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Abstract 
 

Uncertainties and fuzziness are basic phenomena in human thinking and in many real-world objectives. In the existing 

literature of information theory various divergence measures are available for studying such phenomena in accordance to their 

ethos. In general, some are probabilistic and some are non-probabilistic by nature. In the present communication, an attempt is 

made to introduce non-probabilistic divergence measures for fuzzy matrices that are exponential in nature. In the present study, we 

prove their validity and study their properties. The different applications of proposed non-probabilistic measure are discussed in 

the amphitheater of decision making and feature selection. 

 

Keywords: probabilistic measure, non-probabilistic measure, fuzzy set, fuzzy matrix, divergence measure, fuzzy divergence 

measure, feature selection, decision making 

 

 

1. Introduction 
 

Statistical and mathematical procedures are 

significant in modern scientific theories and technology. In 

many real life problems, the available information may be 

vague, ambiguous and uncertain. Shannon (1948) used 

“entropy” to measure the degree of randomness in a probability 

distribution. The concept of entropy has been widely used in 

various areas, e.g., communication theory, statistical 

mechanics, finance, pattern recognition and neural networks, 

etc. Because of the limitations of Shannon measure in certain 

situations, Renyi (1961) took the first step and generalized the 

Shannon measure. After Renyi, many generalized measures 

were developed for different situations. Kullback & Leibler 

(1951) initiated the measure of discrimination between two 

probability distributions, one being the standard and the other 

an observed distribution. A measure 𝐷(𝐴 ∶ 𝐵) of divergence or

 
cross entropy was found to be significant in mathematical, 

physical and biological sciences. This measure is probabilistic 

in character and is characterized as the discrepancy of the 

probability distribution 𝑃 from another probability distribution 

𝑄. Literature on the development of divergence measures has 

expanded significantly in the last two decades of the 20th 

century. Taneja (2001, 2005), Sharma & Mittal (1975), 

Besseville (2010), Sharma et al. (2017, 2018) and Sharma & 

Gupta (2017, 2019) contributed to the development of 

generalized information and divergence measures. 

The concept of fuzziness introduced by Zadeh (1965) 

revolutionized research and development in the area. De Luca 

& Termini (1971) defined the measure of fuzzy entropy 

corresponding to Shannon (1948) measure of entropy. Bhandari 

and Pal (1993) defined measure of fuzzy entropy corresponding 

to Renyi (1961) entropy and measure of fuzzy directed 

divergence corresponding to Kullback & Leibler (1951) 

divergence measure. Fuzzy-divergence measures have been 

studied by Kapur (1997), Gupta et al. (2014), and Gupta & 

Kumari (2014), and Bhatia & Singh (2013) presented a survey 

of fuzzy information and divergence measures. 
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In this report the first section is introduction, and the 

second section is preliminaries in which we discuss the related 

concepts of our works. In third section we propose our 

divergence measures and show validity and also characterize 

their properties. In fourth section applications of the proposed 

measured are discussed, along with a case study example of a 

decision making problem. Finally, conclusions are drawn. 

 

2. Preliminaries 
 

In this section we discuss some related terms used in 

this paper. 

 

2.1 Information measure 
 

Shannon (1948) defined the measure of information 

 

𝐻(𝑃) = ∑𝑝𝑖  𝑙𝑜𝑔 𝑝𝑖

𝑛

𝑖=1

,          𝑃 ∈ 𝑆                               

 

where 𝑆 = {𝑃 = (𝑝1, 𝑝2, 𝑝3, ……… , 𝑝𝑛); 𝑝𝑖 ≥ 0,∑ 𝑝𝑖
𝑛
𝑖=1 =

1;  𝑛 ≥ 2}  is the complete finite discrete probability 

distribution. 

 

2.2 Divergence measure 
 

The relative entropy or divergence is a measure of the 

distance between two probability distributions. In statistics, it 

arises as the expected logarithm of the likelihood ratio. The 

relative entropy 𝐷(𝑃:𝑄) is the measure of inefficiency of 

assuming that the distribution is 𝑄 when the true distribution is 

𝑃. For example, if we knew the true distribution of the random 

variable, then we could construct a code with average 

description length 𝐻(𝑃). If, instead, we used the code for a 

distribution 𝑄, we would need 𝐻(𝑃) + 𝐷(𝑃:𝑄) bits on the 

average to describe the random variable. The relative entropy 

or Kullback & Leibler (1951) distance between two probability 

distributions is defined as 

 

𝐷(𝑃:𝑄) = ∑𝑝𝑖 log
𝑝𝑖

𝑞𝑖

𝑛

𝑖=1

                                            

 

A correct measure of divergence must satisfy the following 

postulates: 

 

𝐷(𝑃:𝑄)  ≥  0 

 
𝐷(𝑃: 𝑄) =  0 𝑖𝑓𝑓  𝑃 = 𝑄 

 
𝐷(𝑃: 𝑄) is a convex function of both 𝑝𝑖 and 𝑞𝑖 where 

𝑝𝑖 ∈ 𝑃 and 𝑞𝑖 ∈ 𝑄. 
 

𝐷(𝑃:𝑄)  =  𝐷(𝑄: 𝑃) that is the measure is 

symmetric. 

 

Thus properties (2.2.1) to (2.2.4) are essential to 

define a new divergence measure. If in addition triangle 

inequality is also satisfied by 𝐷(𝑃:𝑄) then it is called a distance 

measure. 

 

2.3 Fuzzy sets 
 

In mathematics, fuzzy sets are sets whose elements 

have degree of membership. Fuzzy sets were introduced by 

Zadeh (1965) as an extension of the classical notion of a set. In 

classical set theory, the membership of elements in a set is 

either 0 or 1 i.e. an element either belongs (1) or does not belong 

to the set (0). By contrast, in a fuzzy set the membership of 

elements in a set lies in the interval [0, 1]. Thus we say that it 

is a class of objects with a continuum of grades of membership 

i.e. a fuzzy set is defined by its membership function which 

allots to each object a grade of membership ranging between 

zero and one. Since the indicator functions of classical sets are 

a particular case of the membership functions of fuzzy sets, 

only taking values 0 or 1, we say that fuzzy sets generalize 

classical sets. In fuzzy set theory, classical bivalent sets are 

usually called crisp sets. 

 

Definition 1. A fuzzy set is a pair (𝑈,𝑚) where 𝑈 is a universal 

set and 𝑚: 𝑈 →  [0, 1] for each 𝑧 ∈  𝑈, the value 𝑚(𝑧) is 

called the grade of membership of 𝑧 in (𝑈,𝑚). For a finite set 

𝑈 = {𝑧1, 𝑧2, … . . , 𝑧𝑛}, the fuzzy set (𝑈,𝑚) is often denoted by 

{
𝑚(𝑧1)

(𝑧1)
, …… . ,

𝑚(𝑧𝑛)

(𝑧𝑛)
}. Let 𝑧 ∈  𝑈. Then 𝑧 is called not included 

in the fuzzy set (𝑈,𝑚) if 𝑚(𝑧)  =  0, 𝑧 is called a fuzzy number 

if 0 <  𝑚(𝑧)  <  1. The set {𝑧 𝜖 𝑈 | 𝑚(𝑧)  >  0} is called the 

support of (𝑈,𝑚) and the set {𝑧 𝜖 𝑈| 𝑚(𝑧)  = 1) is called its 

kernel or core. The function 𝑚 is called the membership 

function of the fuzzy set (𝑈,𝑚). 

 

2.3.1 Standard operator and operation of fuzzy sets 
 

With the min-max system proposed by Zadeh (1965), 

fuzzy set operators are defined component-wise as: 

Complement: The complement of a set ‘S’ is denoted 

as Sc. Membership degree can be calculated as following: 
 

mSc(z) = 1 − mS(z);    ∀ 𝑧 𝜖 𝑍. 

 

Union: Membership value of member x in the union 

takes the maximum value of membership between S and T: 
 

                       𝑚𝑆∪𝑇(𝑍) = max[𝑚𝑆(𝑧), 𝑚𝑇(𝑧)] ;   ∀ 𝑧 𝜖 𝑍. 

 

Two alternative choices of membership function for 

the union (𝑆 ∪ 𝑇) are: 

 

𝑚𝑆∪𝑇(𝑍) = 𝑚𝑆(𝑧) + 𝑚𝑇(𝑧) − 𝑚𝑆(𝑧) ∗ 𝑚𝑇(𝑧);  ∀ 𝑧 𝜖 𝑍. 

 

𝑚𝑆∪𝑇(𝑍) = min{1,𝑚𝑆(𝑧) + 𝑚𝑇(𝑧)} ;  ∀ 𝑧 𝜖 𝑍. 

 

Intersection: Intersection of fuzzy sets 𝑆 and 𝑇 takes 

minimum value of membership function between 𝑆 and 𝑇: 

 

𝑚𝑆∩𝑇(𝑍) = min [𝑚𝑆(𝑧),𝑚𝑇(𝑧)]; ∀ z ϵ Z. 
 

Two alternative choices of membership function for 

the intersection 𝑆 ∩ 𝑇 are: 

 

𝑚𝑆∩𝑇(𝑍) = {𝑚𝑆(𝑧) ∗ 𝑚𝑇(𝑧)}; ∀ z ϵ Z. 
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𝑚𝑆∩𝑇(𝑍) = max {0,𝑚𝑆(𝑧) + 𝑚𝑇(𝑧) − 1}; ∀ z ϵ Z. 

      

The complement, union and intersection are 

applicable even if the membership function is restricted to 0 or 

1. 

 

2.4   Fuzzy divergence measure 
 

As we have already discussed, the measure of 

divergence or cross entropy is the difference between two sets. 

Thus, taking two fuzzy sets Bhandari & Pal (1993) initiated the 

first fuzzy directed divergence measure corresponding to 

Kullback & Leibler’s (1951) divergence, defined as: 

 

𝐷(𝐴:𝐵) = ∑[𝜇𝐴(𝑥𝑖)

𝑛

𝑖=1

𝑙𝑜𝑔
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)

+ (1 − 𝜇𝐴(𝑥𝑖))𝑙𝑜𝑔
1 − 𝜇𝐴(𝑥𝑖)

1 − 𝜇𝐵(𝑥𝑖)
]     

 

Later various studies related to fuzzy directed divergence have 

been published. Jain & Chhabra (2016) defined a new 

exponential measure of fuzzy directed divergence based on 

Bajaj & Hooda (2010) as: 

 

𝐺𝑒𝑥𝑝(𝐴, 𝐵) = ∑[𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)]

𝑛

𝑖=1

[𝑒
𝜇𝐴(𝑥𝑖)
𝜇𝐵(𝑥𝑖) − 𝑒

1−𝜇𝐴(𝑥𝑖)
1−𝜇𝐵(𝑥𝑖)]      

 

Definition 2. Let a universal set be 𝑋 and 𝐹(𝑋) be the set of all 

fuzzy subsets. A mapping 𝐷 ∶ 𝐹(𝑋) × 𝐹(𝑋) → 𝑅 is called a 

divergence between fuzzy subsets if and only if the following 

axioms hold: 

 

𝐷(𝐴:𝐵) ≥ 0, i.e. divergence measure is non 

negative. 

 

𝐷(𝐴:𝐵) = 0 when A=B, i.e. divergence measure is 

equal for two equal fuzzy set. 

 

𝐷(𝐴:𝐵) = 𝐷(𝐵: 𝐴), i.e. divergence measure is 

symmetric in nature. 

 

𝐷(𝐴: 𝐵) divergence measure is convex in A and B. 

 

A measure that satisfies above axioms is a valid 

divergence measure. 

 

2.5 Fuzzy matrices 
 

Definition 3. Fuzzy matrix: A fuzzy matrix 𝑆 of order 𝑚 × 𝑛 

is defined as 𝑆 = [< 𝑠𝑖𝑗 , 𝑠𝑖𝑗𝜇 >]
𝑚×𝑛

 where  𝑠𝑖𝑗𝜇 is the 

membership value of the element 𝑠𝑖𝑗 in 𝑆. For our convinence, 

we write 𝑆 as 𝑆 = [𝑠𝑖𝑗]𝑚×𝑛
.  

 

Definition 4. Boolean fuzzy matrix: A fuzzy matrix 𝑆 =

[𝑠𝑖𝑗]𝑚×𝑛
 is said to be a Boolean fuzzy matrix or crisp matrix of 

order m×n if all the elements of 𝑆 are either 0 or 1.  
 

Definition 5. Most fuzzy matrix: A fuzzy matrix 𝑆 = [𝑠𝑖𝑗]𝑚×𝑛
 

is said to be the most fuzzy matrix of order m×n if all the 

elements of 𝑆 are 0.5.  
 

Definition 6. Two fuzzy matrices are equal if they have same 

order and their corresponding elements are equal. 

 

Definition 7. Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, where 𝑠𝑖𝑗𝜇 is the 

membership value of element 𝑠𝑖𝑗 . If m≠n, then 𝑆 is called a 

fuzzy rectangular matrix. 

 

Definition 8. Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, where 𝑠𝑖𝑗𝜇 is the 

membership value of element 𝑠𝑖𝑗 . If m = n, then 𝑆 is called a 

fuzzy square matrix. 

 

Definition 9. Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, where 𝑠𝑖𝑗𝜇 is the 

membership value of element 𝑠𝑖𝑗 . If m = 1, then 𝑆 is called a 

fuzzy row matrix. 

 

Definition 10. Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, where 𝑠𝑖𝑗𝜇 is the 

membership value of element 𝑠𝑖𝑗 . If  n = 1, then S is called a 

fuzzy column matrix. 

 

Definition 11. Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, where 𝑠𝑖𝑗𝜇 is the 

membership value of element 𝑠𝑖𝑗 . If  n = m, and 𝑠𝑖𝑗𝜇 = 0 for all 

i ≠ j then S is called a fuzzy diagonal matrix. 

 

Definition 12. Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, where 𝑠𝑖𝑗𝜇 is the 

membership value of element 𝑠𝑖𝑗 . If  n = m, and 𝑠𝑖𝑗𝜇 = 0 for all 

i ≠ j  and 𝑠𝑖𝑗𝜇 = 𝜔 ∈ [0, 1] ∀ 𝑖 = 𝑗 then 𝑆 is called a fuzzy 

scalar matrix. 

 

Definition 13. Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, where 𝑠𝑖𝑗𝜇 is the 

membership value of element 𝑠𝑖𝑗 . If m = n, and 𝑠𝑖𝑗𝜇 = 0 for all 

i > j then 𝑆 is called a fuzzy upper triangular matrix. 

 

Definition 14. Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, where 𝑠𝑖𝑗𝜇 is the 

membership value of element 𝑠𝑖𝑗 . If m = n, and 𝑠𝑖𝑗𝜇 = 0 for all 

I < j then 𝑆 is called a fuzzy lower triangular matrix. 

A fuzzy matrix is said to be triangular if it is either 

fuzzy lower or fuzzy upper triangular matrix. 

 

Definition 15. Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, where 𝑠𝑖𝑗𝜇 is 

membership value of element 𝑠𝑖𝑗 . Then the elements 

𝑠11, 𝑠22, … , 𝑠𝑚𝑚 are called the diagonal elements and the line 

along which they lie is called the principal diagonal of the fuzzy 

matrix. 

 

Definition 16. Let 𝑆 = [𝑠𝑖𝑗𝜇], 𝑇 = [𝑡𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛. Then 

union of 𝑆, 𝑇 is defined by 𝑆𝑚×𝑛 ∪ 𝑇𝑚×𝑛 = 𝑅𝑚×𝑛 = [𝑟𝑖𝑗𝜇]𝑚×𝑛, 

where 𝑟𝑖𝑗𝜇 = 𝑠𝑖𝑗𝜇 + 𝑡𝑖𝑗𝜇 − 𝑠𝑖𝑗𝜇𝑡𝑖𝑗𝜇 for all i and j. 

 

Example 2.5.1.  

 

Let 𝑆 = [
0.7 0.5 0.2
0.3 0.2 0.1
0.3 0.7 0.6

] and 𝑇 = [
0.2 0.3 0.1
0.5 0.2 0.6
0.8 0.7 0.2

] ; then 
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𝑆3×3 ∪ 𝑇3×3 = 𝑅3×3 =  [
0.76 0.65 0.28
0.65 0.36 0.64
0.86 0.91 0.68

] 

 

Definition 17. Let 𝑆 = [𝑠𝑖𝑗𝜇], 𝑇 = [𝑡𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛. Then 

maximum operation of S, T is defined by 𝑀𝑎𝑥(𝑆𝑚×𝑛, 𝑇𝑚×𝑛) =
𝑅𝑚×𝑛 = [𝑟𝑖𝑗𝜇]𝑚×𝑛, where 𝑟𝑖𝑗𝜇 = max (𝑝𝑖𝑗𝜇, 𝑞𝑖𝑗𝜇) for all i and 

j. 

 

Example 2.5.2. Hence for the matrix S and T given in example 

(2.5.1) we have, 

 

𝑀𝑎𝑥(𝑆3×3, 𝑇3×3) = 𝑅3×3 = [
0.7 0.5 0.2
0.5 0.2 0.6
0.8 0.7 0.6

] 

 

Definition 18. Let 𝑆 = [𝑠𝑖𝑗𝜇], 𝑇 = [𝑡𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛. Then 

intersection of S, T is defined by 𝑆𝑚×𝑛 ∩ 𝑇𝑚×𝑛 = 𝑅𝑚×𝑛 =
[𝑟𝑖𝑗𝜇]𝑚×𝑛, where 𝑟𝑖𝑗𝜇 = 𝑠𝑖𝑗𝜇 ∗ 𝑡𝑖𝑗𝜇 = 𝑠𝑖𝑗𝜇𝑡𝑖𝑗𝜇 for all i and j. 

 

Example 2.5.6. Hence for the matrix 𝑆 and 𝑇 given in example 

(2.5.1) we have, 

  

𝑆3×3 ∩ 𝑇3×3 = 𝑅3×3 =  [
0.14 0.15 0.02
0.15 0.04 0.06
0.24 0.49 0.12

] 

 

Definition 19. Let 𝑆 = [𝑠𝑖𝑗𝜇], 𝑇 = [𝑡𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛. Then 

minimum operation of S, T is defined by 𝑀𝑖𝑛(𝑆𝑚×𝑛, 𝑇𝑚×𝑛) =
𝑅𝑚×𝑛 = [𝑟𝑖𝑗𝜇]𝑚×𝑛, where 𝑟𝑖𝑗𝜇 = min (𝑝𝑖𝑗𝜇, 𝑞𝑖𝑗𝜇) for all i and j. 

 

Example 2.5.3. Hence for the matrix S and T given in example 

(2.5.1) we have, 

 

𝑀𝑖𝑛(𝑆3×3, 𝑇3×3) = 𝑅3×3 = [
0.2 0.3 0.1
0.3 0.2 0.1
0.3 0.7 0.2

] 

 

Some experts used Max operation as Union and Addition of 

two fuzzy matrices and Min operation as Intersection and 

Subtraction of fuzzy matrices. 

 

Definition 20. Let 𝑆 = [𝑠𝑖𝑗𝜇], 𝑇 = [𝑡𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛. Then 

Max-min operation of 𝑆, 𝑇 is defined by 𝑀𝑎𝑥 −
𝑚𝑖𝑛(𝑆𝑚×𝑛, 𝑇𝑚×𝑛) = 𝑅𝑚×𝑛 = [𝑟𝑖𝑗𝜇]𝑚×𝑛, where 𝑟𝑖𝑗𝜇 =

max{min[(𝑠𝑖𝑗𝜇, 𝑡𝑗𝑖𝜇) 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛]} 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚.  

 

Example 2.5.4. Hence for the matrix S and T given in example 

(2.5.1) we have, 

 

𝑀𝑎𝑥 − 𝑚𝑖𝑛(𝑆3×3, 𝑇3×3) = 𝑅3×3 =  [
0.5 0.3 0.5
0.2 0.3 0.2
0.6 0.6 0.6

] 

 

Definition 21. Let 𝑆 = [𝑠𝑖𝑗𝜇], 𝑇 = [𝑡𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛. Then 

Min-max operation of 𝑆, 𝑇 is defined by 𝑀𝑖𝑛 −
𝑚𝑎𝑥(𝑆𝑚×𝑛, 𝑇𝑚×𝑛) = 𝑅𝑚×𝑛 = [𝑟𝑖𝑗𝜇]𝑚×𝑛, where 𝑟𝑖𝑗𝜇 =

min{max[(𝑠𝑖𝑗𝜇, 𝑡𝑗𝑖𝜇) 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛]} 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚.  

 

Example 2.5.5. Hence for the matrix S and T given in example 

(2.5.1) we have, 

 

𝑀𝑖𝑛 − 𝑚𝑎𝑥(𝑆3×3, 𝑇3×3) = 𝑅3×3 = [
0.5 0.5 0.2
0.3 0.2 0.2
0.3 0.3 0.3

] 

 
Some experts adopt Max-min and Min-max operation as a 

product of two fuzzy soft matrices according to their 

requirements 

 

Definition 22. Let 𝑆 = [𝑠𝑖𝑗𝜇], 𝑅 = [𝑟𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, then 

𝑅 is complement of 𝑆 denoted by 𝑆𝑐 = 𝑅 = [𝑟𝑖𝑗𝜇], where 

𝑟𝑖𝑗𝜇 = 1 − 𝑠𝑖𝑗𝜇 for all i and j. 

 
Example 2.5.7. Hence for the matrix S given in example (2.5.1) 

we have, 

 

 𝑆𝑐 = 𝑅 = [
0.3 0.5 0.8
0.7 0.8 0.9
0.7 0.3 0.4

] 

 

Definition 23. Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈  [Ƒ(M)]𝑚×𝑛, 𝑅 = [𝑟𝑗𝑖𝜇] ∈

 [Ƒ(M)]𝑛×𝑚, then 𝑅 is transpose of 𝑆 denoted by 𝑆𝑇 = 𝑅 =

[𝑟𝑗𝑖𝜇], where 𝑟𝑗𝑖𝜇 = 𝑠𝑖𝑗𝜇 for all i and j. 

 

Example 2.5.8. Hence for the matrix S in example (2.5.1) we 

have, 

𝑆𝑇 = 𝑅 = [
0.7 0.3 0.3
0.5 0.2 0.7
0.2 0.1 0.6

] 

 

3. Proposed Divergence measure 
 

In this section non-probabilistic divergence measures 

of fuzzy matrices are proposed and their axioms based on fuzzy 

divergence measure are also discussed. 

Here we first define a non-probabilistic divergence 

measure of fuzzy matrices: 

 

Definition 24. Let 𝐹𝑀 be the set of all fuzzy matrices having m 

rows and n columns and 𝑋 & 𝑌 ∈ 𝐹𝑀. Then a mapping 𝐽 ∶  𝐹𝑀 ×
 𝐹𝑀  →  𝑅 is called non-probabilistic divergence measure of 

fuzzy matrices if and only if 

a. 𝐽(𝑋: 𝑌)  ≥  0, i.e. divergence measure is non-

negative 
b. 𝐽(𝑋: 𝑌)  =  0 when X=Y i.e. 𝑥𝑖𝑗 = 𝑦𝑖𝑗, i. e., 

divergence measure is zero when fuzzy matrix 

are equal 

c. 𝐽(𝑋: 𝑌) = 𝐽(𝑌: 𝑋) i.e. divergence measure is 

symmetric in nature. 

d. 𝐽(𝑋: 𝑌)  divergence measure is convex in X and 

Y. 
A measure is a non-probabilistic divergence measure of fuzzy 

matrices if it satisfies axioms (a) to (d). 

Here an exponential divergence measure of fuzzy 

matrices is proposed as 

𝐽(𝑋: 𝑌) = ∑∑{1 − (𝑥𝑖𝑗 − 𝑦𝑖𝑗)}𝑒
(1−𝑥𝑖𝑗)−(1−𝑦𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ {1 − ((1 − 𝑥𝑖𝑗) − (1 − 𝑦𝑖𝑗))} 𝑒𝑥𝑖𝑗−𝑦𝑖𝑗

− 2 
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𝐽(𝑋: 𝑌) = ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗

− 2]             (3.1) 

where X and Y are fuzzy matrices of order m × n and 𝑥𝑖𝑗 ∈

𝑋 & 𝑦𝑖𝑗 ∈ 𝑌 

Now to show that the proposed measure is a valid 

measure, the following theorem show satisfaction of the 

required axioms: 

 

Theorem 3.1. J(X:Y) is non-negative if 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛. 
 

Proof. It can be clearly shown in Figure (1) that the measure is 

non-negative for each a & b (where a = 𝑥𝑖𝑗𝑋 & 𝑏 = 𝑦𝑖𝑗 ∈ 𝑌 ). 

 

 
 

Figure 1. Divergence 

 

Theorem 3.2. 𝐽(X:Y)=0 when X & Y are equal fuzzy matrices, 

or X=Y or 𝑥𝑖𝑗 = 𝑦𝑖𝑗 . 

 

Proof.  

𝐽(𝑋: 𝑌) = ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

And if X=Y or 𝑥𝑖𝑗 = 𝑦𝑖𝑗 then  

 

𝐽(𝑋: 𝑌) = ∑∑[(1 − 𝑥𝑖𝑗 + 𝑥𝑖𝑗)𝑒
(𝑥𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑥𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑥𝑖𝑗 − 2] = 0 

 

Hence the claim is proven. 

 

Theorem 3.3. J(X:Y) is symmetric, i.e. 𝐽(𝑋: 𝑌) = 𝐽(𝑌: 𝑋). 
 

Proof. To prove that J(X:Y) is symmetric we show that  

 

𝐽(𝑋: 𝑌) − 𝐽(𝑌: 𝑋) = 0 

 

𝐽(𝑋: 𝑌) = ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

 𝐽(𝑌: 𝑋) = ∑∑[(1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
(𝑥𝑖𝑗−𝑦𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
𝑦𝑖𝑗−𝑥𝑖𝑗 − 2] 

 

𝐽(𝑋: 𝑌) − 𝐽(𝑌: 𝑋) = ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗 − 1 + 𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

− 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗 − 1)𝑒𝑥𝑖𝑗−𝑦𝑖𝑗

− 2 + 2] = 0 

 

Hence the claim is proven. 

 

Theorem 3.4. J(X:Y) is convex in X and Y. 

 

Proof. First we show J(X:Y) convex in X and similarly we 

prove for Y. 
 

𝐽(𝑋: 𝑌) = ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

𝜕𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗
= ∑∑[−(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒

(𝑦𝑖𝑗−𝑥𝑖𝑗) − 𝑒(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 + 𝑒𝑥𝑖𝑗−𝑦𝑖𝑗] 

 

𝜕𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗
  = ∑∑[(𝑥𝑖𝑗 − 𝑦𝑖𝑗 − 2)𝑒(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (2 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗] 

 
𝜕𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗
= 0 𝑤ℎ𝑒𝑛  𝑋 = 𝑌 𝑜𝑟 𝑥𝑖𝑗 = 𝑦𝑖𝑗  

 

𝜕2𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗
2 = ∑∑[𝑒(𝑦𝑖𝑗−𝑥𝑖𝑗) − (𝑥𝑖𝑗 − 𝑦𝑖𝑗 − 2)𝑒(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (2 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 + 𝑒𝑥𝑖𝑗−𝑦𝑖𝑗] 

 

𝜕2𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗
2 = ∑∑[(3 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒

(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (3 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗] 

 

𝜕2𝐽(𝑋: 𝑌)

𝜕𝑥𝑖𝑗
2

= 6𝑚𝑛 > 0 𝑤ℎ𝑒𝑛 𝑋 = 𝑌 𝑜𝑟 𝑥𝑖𝑗 = 𝑦𝑖𝑗 

 

This shows that J(X:Y) is a convex function of 𝑥𝑖𝑗 . 
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Similarly we can show that  J(X:Y) is a convex function of 𝑦𝑖𝑗. 

Since the proposed divergence measure satisfied all 

the four required axioms, we can say that this measure is a valid 

divergence measure of fuzzy matrices. 

Now we prove some properties of the proposed measure in the 

form of theorems. 

 

Theorem 3.5. Let 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then the following 

properties are satisfied by J(X:Y). 
 

a. 𝐽(𝑋: 𝑌) = 𝐽(𝑋𝑐: 𝑌𝑐) 

b. 𝐽[max(𝑋, 𝑌) : min(𝑋, 𝑌)] = 𝐽(𝑋: 𝑌) 

c. 𝐽(𝑋:max(𝑋, 𝑌)) = 𝐽(𝑌:min(𝑋, 𝑌)) 

d. 𝐽(𝑋:min(𝑋, 𝑌)) = 𝐽(𝑌:max (𝑋, 𝑌) 

 

Proof. For this purpose we divide the elements of each pair of 

fuzzy matrices having equal order into two sets as given below: 

 

𝑆1 = {𝑥𝑖𝑗 𝑜𝑟 𝑦𝑖𝑗 ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  ≥  𝑦𝑖𝑗}

𝑆2 = {𝑥𝑖𝑗 𝑜𝑟 𝑦𝑖𝑗 ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  <  𝑦𝑖𝑗}
}  

 

(a) We have  

 

𝐽(𝑋: 𝑌) = ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

𝐽(𝑋𝑐: 𝑌𝑐)

= ∑∑[
(1 − (1 − 𝑥𝑖𝑗) + (1 − 𝑦𝑖𝑗)) 𝑒

((1−𝑦𝑖𝑗)−(1−𝑥𝑖𝑗))

+(1 − (1 − 𝑦𝑖𝑗) + (1 − 𝑥𝑖𝑗))𝑒
(1−𝑥𝑖𝑗)−(1−𝑦𝑖𝑗) − 2

]

𝑛

𝑗=1

𝑚

𝑖=1

 

 

𝐽(𝑋𝑐: 𝑌𝑐)∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

𝐽(𝑋𝑐: 𝑌𝑐) = 𝐽(𝑋: 𝑌) 
 

Hence the claim is proven. 

 

(b) We have 

 

 𝐽[max(𝑋, 𝑌) : min(𝑋, 𝑌)] 
 

= ∑∑[
(1 − max (𝑥𝑖𝑗 , 𝑦𝑖𝑗) + min (𝑥𝑖𝑗, 𝑦𝑖𝑗))𝑒

(min(𝑥𝑖𝑗,𝑦𝑖𝑗)−max(𝑥𝑖𝑗,𝑦𝑖𝑗))

+(1 − min (𝑥𝑖𝑗 , 𝑦𝑖𝑗) + max (𝑥𝑖𝑗 , 𝑦𝑖𝑗))𝑒
(max(𝑥𝑖𝑗,𝑦𝑖𝑗)−min(𝑥𝑖𝑗,𝑦𝑖𝑗)) − 2

]

𝑛

𝑗=1

𝑚

𝑖=1

 

 

= ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑦𝑖𝑗 − 2]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

 

 

  + ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

= { ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

  

+ ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

} 

 

+ { ∑ [(1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

+ ∑ [(1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2]

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

} 

 

= ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)]

𝑛

𝑗=1

𝑚

𝑖=1

 

+ ∑∑[(1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2]

𝑛

𝑗=1

𝑚

𝑖=1

 

 

= ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑦𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

− 2] = 𝐽(𝑋: 𝑌) 

 

Hence the proof is complete. 

 

(c) 𝐽(𝑋: max(𝑋, 𝑌)) = 𝐽(𝑌: min(𝑋, 𝑌)) 

 

Now first taking left hand side  

 

𝐽(𝑋: max(𝑋, 𝑌))

= ∑∑[
(1 − 𝑥𝑖𝑗 + max (𝑥𝑖𝑗 , 𝑦𝑖𝑗))𝑒

(max(𝑥𝑖𝑗,𝑦𝑖𝑗)−𝑥𝑖𝑗)

+(1 − max (𝑥𝑖𝑗 , 𝑦𝑖𝑗) + 𝑥𝑖𝑗)𝑒
(𝑥𝑖𝑗−max(𝑥𝑖𝑗,𝑦𝑖𝑗)) − 2

]

𝑛

𝑗=1

𝑚

𝑖=1

 

 

= ∑ [(1 − 𝑥𝑖𝑗 + 𝑥𝑖𝑗)𝑒
(𝑥𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑥𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑥𝑖𝑗

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

− 2] 

 

  + ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

= ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑦𝑖𝑗

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

− 2] 

 

Now taking right hand side 

 

𝐽(𝑌: min(𝑋, 𝑌))

= ∑∑[
(1 − 𝑦𝑖𝑗 + min (𝑥𝑖𝑗 , 𝑦𝑖𝑗))𝑒

(min(𝑥𝑖𝑗,𝑦𝑖𝑗)−𝑦𝑖𝑗)

+ (1 − min (𝑥𝑖𝑗 , 𝑦𝑖𝑗) + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−min(𝑥𝑖𝑗,𝑦𝑖𝑗)) − 2

]

𝑛

𝑗=1

𝑚

𝑖=1

 

 

= ∑ [(1 − 𝑦𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑦𝑖𝑗) + (1 − 𝑦𝑖𝑗 + 𝑦𝑖𝑗)𝑒

𝑦𝑖𝑗−𝑦𝑖𝑗

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

− 2] 
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  + ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

= ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑦𝑖𝑗

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

− 2] 

 

Thus L.H.S = R.H.S. 

 

Hence the claim is proven. 

 

(d) 𝐽(𝑋:min(𝑋, 𝑌)) = 𝐽(𝑌: max(𝑋, 𝑌)) 

 

Now first taking left hand side  

 

𝐽(𝑋: min(𝑋, 𝑌))

= ∑∑[
(1 − 𝑥𝑖𝑗 + min (𝑥𝑖𝑗 , 𝑦𝑖𝑗))𝑒

(min(𝑥𝑖𝑗,𝑦𝑖𝑗)−𝑥𝑖𝑗)

+(1 − min (𝑥𝑖𝑗 , 𝑦𝑖𝑗) + 𝑥𝑖𝑗)𝑒
(𝑥𝑖𝑗−min(𝑥𝑖𝑗,𝑦𝑖𝑗)) − 2

]

𝑛

𝑗=1

𝑚

𝑖=1

 

 

 

= ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑦𝑖𝑗

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

− 2] 

 

+ ∑ [(1 − 𝑥𝑖𝑗 + 𝑥𝑖𝑗)𝑒
(𝑥𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑥𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑥𝑖𝑗

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

− 2] 

 

  = ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

Now taking right hand side 

 

𝐽(𝑌: max(𝑋, 𝑌))

= ∑∑[
(1 − 𝑦𝑖𝑗 + max (𝑥𝑖𝑗 , 𝑦𝑖𝑗))𝑒

(max(𝑥𝑖𝑗,𝑦𝑖𝑗)−𝑦𝑖𝑗)

+ (1 − max (𝑥𝑖𝑗 , 𝑦𝑖𝑗) + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗− max(𝑥𝑖𝑗,𝑦𝑖𝑗)) − 2

]

𝑛

𝑗=1

𝑚

𝑖=1

 

 

= ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑦𝑖𝑗

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

− 2] 

 

+ ∑ [(1 − 𝑦𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑦𝑖𝑗) + (1 − 𝑦𝑖𝑗 + 𝑦𝑖𝑗)𝑒

𝑦𝑖𝑗−𝑦𝑖𝑗

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆2

− 2] 

  = ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝑆1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

Thus L.H.S = R.H.S. 

 

Hence the claim is proven. 

 

Corollary 3.1. If 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then we have 

 𝐽(𝑋:max(𝑋, 𝑌)) + 𝐽(𝑋:min(𝑋, 𝑌)) = 𝐽(𝑋: 𝑌) 

 

Proof. By using parts c and d of theorem (3.5) we can easily 

verify the claim. 

 

Corollary 3.2. If 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then we have 

 𝐽(𝑌:max(𝑋, 𝑌)) + 𝐽(𝑌:min(𝑋, 𝑌)) = 𝐽(𝑋: 𝑌) 

 

Proof.  Again by using parts c and d of theorem (3.5) the claim 

is verified. 

 

Corollary 3.3. If 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then we have 

𝐽(min(𝑋, 𝑌) : 𝑋) = 𝐽(max(𝑋, 𝑌): 𝑌) ≤ 𝐽(𝑋: 𝑌) 

 

Proof. By symmetry of the divergence measure and part d of 

theorem (3.5) we have 

 

𝐽(𝑋: min(𝑋, 𝑌)) = 𝐽(min(𝑋, 𝑌) : 𝑋) = 𝐽(max(𝑋, 𝑌): 𝑌)
= 𝐽(𝑌:max(𝑋, 𝑌)) 

 

Now using corollary (3.1) we can prove the result. 

 

Corollary 3.4. If 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then we have 

𝐽(max(𝑋, 𝑌) : 𝑋) = 𝐽(min(𝑋, 𝑌): 𝑌) ≤ 𝐽(𝑋: 𝑌) 

 

Proof. By symmetry of divergence measure and part c of 

theorem (3.5) we have 

 

𝐽(𝑋: max(𝑋, 𝑌)) = 𝐽(max(𝑋, 𝑌) : 𝑋) = 𝐽(min(𝑋, 𝑌): 𝑌)
= 𝐽(𝑌:min(𝑋, 𝑌)) 

 

Now using corollary (3.2) we can prove the result. 

 

Theorem 3.6. Let 𝑋 𝑎𝑛𝑑 𝑌 ∈ [𝐹𝑀]𝑚×𝑛 then the following 

properties are satisfied by 𝐽(𝑋: 𝑌). 
 

a. 𝐽(𝑋: 𝑌𝑐) = 𝐽(𝑋𝑐: 𝑌) 

b. 𝐽(𝑋: 𝑋𝑐) = 2𝑚𝑛(𝑒 − 1) when 𝑥𝑖𝑗 = 0 𝑜𝑟 1 for 

all 𝑖 𝑎𝑛𝑑 𝑗. 
c. 𝐽(𝑋: 𝑋𝑐) = 0 when 𝑋 is a standard fuzzy matrix 

or 𝑥𝑖𝑗 = 0.5 for all 𝑖 𝑎𝑛𝑑 𝑗. 

 

Proof. We have 

 

𝐽(𝑋: 𝑌) = ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 
(a) First taking left hand side 

𝐽(𝑋: 𝑌𝑐) = ∑∑[(1 − 𝑥𝑖𝑗 + (1 − 𝑦𝑖𝑗))𝑒
((1−𝑦𝑖𝑗)−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − (1 − 𝑦𝑖𝑗) + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−(1−𝑦𝑖𝑗) − 2] 
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𝐽(𝑋: 𝑌𝑐) = ∑∑[(2 − 𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑒
(1−𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗+𝑦𝑖𝑗−1 − 2] 

 

Now taking right hand side 
 

𝐽(𝑋𝑐: 𝑌) = ∑∑[(1 − (1 − 𝑥𝑖𝑗) + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−(1−𝑥𝑖𝑗))

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + (1 − 𝑥𝑖𝑗))𝑒
(1−𝑥𝑖𝑗)−𝑦𝑖𝑗) − 2] 

 

𝐽(𝑋: 𝑌𝑐) = ∑∑[(𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗+𝑦𝑖𝑗−1

𝑛

𝑗=1

𝑚

𝑖=1

+ (2 − 𝑥𝑖𝑗 − 𝑦𝑖𝑗)𝑒
(1−𝑦𝑖𝑗−𝑥𝑖𝑗) − 2] 

 

Thus L.H.S. = R.H.S. 
 

Hence the claim is proven. 

 

(b) We have 

 

𝐽(𝑋: 𝑋𝑐) = ∑∑[(1 − 𝑥𝑖𝑗 + (1 − 𝑥𝑖𝑗))𝑒
((1−𝑥𝑖𝑗)−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − (1 − 𝑥𝑖𝑗) + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−(1−𝑥𝑖𝑗) − 2] 

 

𝐽(𝑋: 𝑋𝑐) = ∑∑[(2(1 − 𝑥𝑖𝑗))𝑒
((1−2𝑥𝑖𝑗) + (2𝑥𝑖𝑗)𝑒

2𝑥𝑖𝑗−1

𝑛

𝑗=1

𝑚

𝑖=1

− 2] 

 

When 𝑥𝑖𝑗 = 0 𝑜𝑟 1 for all 𝑖 𝑎𝑛𝑑 𝑗. 

 

𝐽(𝑋: 𝑋𝑐) = ∑∑[2(𝑒 − 1)]

𝑛

𝑗=1

𝑚

𝑖=1

= 2𝑚𝑛(𝑒 − 1) 

 

Hence the claim is proven. 

 

(c) Proceeding like (b) we have when 𝑥𝑖𝑗 = 0.5 for all 𝑖 𝑎𝑛𝑑 𝑗. 

 

𝐽(𝑋: 𝑋𝑐) = ∑∑[(2(1 − 𝑥𝑖𝑗))𝑒
((1−2𝑥𝑖𝑗) + (2𝑥𝑖𝑗)𝑒

2𝑥𝑖𝑗−1

𝑛

𝑗=1

𝑚

𝑖=1

− 2] 

 

𝐽(𝑋: 𝑋𝑐) = ∑∑[(2(
1

2
)) (1) + (2 (

1

2
)) (1) − 2]

𝑛

𝑗=1

𝑚

𝑖=1

= ∑∑[1 + 1 − 2]

𝑛

𝑗=1

𝑚

𝑖=1

= 0 

 𝐽(𝑋: 𝑋𝑐) = 0 

 

Theorem 3.7. Let 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 ∈ [𝐹𝑀]𝑚×𝑛 then 

a) 𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) − 𝐽(max(𝑋, 𝑌) : 𝑍) =
𝐽(min(𝑋, 𝑌) : 𝑍) 

b) 𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) − 𝐽(min(𝑋, 𝑌) : 𝑍) =
𝐽(max(𝑋, 𝑌) : 𝑍) 

 

Proof. For this purpose we divide the elements of each pair of 

fuzzy matrices having equal order into two sets as given below: 

 

𝑆1 = {𝑥𝑖𝑗 𝑜𝑟 𝑦𝑖𝑗 ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  ≥  𝑦𝑖𝑗}

𝑆2 = {𝑥𝑖𝑗 𝑜𝑟 𝑦𝑖𝑗 ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  <  𝑦𝑖𝑗}
}  

 

(a) We have 

 
𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) − 𝐽(max(𝑋, 𝑌) : 𝑍)

= {∑∑[(1 − 𝑥𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑧𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑧𝑖𝑗 − 2]

𝑛

𝑗=1

𝑚

𝑖=1

+ ∑∑[(1 − 𝑦𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑦𝑖𝑗) + (1 − 𝑧𝑖𝑗 + 𝑦𝑖𝑗)𝑒

𝑦𝑖𝑗−𝑧𝑖𝑗 − 2]

𝑛

𝑗=1

𝑚

𝑖=1

− ∑∑[
(1 − max(𝑥𝑖𝑗 , 𝑦𝑖𝑗) + 𝑧𝑖𝑗)𝑒

(𝑧𝑖𝑗−max(𝑥𝑖𝑗,𝑦𝑖𝑗))

+(1 − 𝑧𝑖𝑗 + max (𝑥𝑖𝑗 , 𝑦𝑖𝑗))𝑒
(max(𝑥𝑖𝑗,𝑦𝑖𝑗)−𝑧𝑖𝑗) − 2

]

𝑛

𝑗=1

𝑚

𝑖=1

} 

 

= ∑ [(1 − 𝑥𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗,𝑧𝑖𝑗∈𝑆1

+ (1 − 𝑧𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑧𝑖𝑗 − 2]

+ [(1 − 𝑦𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑦𝑖𝑗)

+ (1 − 𝑧𝑖𝑗 + 𝑦𝑖𝑗)𝑒
𝑦𝑖𝑗−𝑧𝑖𝑗 − 2]

− [(1 − 𝑥𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑥𝑖𝑗)

+ (1 − 𝑧𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑧𝑖𝑗 − 2] 

 

+ ∑ [(1 − 𝑥𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗 ,𝑧𝑖𝑗∈𝑆2

+ (1 − 𝑧𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑧𝑖𝑗 − 2]

+ [(1 − 𝑧𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑧𝑖𝑗)

+ (1 − 𝑦𝑖𝑗 + 𝑧𝑖𝑗)𝑒
𝑧𝑖𝑗−𝑦𝑖𝑗 − 2]

− [(1 − 𝑧𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑧𝑖𝑗)

+ (1 − 𝑦𝑖𝑗 + 𝑧𝑖𝑗)𝑒
𝑧𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

= ∑ [(1 − 𝑦𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑦𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗,𝑧𝑖𝑗∈𝑆1

+ (1 − 𝑧𝑖𝑗 + 𝑦𝑖𝑗)𝑒
𝑦𝑖𝑗−𝑧𝑖𝑗 − 2] 

 

+ ∑ [(1 − 𝑥𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗 ,𝑧𝑖𝑗∈𝑆2

+ (1 − 𝑧𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑧𝑖𝑗 − 2] 

 

= ∑∑[
(1 − min(𝑥𝑖𝑗 , 𝑦𝑖𝑗) + 𝑧𝑖𝑗)𝑒

(𝑧𝑖𝑗−min(𝑥𝑖𝑗,𝑦𝑖𝑗))

+(1 − 𝑧𝑖𝑗 + min (𝑥𝑖𝑗 , 𝑦𝑖𝑗))𝑒
(min(𝑥𝑖𝑗,𝑦𝑖𝑗)−𝑧𝑖𝑗) − 2

]

𝑛

𝑗=1

𝑚

𝑖=1

= 𝐽(𝑀𝑖𝑛(𝑋, 𝑌): 𝑍) 

Hence the claim is proven.  

(b) In part (a) it is proved that 𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) −
𝐽(max(𝑋, 𝑌) : 𝑍) = 𝐽(min(𝑋, 𝑌) : 𝑍) thus by using this it is 
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easy to show that  𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) − 𝐽(min(𝑋, 𝑌) : 𝑍) =
𝐽(max(𝑋, 𝑌) : 𝑍). 

 

Corollary 3.5. If 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 ∈ [𝐹𝑀]𝑚×𝑛 then 

a. 𝐽(max(𝑋, 𝑌) : 𝑍) ≤ 𝐽(𝑋: 𝑍) +  𝐽(𝑌: 𝑍) 

b. 𝐽(min(𝑋, 𝑌) : 𝑍) ≤ 𝐽(𝑋: 𝑍) +  𝐽(𝑌: 𝑍) 

 

Proof. 

(a) Since 𝐽(𝑚𝑖𝑛(𝑋, 𝑌): 𝑍) ≥ 0 so by using part ‘a’ of theorem 

(3.7) we prove it. 

(b) Since 𝐽(𝑚𝑎𝑥(𝑋, 𝑌): 𝑍) ≥ 0 so by using part ‘b’ of theorem 

(3.7) we prove it. 

 

Theorem 3.8. Let 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 ∈ [𝐹𝑀]𝑚×𝑛 then 

a. 𝐽(max(𝑋, 𝑌) : 𝑍) + 𝐽(min(𝑋, 𝑌) : 𝑍) =
𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) 

b. 𝐽(𝑋: max(𝑌, 𝑍)) + 𝐽(𝑋: min(𝑌, 𝑍)) =
𝐽(𝑋: 𝑌) + 𝐽(𝑋: 𝑍) 

 

Proof. For this purpose we divide the elements of each pair of 

fuzzy matrices having equal order into two sets as given below: 

 

𝑆1 = {𝑥𝑖𝑗 𝑜𝑟 𝑦𝑖𝑗 ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  ≥  𝑦𝑖𝑗}

𝑆2 = {𝑥𝑖𝑗 𝑜𝑟 𝑦𝑖𝑗 ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  <  𝑦𝑖𝑗}
}  

 

(a) By using part ‘a’ of theorem (3.7) we know that 

 

𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) − 𝐽(max(𝑋, 𝑌) : 𝑍) = 𝐽(min(𝑋, 𝑌) : 𝑍) 

 

Thus  

 

𝐽(max(𝑋, 𝑌) : 𝑍) + 𝐽(min(𝑋, 𝑌) : 𝑍) = 𝐽(𝑋: 𝑍) + 𝐽(𝑌: 𝑍) 

 

(b) We have  

 
𝐽(𝑋: 𝑌) + 𝐽(𝑋: 𝑍) − 𝐽(𝑋:max (𝑌, 𝑍)

= {∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑦𝑖𝑗 − 2]

𝑛

𝑗=1

𝑚

𝑖=1

+ ∑∑[(1 − 𝑥𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑥𝑖𝑗) + (1 − 𝑧𝑖𝑗 + 𝑥𝑖𝑗)𝑒

𝑥𝑖𝑗−𝑧𝑖𝑗 − 2]

𝑛

𝑗=1

𝑚

𝑖=1

− ∑∑[
(1 − 𝑥𝑖𝑗 + max(𝑧𝑖𝑗 , 𝑦𝑖𝑗))𝑒

(max(𝑧𝑖𝑗,𝑦𝑖𝑗)−𝑥𝑖𝑗)

+(1 − max(𝑧𝑖𝑗 , 𝑦𝑖𝑗) + 𝑥𝑖𝑗)𝑒
(𝑥𝑖𝑗−max(𝑧𝑖𝑗,𝑦𝑖𝑗)) − 2

]

𝑛

𝑗=1

𝑚

𝑖=1

} 

 

= ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗,𝑧𝑖𝑗∈𝑆1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2]

+ [(1 − 𝑥𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑥𝑖𝑗)

+ (1 − 𝑧𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑧𝑖𝑗 − 2]

− [(1 − 𝑥𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑥𝑖𝑗)

+ (1 − 𝑧𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑧𝑖𝑗 − 2] 

 

+ ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗 ,𝑧𝑖𝑗∈𝑆2

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2]

+ [(1 − 𝑥𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑥𝑖𝑗)

+ (1 − 𝑧𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑧𝑖𝑗 − 2]

− [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑧𝑖𝑗−𝑥𝑖𝑗 − 2] 

 

= ∑ [(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗,𝑧𝑖𝑗∈𝑆1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

+ ∑ [(1 − 𝑥𝑖𝑗 + 𝑧𝑖𝑗)𝑒
(𝑧𝑖𝑗−𝑥𝑖𝑗)

𝑥𝑖𝑗,𝑦𝑖𝑗 ,𝑧𝑖𝑗∈𝑆2

+ (1 − 𝑧𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑧𝑖𝑗 − 2] 

 

= ∑∑[
(1 − 𝑥𝑖𝑗 + min(𝑧𝑖𝑗 , 𝑦𝑖𝑗) +)𝑒(min(𝑧𝑖𝑗,𝑦𝑖𝑗)−𝑥𝑖𝑗)

+(1 − min (𝑧𝑖𝑗 , 𝑦𝑖𝑗) + 𝑥𝑖𝑗)𝑒
(𝑥𝑖𝑗−min(𝑧𝑖𝑗,𝑦𝑖𝑗)) − 2

]

𝑛

𝑗=1

𝑚

𝑖=1

= 𝐽(𝑋: 𝑚𝑖𝑛(𝑍, 𝑌)) 

 

𝐽(𝑋: 𝑌) + 𝐽(𝑋: 𝑍) = 𝐽(𝑋: max (𝑌, 𝑍)) + 𝐽(𝑋: min(𝑍, 𝑌)) 

Thus properties (1) and (2) are satisfied. 

 

4. Application in Decision Making and Feature  

    Selection Problems 
 

In this section, we introduce a method to solve 

decision making and feature selection problems by using the 

proposed non-probabilistic exponential measure of fuzzy 

matrices. 

Now, let us consider a decision making problem 

involving a set of options 𝑂 = {𝑜1, 𝑜2, …… , 𝑜𝑛} to be 

considered on the basis of certain criteria 𝐶 = {𝑐1, 𝑐2, …… , 𝑐𝑛}. 
For decision making and feature selection, the characteristic 

sets for each option are determined by assigning appropriate 

membership values, and an ideal solution O to the problem has 

maximum membership values in each criterion. We calculate 

the divergence for each case and select the option with 

minimum divergence. 

Now to exhibit the applicability of the proposed 

measure we consider an example: 

Suppose a person wants to buy a car and he needs to select the 

brand out of six brands {𝑋1, 𝑋2, …… , 𝑋6} having feature 

conditions {𝑌1, 𝑌2, …… , 𝑌7}. Now, for evaluating the six brands, 

the companies form six fuzzy sets as given below: 

 

𝑋1 = {(𝑌1, 0.4), (𝑌2, 0.7), (𝑌3, 0.5), (𝑌4, 0.9), 
           (𝑌5, 0.4), (𝑌6, 0.6), (𝑌7, 0.6)} 
𝑋2 = {(𝑌1, 0.7), (𝑌2, 0.9), (𝑌3, 0.6), (𝑌4, 0.7), 
           (𝑌5, 0.6), (𝑌6, 0.6), (𝑌7, 0.8)} 
𝑋3 = {(𝑌1, 0.9), (𝑌2, 0.6), (𝑌3, 0.4), (𝑌4, 0.5), 
           (𝑌5, 0.7), (𝑌6, 0.5), (𝑌7, 0.3)} 
𝑋4 = {(𝑌1, 0.5), (𝑌2, 0.5), (𝑌3, 0.6), (𝑌4, 0.3), 
           (𝑌5, 0.6), (𝑌6, 0.8), (𝑌7, 0.7)} 
𝑋5 = {(𝑌1, 0.6), (𝑌2, 0.5), (𝑌3, 0.7), (𝑌4, 0.6), 
           (𝑌5, 0.7), (𝑌6, 0.5), (𝑌7, 0.5)} 
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𝑋6 = {(𝑌1, 0.4), (𝑌2, 0.3), (𝑌3, 0.2), (𝑌4, 0.5), 
           (𝑌5, 0.5), (𝑌6, 0.4), (𝑌7, 0.3)} 
 

Now these six sets are represented as a fuzzy matrix ′𝑃′ having 

order (6 × 7), where rows represent brands and columns 

represent features: 

 

𝑃 =

[
 
 
 
 
 
0.4 0.7
0.7 0.9

    
0.5 0.9 0.4
0.6 0.7 0.6

    
0.6 0.6
0.6 0.8

0.9 0.6 0.4
0.5 0.5 0.6
0.6 0.5 0.7

    
0.5 0.7 0.5
0.3 0.6 0.8
0.6 0.7 0.5

     
0.3
0.7
0.5

0.4 0.3 0.2    0.5 0.5     0.4 0.3]
 
 
 
 
 

 

 

Now we take the optimal solution from the above six sets which 

is given by: 

 

𝑋 = {(𝑌1, 0.9), (𝑌2, 0.9), (𝑌3, 0.7), (𝑌4, 0.9), (𝑌5, 0.7), 
         (𝑌6, 0.8), (𝑌7, 0.8)} 
 

The set 𝑋 is represented as a fuzzy row matrix 𝐵. 
𝐵 = [ 0.9 0.9 0.7    0.9 0.7    0.8 0.8] 
 

Now partition the above fuzzy matrix 𝑃 into six row matrices 

{𝐵1, 𝐵2, …… , 𝐵6}. We find the divergence between these six 

row matrices and matrix 𝐵 by using the proposed divergence 

measure 

 

𝐽(𝑋: 𝑌) = ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

𝐽(𝐵1: 𝐵) = ∑∑[(1 − 0.4 + 0.9)𝑒(0.9−0.4)

7

𝑗=1

1

𝑖=1

+ (1 − 0.9 + 0.4)𝑒0.4−0.9 − 2]
= 1.53240 

 

Similarly we find divergences of 𝐵 from the other options as  

 

𝐽(𝐵2: 𝐵) = 0.42209, 𝐽(𝐵3: 𝐵) = 2.08724,   
𝐽(𝐵4: 𝐵) = 2.20652,         𝐽(𝐵5: 𝐵) = 1.58428,   
𝐽(𝐵6: 𝐵) = 4.56607. 

 

We find that the optimum solution of 𝐵 is 0.42209, 

which is defined with option 𝐵2. Thus it can be easily said that 

the person prefers the car of brand 𝑋2 with rank order of lesser 

preferences 𝑋1, 𝑋5, 𝑋3, 𝑋4, 𝑋6. 
As we know, in the above matrix 𝑃 the columns 

represent the features of brands, thus for feature selection we 

first find the order of significance of these features. 

Now we take the optimal solution according to the 

features from the matrix 𝑃 in the form of a set: 

 

𝑌 = {(𝑋1, 0.9), (𝑋2, 0.9), (𝑋3, 0.7), (𝑋4, 0.8), 
(𝑋5, 0.7), (𝑋6, 0.5)} 
 
The set 𝑌 is represented as a fuzzy column matrix 𝐹. 
𝐹 = [ 0.9 0.9 0.9    0.8 0.7 0.5]𝑇 
 

Now partition the above fuzzy matrix 𝑃 into seven 

column matrices {𝐹1, 𝐹2, …… , 𝐹7}. We find the divergence 

between these seven column matrices and matrix 𝐵 by using 

the proposed divergence measure 

 

𝐽(𝑋: 𝑌) = ∑∑[(1 − 𝑥𝑖𝑗 + 𝑦𝑖𝑗)𝑒
(𝑦𝑖𝑗−𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

+ (1 − 𝑦𝑖𝑗 + 𝑥𝑖𝑗)𝑒
𝑥𝑖𝑗−𝑦𝑖𝑗 − 2] 

 

𝐽(𝐹1: 𝐹) = ∑∑[(1 − 0.4 + 0.9)𝑒(0.9−0.4)

1

𝑗=1

6

𝑖=1

+ (1 − 0.9 + 0.4)𝑒0.4−0.9 − 2]

= 1.23048 

 

Similarly we find divergences of 𝐵 from the other options  

 

𝐽(𝐹2: 𝐹) = 0.90878, 𝐽(𝐹3: 𝐹) = 1.93453, 
 𝐽(𝐹4: 𝐹) = 1.41779,       𝐽(𝐹5: 𝐹) = 1.29107,   
𝐽(𝐹6: 𝐹) = 1.18823, 𝐽(𝐹7: 𝐹) = 1.70972 

 

The optimum solution of 𝐹 is 0.90878, which is 

achieved with option 𝐹2. Thus it can be easily said that the 

feature 𝐹2 is more significant than the other features, whose 

rank order is 𝐹6, 𝐹1, 𝐹5, 𝐹4, 𝐹7, 𝐹3.  
Now we remove those features that do not alter the 

preference order of brands or maintain the optimality of brands. 

Since 𝐹3 is the least significant we first remove it and check for 

optimality. 

 

𝐽(𝐵1: 𝐵) = 1.41174, 𝐽(𝐵2: 𝐵) = 0.39205,   
𝐽(𝐵3: 𝐵) = 1.81386,        𝐽(𝐵4: 𝐵) = 2.17648, 
  𝐽(𝐵5: 𝐵) = 1.58428,       𝐽(𝐵6: 𝐵) = 3.78973. 
 

The optimality of brands is maintained so remove 𝐹3. 
When we remove 𝐹5 then 

 

𝐽(𝐵1: 𝐵) = 1.25901, 𝐽(𝐵2: 𝐵) = 0.39205,   
𝐽(𝐵3: 𝐵) = 2.08724,        𝐽(𝐵4: 𝐵) = 2.17648,   
𝐽(𝐵5: 𝐵) = 1.58428, 𝐽(𝐵6: 𝐵) = 4.44541. 
 

We can remove 𝐹5 because optimality is maintained 

after removal of it. 

Similarly when we remove 𝐹6, 𝐹1, 𝐹4, 𝐹7, 𝐹2 

individually then the optimality of brands is not maintained, so 

we cannot remove these features.  

When we remove 𝐹3 & 𝐹5 both then 

 

𝐽(𝐵1: 𝐵) = 1.13835, 𝐽(𝐵2: 𝐵) = 0.36201,   
𝐽(𝐵3: 𝐵) = 1.81386,        𝐽(𝐵4: 𝐵) = 2.14644, 
𝐽(𝐵5: 𝐵) = 1.58428, 𝐽(𝐵6: 𝐵) = 3.66907. 
Since optimality is maintained we can eliminate these features. 

When we remove 𝐹3 & 𝐹6 both then 

 

𝐽(𝐵1: 𝐵) = 1.29107,          𝐽(𝐵2: 𝐵) = 0.27138,   
𝐽(𝐵3: 𝐵) = 1.54047,         𝐽(𝐵4: 𝐵) = 2.17648,   
𝐽(𝐵5: 𝐵) = 1.31091, 𝐽(𝐵6: 𝐵) = 3.29899. 
 

Since optimality is maintained so we can eliminate these 

features. When we remove 𝐹3, 𝐹5 & 𝐹6 then 
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𝐽(𝐵1: 𝐵) = 1.01768, 𝐽(𝐵2: 𝐵) = 0.24134,   
𝐽(𝐵3: 𝐵) = 1.54047,       𝐽(𝐵4: 𝐵) = 2.14644, 
𝐽(𝐵5: 𝐵) = 1.31091,      𝐽(𝐵6: 𝐵) = 3.17834. 
 

Since optimality is maintained we can eliminate these 

features. Thus we can eliminate the following 

features {{𝐹3, 𝐹5, 𝐹6}, {𝐹3, 𝐹5}, {𝐹3, 𝐹6}, {𝐹3}, {𝐹5}}. 
 

4.1 Application in decision making 
 

.Here a case study is considered to demonstrate 

application of proposed measure. Prof. S. C. Malik (Head of 

Department of Statistics, M.D.U. Rohtak, India) wants to add a 

software related subject in his curriculum. With suggestions 

from the faculty of his department, he considers different 

software subjects with various parameters, such as Job 

Efficiency, Latest software, Useful for Statisticians, Low cost 

to Purchase, Easy to Learn, and Curriculum Related. Fuzzy 

values for the defined parameters are shown in Table 1.  

According to Prof. Malik the optimal fuzzy value of 

the standard software with respect to parameters is this:  

 

𝑆 = {0.8, 0.6, 0.9, 0.8, 0.5, 0.9} 
 

The divergences of given software and standard 

software are shown in Table 2, which is obtained by using the 

proposed measure. 

Since in Table 2 the divergence between R-software 

and optimal value of standard software is less than for the 

others, it is concluded that Prof. Malik preferred R-software for 

the curriculum. 

 

5. Conclusions 
 

In this paper a non-probabilistic divergence measure 

of fuzzy matrix was introduced. It was also shown that the 

proposed measure is a valid measure. Some properties of the 

proposed measure were also discussed. Eventually this measure 

was applied to a decision making problem and to a feature 

selection problem. In the decision making problem, we select 

the best alternatives preferred over the other alternatives. In the 

feature selection problem, we eliminate those features that are 

irrelevant and after removal our original decision is maintained. 

Lastly a case study example was also discussed to demonstrate 

a real-world application of the proposed measure. 
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