CHARACTERIZATION OF POLYSTYRENE FORMED VIA ADMICELLAR POLYMERIZATION: THE EFFECT OF INITIATOR CONCENTRATION

Ms. Nattharika Aumsuwan

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003

ISBN 974-172-333-4

T21100287

Thesis Title:	Characterization of polystyrene formed via Admicellar	
	Polymerization: The Effect of initiator concentration	
By:	Nattharika Aumsuwan	
Proogram:	Polymer Science	
Thesis Advisors:	Dr. Manit Nithitanakul	
	Dr. Boonyarach Kitiyanan	
	Assoc. Prof. John H. O'Haver	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyacint.

College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee : (Dr. Manit Nithitanakul) snyarach fiyanan (Dr. Boonyarach Kitiyanan) G 61 (Assoc/Prof. John H. O' Haver) Nantaya Janumet. (Assoc. Prof. Nantaya Yanumet) Chili- Souin

(Assoc. Prof. Chintana Saiwan)

ABSTRACT

4472013063 : POLYMER SCIENCE PROGRAM
Nattharika Aumsuwan: Characterization of Polystyrene Formed
via Admicellar Polymerization : The Effect of Initiator
Concentration.
Thesis Advisors: Dr.Manit Nithitanakul, Dr. Boonyarach
Kitiyanan, and Assoc. Prof. John H. O' Haver, 54 pp. ISBN 974-172-333-4
Key word : Admicellar Polymerization/ Surfactant adsorption/ Adsolubilization

Isotherm/ Polystyrene/ Characterization of polystyrene

Admicellar polymerization is the polymerization of monomers solubilized in adsorbed surfactant bilayers. This research focused on the characterization of ultra thin polystyrene films formed via admicellar polymerization under various polymerization conditions. It examined the effects of the amount of monomer, surfactant, and initiator on the polymer produced as well as on the distribution and structure of the resultant films. The polymerization reaction of styrene was carried out on a nonporous silica substrate (Aerosil®OX50) in cetyltrimethylammonium bromide (C₁₆TAB) admicelles. Tetrahydrofuran (THF) solvent was used to extract polystyrene formed from modified silica. The surfactant adsorption isotherm and styrene adsolubilization at two different adsorbed surfactant concentrations (20 and 100 $\Box \mu mol/g$) on the nonporous silica substrate were studied. The modified silica was characterized by FTIR, TGA, and AFM and the extracted polystyrene was studied with FTIR, TGA, and GPC. The results showed that the ratio of initiator concentration to styrene for an admicellar polymerization time of two hours should not be less than 1:15 to obtain relative high molecular weight polystyrene. The amount of polystyrene formed on the silica substrate increased with increasing CTAB adsorption and adsolubilized styrene and decreased when the amount of initiator decreased.

บทคัดย่อ

ณัฐริกา เอื้อมสุวรรณ: การวิเคราะห์ผลกระทบของความเข้มข้นของตัวกระตุ้นที่มีต่อคุณ สมบัติของพอลิส ไตรีน ที่ ได้จากการสังเคราะห์ วิธีแอค ไมเซลลาร์ พอลิเมอ ไรเซชั่น (Characterization of Polystyrene Formed via Admicellar Polymerization : The Effect of Initiator Concentration) อ. ที่ปรึกษา : คร.มานิตย์ นิธิธนากุล, คร. บุนยรัชต์ กิติยานันท์ และ ผศ. คร. จอห์น เฮช โอ เฮเวอร์ 54 หน้า ISBN 974-172-333-4

แอคไมเซลลาร์ พอลิเมอไรเซชั่น คือวิธีสังเคราะห์พอลิเมอร์จากมอนอเมอร์ ที่ละลาย ภายในกลุ่มของสารลดแรงตึงผิวที่งับตัว งานวิจัยนี้มุ่งสึกษาคุณลักษณะของฟิล์มบางของพอลิสไต รีนที่เกิดจากแอดไมเซลลาร์ พอลิเมอร์ไรเซชั่น ภายใต้สภาวะพอลิเมอร์ไรเซชั่นต่างๆ โดย ตรวจ สอบผลกระทบของความเข้มข้นของตัวกระตุ้น, จำนวนสารลดแรงตึงผิว, และจำนวนโมโนเมอร์ ที่มีต่อคุณสมบัติของพอลิเมอร์ที่เกิดจากวิธีการแอคไมเซลลาร์ พอลิเมอไรเซชั่น ปฏิกิริยาเกิดบนซิ ลิกาที่ไม่มีรูพรุน (Aerosil® OX50) ในกลุ่มของสารลดแรงตึงผิวเซติลไตรเมทธิลแอมโมเนียม โบรไมด์ โดยใช้สไตรีนเป็นโมโนเมอร์ พอลิสไตรีนที่สังเคราะห์ได้จะถูกสกัดออกมาจากซิลิกาที่ ้ผ่านกระบวนการแอคไมเซลลาร์พอลิเมอไรเซชั่นแล้ว โคยตัวทำละลายเทตทระไฮโครฟูแลน งาน ้วิจัยนี้ยังศึกษาไอโซเทอร์มการดูดซับของเซติลไตรเมทธิแอมโมเนียมโบรไมด์ และการละลายใน ชั้นไมเซลที่ยึดเกาะของพอลิสไตรีนที่ความเข้มข้นของสารลดแรงตึงผิวที่ 20 และ 100 ไมโครโมล ต่อกรัม บนซิลิกาที่ไม่มีรูพรุน ในการวิเคราะห์ซิลิกาที่ได้ผ่านการปรับปรุงแล้วถูกตรวงคุณ ลักษณะด้วย FTIR, TGA และ AFM พอลิสไตรีนที่สกัดออกมาถูกตรวจสอบคุณสมบัติด้วย FTIR, TGA และ GPC ผลจากการวิจัยสรุปว่า กระบวนการแอดไมเซลลาร์ พอลิเมอไรเซชั่นที่ ใช้เวลาในการทำสองชั่วโมง อัตราส่วนของตัวกระตุ้นต่อสไตรีน ไม่ควรน้อยกว่า 1:15 เพื่อให้เกิด พอลิเมอร์ที่มีน้ำหนักโมเลกุลค่อนข้างสูง เมื่อการยึดเกาะของผิวเซติลไตรเมทธิลแอมโมเนียมโบร ไมค์เพิ่มขึ้น และการละลายในชั้นไมเซลที่ยึดเกาะของสไตรีนเพิ่มขึ้น พบว่า พอลิสไตรีนที่เกิดบน พื้นผิวของซิลิกามีลักษณะแผ่ขยายมากขึ้น และจำนวนพอลิสไตรีนที่เกิดบนผิวของซิลิกามีมากขึ้น ຫານຄຳຄັບ

ACKNOWLEDGEMENTS

The author would like to thank the Petoleum and Petrochemical College, Chulalongkorn University where I have gained extensive knowledge in polymer science.

The author would like to express my grateful appreciation to the author's advisors, Dr.Manit Nithitanakul and Dr. Boonyarach Kitiyanan, for their continuous suggestion, encouragement, and providing all necessary things needed through out this research work. It is the author's honor and pressure to have opportunity to work with them. And the author would like to thank Dr. Manit for his help and support the author to go to the University of Mississippi to finish the AFM lab.

The author also would like to thank Assoc.Prof. John H. O' Haver, the author's advisor from the University of Mississippi, for his helpful advice, suggestions and constant encouragement The author also appriciated valuable mail that he replied the author. This research would have not been completed without him. And the author would like to thank Mrs. O'Haver for her kindness and helpfulness while the author stayed in USA.

The author would like to thank Mr.Chun Hwa See (University of Mississippi) for the AFM analysis and Mr.Torphong Hassadang, National Metal and Material Technology Center for GPC characterization.

The author would like to thank Assoc. Prof. Nantaya Yanumet and Assoc. Prof. Chintana Saiwan for being my committee.

This thesis work is partially funded by Postgradute Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Finally, the author would like to thank all friends, staff of the Petroleum and Petrochemical College for their helpfulness, and encouragement. The author also greatly indebted to the author's family for their financial support, love, and understanding during studies and thesis work.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	viii
List of Figures	ix

PAGE

CHAPTER

Ι	INTRODUCTION	1
	1.1 Silica Filler	2
	1.2 Surfactant	3
	1.3 Surfactant Adsorption	5
	1.4 Adsolubilization	8
	1.5 Admicellar Polymerization	9
Π	LITERATURE SURVEY	12
	2.1 Surfactant Adsorption Isotherm	12
	2.2 Adsolubilization Isotherm	14
	2.3 Admicellar Polymerization	15
III	EXPERIMENTAL	19
	3.1 Materials	19
	3.2 Equipments	19
	3.3 Methodology	19
	3.3.1 Adsorption Measurement	19
	3.3.2 Adsolubilization Measurement	20
	3.3.3 Admicellar Polymerization	21

CHAPTER		PAGE
	3.3.4 Polymer Extraction	22
	3.3.5 Characterization	
	3.3.5.1 Fourier Transform Infrared Spectroscopy	22
	3.3.5.2 Thermogravimetric Analysis	22
	3.3.5.3 Gel Permeation Chromatography	23
	3.3.5.4 Atomic Force Microscopy	23
IV	RESULTS AND DISCUSSION	25
	4.1 Adsorption Isotherm of CTAB on Aerosil® OX50	25
	4.2 Styrene Adsolubilization Measurement	26
	4.3 Characterization of Modified silica, Extracted	
	silica, and Extracted Polystyrene	27
	4.3.1 Fourier Transform Infrared Spectroscopy	27
	4.3.2 Thermogravimetric Analysis	29
	4.3.3 Gel Permeation Chromatograph	33
	4.3.4 Atomic Force Microscopy	38
v	CONCLUSION	44
	REFERENCES	45
	APPENDICES	48
	Appendix A CTAB adsorption measurement	48
	Appendix B Styrene adsolubilization measurement	50
	Appendix C Calculation amount of CTAB loading,	
	styrene loading, and AIBN for	
	admicellar polymerization	52

CURRICULUM VITAE

55

LIST OF TABLES

TABLE

3.1	Admicellar Polymerization condition	21
4.1	% weight of polystyrene formed on silica particle	32
4.2	\overline{M}_w , \overline{M}_n , and MWD of extracted materials produced	
	in CTAB 20 μmol/g	35
4.3	\overline{M}_w , \overline{M}_n , and MWD of extracted materials produced	
	in CTAB 100 µmol/g	36
A1	Data from CTAB adsorption isotherm on Aerosil®OX50	48
B1	Data from styrene adsolubilization into CTAB adsorption	
	20 µmol/g silica on Aerosil®OX50	51
B2	Data from styrene adsolubilization into CTAB adsorption	
	100 μmol/g silica on Aerosil®OX50	51
C1	Calculation of initial CTAB concentration for CTAB	
	Adsorption 20 and 100 μ mol/g silica	52
C2	Calculation of initial styrene loading into CTAB	
	Adsorption 20 µmol/g silica	53
C3	Calculation of initial styrene loading into CTAB	
	Adsorption 100 µmol/g silica	53
C4	Calculation of AIBN loading at CTAB adsorption	
	20 μmol/g silica	54
C5	Calculation of AIBN loading at CTAB adsorption	
	100 μmol/g silica	54

PAGE

LIST OF FIGURES

FIGURES

PAGE

1.1	The silanol to silanol reaction by hydrogen bonding	3
1.2	Structure of surfactant molecule	4
1.3	The types of surfactant formation	5
1.4	Typical adsorption isotherm of surfactant on solid surface	7
1.5	comparison and phenomena of solubilization and adsolubilization	9
1.6	Formation of a thin film by admicellar polymerization	11
4.1	CTAB adsorption isotherm on nonporous silica	25
4.2	Adsolubilization isotherm of styrene in CTAB admicelles	26
	at 20 and 100 µmol/g of adsorbed surfactant	
4.3	FTIR spectrum of unmodified silica	27
4.4	FTIR spectrum of CTAB	27
4.5	FTIR spectrum of modified silica	28
4.6	FTIR spectrum of extracted material and polystyrene standard	28
4.7	Thermogram of unmodified silica	29
4.8	Thermogram of CTAB	30
4.9	Thermogram of modified silica	30
4.10	Thermogram of extracted material	31
4.11	Molecular weight of extracted material formed at CTAB	
	adsorbed 20 μ mol/g and the ratio of CTAB adsorbed to	
	styrene adsolubilized at 1:2	37
4.12	Molecular weight of extracted material formed at CTAB	
	adsorbed 100 μ mol/g and the ratio of CTAB adsorbed to	
	styrene adsolubilized at 1:2	37
4.13	Molecular weight of extracted material formed at CTAB	
	adsorbed 100 μ mol/g and the ratio of CTAB adsorbed to	
	styrene adsolubilized at 2 : 1	38
4.14	Atomic Force Micrograph of unmodified silica	40

FIGURES

4.15	Atomic Force Micrograph of silica modified at an	
	adsorbed CTAB to adsolubilized styrene ratio of 1:2	
	(100 μ mol/g : styrene 200 μ mol/g), two hours reaction time,	
	and an initiator to styrene ratio of 1:1	41
4.16	Atomic Force Micrograph of silica modified at an	
	adsorbed CTAB to adsolubilized styrene ratio of 2:1	
	(100 μ mol/g : styrene 50 μ mol/g), two hours reaction time,	
	and an initiator to styrene ratio of 1:1	42
4.17	Atomic Force Micrograph of silica modified at an	
	adsorbed CTAB to adsolubilized styrene ratio of 1:2	
	(100 μ mol/g : styrene 200 μ mol/g), two hours reaction time,	
	and an initiator to styrene ratio of 1:50	43

PAGE