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Abstract 
 

In this paper, analytical formulas for pricing discretely-sampled skewness and kurtosis swaps based on the Schwartz’s 

one-factor model is derived by applying the results of the conditional moments proposed by Chumpong, Mekchay, and Rujivan  

(2019).  The results would be beneficial for market practitioners to describe commodity prices.  The analytical pricing formulas 

for the skewness and kurtosis swaps of commodity will be useful for hedging against price volatility risks in commodity markets. 
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1. Introduction 
 

Skewness swaps (third order moment swaps) and 

kurtosis swaps (fourth order moment swaps) are the two 

special types of moment swaps nowadays traded in the 

markets. Schoutens (2005) and Rompolis and Tzavalis (2017) 

stated that using these two types of moment swaps including 

variance swaps to hedge European options has better 

performance compared with using traditional delta hedging 

strategies. Consequently, tremendous growth in studying the 

skewness and kurtosis risks has been witnessed in recent 

years, see for example in Neuberger (2012), Kozhan, 

Neuberger, and Schneider (2013), Zhao, Zhang, and Chang 

(2013), Rompolis and Tzavalis (2017), and Zhang, Zhen, Sun, 

and Zhao (2017).  

A literature review for analytically pricing various 

types of variance swaps reveals that many researchers mainly 

focus on equity stocks, such as in Zhu and Lian (2011, 2012), 

Rujivan and Zhu (2012, 2014), Swishchuk (2013), Zheng and

 

Kwok (2014), and Rujivan (2016).  For the case when the 

underlying asset is a commodity, there is still a little work 

dealing with the pricing problem, such as in Chunhawiksit and 

Rujivan (2016) and Weraprasertsakun and Rujivan (2017) that 

presented analytical formulas for pricing discretely-sampled 

variance swaps.  Therefore, the contribution of this paper is to 

provide analytical formulas for pricing discretely-sampled 

skewness and kurtosis swaps when the underlying asset is a 

commodity, in which its price process is assumed to follow a 

continuous-time stochastic process introduced by Schwartz 

(1997). 

In this paper we consider a probability space 

( , , )F Q  with a filtration 
0( )t tF 
 where Q  is a risk-neutral 

probability measure.  The conditional expectation of a random 

variable X  with respect to a filtration 
tF  is denoted by 

[ | ] [ ]Q Q

t tE X F E X . The Schwartz’s one-factor model 

describes the commodity price 
tS  by using the stochastic 

differential equation (SDE): 
 

0( ln ) , 0,t t t t tdS S S dt S dz S                 (1.1) 

 

where 0   is  the long-run mean, 0   is  the speed  of the  
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reversion,   is the volatility of the commodity prices, and tz  

is a standard Brownian motion  under the probability space 

( , , )F Q  with a filtration 
0( )t tF 
 generated by 

0( )t tS 
. Note 

that in general the risk-neutral measure in (1.1) and the 

probability measure are not necessary the same; however, one 

can transform (1.1) to have the same risk-neutral measure as 

the probability measure, where the difference in (1.1) is 

absorbed in the parameter  ; see Schwartz (1997) for detail. 

According to the assumption imposed by Schwartz (1997) 

concerning the theory of storage, we assume that the 

convenience yield 
t  satisfies the following relation:  

 

ln ,t tS           (1.2) 

 

where 0   is the speed of the reversion in (1.1). Equation 

(1.2) implies that 
t  is positively correlated to a logarithmic 

commodity price defined by : lnt tX S . 

The paper is organized as follows. In Section 2, we 

adopt the method presented by Rujivan and Zhu (2014) 

together with the result obtained by Chumpong et al. (2019), 

who obtained a closed-form formula for the conditional 

moments of the Ornstein-Uhlenbeck (O-U) process, in order 

to derive an analytical formula for pricing discretely-sampled 

moment swaps based on the Schwartz’s one-factor model 

(1.1). Finally, we conclude the results in Section 3 by 

providing analytical formulas for pricing discretely-sampled 

skewness and kurtosis swaps. 

 

2. Main Results 
 

Schoutens (2005) introduced the annualized realized 

m -moment for a positive integer 2m , in terms of discrete 

sampling over the contract life [0, ]T  for a maturity time 

0,T   on an underlying asset as 

 

 

1
1

' ln i

i

N
tm m

i t

S
MOMS N

S




 
  

 
 

 , 

 

where 
it

S  is the closing price of the underlying asset at the 

observation time 
it  for 0,1, ,i N  and there are altogether 

N observations, and 'N  is the nominal amount. For 

simplicity, we let '
AF

N
N

 , where AF is the annualized 

factor converting this expression to an annualized higher 

moment. If the sampling frequency is every trading day, then  

252AF  , assuming that there are 252 trading days in one 

year; if every week, then 52AF  ; if every month, then 

12AF  ; and so on. Typically, we set N
T

AF
  and assume 

equally-spaced discrete observations, where 
1 0i it t t      

for all 1,2, , .i N  Hence, the typical formula for measure 

of realized m -moment can be written as 
 

   
1

1
1 1

1 1
ln ,i

i i

i

mN N
tm m

t t

i it

S
MOMS X X

T S T 


 

 
    

 
         (2.1) 

 

where lnt tX S  is a log price process. 

In a risk-neutral world Q , the value of a m -

moment swap at time t , denoted by ,tV  is the expected 

present value of the future payoff: 
 

  (T t) mQ r m

t tV E e MOMS K L   
 

, 

 

where mK  is the annualized delivery price for the m -moment 

swap and L  is the notional amount of the contract. The value 

of 
tV  should be zero at the beginning of contract since there is 

no cost for either party to enter into a forward contract. 

Therefore, the fair delivery price of m -moment swap can be 

defined as  
0

mm QK E MOMS 
 

, after setting the value of 

0 0V  initially. The valuation problem for m -moment swaps 

is reduced to calculating the conditional expectation of the 

realized m -moment (2.1) in the risk-neutral world. 

From (2.1), the fair strike price for discretely 

sampled moment swaps can be written as 
 

     
1 10 0 0

1 1

1 1
.

i i i i

N Nm mmm Q Q Q

t t t t

i i

K E MOMS E X X E X X
T T 

 

              
   

           
1 10 0 0

1 1

1 1
.

i i i i

N Nm mmm Q Q Q

t t t t

i i

K E MOMS E X X E X X
T T 

 

              
           (2.2) 

 

Therefore, the problem of pricing moment swaps is reduced to 

calculating N  conditional expectations in the form 

 

 
10 .

i i

m
Q

t tE X X


 
  

            (2.3) 

 

Then, by binomial expansion of  
1i i

m

t tX X


 , the tower 

property for the conditional expectation and 
1it

F


-

measurability of 
1it

X


,    

 

 
1 1

1 1

1 1

0 0

0

0

0

0

0

( 1)

( 1)

( 1) .

i i i i

i i i

i i i

mm
Q Q k k m k

t t t t

k

m
Q Q k k m k

t t t

k

m
Q k k Q m k

t t t

k

m
E X X E X X

k

m
E E X X

k

m
E X E X

k

 

 

 













            

   
    

    

  
      

  







                                                                                                       (2.4) 

(tower property) 

(
1it

X


 is 
1it

F


-measurable) 

(binomial theorem) 
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Note that by setting lnt tX S , where 
tS  is defined in (1.1), and by Ito’s lemma we obtain the O-U process for 

tX , 

 
2

 where  = - .
2

t t tdX X dt dz


    


    

To obtain the result (2.2) via (2.4), we applied the conditional expectation 
1i i

Q m k

t tE X


 
 

 which is derived by Chumpong et al. 

(2019) stated  as follow. 

 

Theorem 2.1 Suppose that 
tS follows the dynamics described in (1.1) and n N.  Let lnt tX S  and 

2

2


 


  . Then 

 
1 1

0

| ( )
i i

n
nQ n Q n j n

t t t t j

j

E X E X X x A x e 
 





 
          

 
                                                                                           (2.5) 

for all  1,i it t t  and xR , where 
1 0it t     and   ( ), 1,2, ,

n

jA j n  , can be written in the form 

       
1 2

2 2 ( )

,

0 0

1
( ) 1 1 ,

n j

n j
n j l ln n j l l l

j n jl
r l

A n r e e c   


 
      

 

 

 
    
 
                                                                            (2.6) 

when 
( )

,

l

n jc  is defined using j n k   as an index in 

 

 

 

0

,

1

1,
2

,

2

,

,

n n k

k
n n k

n k

k

n n k

c

c
C

c



 
  

 

  
  
  


 
 
 
  
 
 
 
 

                                                                                                                            (2.7)  

which is defined recursively on k  as follows: 

   
 

 

0

, 20

,1 , 1 ,2 1

, 2

1

2
1 , ,

1

4

n n

n n n n

n n

c
C c C

c







 
   

        
    

  

                                                                                                                               (2.8) 

for odd 3,k    

 

, , 1

, 2

01 1
,

2
n k n k

n k

C C
Ck





  
    

  

                                  (2.9) 

and for even 4,k   

 

, 1
,

, 2

01 1
.

20

n k
n k

n k

C
C

Ck





   
     

    

                                                                                                       (2.10) 

 

Theorem 2.2 Suppose that 
tS follows the dynamics described in (1.1). Let 

1it t t     for all 
1( , )i it t t . The conditional 

expectation in (2.4) can be written as 

 

 
1

,0 1 0

0

( , )
i i

mm
Q j

m jt t i

j

E X X A t t X
 



   
  

             (2.11) 

for all 1,2, ,i N  and 
0 0X  , where 

1i it t t     and 

1( ) ( ) ( )
, 1 1

0

( , ) ( 1) ( ) ( ) .i

m l
l tk m k l m k t

m j i l k j i

l j k

m
A t t A t A t e e

k

    

  

 

 
    

 
  

 

Proof. From (2.4), we have 

R 
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 
1 1 10 0

0

( 1) .
i i i i i

mm
Q Q k k Q m k

t t t t t

k

m
E X X E X E X
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



                
                             (2.12) 

Utilizing Theorem 2.1 when n m k  , the conditional expectations with respect to 
1it

F


 on the right-hand side of (2.12) can be 

written as 

1 1

( ) ( )

0

( ) ,
i i i

m k
Q m k m k j m k t

t t j t

j

E X A t X e 

 


    



 
     

 
  

where ( )( ), 0,1, , ,m k

jA t j m k     are defined in (2.6). This implies 

 

1 1

1 1

0

0

( ) ( )

0

0 0

( 1)

( 1) ( ) .

i i i

i i

m
Q k k Q m k

t t t

k
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k
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k
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


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 
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  

   
     

     



 

          (2.13) 

 

Next, we rearrange the terms in the summations on the right-hand side of (2.13), 

1 1

1

1

( ) ( )

0

0 0

( ) ( )

0

0 0

( ) ( )

0

0 0

( 1) ( )

( 1) ( )
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i

i
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




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




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                               (2.14) 

 

Applying Theorem 2.1 when n l  in (2.14), we obtain 

1

1
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                               (2.15) 

where ( )

1( ), 0,1, , ,l

j iA t j m   are defined in (2.6). Again, rearranging the terms in the summations on the right-hand side of 

(2.15), we complete the proof with 
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 

 

Applying Theorems 2.1 and 2.2, the fair delivery price of moment swaps under the Schwartz model (1.1) can be deduced as 

follows.                

                               

Theorem 2.3 Suppose that 
tS  follows the Schwartz model (1.1) and 2m  is an integer. Then, the fair delivery price of the m -

moment swap can be expressed as  

  0
0 , 1

0 1

1
( , , ) , ,

jm N
m

m j i

j i

K T t A t t
T







 

 
    

 
                                (2.16) 

where , , 0,1, , ,i

T
t t i t i N

N
      and  

0 0ln S  .  

Proof. The proof follows directly from the definition (2.2) of 
mK  and Theorem 2.2 with 0

0 0lnX S



  , namely, 
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3. Our Analytical Pricing Formulas 
 

In this section, we apply Theorem 2.3 to derive the two special types of moment swaps when 3,4m  based on the 

Schwartz model (1.1). 

 

3.1 Skewness swaps 
 

Skewness swaps (third order moment swaps) provide market practitioners who require to protect against price volatility 

risk in asymmetry of the underlying commodity price distribution. By applying Theorem 3.3 with 3m , the fair price of a 

skewness swap can be expressed as 
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3.2 Kurtosis swaps 
 

Kurtosis swaps (fourth order moment swaps) provide market practitioners who need to protect against price volatility 

risk from unexpected occurrences of very large jumps or changes in tail behavior of the underlying commodity price distribution. 

Utilizing Theorem 3.3 with 4m , the fair price of a kurtosis swap can be expressed as 
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3.3 Example  

 
This section we present an example of computations for the fair prices of skewness and kurtosis swaps according to the 

formulas (3.1) and (3.2). The parameters of the Schwartz’s model (1.1) used in the formulas are given as follows: 

2.857  , 0.129  , 0.099  , 252N  , 1T  , and for various values of 
0 1.0, 0.8, 0.6, ,1.0     . The fair prices of 

skewness and kurtosis swaps for various values of convenience yields 
0  are shown in Table 1. 

Table 1 shows that the fair prices of the skewness and kurtosis swaps depending on the current convenience yields 
0 , 

which is referred to as the storage of products or physical goods that is related to the current commodity price via 
0

0S e


 . For 

this example for the studied range of  0  from -1.0 to 1.0, the prices for both derivatives increase as 0 increases and the price 

of the skewness is higher than that of the kurtosis. Note that the computation in this example for the prices using the formulas 

(3.1) and (3.2) is very fast, which is the advantage of this study, compared to the computation using (2.2) where the Monte Carlo 

simulation is needed for obtaining the expectations. 
 
Table 1. Fair prices of skewness and kurtosis swaps for various 

values of 
0 .  

 

0  3K  
4K  

   

-1.0 0.0007593 0.0000165 
-0.8 0.0006925 0.0000148 

-0.6 0.0006300 0.0000133 

-0.4 0.0005716 0.0000121 
-0.2 0.0005172 0.0000108 

0 0.0004664 0.0000097 

0.2 0.0004190 0.0000087 
0.4 0.0003747 0.0000078 

0.6 0.0003334 0.0000070 

0.8 0.0002948 0.0000063 
1.0 0.0002585 0.0000057 

   

 

4. Conclusions 
 

In this work we obtain the closed-form formulas for 

the fair prices of discretely-sampled skewness and kurtosis 

swaps with underlying assets described by Schwartz’s one-

factor model. The formulas are derived based on the known 

result of the conditional moments by Chumpong et al. (2019) 

together with some combinatorial techniques. An example is 

given to demonstrate the computation of the fair prices using 

the formulas (3.1) and (3.2), which is very fast, thus, more 

suitable for practical usage than standard methods such as 

Monte Carlo simulation.  
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