PRINCE oF

SONGKLA
UNIVERSITY

RV

Songklanakarin J. Sci. Technol.
43 (1), 127-132, Jan. - Feh. 2021

T SIST

http://www.sjst.psu.ac.th

Original Article

Solutions of Fredholm integro-differential equations by using a
hybrid of block-pulse functions and Taylor polynomials

Nattinee Khongnual'* and Weerachai Thadee?

L Faculty of Science, Nakhon Si Thammarat Rajabhat University,
Mueang, Nakhon Si Thammarat, 80280 Thailand

2 Department of General Education, Faculty of Liberal Arts,
Rajamangala University of Technology Srivijaya, Mueang, Songkhla, 90000 Thailand

Received: 21 June 2019; Revised: 18 October 2019; Accepted: 25 November 2019

Abstract

In this paper, we present numerical method for solving integro-differential equations of fractional order based on a
hybrid of block-pulse functions and Taylor polynomials. Fractional derivative is described in the Caputo sense. Some numerical

examples are presented to demonstrate the theoretical results.
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1. Introduction

The fractional calculus is important in Science and
Engineering, including earthquake engineering, biomedical
engineering, and fluid mechanics. Some numerical algorithms
for solving integro-differential equation of fractional order can
be summarized, such as sinc-collocation method (Altan,
2017), Taylor expansion method (Huang, Xian-Fang, Zhao, &
Xiang-Yang, 2011), Adomian decomposition method (Mittal
& Nigam, 2008), Least Squares Method and Bernstein
Polynomials (Oyedepo, Taiwo, Abubakar, & Ogunwobi,
2016), and Second kind Chebyshev wavelets (Setia, Liu, &
Vatsala, 2014).

In this paper, we present a numerical method for
solving integro-differential equations of fractional order based
on a hybrid of block-pulse function and Taylor polynomials.
Our study focuses on a class of integro-differential equation of

fractional order, of the type

D" f (t) = y(t) + [K(t,s) f (s)ds, O<s,t<l a>0 (1)
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with the initial condition f“(Q)=4, for g eR and

i e N U{0} where D*(-) is Caputo’s fractional derivative,
a is the order of the fractional derivative, K(t,S) is a

smooth function, tand S are real variables and Y(t) is a

given function. This type of equations arise in the mathe-
matical modeling of various physical phenomena, such as heat
conduction in materials with memory. Moreover, these
equations are encountered in combined conduction, convec-
tion and radiation problems.

2. Basic Definitions

In this section, we present the definitions of
fractional calculus theory and some of its basics.

Definition 1. Let f:[a,b0] >R be a function, o a

positive real number, and I' the gamma function. The
Riemann-Liouville fractional integral of order « is defined by

1 fE)
1“f(t) =1 D(a)®(t—s)"
f(t),

ds, a>0

)
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Definition 2. Let f:[a,b] >R be a function, o a

positive real number, n the integer satisfyingn—1<a <n,

and I' the gamma function. The Caputo’s fractional
derivative of order « is defined by

fM (s)

D f(t) = Sk ®

I'(n— a)-[(t

Riemann-Liouville fractional integral and Caputo’s
fractional differentiation are linear operators, similar to integer

1(Af (t) + 2 (1)) =AU f (1) +
Ag(t) and D(Af (1) % 29(t)= D" f (t) + D9 (t)

where A and 4 are constants.

order differentiation, i.e.,

Next, we mention properties of the operators |“
and D as follows

1(D7 1 (1) = f(t)—nf: f(k’(O)% )
and 7
1™ (D"f (t))= D" f (t) 5)

for any positive real number « such that N—1<a <n and
neN.

Definition 3. The second kind Fredholm integral equation is
defined by

f(0) = y(O+ 2] Kt 9y(ax, ®

where A isaconstantand K(t, X) is a function of variables
X and t.

3. Hybrid of Block-Pulse Functions and Taylor
Polynomials

The hybrid function denoted by b, . (t) is defined
by

n-1, n
TINt—(n-Dt ) te|l—t ,—t
e-@ene) e "]

0, otherwise
where n is the order of block-pulse functions, n=1,2,3,... N
and m=0,12,...M —1. The Taylor polynomial of order m

in (7) is defined by T, (t) =t™. We approximate f (t) by

b,.(t) =

N M-1

f)2) D Cubm®=CTBE), ®
n=l m=0

where

CT =[ ClO CZD CNO Cll CZl CNl ClM—l CNM*I]
and
B'()=[ b, b.@) - b.O b

b,(® ~ b,@®) b, ®) - b O ©

Next, we will introduce operator |“on a hybrid
function given by

1B(t)=B(t, ), (10)

where

B(t,a)=[1b,(t)....,1
Ib,, ()]

Similary, operator D” is given by

“b,, (t), 1D, (t),...,1°b,,(t)....,

D'B(t,a)=B(t,a-p), 0<p<a. (11)

4. Numerical Method

Consider (1) where D“(-) are operators defined as
in (3). We assume that /3 is the smallest integer greater than

or equal to @ and expand D” f (t) with a hybrid of block-
pulse functions and Taylor polynomials as

D’ f (t) =C"B(t). (12)

Operating with | 7" on both sides of the (12) by using (4) and
(10). Thus, the approximate solution is given by

_ g1 k
f(H)=C"B(t,B)+> (O)tkT 13)
k=0 !
Calculating D* f (t) from (13), we get
Da(f(t)) CTB(tﬂ a)_i_if(k)(o) Da(t ) )

Applying (13) and (14) in (1), we get

(14

C'B(t f- a)+§f<“(0)D (t)

v+ [kt s)(CTﬁ(s, 8) +2 £9(0) %) ds. @5

We obtain an NxM
N x M unknown constants C__

system of equations in
. The system of equations is
i+1

then solved by substituting ( 15) with t =——, where
2NM
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i=0,1...,2NM —1. The gained values of initially unknown

constants are substituted in (13) in order to get the required
approximate solution.

5. Numerical Examples

Example 1. Consider the following fractional integro-
differential equation
8 )(%—Zt% 1
t
DOS(f (t =(/37+—+ tsf (s)ds (16)
(10)="55 5+ 119)

subject to f(0)=0, with the known exact solution
f(t)=t*—-t.

We solve this problem by using the hybrid functions
with N =2 and M =2. We let

D f(t)=C"B(t), €h)

where
CT :[ ClO Cll CZO C21 ]and

B(t)=[ b, b, b, b,® .
From (12) and (13), we have
f(t)=C'B(t,])+ f(0) (18)

where

Bt,)=[ b, Ib,@® b, b, |
[ttt @-1].

From (18), we get
D%(f (t))=C"B(t,05) . (19)

Next, applying (18) and (19) in (16) we have

8/\% ok 1
CTB(t,0.5) = (/3)&2+1t2+ ! tsCTB(shs, te[01]-
(20)

Calculating C"B(t,0.5) by using (2), we have

G j L ds + Cu j 2 ds +
r'.5) 0 (t-s)* r'.5)0(t-s)*

C j 1 ds + —
r.5)s (t—s)*

(%)t% -2t”

=9 44 jts[cms +c,8°+c,s+cC, (8" — s)]ds.
0

Jr 12

L 2s-1
21 I S
r(0.5)% (t—s)”

(21)

l,t :g,t :§ and
8 ' 8 ° 8
4

t =—,and we get C,, and C, are interms of C, and C,
8

We substitute in (21) t =

3

where C,,C,€R.If ¢, =c,=1 then ¢ =-2 and
c,=157083x10". Hence we get f(t)=—t+t*—1.57083
x10™ (-t +t*) . Figure 1 shows the exact solution and the

approximate solution and Figure 2 shows the absolute error in
[01-

Example 2. Consider the following fractional integro-
differential equation

D¥5(f (1)) = _%w +(6-20t+ [t (9ds, t<o]

(22)
subject to f(0)=0, with the known exact solution
flt)=t-t.

Here, we solve this problem by using the hybrid
functions with N=1 and M =3. We let

D f(t)=C"B(t), (23)

where

c’ :[ Co Cy G ] and B(t):[ b, (t) by(t) by (t) ]r

From (23) with using (13), we have
f(t)=C"B(t.)+ f(0) (24)
f(t)

0.2 0.4 0.6 08 1.0
~0.05 °

-0.10
-0.15

-0.20

~0.25 [

Figure 1. Numerical results of Example 1.
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Figure 2. Absolute error of Example 1.
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where

B(t,1)=[ toy() Iby() Ib,(0) F{t %%}

From (24), we get
5
Ds(f(t))=CB(t, %) . (25)

Next, we substitute (24) and (25) in (22), then

1
3 t°I'(5/6)(-91+ 216t*) .
91 V4

g b
C B(t,g)—
(5-2e)t + j te°CTB(s1)ds- (26)

Calculating C"B(t,0.5) by using (2), we have

c, %j 1 =ds [+c, %j%ds +
= | t=s) r = | (t-s)
6 6

c L j s ds |~ - -

I Ej"(t—s)% __ 3 T(5/6)(-9L+216)
L \6 91 T

(5-2e)t+] tes[cms $ Oy S }ds.

3 27

We substitute in (27) t, :%, t :% and t, =

N

The constants obtained are ¢, =1, ¢, =5.13185x10™ and

C, =-3. Hence we get f(t)=t+2.56593x10%t* —t*.
Figure 3 shows the exact solution and the approximate

f(t)
0.4
0.3
02 .......... EXaCt
Approximation
0.1
At
0.2 0.4 0.6 0.8 1.0

Figure 3. Numerical results of Example 2.

solution in [0,1], Figure 4 shows the absolute error in [01],
and Table 1 shows the absolute error of Example 2.

Example 3. Consider the following fractional integro-
differential equation

1

2
D5,3(f(t)):3£r(2/3)t le L,

V4 5 4

1
j (st+s%?)f(s)ds, te[0d]- (28)
0

subject to f(O): f'(0) =0, with the known exact solution
f(t)=t>.

Here, we solve this problem by using the hybrid
functions with N=1 and M =1. We let

D2f(t)=C"B(t). (29)

where

C"=[ ¢, Jand B(t)=[ by(®) |"-

From (29) on using (13), we have
f(t)=C"B(t,2)+ f (0)+ f'(0) (30)

where

B(t,2)=[ 1%b,,(t) T:{ % } .

Table 1.  Absolute error of Example 2.
t Absolute error of standard least squares Absolute error of perturbed least squares Absolute error of the present
method (SLM) method (PLM) method

0.0 3.478 x 10 1.0800 x 10 0

0.1 1.6795 x 10° 9.1044 x 10° 2.14142 x 1077
0.2 2.7842 x 10°® 7.8855 x 10° 7.49707 x 108
0.3 7.2646 x 10 7.1358 x 10° 257642 x 1077
0.4 1.3243 x 10° 6.8475 x 10° 6.23823 x 107
0.5 15190 x 10° 7.0128 x 10° 8.63701 x 107
0.6 1.3106 x 10° 7.6237 x 10° 8.17404 x 10
0.7 6.9911 x 10°® 8.6724 x 10° 3.25059 x 107
0.8 3.1530 x 10°® 1.0151 x 10" 7.73205 x 107
0.9 1.7325 x 10° 1.2052 x 10" 2.63726 x 10°%¢
1.0 3.5224 x 10° 1.4367 x 10* 5.42698 x 1071
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Abserror
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Figure 4. Absolute error of Example 2.
From (30), we get
5
D?(f(t))=C"B(t, %). (31)

Next, we substitute (30) and (31) in (28), then

1
2

cBe b= 3WIr@/3 1.,
3 V4 5
1 h 242 TR
Zt+j(st+st )JC'B(s, 2)ds. (32)

We substitute in (32) t, = 1 The constant obtained
2

is ¢, =2 . Hence we get f(t)=t2. Figure 5 shows the exact
solution and the approximate solution in[0,1].

ft)
1.0

0.8
0.6
Approximation

0.4

0.2

=" t
0.2 0.4 0.6 0.8 1.0

Figure 5. Numerical results of Example 3.

Example 4. Consider the following fractional integro-

differential equation

D°5(f(t))=2\F+3t\/;—9+ff(5)ds~ (33)
T 4 10 o

subject to

ft)=t+t".
Here, we solve this problem by using the hybrid
functions with N=2 and M =3 . We let

f(o):o, with the known exact solution

Df(t)=C'B(t). (34

where
C=[ccrcocrcoc, ]and

B(t)=[ b,(® b.(t) b,@) b, b, b,®]

From (34) with use of (13), we have
f({t)=C'B(t)+ f(0) (35)

where

B(t,1)=[ 1b,(t) Ib,(t) Ib,(t) Ib,(t) 1b,(t) Ib,(t)]
.4 , 4@ '
:[t vt () (?-m +t)]

From (35), we get
D*(f(t))=C"B(t, 0.5). (36)

Next, we substitute (35) and (36) in (33), then

C'B(t, 0.5) = 2\/1 LT 9 hegends. @)
2774 T

We get C C,and C,
where C,, C,, C, €R.Onselecting ¢, =c_=c_, =05, then

¢, =0.616239, c, =0.976958and ¢, =0.861823. Hence, we
get the approximate solution as  f (t) =1.23137t +1.24669t°

—0.48243t°. Figure 6 shows the exact solution and the
approximate solution in [p,1] and Table 2 shows a comparison

of exact solution with approximate solution.

C, and C, intermsof C

207 107

f(b)

200 e Exact
Approximation
15
1.0
0.5
t
0.2 0.4 0.6 0.8 1.0

Figure 6. Numerical results of Example 4

6. Conclusions

In this work, we presented numerical solutions to
four examples by using a hybrid of block-pulse function and
Taylor polynomials. We compared the approximate results
with the exact solutions, and it was seen that our method
provides better approximate solutions than SLM and PLM.
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Table 2. Comparison of exact solution with approximate solution
t Exact solution Chebyshev wavelet solution with k =4, M =2 Approximate solution of the present method
0.1 0.1316 0.1360 0.1351
0.2 0.2894 0.2955 0.2922
0.3 0.4643 0.4705 0.4685
0.4 0.6530 0.6587 0.6611
0.5 0.8536 0.8584 0.8670
0.6 1.0648 1.0713 1.0834
0.7 1.2857 1.2931 1.3073
0.8 1.5155 1.5233 1.5359
0.9 1.7538 1.7614 1.7663
1.0 2.0000 2.0070 1.9956
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