EXERGY ANALYSIS FOR A PETROLEUM REFINERY: CUMULATIVE EXERGY CONSUMPTION ANALYSIS

Mr. Kitisak Sakranggoon

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2001
ISBN 974-13-0676-3

Thesis Title : Exergy Analysis for a Petroleum Refinery :

Cumulative Exergy Consumption Analysis

By : Mr. Kitisak Sakranggoon

Program : Petrochemical Technology

Thesis Advisors: Prof. Frank R. Steward

Asst. Prof. Thirasak Rirksomboon

Dr. Anusorn Sangnimnuan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyah'nt College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Prof. Frank R. Steward)

(Asst. Prof. Thirasak Rirksomboon)

(Dr. Anusorn Sangnimnuan)

(Dr. Kitipat Siemanond)

ABSTRACT

4271008063: PETROCHEMICAL TECHNOLOGY PROGRAM

Kitisak Sakranggoon: Exergy Analysis for a Petroleum Refinery: Cumulative Exergy Consumption Analysis. Thesis advisors: Prof. Frank R. Steward, Asst. Prof. Thirasak Rirksomboon, and Dr. Anusorn Sangnimnuan 112 pp, ISBN 974-13-0676-3

Keywords : Cumulative exergy consumption/Exergy analysis/
Petroleum refinery

The aim of cumulative exergy consumption (CExC) analysis is to evaluate the qualitative amount of energy required to produce the specific products of the process under consideration. Therefore, the CExC indices of the products under consideration can be compared to those evaluated from different processes. The results obtained can be implemented to the possibility of thermodynamic improvement of the process. In this work, the CExC was implemented on the Plant 2 of the Bangchak refinery in which it can be divided into nine processing units and an energy complex. The CExC for each unit was determined using the operating plant data. It is indicated that the cumulative exergy consumption of the products of the refinery is competitive in term of energy conservation. Based on the CexC analysis, the most important unit which should be considered to be improved is the energy complex. For thermodynamic improvement of the complex, one of the modifications proposed is to preheat air with effluent combustion gas.

บทคัดย่อ

นายกิติศักดิ์ ศักรางกูร: การวิเคราะห์หาปริมาณพลังงานสะสมที่ใช้การผลิตผลิตภัณฑ์ ในโรงกลั่นน้ำมัน (Exergy Analysis for a Petroleum Refinery: Cumulative Exergy Consumption Analysis) อ. ที่ปรึกษา: ศ. คร. แฟรงค์ อาร์ สจ๊วค ผศ. คร. ธีรศักดิ์ ฤกษ์ สมบูรณ์และ คร.อนุสรณ์ แสงนิ่มนวล 112 หน้า ISBN 974-13-0676-3

การวิเคราะห์หาปริมาณพลังงานสะสมที่ใช้ในการผลิตผลิตภัณฑ์ที่ด้องการในโรงกลั่น น้ำมัน โดยใช้หลักการของกฎข้อที่หนึ่งและสองทางเทอร์โมไดนามิก และผลที่ได้จะนำไปเปรียบ เทียบกับโรงกลั่นน้ำมันอื่นๆ ในการศึกษานี้ใช้ข้อมูลในการศึกษาจากโรงกลั่นน้ำมันที่สองของ โรงกลั่นน้ำมันบางจาก ซึ่งในการศึกษานี้จำเป็นต้องแบ่งขอบเขตของการผลิตออกเป็น 9 หน่วยการ ผลิตและ 1 หน่วยพลังงาน โดยใช้โปรแกรมProvision IIช่วยในการคำนวณ จากการศึกษาพบว่า ปริมาณพลังงานสะสมที่ใช้ในการผลิตผลิตภัณฑ์ของโรงกลั่นน้ำมันบางจากอยู่ในเกณฑ์ที่สามารถ แข่งขันกับโรงกลั่นน้ำมันอื่นได้เป็นอย่างดี และยังพบว่าหน่วยที่สำคัญที่ช่วยในการเพิ่มประสิทธิ ภาพในการผลิตคือ หน่วยผลิตพลังงาน แนวทางในการปรับปรุงประสิทธิภาพได้ถูกเสนอไว้คือ การเพิ่มอุณหภูมิของอากาศโดยใช้ความร้อนจากเตาเผา

ACKNOWLEDGEMENTS

The author would like to gratefully acknowledge all professors who gave him all supports at the Petroleum and Petrochemical College, Chulalongkorn University, especially those in the Petroleum Technology program. Sincere thanks Bangchak Petroleum Public Co., Ltd. for providing operation data, experiments, useful help and suggestion in this work.

Out of a sense of gratefulness, he would like to express his deepest gratitude to Dr. Anusorn Sangnimnuan, Assoc. Prof. Thirasak Rirksomboon and Prof. Frank R. Steward for their kindness, encouragement and invaluable suggestion.

Unforgettable thanks are forwarded to Mr. Dhanajit Makarananea, Ms. Narupan Sirikul, Ms. Poradee Veeruttanaset and Mr. Piyawong Dhithiwong for their supports at Bangchak Petroleum Public Co., Ltd. He is also greatly indebted to the teachers and all of staff of the Petroleum and Petrochemical College who contributed in various degree to the success of his thesis. I sincerely thank my unforgettable friends for making him so lively and enjoyable within two years of study.

Finally, I would like to express my whole-hearted gratitude to my parents for their forever love, encouragement and measureless support.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	xi
	List of Figures	xiii
	List of Symbols	xiv
CHAPTER		
I	INTRODUCTION	1
	į.	
II	LITERATURE SURVEY	4
	2.1 Research Related to Exergy Analysis	4
Ш	CUMULATIVE EXERGY CONSUMPTION	10
	3.1 Definition of Exergy	10
	3.2 Chemical Exergy	11
	3.3 Physical Exergy	12
	3.4 Exergy due to Mixing	12
	3.5 Cumulative Exergy Consumption	12
	3.6 Process Analysis	14
	3.6.1 Definition on the system	14
	3.6.2 Exergy Analysis	15
	3.6.3 Cumulative Exergy Consumption Balance I	Equation

CHAPTER		PAGE
	3.6.3.1 Feed Streams	15
	3.6.3.2 Exergy Supply Streams	16
	3.6.3.3 Recycle Streams	16
	3.6.3.4 Recycle and Recovered Streams	18
	3.6.3.5 Product Streams	18
	3.6.4 CexC Balance Equations for an Energy Section	19
IV	BANGCHAK REFINERY PROCESS	22
	4.1 Bangchak Refinery	22
	4.2 Process Description	23
	4.2.1 Topping Unit	24
	4.2.2 Deethanizer Unit	26
	4.2.3 LPG Treating Unit	27
	4.2.4 Naphtha Pretreating Unit	28
	4.2.5 Isomerization Unit	30
	4.2.6 Catalytic Reforming Unit	31
	4.2.7 Gas Oil Hydrosulfurization Unit	32
	4.2.8 Fuel Gas Treating Unit	34
	4.2.9 Sulfur Recovery Unit	35
	4.2.10 Energy Section	36
V	PROCEDURE	38
	5.1 Experiment	38
	5.2 Calculation Method for Physical Exergy	39
	5.3 Calculation Method for Chemical Exergy	40
	5.4 The Cumulative Exergy Consumption Equation	41

CHAPTER		PAGE
	•	
	5.5 Exergetic Efficiency	42
	5.6 Degree of Perfection	42
VI	RESULTS	43
	6.1 Cumulative Energy Consumption	44
	6.2 Cumulative Exergy Consumption	55
VII	DISCUSSION AND SUGGESTION	67
	7.1 The Cumulative Degree of Perfection of the Bangchal	k
	Refinery's Products	67
	7.2 The Production Efficiency of the Electricity and the	
	Steam	68
	7.3 Losses	69
	7.4 Preheating Combustion Reactants with	
	Effluent Combustion Gas	70
	7.5 Application	74
VIII	CONCLUTIONS AND RECOMMENDATIONS	78
	REFERENCES	79
	APPENDIX A	81
	APPENDIX B	106
	CURRICULUM VITAE	112

LIST OF FIGURES

FIGURE			PAGE
	3.1	Representation of a process and its sub-system	14
	3.2	Diagram of Section N	17
	3.3	Diagram of the Energy Section	19
	3.4	Representation of the "Electricity Mixing" Section	21
	4.1	Process Flow Diagram of Plant no.2 of Bangchak Refinery	23
	4.2	Process Flow Diagram of Topping Unit	26
	4.3	Process Flow Diagram of Deethanizer Unit	27
	4.4	Process Flow Diagram of LPG Treating Unit	28
	4.5	Process Flow Diagram of Naphtha Pre-treating unit	29
	4.6	Process Flow Diagram of Isomerization Unit	31
	4.7	Process Flow Diagram of Catalytic Reforming Unit	32
	4.8	Process Flow Diagram of Gas Oil Hydrodesulfurization Unit	33
	4.9	Process Flow Diagram of Fuel Gas Treating Unit	35
	4.10	Process Flow Diagram of Sulfur Recovery Unit	36
	4.11	Process Flow Diagram of Energy Section	37
	7.1	Scheme of Furnace with Recuperator	71

LIST OF SYMBOLS

B = Total exergy

 B_p = Potential exergy

 B_k = Kinetic exergy

 B_{ph} = Physical exergy

 B_{ch} = Chemical exergy

 $\sum \Delta B_{gu}$ = Useful exergy increase in heat reservoir

 $-\sum \Delta B_{gf}$ = Useful exergy loss of feeding heat reservoir (positive if added to

system)

 B_{au} = Exergy in useful product

 B_d = Exergy delivered to system in feed materials

 B_{df} = Exergy delivered in driving materials (fuel)

 C_p = Heat Capacity

H = Enthalpy

 H_0 = Enthalpy at reference standard

S = Entropy

 S_0 = Entropy at reference standard

P = Partial pressure

 P_0 = Reference pressure, 1 atmosphere

T = Temperature

 T_0 = Reference temperature, 25°C

 μ_i = Chemical potential of species i

 X_i = Mole fraction of species i

R = Gas constant

 γ_i = Activity coefficient of species i