraction unit	
	equipped with 20%silicalite/polyimide membrane.	26
4.6	Selectivity of the C ₈ -aromatics and n-octene with respect to	
	n-octane from the pervaporation unit using polyimide membrane.	
	with the feed mixtures of octane, octene, n-C ₉ , EB, PX, MX, and OX.	27
4.7	Selectivity of n-paraffin with respect to n-octane from the	
	pervaporation unit using polyimide membrane and MMM the	
	the feed mixtures of octane, octene, and PX.	28
4.8	Selectivity p-xylene with respect to n-octane from the	
	pervaporation unit using polyimide membrane and MMM with	
	the feed mixtures of octane, octene, and PX.	29

PAGE