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Abstract 
 

We present entropy balancing – a relatively new technique for estimating treatment effects, which has been under-utilised 

in the applied biomedical literature. Our objective is to share our experiences learned from using entropy balancing in non-

experimental studies, via Monte Carlo simulations and two empirical examples. We used the inverse probability of treatment 

weighting method for benchmarking the performance of entropy balancing. Entropy balancing had remarkably superior 

performance in terms of covariate balance and efficient estimation of treatment effects. Entropy balancing does not require 

extensive tweaking of the propensity score specification to achieve the optimal covariate balance. Instead, it directly incorporates 

covariate balance into the weight function that is applied to the sample units. Notably, the excellent performance of entropy 

balancing is not only on the first moment (mean) but also on higher-order moments.  However, we also highlighted the situations 

where entropy balancing may fail or not have optimal performance. Entropy balancing merits more widespread adoption in 

biomedical research. 
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1. Introduction 
 

A focal objective of medical and health research is to 

estimate the causal effect of a treatment or intervention on an 

outcome variable. For randomised experiments, making such 

inferences are regularly clear and straightforward. However, 

when treatment assignment is complicated by confounders, as 

in the case of observational studies, such inferences regarding 

the treatment effects require more sophisticated methodology 

(Zagar, Kadziola, Lipkovich, & Faries, 2017). Comparisons 

between treatment groups (treated versus control) can be biased 

when the groups lack sufficient balance; in other words, have 

substantially different distributions of relevant covariates. 

A commonly used nonparametric balancing strategy 

is weighting. Weighting, in this context, is the generation of 

balancing weights, which, when applied to the sample of units 

in each treatment group, matches the covariate distribution of 

the  treatment  group  of  interest.  Comparisons  are  then made 

 
between the weighted outcomes. Weighting methods have 

taken centre stage in efficiently estimating treatment effects 

when treatment assignment is confounded with background 

covariates. There are two general weighting approaches in 

causal inference: One does not directly make covariate balance 

its primary objective - it focuses on modelling the data to get 

probabilities, from which weights that reduce the imbalance to 

some considerable extent can be obtained. The other approach, 

also known as the covariate balancing approach, directly uses 

some minimisation algorithm to choose weights that perfectly 

balance the covariates, subject to some specified constraints 

(Chan, Yam, & Zhang, 2016; Hainmueller, 2012; Imai & 

Ratkovic, 2014; Li, Morgan, & Zaslavsky, 2018; Wong & 

Chan, 2017).  

The literature on weighting methods which agree 

with the first general weighting approach described above has 

been dominated by the inverse probability of treatment 

weighting (IPW), originating from survey research (Crump, 

Hotz, Imbens, & Mitnik, 2009; Hirano & Imbens, 2001; 

Hirano, Imbens, & Ridder, 2003; Imbens, 2004). IPW method 

is the most common method in applied research and among 

practitioners, especially in the medical and health sciences 
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(Austin & Stuart, 2015). However, like every other propensity 

score (PS) technique, IPW relies heavily on the correct 

specification of the PS model. Slight misspecification of the PS 

model will result in a substantial bias of the estimated treatment 

effects (Kang & Schafer, 2007). It takes a highly skilled user to 

specify what is close to a correct PS model; consequently, the 

iterative tweaking of PS models until measured baseline 

covariates are balanced can be quite tedious. Despite this cycle 

of attempting to fit the correct PS model, achieving a sufficient 

level of covariate balance can occasionally be elusive and 

additional imbalances may be introduced. 

In this paper, we present the entropy balancing (EB) 

procedure - an optimisation-based weighting method that 

shares the spirit of the first general weighting approach 

described above. Entropy balancing (Hainmueller, 2012) 

particularly works remarkably well in achieving covariate 

balance. Relative to the other optimisation-based weighting 

methods, we were interested in entropy balancing because it is 

less time-consuming and straightforward to implement.  

We aim to provide an intensive exploration of the use 

of entropy balancing in medical and health studies. An in-depth 

search from the Web of Science Core Collection, excluding 

methodology-based articles, identified 170 published articles 

that utilised entropy balancing, and only a few of them 

(26.19%) were in the medical and health sciences; a majority 

of the applications of entropy balancing have been in the social 

sciences. A few of these applications in the medical and health 

literature can be found in (Adhikary, Liu, Memtsoudis, Davis 

III, & Liu, 2016; Brettschneider et al., 2017; Grupp et al., 2017; 

Mattke, Han, Wilks, & Sloss, 2015; Pearson et al., 2014). Using 

the IPW method as a benchmark, the performance of entropy 

balancing was examined via Monte Carlo simulations, 

modelling situations typical of the medical and health sciences. 

Finally, we illustrate the application of entropy balancing with 

two empirical case studies, exploring changes in its various 

parameters, as well as its effect on achieving balance on the 

measured baseline covariates, further focusing also on accuracy 

in estimating treatment effects. 

 

2. Materials and Methods 
 

The dichotomous treatment variable 𝑇𝑖 for the ith unit 

is coded 1 and 0 for treated and control groups, while 𝑋𝑖 = (𝑋𝑖1, 

𝑋𝑖2, … , 𝑋𝑖𝑘) are a set of pre-treatment covariates. Y is the vector 

of observed outcomes. 

In this section, while estimating the average 

treatment effect among the treated (ATT), we briefly describe 

the entropy balancing and inverse probability of treatment 

weighting (IPW), for adjusting the inherent non-randomisation 

of treatments that characterises an observational study.  

 

2.1 Entropy balancing  
 

Entropy balancing searches for a unique set of 

weights for the control group units, such that the reweighted 

groups satisfy a set of balance constraints that are imposed on 

the sample moments of the covariate distributions 

(Hainmueller, 2012). The entropy balancing technique utilises 

a maximum-entropy reweighting scheme to directly 

incorporate covariate balance in terms of means or/and higher-

order moments into the weight function. Entropy balancing can, 

therefore, guarantee perfect covariate handling, as well as 

maximum retention of information (Parish, Keyes, Beadles, & 

Kandilov, 2018). After assuming initially uniform weights 𝑤𝑖, 

the control group weights are estimated directly from pre-

specified constraints as a log-linear function of the known 

moment conditions, by the following reweighting scheme:  

 

min
𝑤𝑖

 H (w) = min
𝑤𝑖

∑ 𝑤𝑖𝑖|𝑇=0 log (𝑤𝑖/𝑞𝑖)  

    

subject to the following balance and normalization constraints: 

 
∑ 𝑤𝑖  𝑐𝑟𝑖(𝑋𝑖)𝑖|𝑇=0   = 𝑚𝑟, for r = 1, ..., R  

     
∑ 𝑤𝑖𝑖|𝑇=0  = 1    

       

𝑤𝑖 ≥ 0 for all i,    

      

where 𝑞𝑖 = 
1

𝑛0
 is a vector of the base weights, and 𝑚𝑟 represents 

a set of R balance constraints imposed on the moments of the 

reweighted control group. 

The three constraints ensure that: (i) a pre-specified 

level of balance, specified in terms of the rth moment, is 

achieved for all covariates; (ii) the solution weights must be 

normalised to sum to one (though other constants may be used); 

and (iii) only weights with positive values are allowed. See 

(Amusa, Zewotir, & North, 2019; Hainmueller & Xu, 2013) for 

more details on entropy balancing. 

 
2.2 Inverse probability treatment weighting  

 

The propensity score is defined as the probability of 

a subject or unit being assigned to the treated group conditional 

on the observed baseline covariates.  In IPW, each unit weights 

equal the reciprocal of the probability of receiving the treatment 

that the unit received. We utilised the ATT weights, which are 

defined as fixing the treated units’ weight at unity, and the 

control units’ weight as the odds of the estimated propensity 

scores (Imbens, 2004). We calculated the propensity scores by 

using a logistic regression model to regress treatment status on 

the covariates associated with the treatment. 

 

2.3 Simulation study 
 

We conducted a set of Monte Carlo simulation 

experiments to examine the performance of entropy balancing, 

relative to IPW method. We made the simulations typical of 

biomedical studies by considering binary outcomes (Austin, 

Manca, Zwarenstein, Juurlink, & Stanbrook, 2010). All 

simulations were done using the R statistical package (version 

3.5.1.). Entropy balancing was performed with the R-package 

ebal (version 0.1-6) (Hainmueller, 2014). 

 We followed the simulation structure of previous 

studies (Lee, Lessler, & Stuart, 2010; Setoguchi, Schneeweiss, 

Brookhart, Glynn, & Cook, 2008). Figure 1 gives the causal 

structure of the simulations. We made our simulations to vary 

based on two factors: (i) Sample size: n = 500, 2000; (ii) the 

proportion of units assigned to the treated group (prevalence of 

treatment), which was fixed at 25%, 33%, 50%, and 67%, 

corresponding to treated: control units’ ratio of 1:3, 1:2, 1:1, 

and 2:1, respectively.  
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Figure 1. Data structure of the simulation study, where 𝑋1,, 𝑋3, 𝑋5, 𝑋6, 

𝑋8, 𝑋9, 𝑌 are binary 

 

For each of the considered scenarios, we simulated 

1000 datasets and obtained ATT weights for both entropy 

balancing and IPW, and estimated treatment effects from the 

weighted regressions of Y on T. The treatment effect estimates 

(estimated ATT) were then averaged over the simulation runs, 

denoted by γ̅̂. The true ATT is denoted by γ. 

 In terms of performance assessment, we utilised the 

absolute standardised mean difference (ASMD) to measure 

covariate balance (McCaffrey et al., 2013). For outcome 

estimation, we computed the bias, mean squared error (MSE), 

model-based standard errors, and 95% confidence interval (CI) 

coverage of the estimated treatment effects. CI coverage is 

defined as the proportion of times the estimated confidence 

intervals contain the specified parameter value (Burton et al., 

2006).  
 

2.4 Simulation results 
 

We present the results for the simulation study 

according to each of the performance metrics explained in the 

earlier section.  We emphasise more the results of the entropy 

balancing method while using the IPW method results as a 

benchmark. 

Some authors suggested that ASMD values above 0.1 

may be indicative of covariate imbalance (Mamdani et al., 

2005; Normand et al., 2001). As shown in Figure 2, both EB 

and IPW methods performed remarkably well in reducing 

covariate imbalances, as they both achieved ASMD values well 

below the threshold of 0.1. However, EB outperformed the IPW 

method, with marginal improvements observed for the smaller 

treatment prevalences (25% and 33%), but a substantial 

outperformance was evidenced for the higher treatment 

prevalences (50% and 67%). Additionally, EB produced better 

balance for large sample size (n=2000), with ASMDs achieving 

a perfect balance (ASMD=0) on almost all of the covariates, 

across the rates of treatment prevalence. 

In terms of bias and MSE, Figure 3 shows that EB 

produced less biased estimates across the range of scenarios. 

EB resulted in estimates with substantially lower MSE values. 

Furthermore, there was no apparent effect of the prevalence of 

treatment on either the bias or the MSE. As shown in Figure 3, 

the two methods produced very similar standard errors. 

Superior 95% CI coverages were observed for EB when the 

sample size was relatively large (n = 2000). However, for a 

relatively smaller sample size (n = 500), EB produced higher 

coverage for higher treatment prevalence (50% and 67%), as 

shown in Figure 3.  

 

2.5 Empirical examples 
 

We compared the relative performance of entropy 

balancing and inverse probability of treatment weighting using 

two biomedical datasets. Throughout, we compared 

performance based on covariate balance and outcome 

estimation. We present and discuss results from two distinct 

examples, which illustrate different experiences we have had 

with entropy balancing as it compares to IPW. 

We applied diagnostics for assessing the covariate 

balance in the data weighted by entropy balancing (EB), with 

 
 

Figure 2. Boxplots for the absolute standardized mean difference for covariates 
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Figure 3. Bias (Panel A), MSE (Panel B), standard errors (Panel C), and 95% CI coverage (Panel D) of estimated treatment effects 

 

performance evaluated relative to IPW. We did not restrict 

balance to means only, but also investigated variance and the 

empirical distribution of continuous covariates. For balance on 

the means alone, we considered the ASMD. For balance on 

higher-order moments, we adopted variance ratios, for which 

some authors (Rubin, 2001) recognize values close to 1 as okay, 

and Kolmogorov-Smirnov (KS) statistic close to 0 is 

considered satisfactory (Ali et al., 2015). For entropy 

balancing, we considered the first and second moments on 

which covariate balance is desired. We attempted to include 

constraints up to the third moments, as well as interactions 

between pairs of continuous covariates, but the EB algorithm 

did not converge. 

Next, we estimate the average treatment effect for 

those who received the treatment. Alongside the IPW, we 

applied weights to the outcome modelling from entropy 

balancing, when moment constraints included the means only, 

denoted by ebal1, as well as with added variance constraints, 

denoted by ebal2. Using logistic regression to regress the 

outcomes, we adopted the risk difference, as suggested by 

clinical commentators (Cook & Sackett, 1995; Laupacis, 

Sackett, & Roberts, 1988; Sackett, Deeks, & Altman, 1996; 

Schechtman, 2002), as the estimate of interest. The model 

incorporated the weights induced by entropy balancing and 

IPW. Standard errors of the weighted estimators were estimated 

using the sandwich-type variance estimators.  

 

2.6 Case study 1: RHC study 
 

We further explored the entropy balancing technique 

by analysing observational data (Murphy & Cluff, 1990), to 

study the effectiveness of right heart catheterization (RHC) for 

critically ill patients. A few influential studies have analysed 

the data, using different adjustment methods (Connors et al., 

1996; Crump et al., 2009; Hirano & Imbens, 2001; Li et al., 

2018; Rosenbaum, 2012). In brief, the dataset comprises 

information on 5735 patients, 2184 of them were treated with 

RHC (𝑇𝑖=1) within 24 hours of admission, while the remaining 

3551 were not (𝑇𝑖=0). The outcome of interest was mortality at 

30 days of hospitalization. Full details of this data, including 

the variable description and its summary statistics, have been 

published elsewhere (Connors et al., 1996; Hirano & Imbens, 

2001). 

 

2.6.1 Results 
 

The RHC dataset is unique in terms of its 

characterization by a bountiful number of covariates, with a 

moderately sized treatment prevalence (38.1%). Figure 4 

provides information on the balance on covariates. Before any 

weighting, the data had a high degree of covariate imbalance. 

The weighting methods produced ASMD values that did not 

exceed the vertical line 0.1 threshold superimposed in Figure 4. 

Entropy balancing achieved a perfect covariate balance 

(ASMD=0) on all the covariates, while there were still some 

noticeably non-zero ASMDs after applying IPW. As expected, 

variance ratios were all virtually 1 when moment constraints of 

entropy balancing included the second moment. Even when 

moment constraints included only the mean, entropy balancing 

still achieved variance ratios close to one about 71.4% of the 

time. IPW did poorly on variance ratios, as it increased the 

values for some covariates, thereby making things worse. As 

measured by the KS statistic, both methods performed 

remarkably well on the empirical distribution of the continuous 

covariates. However, about 67% of the time, entropy balancing 

produced KS values indicative of better balance, when moment 

constraints included the second moment; while, when it 

contained only the first moment, entropy balancing marginally 

outperformed IPW about 52% of the time. 
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Figure 4. Assessment of covariate balance for the RHC dataset 

Note: ebal1: entropy balance on the 1st moment; ebal2:  entropy balance on the 2nd moment 

 

The causal treatment effects estimated using these 

stated methods are shown in Table 1. All the considered 

estimators produced qualitatively similar estimates that are 

statistically significant at the 0.01 level, which indicate that 

applying RHC leads to a higher mortality rate. These results 

agree with the substantive conclusions made in previous studies 

(Connors et al., 1996; Crump et al., 2009; Li et al., 2018). 

Estimators based on the entropy balancing had smaller 

confidence interval lengths (0.0731 for ebal1 and 0.0767 for 

ebal2) than the corresponding ones based on the IPW (0.0787).  

 

2.7 Case study 2: Lindner study 
 

Randomised controlled trials of percutaneous 

coronary intervention (PCI) have demonstrated the efficacy of 

increasing survival of patients.  The Ohio Heart Health Center 

(OHHC) operators at the Lindner Christ Hospital in Cincinnati, 

Ohio carried out an observational study in 1997. In brief, the 

Lindner  dataset  comprises  information  on  996  patients  who

Table 1. Causal effect estimation of RHC 
 

Methods Estimate CI P-value 

     

Unweighted 0.051 0.025─0.076 <0.0001 

IPW 0.056 0.017─0.096 0.0051 

ebal1 0.072 0.035─0.108 0.0001 

ebal2 0.057 0.019─0.096 0.0034 
    

 

Note: CI: Confidence Interval; ebal1: entropy balance on the 1st 
moment; ebal2:  entropy balance on the 2nd moment  

 

received an initial Percutaneous Coronary Intervention (PCI) at 

the health facility at that time. The treated group are patients 

who received the PCI with an additional abciximab (abcix) 

treatment (an expensive, high-molecular-weight IIb/IIIa 

cascade blocker), while the control group are those who 

received the PCI alone. Covariates include an indicator for 

recent acute myocardial infarction (acutemi), left ventricle 

ejection fraction (ejecfrac), height, number of vessels involved 
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in initial PCI (ves1proc), an indicator for coronary stent 

insertion (stent), gender (female), and diabetic indicator 

(diabetic). An indicator of survival at six months 

(sixMonthSurvive) is the outcome variable of interest. Further 

details of this dataset and its analysis have been published 

elsewhere (Abdia, Kulasekera, Datta, Boakye, & Kong, 2017; 

Kereiakes et al., 2000). 

 

2.7.1 Results 
 

The Lindner dataset is unique in terms of its 

characterization by a relatively smaller number of covariates, 

with an unusually high treatment prevalence (70%). Figure 5 

provides information on the covariate balance. Before any 

weighting, there were some meaningful differences in the 

means and variances for some of the covariates. IPW and 

entropy balancing both reduced these imbalances, and achieved 

an ASMD well below the threshold of 0.1, as superimposed in 

Figure 5. Entropy balancing achieved a perfect covariate 

balance (ASMD=0), as well as variance ratios close to one for 

all the covariates. However, there were still some noticeably 

non-zero ASMDs after applying IPW, as well as a suboptimal 

performance in terms of variance ratios. As measured by the 

KS statistic, both methods performed remarkably well on the 

empirical distribution of the continuous covariates. In all of the 

covariates, entropy balancing (both of first and second 

moments) produced KS values indicative of better balance. 

The estimated causal treatment effects of abciximab, 

using both methods, are shown in Table 2. All the considered 

estimators produced qualitatively similar estimates that are 

statistically significant at the 0.05 level. There is thus evidence 

of the effectiveness of the abciximab treatment increasing 

survival rates of patients. The same conclusion was made by 

Kereiakes et al. (2000). Estimators based on the entropy 

balancing had smaller confidence interval lengths (0.128 for 

ebal1 and 0.124 for ebal2) than the corresponding ones based 

on the IPW (0.149).  

Table 2. Causal effect estimation of abciximab 
 

Methods Estimate CI P-value 

    

Unweighted 0.035 0.013─0.056 0.0017 
IPW 0.079 0.004─0.153 0.0394 

ebal1 0.071 0.007─0.135 0.0288 

ebal2 0.070 0.008─0.132 0.0267 
    

 

Note: CI: Confidence Interval; ebal1: entropy balance on the 1st 

moment; ebal2:  entropy balance on the 2nd moment 

 

3. Discussion 
 

PS weighting methods have conventionally been 

used to estimate treatment effects in the presence of 

confounding factors. In this study, we used simulations and two 

empirical examples to highlight our experiences with using 

entropy balancing, and its performance relative to the 

traditional inverse probability of treatment weighting method. 

We are motivated by the under-utilization of the entropy 

balancing technique in the biomedical sciences, in reducing 

bias and estimating causal treatment effects in observational 

studies, despite its increased usage and successful application 

in the social sciences. We chose a simulation structure that 

mimics what is common in most biomedical studies and 

empirical datasets that have been analysed by some previous 

studies representative of a clinical application.  

Though both entropy balancing and IPW methods 

provided adequate covariate balance in the considered 

scenarios, we found that entropy balancing outperformed IPW 

for all the considered scenarios. For entropy balancing, 

covariate balance was improved as treatment prevalence 

increased. Both methods improved covariate balance for larger 

sample sizes. There was also no evidence of treatment 

prevalence on the bias and MSE of estimated effects.

 
 

Figure 5. Assessment of covariate balance for the Lindner dataset 

Note: ebal1: entropy balance on the 1st moment; ebal2:  entropy balance on the 2nd moment 
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Our empirical applications showed that IPW 

worsened covariate balance on a few covariates. This could 

have been remedied by iteratively tweaking the PS model until 

the desired covariate balance is achieved. However, unlike the 

entropy balancing method, there is no guarantee that this 

tedious and exhausting process of PS model specification will 

help IPW produce the desired covariate balance.  

We assessed the following situations, which did not 

allow convergence of the entropy balancing algorithms: (i) 

smaller sample sizes (less than 300) for treatment prevalence 

rates higher than 33%, in the simulations; (ii) including the 3rd 

moments in the moment constraints for the case study; and (iii) 

including pairs of interaction of continuous covariates for the 

case study. The above findings agree with the caution given by 

Hainmueller (2012), in light of potential situations, depending 

on the data, that may prevent convergence of the entropy 

balancing algorithm. Furthermore, even though previous 

studies like (Zagar et al., 2017) stated that the presence of 

interaction effects might improve the performance of the 

entropy balancing, but the interaction effects are not always 

feasible for a large number of covariates as we have 

experienced with our second empirical example. 

To our knowledge, no previous study had explored 

entropy balancing using Monte Carlo simulations, with binary 

outcomes. As with any simulation, our simulation results might 

be limited to the scenarios considered by our simulation data; 

therefore, the results cannot be generalised to settings that have 

not been evaluated. Another limitation of entropy balancing is 

that it does not address unmeasured confounding, which is still 

a vexing problem in observational studies.  

 

4. Conclusions 
 

Overall, we found the entropy balancing technique 

useful, with excellent performance, and one that is frequently 

less tedious than the traditional inverse probability of treatment 

weighting approach. Entropy balancing merits more 

widespread adoption for estimating the effects of treatment, 

especially in the medical and health sciences, when using 

observational data. 
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