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Abstract 
 

The Applied Element Method (AEM) is a numerical method of structural analysis. The degrees of freedom are located 

at the centroid of an element, which is rigid. In AEM, many pairs of springs are provided on the faces of the element. Although the 

AEM is very efficient, it is not popular due to the limited literature discussing stiffness matrix of AEM in detail. In this paper, the 

formulation of the stiffness matrix for two-dimensional and three-dimensional analysis by AEM is discussed. To improve the 

accuracy of AEM, a simplified stiffness matrix is developed when an infinite number of springs is considered. The strains, stresses, 

bending moment and shear forces are also derived. The efficiency of AEM is studied by solving a few conventional problems on 

beams. Comparison of AEM with FEM is also done. The AEM could predict displacements, strains, stresses, bending moment, 

shear force, natural frequency and mode shapes with reasonable accuracy. 
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1. Introduction 
 

In 1997, Meguro and Tagel-Din presented the 

fundamentals of Applied Element Method (AEM) in their 

landmark paper (Meguro & Tagel-Din, 1997). They proposed 

AEM as a tool to analyze reinforced concrete structures in the 

fracture range. The crack pattern and load-deflection curves 

were determined with reliable accuracy. Meguro and Tagel-Din 

(1998) studied the effects of element size, number of springs 

and arrangement of elements on the analysis of structures. 

Tagel-Din and Meguro (1999) could simulate the collapse of a 

reinforced concrete (RC) frame using AEM. In rigid body 

methods, the effect of Poisson’s ratio is not usually considered. 

So, Meguro and Tagel-Din (2000) devised a method to include 

the Poisson effect in two-dimensional (2D) elements. Tagel-

Din and Meguro (2000a) detailed the procedure to determine 

principal stresses at a point in a structure and the method to find 

crack pattern. Using this, the stress contours of concrete cube 

with concentrated load was plotted. The crack pattern, load-

displacement graph and failure load of RC frame, two-storied 

RC wall structure and RC deep beams

 
without shear reinforcement bars were also determined using 

AEM. Tagel-Din and Meguro (2000b) discussed the procedure 

to conduct dynamic analysis of structures. The formulation was 

addressed for both small deformation range and large 

deformation range. Meguro and Tagel-Din (2002) simulated 

the behaviour of some large displacement problems, such as a 

simply supported rubber beam, fixed based column, snap 

through buckling of two-member truss, and elastic frames. 

Unlike FEM, geometric nonlinearity is not dealt with by a 

geometric stiffness matrix. Instead, a residual force vector is 

generated due to the geometric changes happening in the 

structure. 

Moment-resisting steel frame was analyzed by Khalil 

(2011, 2012) by nonlinear dynamic analysis using AEM. 

Gohel, Patel, and Joshi (2013) used AEM to analyze a portal 

frame. Gohel et al. concluded that using small sized elements 

with lesser number of springs gives better results. Shakeri and 

Bargi (2015) developed codes for static analysis and dynamic 

analysis of structures. They studied the variation of normal 

stress diagram and shear stress diagram of beam cross-section 

by changing the number of elements along depth. They showed 

that AEM provides high accuracy at lower processing time. 

Newmark-beta method was used for dynamic analysis. Extreme 

Loading for Structures (ELS), in a software based on AEM for 

three-dimensional (3D) analysis. Ehab, Salem, and Abdel-

Mooty (2016) did progressive collapse analysis of precast 
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concrete connections using ELS. Cismasiu, Ramos, Moldovan, 

Ferreira, and Filho (2017) used AEM to study the failure of a 

reinforced shear wall.  

Although AEM is equally efficient, it is not as 

popular as FEM. So far, a systematic approach to find the 

stiffness matrix has not been explained in any journal. The 

complete stiffness matrix is provided in only a few cases 

[Christy, Pillai, & Nagarajan, (2018), Kharel (2014)]. This 

paper explains the basic steps in AEM. The stiffness matrices 

for 2D analysis and 3D analysis are determined systematically. 

Static and dynamic analysis of structures are also conducted 

using AEM. 

 

2. Applied Element Method 
 

In AEM, there are only two types of elements as 

shown in Figures 1(a)-(b) [Meguro and Tagel-Din, 2000a]. 

These are used for modelling 2D and 3D structures, respec-

tively. 

A 2D element has 3 DOFs; 2 translations (1, 2) and 1 

rotation (3). Whereas, a 3D element has 6 DOFs; 3 translations 

(1 to 3) and 3 rotations (4 to 6). They are located at the centroid 

of the element making it rigid. A pair of springs connecting 2D 

elements consists of one spring to take care of normal stress 

(normal spring) and one spring to carry shear stress (shear 

spring). When it comes to 3D elements, one more shear spring 

is included to bring in 3D behavior. The distributions of springs 

for 2D elements and 3D elements are shown in Figure 1(c) and 

1(d), respectively. Each pair of springs has a stiffness matrix 

depending on its dimensions and position with respect to the 

centroid of the element. 

 

 
 

Figure 1. (a) 2D element, (b) 3D element, (c) connection between 2D 
elements, and (d) connection between 3D elements 

2.1 Stiffness matrix for 2D analysis 
 

The derivation of the stiffness matrix by physical 

approach is done in this section. The nth column of the stiffness 

matrix corresponds to the force required at the various DOFs 

for unit deformation along nth DOF. 

Equation (1) gives the stiffness of the normal spring 

(kn) and shear spring (ks). 

 

kn = 
Edsbs

ls
 ;        ks =  

Gdsbs

ls
 

(1) 

 

ls = L ;      bs = B ;      ds = 
D

ny

 

 

where, E, G, ny, L, B and D are the modulus of elasticity, 

modulus of rigidity, number of pairs of springs, length, width, 

and depth of the element, respectively. Here, ls, bs, and ds are 

the dimensions of the portion of the element represented by a 

spring. 

If more than one element is used along the lateral 

direction, modulus of elasticity should be replaced with 

equivalent modulus of elasticity (E’) based on the type of 

problem. The new equivalent modulus of elasticity depends 

upon the Poisson’s ratio (ν) and is given by Equation (2). 

 

E' = 
E

(1 − ν2)
 

(Plane 

stress) 

E' = 
E(1 − ν)

(1 + ν)(1 − 2ν)
 

(Plane 

strain) 
(2) 

 

The elongation or contraction of the springs due to 

unit deformation along the translational DOFs (1, 2, 4 and 5) 

are well-understood. When it comes to the rotational DOFs (3 

and 6), the deformation of the springs is taken as the dis-

placement of the point at the location of the spring, as shown in 

Figures 2(c) and (f), respectively. In Figures 2(c) and (f), A 

represents the initial position of the spring. A’ denotes the 

position of the spring after deformation. For a small rotation dθ 

along the 3rd DOF, the horizontal and vertical displacements of 

the point are –ydθ and xdθ, respectively, as shown in Figure 

2(c). Similarly, the displacement of the point of the spring due 

to a small rotation dθ along the 4th DOF is given in Figure 2(f). 

The forces in the normal and shear springs are obtained by 

multiplying the corresponding stiffnesses. 

The forces in the springs due to unit deformations 

along the various DOFs (1 to 6) are shown in Figures 3(a)-(f), 

respectively. Here, (x,y) is the coordinate of the location of the 

spring with respect to the centre of first element. 

Equation (3) gives the stiffness matrix of a pair of springs 

connecting 2 identical elements. 

 

 1 2 3 4 5 6 

 kn 0 -kny -kn 0 kny 

 0 ks ksx 0 -ks ksx 

K = -kny ksx kny2+ ksx2 kny -ksx -kny2+ksx2 

 -kn 0 kny kn 0 -kny 

 0 -ks -ksx 0 ks -ksx 

 kny ksx -kny2+ ksx2 -kny -ksx kny2+ ksx2 

 

(3)
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Figure 2. Elongation and compression of springs due to small rotation along (a) 4th DOF,  

(b) 5th DOF, (c) 6th DOF, (d) 10th DOF, (e) 11th DOF, and (f) 12th DOF 

 

 
 

Figure 3. Forces in springs due to unit deformation along (a) 1st DOF, (b) 2nd DOF,  

(c) 3rd DOF, (d) 4th DOF, (e) 5th DOF, and (f) 6th DOF 

 

The complete stiffness matrix of the structure can be 

obtained by assembling the stiffness matrices of all the pairs of 

springs within the structure. 

 

2.2 Stiffness matrix for 3D analysis 
 

Physical approach is used to derive the stiffness 

matrix. The stiffnesses of the normal spring (kn) and shear 

springs (ksy and ksz) are given by Equation (4). 

kn = 
Edsbs

ls
;                ksy = ksz = 

Gdsbs

ls
 

(4) 

 

ls = L ;      bs = 
B

nz

 ;      ds = 
D

ny

 

 

Here, ny and nz are the numbers of pairs of springs along depth 

and width of the element. The equivalent modulus of elasticity 

for 3D element is the same as that of the plane strain problem 

given in Equation (2).
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The elongation and compression in various springs 

for small rotation dθ along rotational DOFs (4, 5, 6, 10, 11 and 

12) can be identified from the Figures 2(a)-(f), respectively. 

The forces in the springs due to unit deformation 

along various DOFs (1 to 12) are shown in Figures 4(a)-(l), 

respectively. (x,y,z) are the coordinates of the position of the 

spring with respect to the centroid of first element. 

The stiffness matrix of a pair of springs (Ks) for 3D 

analysis is given by Equation (5). In the stiffness matrix, ksy and 

ksz are denoted by ks.

 

 
 

Figure 4. Forces in springs due to unit deformation along (a) 1st DOF, (b) 2nd DOF, (c) 3rd DOF, (d) 4th DOF, (e) 5th DOF,  
(f) 6th DOF, (g) 7th DOF, (h) 8th DOF, (i) 9th DOF, (j) 10th DOF, (k) 11th DOF, and (l) 12th DOF 
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  1 2 3 4 5 6 7 8 9 10 11 12  

Ks = 

kn 0 0 0 knz -kny -kn 0 0 0 -knz kny 

(5) 

0 ks 0 -ksz 0 ksx 0 -ks 0 ksz 0 ksx 

0 0 ks ksy -ksx 0 0 0 -ks -ksy -ksx 0 

0 -ksz ksy ks(y
2

+ z2) -ksxy -ksxz 0 ksz -ksy -ks(y
2
+ z2) -ksxy -ksxz 

knz 0 -ksx -ksyx knz
2+ksx

2 -knyz -knz 0 ksx ksyx -knz
2+ksx

2 knyz 

-kny ksx 0 -kszx -knzy kny
2+ksx

2 kny -ksx 0 kszx knzy -kny
2+ksx

2 

-kn 0 0 0 -knz kny kn 0 0 0 knz -kny 

0 -ks 0 ksz 0 -ksx 0 ks 0 -ksz 0 -ksx 

0 0 -ks -ksy ksx 0 0 0 ks ksy ksx 0 

0 ksz -ksy -ks(y
2

+ z2) ksxy ksxz 0 -ksz ksy ks(y
2

+ z2) ksxy ksxz 

-knz 0 -ksx -ksyx -knz
2+ksx

2 knyz knz 0 ksx ksyx knz
2+ksx

2 -knyz 

kny ksx 0 -kszx knzy -kny
2+ksx

2 -kny -ksx 0 kszx -knzy kny
2+ksx

2 

 

The entire 3D analysis in AEM is carried out using 

this stiffness matrix. The stiffness matrix for any other type of 

element can be derived from this stiffness matrix [Equation 

(5)]. The stiffness matrix for 2D analysis can be obtained by 

reducing the stiffness matrix for 3D analysis, by extracting the 

rows and columns corresponding to the relevant DOFs (1, 2, 6, 

7, 8, 12). 

 

2.3 Simplified stiffness matrix for 3D analysis 
 

The stiffness matrix of all the pairs of springs at a face 

should be summed up to get the combined stiffness matrix at a 

joint. If an infinite number of springs is considered at the joint, 

the combined stiffness matrix (K) is given by Equation (6). The 

simplified stiffness matrix obtained by integrating the stiffness 

 K = ∫ Ks 

 

    = 

k1            

(6) 

0 k2           

0 0 k2          

0 0 0 k3 Symmetric 

0 0 ̶ k4 0 k5        

0 k4 0 0 0 k6       

̶ k1 0 0 0 0 0 k1      

0 ̶ k2 0 0 0 ̶ k4 0 k2     

0 0 ̶ k2 0 k4 0 0 0 k2    

0 0 0 ̶ k3 0 0 0 0 0 k3   

0 0 ̶ k4 0 k7 0 0 0 k4 0 k5  

0 k4 0 0 0 k8 0 ̶ k4 0 0 0 k6 

 

 

matrix of individual pairs of springs over the area of the joint can be directly used, instead of finding the stiffness matrix of all the 

pairs of springs. 

The stiffness coefficients for rectangular cross-section of size B×D and circular cross-section of radius R are given by 

Equation (7) and (8), respectively. 

 

k1 = ∫ kn = ∫ ∫  
E

L
 dy dz

D
2

−
D
2

B
2

−
B
2

=
EBD

L
 

 

Similarly, the other stiffness coefficients can be derived and are as follows: 

 

k2 = 
GBD

L
 k3 = 

GBD

12L
(B2 + D2) k4 = 

GBD

2
 

   

k5 = 
BD

12L
(EB2 + 3GL2) k6 = 

BD

12L
(ED2 + 3GL2) 

  

k7 = 
BD

12L
(−EB2 + 3GL2) k8 = 

BD

12L
(−ED2 + 3GL2) (7) 

 

k1 = 
πER2

L
 k2 = 

πGR2

L
 k3 = 

πGR4

2L
 k4 = 

πGR2

2
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k5 = k6 = 
πR2

4L
(ER2 + GL2) k7 = k8 = 

πR2

4L
(−ER2 + GL2) (8) 

 

Both accuracy and simplicity are achieved by using these 

stiffness coefficients. 

 

3. Strains, Stresses and Stress Resultants 
 

Consider three nearby elements as shown in Figure 5. 

The displacements of the elements are indicated by u1 to u18 in 

the figure. 

The procedure to calculate strains, stresses, bending 

moment and shear forces is discussed in this section. 

 

 
 

Figure 5. Displacements of three nearby elements 

 

3.1 Strains 
 

The normal strain (ɛx) and shear strains (γxy and γxz) at 

the point ‘A’ in Figure 5 can be determined using Equations 

(9)-(11). These are obtained from the 7th, 8th and 9th rows of the 

stiffness matrix {Equation (5)}. 

 

ɛx = 
1

L
{(u7 − u1) + z(u11 − u5) − y(u12 − u6)} (9) 

γ
xy

= 
1

L
{(u8 − u2) − z(u10 − u4) −

L

2
(u12 + u6)} (10) 

γ
xz

 = 
1

L
{(u9 − u3) + y(u10 − u4) + 

L

2
(u11 + u5)} (11) 

 

3.2 Stresses 
 

The stresses at a point can be calculated using the 

strains given by Equations (9)-(11). Equation (10) shows that 

the shear strain is constant across the depth of the element. 

Hence, shear stress calculated using Equation (10) is also 

constant across the depth, and amounts to the average shear 

stress in the section. Hence, it is not possible to get a parabolic 

shear stress distribution across the depth. So, as in the case of 

classical beams, complementary shear stress is used to find the 

transverse shear stress distribution. 

If only one element exists along the depth direction, 

the complementary shear stress (τyx) in the section FGHI at a 

height y from the centre of the element, shown in Figure (5), is 

given by Equation (12). 

 

τyx = 
E

L2
[{(u13 − 2u7 + u1) + z(u17 − 2u11 + u5)} (

D

2
− y)

−
1

2
(u18 − 2u12 + u6) (

D2

4
− y2)] 

(12) 

3.3 Bending moment and shear force 
 

If one element is considered along the depth of the 

section, the bending moment (M) and shear force (V) at the 

section BCDE in Figure (5) are given by Equation(13) and 

(14), respectively. 

 

M = 
EBD3

12L
(u6 − u12)  (13) 

 

 V = 
GBD

L
[(u8 − u2) −

L

2
(u12 + u6)] (14) 

 

4. Numerical Model Verification 
 

4.1 Cantilever beam subjected to end tip load 
 

A cantilever beam with tip load of 50 kN is now 

considered [Figure 6(a)]. The modulus of elasticity and 

Poisson’s ratio of the material are 25000 N/mm2 and 0.2 

respectively. 10 springs are provided along all directions on all 

faces in the AEM. 3D applied element analysis and finite 

element analysis were done using MATLAB code and 

ABAQUS, respectively. A twenty-node quadratic 3D element 

was used in the finite element analysis. Discretization was not 

done along the width and depth directions. 

 

4.1.1 Convergence 
 

The variation of deflection of the cantilever beam at 

the tip (Appendix A1) with the number of DOFs are shown in 

Figure 6(b) for AEM and FEM. 

Figure 6(b) shows that AEM and FEM converge 

almost at the same rate. Convergence is attained when 200 

elements are used. 

 

4.1.2 Stresses 
 

The normal stress distribution and complementary 

shear stress distribution at the mid-span determined using AEM 

and FEM are shown in Figures 6(c)-(d), respectively. To 

accurately predict the shear stress distribution, more nodes are 

required at the intermediate heights. As 10 pairs of springs are 

used along the depth direction in AEM, 10 nodes are adopted 

along the depth direction in FEM. In finite element analysis, 9 

linear 3D elements are adopted along the depth direction and 

20 elements along the length direction. The number of elements 

adopted in AEM is such that the number of DOFs is same as 

that of FEM (420 elements). The analytically obtained values 

are also plotted in the figures. 

Figures 6(c)-(d) show that AEM predicts normal 

stress distribution and shear stress distribution more accurately 

than FEM.  
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Figure 6. (a) Cantilever beam considered for analysis (b) Deflection vs. No. of elements (c) Normal stress distribution at mid-span (d) Shear 
stress distribution at mid-span (e) BMD (f) SFD 

 

4.1.3 Bending moment diagram and Shear force  

         diagram 
 

The BMD and SFD obtained analytically and by 
AEM and FEM are shown in Figures 6(e)-(f) respectively. 

Figures 6(e)-(f) shows that AEM is capable of 

predicting BMD and SFD accurately. 

 

4.2 Modelling of circular cross-section 
 

To illustrate the proficiency of AEM in the analysis 

of non-rectangular cross-sections, the cantilever beam shown in 

Figure 7(a) is considered. The modulus of elasticity and 

Poisson’s ratio of the material are 25000 N/mm2 and 0.2 

respectively. The beam is discretized into 500 elements along 

the length direction in AEM. The stiffness coefficients given by 

Equation (8) are used in the analysis by AEM. Finite element 

analysis is done using ABAQUS with twenty-node quadratic 

3D element. The number of elements adopted is such that the 

number of DOFs is the same as in the applied element analysis. 

Discretisation was not done along the width and depth 

directions. 

The rotation at the tip of the beam and maximum 

shear strain in the beam as determined analytically (Appendix 

A2) and by AEM and FEM are given in Table 1. 

Table 1 shows that AEM predicts angle of twist and 

maximum shear strain more accurately than FEM. 

 

4.3 Eigenvalue problem 
 

In this section, dynamic analysis is done using 2D 

elements. The mass matrix (M) of a square element of size D 

and thickness B has been found by Tagel-Din and Meguro 

(2000b). It is seen that the mass matrix is obtained by lumping 

the mass of the element to its centroid. Similarly, the mass 

matrix of a rectangular element can also be determined. 

Cantilever, fixed and simply supported beams of 

length 4 m (Figure 7(b)) and density 2700 kg/m3 are considered 

here. The cross-section is 250 mm × 250 mm. The modulus of 

elasticity and Poisson’s ratio are 70000 MPa and 0.3 respec-

tively. The beam is discretized into 102 elements along the 

length direction in the case of AEM. The stiffness matrix is 

determined using the stiffness coefficients given by Equation 

(7). Finite element analysis is done with ABAQUS using eight-

node quadratic 2D plane stress element. Discretization is done 

along length direction only, so that the number of DOFs is the 

same as in the case of applied element analysis. 

The natural frequencies of cantilever, fixed and 

simply supported beams determined by AEM and FEM are 

given in Table 2. The percentage differences from analytically 

obtained values (Appendix A3) are also presented. 
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Figure 7. (a) Cantilever subjected to torque, (b) Beams considered for dynamic analysis, (c) Mode shapes of cantilever beam, (d) Mode shapes of 

fixed beam, (e) Mode shapes of simply supported beam, (f) 2D frame, (g) Deflected shapes according to AEM and STAAD, (f) The 

displacement is magnified by a factor of 100, (h) Reactions 
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Table 1. Comparison of rotation and maximum shear strain by AEM and FEM 
 

 
Rotation Maximum shear strain 

Rotation (rad) Percentage difference (%) Maximum shear strain (rad) Percentage difference (%) 
     

Analytical 0.0611 - 3.056×10-3 - 

AEM 0.0610 -0.16 3.056×10-3 0 

FEM 0.0625 2.24 3.124×10-3 2.23 
     

 

Table 2. Natural frequency of beam (rad/s) 
 

 Analytical AEM Percentage difference (%) FEM Percentage difference (%) 

      

Cantilever beam 
Mode 1 80.74 81.33 0.73 80.69 -0.06 

Mode 2 506.04 501.58 -0.88 497.68 -1.65 

Mode 3 1416.70 1370.45 -3.26 1360.00 -4.00 

Fixed beam 

Mode 1 513.83 512.32 -0.29 504.38 -1.84 
Mode 2 1416.34 1372.40 -3.10 1351.50 -4.58 

Mode 3 2776.43 2595.89 -6.50 2557.30 -7.89 

Simply supported beam 
Mode 1 226.67 229.83 1.39 225.37 -0.57 

Mode 2 906.68 903.73 -0.33 886.51 -2.22 

Mode 3 2040.04 1979.59 -2.96 1942.90 -4.76 
      

 

Table 2 shows that AEM and FEM could predict the 

natural frequencies of cantilever, fixed and simply supported 

beams with reasonable accuracy. The mode shapes of 

cantilever, fixed and simply supported beams obtained by AEM 

and FEM, and that determined analytically, are shown in 

Figures 7(c)-(e), respectively. 

Figures 7(c)-(e) show that the mode shapes predicted 

by AEM and FEM match well the analytically determined 

mode shapes. 

 

4.4 2D Frame 
 

The 2D frame shown in Figure 7(f) is now consi-

dered. The cross-section of all members is 300 mm × 500 mm. 

The size of an element is 50 mm. 100 springs are used along all 

the faces. The modulus of elasticity and Poisson’s ratio are 

25000 N/mm2 and 0.2 respectively.  

The deflected shape and reactions of the frame 

obtained by applied element analysis and from STAAD 

(boldface letters) are shown in Figures 7(g)-(h). 

Figures 7(g)-(h) show that AEM is capable of 

analyzing 2D frames. 

 

4.5 Plate with a hole subjected to uniaxial tension 
 

A plate of size 1000 mm × 1000 mm and thickness 5 

mm with a hole of diameter 100 mm is adopted. It is subjected 

to a tension of 1 N/mm2 along one direction. The plate is 

discretized into 200 elements along both directions. Since the 

problem has 2 axes of symmetry, the quarter portion shown in 

Figure 8(a) is adopted for analysis. The discretization, 

boundary conditions used and stress distribution across the 

section of hole are also shown in Figure 8(a). 

The stress concentration factors obtained analytically 

and by AEM are 2.72 and 2.46 respectively (Appendix A4). 

From Figure 8(a), it is seen that the stress distribution is similar 

to the analytical results. The results can be improved by adop-

ting a finer meshing. 

4.6 Nonlinear problems 
 

A steel bar of length 1 m and cross-section 100 mm 

× 100 mm subjected to uniaxial displacement (Δ) as shown in 

Figure 8(b) is chosen for study. The bar is discretised into 20 

elements along its length. Twenty sets of connecting springs are 

adopted along all faces. The stress-strain graph adopted for 

analysis is shown in Figure 8(c). Displacement-based incre-

mental procedure (Desai & Abel, 1972) with an increment of 

0.02 mm is adopted for the analysis considering material 

nonlinearity. The load-displacement curve of the bar obtained 

by AEM is shown in Figure 8(d). 

Figure 8(d) shows that the load-deflection curve of 

the bar obtained by AEM is in agreement with the stress-strain 

curve of the spring. Complete load-deflection behaviour of the 

bar could also be traced. 

The analysis considering geometric nonlinearity is 

demonstrated using a cable subjected to central load, shown in 

Figure 8(e). The area and modulus of elasticity of the cable are 

1 m2 and 12000 kN/m2, respectively. Iterative nonlinear 

analysis with 100 iterations is adopted. 

Figure 8(f) shows that the load displacement curve 

obtained by AEM agrees with that obtained analytically (Jain, 

2015).  

 

4.7 Crack pattern of plain concrete beam 
 

The problem in Section 4.1 is considered again. The 

crack pattern of plain concrete cantilever subjected to tip load 

is shown in Figure 8(g). The beam is discretized into 200 

elements along length and 2 elements along depth. Principal 

strain failure criteria are adopted. The permissible strains in 

compression and tension are taken as 0.0021 and 0.00015, 

respectively, for concrete. 

Figure 8(g) shows that AEM can predict the crack 

pattern of plain concrete beam with reliable accuracy. 
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5. Conclusions 
 

AEM is a simple numerical method for the analysis 

of structures. In this paper, the stiffness matrices of a pair of 

springs in 2D element and 3D element are derived by physical 

approach. Equations to find strain, stress and stress resultants 

are derived. To show the generality of this method, static and 

dynamic analyses are done and verified. 

AEM is a general approach of structural analysis. It 

can be used for the analysis of any type of structure by suitably 

modifying the stiffness matrix for 3D analysis. 
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Appendix 

 

A1. Deflection of cantilever beam 
 

The deflection of the cantilever beam at the tip is determined analytically by considering the effect of shear also. 

Deflection at the tip of cantilever beam = 
Pl

3

3EI
 + 

3Pl

2AG
  

 

P = 50000 N; l = 2000 mm; b = 200 mm; d = 200 mm; E = 25000 N/mm2; ν = 0.2 

Where P, l, b, d, A, I, E, ν and G are the tip load, length, width and depth of beam, area of cross-section, moment of inertia, modulus 

of elasticity, Poisson’s ratio, and modulus of rigidity, respectively. 

 

Therefore, deflection = 
50000 × 20003

3 × 25000 × 1.33 × 108
 + 

3 × 50000 × 2000

2 × 4 × 104 × 10417
= 40.36 mm 
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A2. Rotation and maximum shear strain in circular shaft subjected to torque 
 

Maximum shear strain, γ
xz, max

 = γ
yz, max

 = 
TR

GJ
 

 

Rotation at the tip, θ = 
Tl

GJ
 

T = 50 × 106 Nmm; R = 100 mm; l = 2000 mm; E = 25000 N/mm2; ν = 0.2 

Here T, R, l, E, ν, G and J are torque, radius, length of shaft, modulus of elasticity, Poisson’s ratio, modulus of rigidity, and polar 

moment of inertia, respectively. 

Therefore, 

Maximum shear strain, γ
xz, max

 = γ
yz, max

 = 
50 × 106 × 100

10417 × 157079632.7
 = 3.056 × 10-3

 rad 

 

Rotation at the tip, θ = 
50 × 106 × 2000

10417 × 157079632.7
 = 0.0611 rad 

 

A3. Natural frequency of beams 

 
The natural frequencies of cantilever, fixed and simply supported beams are as follows: 

 

For cantilever and fixed beams, ω = (βl)
2√

EI

ml
4
 

 

where, βl = 1.875, 4.694, 7.854,…….. for cantilever beam 

= 4.730, 7.853, 10.995,…… for fixed beam 

 

For simply supported beam, ω = n2π
2
√

EI

ml
4

    n = 1, 2, 3,…….. 

 

l = 4 m; b = 0.25 m; d = 0.25 m; ρ = 2700 kg/m2; E = 70000 N/mm2 

Here l, b, d, I, ρ, m and E are length, width and depth of beam, moment of inertia, density, mass per unit length, and modulus of 

elasticity, respectively. 

 

 ω (rad/s) = (βl)
2√

70 × 109 × 3.26 × 10-4

168.75 × 44
 = (βl)

2
 × 22.97 

= 80.74, 506.04, 1416.70,……. (Cantilever beam) 

= 513.83, 1416.34, 2776.43,…. (Fixed beam) 

 

 ω (rad/s) = n2π
2
√

EI

ml
4  = n2π

2
 × 22.97 = 226.67, 906.68, 2040.04,…… (Simply supported beam) 

 

A4. Stress concentration factor 

 
The stress concentration factor (Sanalytical) for a plate of finite width (D) with a circular hole of radius (r) at centre is given below 

(Young & Budynas, 2002). 

 

Sanalytical = 3.00 − 3.13 (
2r

D
)  + 3.66 (

2r

D
)

2

− 1.53 (
2r

D
)

3

= 3 - 3.13 (
100

1000
)  + 3.66 (

100

1000
)

2

−  1.53 (
100

1000
)

3

= 2.72 

 

Maximum stress obtained using AEM, σmax = 2.73 N/mm2 (extrapolated) 

 

Nominal stress, σnom =
1 × 1000

1000 − 100
= 1.11 N/mm2 

 

Stress concentration factor by AEM, SAEM = 
σmax

σnom

 = 
2.73

1.11
= 2.46 


