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Abstract 
 

The expected mean squares (EMS) for the effects in a two-way ANOVA model  are derived when sampling from a 

finite population, for factors A and B. The A-effects and B-effects are represented by i  and 
j , respectively, in the model. 

Model effects are studied for the random and mixed effects models. Thus, in terms of hypothesis testing, we are interested in the 

expected mean square formulas when the random effects are sampled from finite populations. For balanced data, the EMS for the 

A, B and AB interaction effects when the effects are sampled from a finite population are the same as the EMS for an infinite 

population. For unbalanced data, the EMS when the effects are sampled from a finite population in factors A, B and the AB 

interaction, the EMS are not the same as for an infinite population because the values that multiply the variance components 

differ. 
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1. Introduction 
 

Analysis of variance (ANOVA) is a statistical tech-

nique used in many fields of research, with applications in 

industry, economics, education, natural and biological 

sciences, and agriculture. A frequently-used experimental 

design is the factorial design, which can allow investigating 

multiple factors that may influence the response variable ( )y . 

The data are often analyzed with a multifactor ANOVA 

model, which can be associated with a fixed, random or mixed 

effects model (Montgomery, 2013). In the design of 

 
experiments, we must consider the suitability of the data 

related to the proposed statistical analysis and the model 

effects of interest to ensure appropriate statistical inferences. 

For example, suppose a company has 50 machines 

that make cardboard cartons for canned goods, and they want 

to understand the variation in strength of the cartons. They 

choose 10 machines at random from the 50 machines. In 

addition to variation due to the machines, variation in 

operators may also influence the strength of the cartons. Thus, 

the manufacturer also chooses 10 operators at random. Each 

operator will produce 4 cartons for each machine, with the 

cardboard feedstock assigned at random to the machine-

operator combinations. We now have a two-way factorial 

treatment structure with both factors being random and 

completely randomized assignment of treatments to units 

(Oehlert, 2010).  
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In general, it is assumed that the levels of the factor 

(e.g., machines and machine operators) are randomly selected 

from an infinite population. This assumption is violated in this 

example because the factor levels are selected from finite 

populations. When the population size is large relative to the 

sample size for each factor, it may be reasonable to assume 

the population size infinite (Searle, Casella & McCulloch, 

2009). In many cases, however, the population size is not 

large relative to the sample sizes, and then the finite size can 

affect the estimation of variance components of random 

effects. 

In introductory statistics courses, the variance of the 

sample mean is given as 
2

ˆ( )Var y
n


  which is appropriate 

if the random sample was taken from an infinite or extremely 

large population. To deal with a finite population, we have to 

adjust variance formulas by N n

N

 , which is called “the finite 

population correction (FPC)” .  In this finite population case, 
2 2

ˆ( ) 1SRS

N n n
Var y

N n N n

    
     
   

 will be the variance 

of the sample mean.  The ratio 
n

N
 is called “ the sampling 

fraction of the population”.  If 
n

N
 is small, the FPC is close 

to 1, then the population size has negligible effect on the 

estimated variance of the sample mean.  In practice, it is 

recommended that the FPC can be ignored when the sampling 

fraction does not exceed 5% or 10% (Cochran, 1977).   

Many researchers were interested in finite popu-

lation effects for variance component estimation, including 

Tukey who in 1956 studied the variances of variance com-

ponent estimation for balanced data under the assumptions of 

independence and normality. However, if we sampled from 

finite populations, the finite population correction would be 

related to the estimation of variances. Next, Cornfield and 

Tukey (1956) considered the expected values of mean squares 

in experiments with balanced data. They used a model of 

sufficient generality and flexibility to define the formulas for 

crossed and nested classifications. Moreover, for unbalanced 

data, Tukey (1957) discussed the variance components for 

one-way classification, while Searle and Henderson (1961) 

dealt with the two-way classification model with one fixed 

factor. Subsequently, Hartley (1967) developed a general 

procedure for directly yielding the numerical values of the 

coefficients in the formulas of expected mean squares (EMS) 

with random and mixed models for one-way and two-way 

classifications with unequal numbers when sampling from an 

infinite population. It was useful to obtain mathematical 

formulas for the numerical coefficients used to produce the 

variance and covariance formulas for expected mean squares. 

After that, Searle and Fawcett (1970) studied the EMS in 

variance component models with random effects which are 

assumed to be sampled from finite populations. They deve-

loped a rule for converting expectations under infinite popu-

lation models to finite population models. In addition, it can 

be applied to balanced and unbalanced data, and used for 

nested and cross classifications when it is assumed the set 

levels for each factor is finite. Accordingly, Simmachan, 

Borkowski, and Budsaba (2012) determined the EMS of 

treatments and error for random effects in only the one-way 

ANOVA model assuming a finite population, but with normal 

errors.  

In this research, we focus on the random effects in 

the two-way ANOVA model, in other words, the two-factor 

factorial model. We consider the case where the population of 

the model effects are sampled from a finite population. We 

apply the guidelines given in Searle and Fawcett (1970) who 

assumed the model error is also sampled from a finite popu-

lation, to models with random effects but adjust the random 

error to be normally distributed, which will affect expected 

mean squares.  

Finally, we derive the expected mean square 

formulas for the two-factor factorial with random effects and 

mixed effects models when the random effects are sampled 

from a finite population. In this article, Section 2 contains the 

research methodology. In Section 3, the results of this 

research are presented. Conclusions are summarized in 

Section 4. 

 

2. Materials and Methods 
 

 In this section, we describe the methodology for 

finding the expected mean squares in the model effects of the 

two-factor factorial design. 

 
2.1 The model effects of the two-factor factorial  

      design 
 

A factorial design can be very efficient for studying 

the effects of two or more factors. In this research only, the 

two-factor factorial design is studied. If we assume that 

factors A and B have a large number of population levels such 

that the number of levels for each factor is assumed to be 

infinite, then the two-factor factorial model is: 

 

( )ij i j ij ijky          ,                 (1) 

 

where   is the mean, 
i  and 

j  are the 
thi  and 

thj  level 

effects of factors A and B with  1,2,...,i a  and 

1,2,...,j b , ( )ij is the interaction effect of the ( , )i j  

combination, and random error ijk 2(0, )N  . Whether the 

i  and 
j  effects in the model are fixed or random effects 

depends on the research problem.  

Consider the case when the numbers of randomly 

selected factor levels ( and )a b  are small relative to the 

population sizes ( and )a bN N . That is, the sampling fractions 

and
a b

a b

N N
 are small and are related to the finite population 

corrections ( FPCs)  a

a

N a

N

  and b

b

N b

N

 .  It is assumed that 

sampling from the finite populations is done without 

replacement.  
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For factors A and B, let G
 and G

 be the finite 

distributions of the 
i  and 

j  effects from populations of 

effect of sizes 
aN  and 

bN  , respectively.  

Case 1: Factors A and B are random with a  and 

b  sampled levels, respectively. Thus 
i , 

j , ( )ij , and 

ijk are random effects. We take a simple random sample 

)SRS( of 
i  from 2(0, )G   and a SRS of 

j  from 

2(0, )G  . 

 Case 2: Factor A is fixed with a  levels and factor 

B is random with b  sampled levels.  Thus, the 
i  are fixed 

effects and 
j , ( )ij , and ijk  are  random effects. We take 

a SRS of 
j  from 2(0, )G  . 

Both Case 1 and 2 differ from Searle and Fawcett 

(1970) because the random error   is assumed to be 

normally distributed (and not finite). 

 

2.2 The expected mean squares assuming a finite  

      population 
 

Derivation of the expected mean squares when 

sampling is from a finite population will differ from the 

expected mean squares when sampling from an infinite 

population.  Gaylor and Hartwell (1969) assumed that the 

mean of each population is zero, so that the population 

variance can be defined as follows: 

 

For factor A: 

1

0
aN

i

i




  and 2 2

1

1

1

aN

i

iaN
 





 .        (2) 

 

Consequently, 

 

 

2

2

*

1 1 *

0
a a a aN N N N

i i i i

i i i i

   
  

 
   

 
     and 

 

   2 2

1

1
aN

i a

i

N  


  .   

 

Thus,   

 

  2

*

*

1
a aN N

i i a

i i

N   


   .                 (3) 

 

For factor B : 

1

0
bN

j

j




  and 2 2

1

1

1

bN

j

jbN
 





 .         (4) 

 

Consequently,  

 

2

2

*

1 1 *

0
b b b bN N N N

j j j j

j j j j

   
  

 
   

 
    and  

 

 2 2

1

1
bN

j b

j

N  


  .   

 

Thus,     

 

  2

*

*

1
b bN N

j j b

j j

N   


   .                                       (5) 

 

If 
i  is a randomly sampled effect then using equation (2) we 

get 

 

 
1

1
0

aN

i i

ia

E
N

 


     and     

  

     
22 2 2

1

11 aN

a
i i i i

ia a

N
Var E E

N N
    




       .  (6) 

 

For two sampled values 
i  and *i  by (3) we get 

 

    2

* * *

*

1 1
,

( 1)

a aN N

i i i i i i

i ia a a

Cov E
N N N

      


   

 .   

                                                                                               (7) 

 

If j  is a randomly sampled effect then using equation (4) 

we get 

 

 
1

1
0

bN

j j

jb

E
N

 


    and 

 

     
2

2 2 2

1

11 bN

b
j j j j

jb b

N
Var E E

N N
    




    
   .   (8) 

 

For two sampled values 
j  and 

*j  by (5) we get 

 

    2

* * *

*

1 1
,

( 1)

b bN N

j j j j j j

j jb b b

Cov E
N N N

      


   

 .

                                                                 (9) 

 

Furthermore, the population of interaction effects is defined in 

the same way: 

 

1 1

( ) 0
a bN N

ij

i j


 

   and the variance is defined as  
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 
2

1 12

( 1)

a bN N

ij
i j

abN





 





,    

ab a bN N N  .               (10) 

 

Extensions of the procedures in equations (6) to (10) were 

derived which lead to 

 

       
* * * *

,
ij i j ij i j

Cov E      
   

   

                                     

                                  

  2

2

1
, * and *

1
,otherwise ,

ab

ab

ab

N
i i j j

N

N










 


 




  

             (11) 

where,  
ij

  and  
* *i j

  are two sampled values of the 

interaction effects. 

For infinite populations, the values of (2) and (3) are 
2

 and 0, respectively, and the values of (4) and (5) are 2

  

and 0, respectively.  There will be changes in the expected 

values of the mean square in finite population models.  The 

expected mean squares are linear functions of the variance 

components.  The coefficients were determined for finite 

population models, and the expected values of mean squares 

will not be the same as those assuming an infinite population 

model. 

 

2.3 Quadratic form for deriving the expected mean  

      square 
 

Suppose y  is a vector of random variables, A  is a 

symmetric matrix of real numbers, μ  is the vector of means, 

and V  is the covariance matrix for the random vector y . 

Each mean square can be written as a quadratic form y Αy  

in y .   From the properties of quadratic forms, the expected 

value is    

 

   E tr  y Ay AV μ Aμ ,               (12) 

 

where the sums of each row in matrix A are zero; i.e. A1 0  

and 1 is a vector of ones. Moreover, in random effects models 

μ 1 , and   μAμ μA1 0  in (12). Consequently, 

the expected values of mean squares can be written as: 

 

   E tr y Ay AV . 

Because matrix A  is the same in the cases of 

sampling from finite and infinite populations of random 

effects, the results can be applied to models with either finite 

or infinite populations of random effects. That is, 

 

   E tr 
 y Ay AV  and    F FE tr y Ay AV ,    (13) 

where 
V  and 

FV  represent the covariance matrix when 

sampling from infinite and finite populations, respectively. 

From ( 13) , the only difference between the expected mean 

squares is in choice of 
FV  and

V .  Thus, the difference 

between the corresponding forms of the covariance matrices is 

determined by looking at the way 
V  gets altered to 

become
FV .  

 

2.3.1 The matrices of the quadratic forms  
 

For each projection matrix P  on a component 

subspace, there is an appropriate decomposition to a matrix C  

such that C C = P  and CC = I , and I  is an identity 

matrix of order equal to the dimension of the projection space 

(Clarke, 2008). Suitable choices for C  are as follows: 

 

M

1 1 1
ab abn

ab n abn
   C 1 1  , 

 

   A

1 1 1
a b n a bn

b n bn
      C I 1 1 I 1 , 

 

 B

1 1 1
a b n a b n

a n an
        C 1 I 1 1 I 1 , 

 

 AB

1 1
a b n a b n

n n
      C I I 1 I I 1 , 

 

 

where, the dimension of these matrices are 1 abn  for 
MC , 

a abn  for 
AC , b abn  for 

BC , ab abn  for 
ABC , 

anda bI I  are the identity matrices, and   denotes a 

Kronecker product. 

 The sum of squares ( SS)  in a two-factor factorial 

design is derived from the following quadratic forms, 

 

The correction term  
M My C C y . 

The total SS 

T(SS )     T T M My C C y y C C y    

                             

            1
abn abn

abn

 
  
 

y I J y . 

 

Note that: 
T abnC I   then 

T T abn abn abn
  C C I I I . 

 

The SS for A  

A(SS )     A A M My C C y y C C y    

       

        
1 1

a a bn
a bn

  
    
  

y I J J y . 
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The SS for B   

B(SS )     B B M My C C y y C C y    

                

              1 1 1
a b b n

a b n

  
     

  
y J I J J y . 

 

The interaction SS 
AB(SS )   

          AB AB A A B B M My C C y y C C y y C C y y C C y  

 

1 1 1
a a b b n

a b n

    
        
    

y I J I J J y , 

 

and the error SS 
E(SS )  

T A B ABSS SS SS SS      

1
ab n n

n

  
    

  
y I I J y .  

  

From these results, we get the following matrices 

; 1,2,3,4i iA  for the quadratic forms: 

 

1

1 1
a a bn

a bn

 
   

 
A I J J  for 

ASS ,  

 

2

1 1 1
a b b n

a b n

 
    

 
A J I J J  for 

BSS , 

 

3

1 1 1
a a b b n

a b n

   
       

   
A I J I J J  for 

ABSS , 

 

and 
4

1
ab n n

n

 
   

 
A I I J   for 

ESS . 

 

2.3.2 Variances and covariance in the random  

         effects model 
 

For the random effects model, the 
i , 

j , ( )ij , 

and ijk are random effects sampled from infinite populations 

(Hocking, 1985). Then:  

  2 2 2 2

* * *

2 2 2

2

2

( ) ,

, *, *, *

*, *, *

*, *

*, *

0, *, *.

ijk

ijk i j k

E y

Cov y y i i j j k k

i i j j k k

i i j j

i i j j

i i j j

  

  







   

  







      

     

  

  

  

 

In this research, the covariance may be different from the infinite case. We take a SRS of 
i  from 2(0, )G   and a 

SRS of  
j  from 2(0, )G  .  Then,   21

1i

a

Var
N

 
 

  
 

 and  *

2

,i i
a

Cov
N

    , and   21
1j

b

Var
N

 
 

  
 

 and 

 *

2

,j j
b

Cov
N


    .  Because G

  and G
 are finite,  

ij
  is finite too.  That is, ( )ij  2(0, )G   then 

21
( ) 1ij

ab

Var
N

 
 

  
 

  and 

2

* *( ) , ( )ij i j

ab

Cov
N


     

 for all , , * andi j i j*  with  
ab a bN N N  . 

Since 
i  and 

j  are selected from finite populations, then the variance and covariance for Case 1 is,  

  2 2 2 2

* * *

2 2 2

2 2 2

1 1 1
, 1 1 1 *, *, *

1 1 1
1 1 1 *, *, *

1 1 1
1 *, *

1

F ijk i j k

a b ab

a b ab

a b ab

a

Cov y y i i j j k k
N N N

i i j j k k
N N N

i i j j
N N N

N

  

  

  

   

  

  

     
              

     

     
             
     

     
            
     

  2 2 2

2 2 2

1 1
1 *, *

1 1 1
, *, *.

b ab

a b ab

i i j j
N N

i i j j
N N N

  

  

  

  

     
          

     

     
            
     
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Thus, 
1F

V  represents  * * *,F ijk i j kCov y y  and has matrix form: 
1f   *

1 1
F F

V 11 V , where  

2 2 2

1

1 1 1

a b ab

f
N N N

    
     

          
     

  and 
1f   *

1 1
F F

V 11 V is formed as follows: 

 
2 2 2 2

2 2 2

2

2

, *, *, *

, *, *, *

, *, *

, *, *

0 , *, *.

i i j j k k

i i j j k k

i i j j

i i j j

i i j j

  

  





   

  





       

      

   

   

   

*
1

11F

12

13

14

15

V V

V

V

V

V

                                          (14) 

 

2.3.3 Variances and covariance for the mixed effects model 
   

For the mixed effects model, 
i are fixed effects and

j , ( )ij and ijk are random effects sampled from infinite 

populations (Hocking, 1985). Then, 

 

 
  2 2 2

* * *

2 2

2

( ) ,

, *, *, *

*, *, *

*, *

0, *.

ijk i

ijk i j k

E y

Cov y y i i j j k k

i i j j k k

i i j j

j j

 

 



 

  

 



 

     

    

  

 

  

 

The 
i are fixed effects which correspond to 2 0  .  We take a SRS of 

j  from 2(0, )G  .  Then, 

  21
1j

b

Var
N

 
 

  
 

 and  *

2

,j j
b

Cov
N


    .  

The ( )ij  interactions are sampled from 2(0, )G  . Then, 21
( ) 1ij

ab

Var
N

 
 

  
 

  and 

2

* *( ) , ( )ij i j

ab

Cov
N


     

 for all , , * andi j i j*  with  
ab bN a N  . 

 

For this case, the mean is ( )F ijk iE y    , Therefore , the variance and covariance in Case 2 is, 

  2 2 2

* * *

2 2

2 2

2 2

1 1
, 1 1 *, *, *

1 1
1 1 *, *, *

1 1
1 *, *

1 1
*

F ijk i j k

b ab

b ab

b ab

b ab

Cov y y i i j j k k
N N

i i j j k k
N N

i i j j
N N

j j
N N

 

 

 

 

  

 

 

 

   
          

   

   
         
   

   
        
   

   
       
   

 

Thus, 
2F

V  represents  * * *,F ijk i j kCov y y  and has the matrix form  
2f   *

2 2
F F

V 11 V , where  

2 2

2

1 1

b ab

f
N N

  
   

      
   

 and 
*
2F

V  is formed as follows: 
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2 2 2

2 2

2

, *, *, *

, *, *, *

, *, *

0 , *.

i i j j k k

i i j j k k

i i j j

j j

 

 



  

 



      

     

   

  

*
2

21F

22

23

24

V V

V

V

V

                                           (15) 

 

3. Results and Discussion 
  

In this section, we present the expected mean squares when sampling from finite distributions of effects by using the 

quadratic forms and variance-covariance matrices previously mentioned.  

In this research, expected mean squares are derived for both balanced and unbalanced data for any finite distribution 

using matrix notation in linear models. We begin with the matrices which are in the quadratic forms of the two-factor factorial 

design:
ASS = ,

1y A y B 2SS = ,y A y
AB 3SS = ,y A y  and 

E 4SS = y A y  then, we compute the covariance matrices for the 

random and mixed effects cases. Next, we multiply 
iA  by its covariance matrix in each case to find the expected sum of squares 

by applying the property of quadratic forms: E( ) tr( ) y Ay AV +μAμ . Finally, we divide the result by the degree of freedom 

of each factor to get the expected mean squares. 

 

3.1  Expected mean squares for balanced data 
  

 Case 1:  ( The random effects model)
i , 

j  and ( )ij  are random effects.  We now derive the expected sum of 

squares for the effects in Case 1 by taking the product of a  row from matrix A and the corresponding column in matrix 
*
1F

V  

given in (14). The product will be the same for each of the abn  row and column pairs.  

For example: Row 1 of the matrix 
1A  is  

 

1 1 1 1 1 1 1 1 1
1 1 ... 1 ... ... ...

a a a a a a a a a

 
         

 
 

 

 

 

and column 1 of the variance covariance matrix is 

 

2 2 2 2 2 2

1 2 2M M ... M ... ... 0 ... 0 ... ... 0 ... 0             
, 

 

 

 

 

 

 

where 2 2 2 2

1M           and 2 2 2

2M        . 

 

For factor A, the expected sum of squares is 

 

       ASSF FE E tr 
11 1 Fy A y A V  

 
1

1 1
a a bntr f

a bn

                
*
1F

I J J 11 V  ; 1A 1 0   

 
  

        

2 2 2 2

2 2 2 2 2

1
1

1 1 1 1 1 .

abn a
abn

a n a b n a n

  

    

   

    

 
       

 

         

 

bn bn bn 

bn n-1 n(b-1) 1 bn 

bn 
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Then, the expected mean square is  
 F A 2 2 2

F A τ

A

SS
MS σ

df

E
E bn n      . 

For factor B, the expected sum of squares is 

     F B F 2 2SSE E tr 
1Fy A y A V  

                    
1

1 1 1
a b b ntr f

a b n

                 
*
1F

J I J J 11 V  ; 2A 1 0  

                    
  

         2

1
1 +

    1 1 1 1 1

abn b
abn

b n b n a b n

  

    

   

    

   

   

         

         

 

          2 2 2

τ1 1 1 σb an b b n        . 

 

Then, the expected mean square is  
 F B 2 2 2

F B τ

B

SS
MS σ

df

E
E an n      . 

For the AB interaction, the expected sum of squares is 

      F AB F 3 3SSE E tr 
1Fy A y A V  

                                       
1

1 1 1
a a b b ntr f

a b n

                        
*
1F

I J I J J 11 V ; 3A 1 0    

        

   

       

  

2 2 2 2

2 2 2 2

2

1
1 1

1 1 1 1 1

1 1

abn a b
abn

a b n a b n

a b n

  

   



   

   



           

        

  

 

                     2 21 1 1 1a b a b n        . 

 

Then, the expected mean square is  
 F AB 2 2

F AB τ

AB

SS
MS σ

df

E
E n    , 

and for the error, the expected sum of squares is 

      F E F 4 4SSE E tr 
1Fy A y A V  

      
1

1
ab n ntr f

n

                
*
1F

I I J 11 V  ;  4A 1 0  

         2 2 2 2 2 2 21
1 1abn n n

n
           

               
 

      21 σab n  . 

 

Then, the expected mean square is  
 F E 2

F E

E

SS
MS

df

E
E   . 

The EMS for A, B, AB interaction and error when sampling effects from finite populations are as same as the EMS 

when sampling from infinite populations (Sahai & Ojeda, 2003). They differ, however, in the values of the variance components 
2

 , 2

  and 2

  in each population.  For Case1, the 2

 , 2

  and 2

  represent finite population variance components that 

include a FPC, while for the infinite case, 2

 , 2

  and 2

  represent the variance components that do not get adjusted by a FPC. 

Case 2: (The mixed effects model) 
i  are fixed effects and 

j , ( )ij , and ijk  are  random effects. The variance and 

covariance of this case depend on 
*
2F

V  given in (15). From the properties of quadratic forms, Case 2 is slightly different from 

Case 1 for μAμ  which does not equal zero because  μ τ . 
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 Since μ=0 , then 
1 1( ) ( )   μ τ A μ τ τ A τ ;  1 2

1
... a bn

bn
    τ 1 , so 

1 1 1

1

,..., ... ,...,i i a i a i

abn

bn bn bn bn
bn bn bn bn

a a a a
       



 
      

 
   τ A . 

 

Assuming 0i  , then  1 1 1 2 2 1
,..., ,..., ... ,...,a a abn

bn      


 τ A and 2

1

1

a

i

i

bn 


  τ A τ . 

For factor A, the expected sum of squares is 

     F A FSSE E tr     
21 1 1 F 1y A y μ A μ A V μ A μ  

      2 1

1 1
a a bntr f

a bn

                   
*
2F

I J J 11 V μ τ A μ τ    

   
2

1 1
a a bn 1tr f

a bn

                  
*
2F

I J J 11 V τ A τ        

      
a

2 2 2

i

i=1

1 1a n a bn        . 

 

Then, the expected mean square is  
 F A 2 2 2

F A

1A

SS
MS

df -1

a

i

i

E bn
E n

a
  



     . 

For factor B, the expected sum of squares is 

     F B F 2 2SSE E tr 
2Fy A y A V  

   
2

1 1 1
a b b ntr f

a b n

                 
*
2F

J I J J 11 V ,  2A 1 0           

       2 2 2

τβ1 1 1 σb an b n b       . 

 

Then, the expected mean square is   
 F B 2 2 2

F B τβ

B

SS
MS σ

df

E
E an n     . 

For the AB interaction, the expected sum of squares is 

     F AB F 3 3SSE E tr 
2Fy A y A V  

    
2

1 1 1
a a b b ntr f

a b n

                        
*
2F

I J I J J 11 V ; 
3 A 1 0  

        2 21 1 1 1a b a b n        . 

 

Then, the expected mean square  
 F AB 2 2

F AB

AB

SS
MS

df

E
E n     , 

and for the error,  the expected sum of squares is 

     F E F 4 4SSE E tr 
2Fy A y A V  

     
2

1
ab n ntr f

n

                
*
2F

I I J 11 V  ;  4A 1 0   

      21ab n   . 

Then, the expected mean square   
 F E 2

F E

E

SS
MS

df

E
E   . 

Like in Case 1, the EMS when sampling effects from finite populations in Case 2 are same as these when sampling 

from infinite populations. The only difference in the inclusion of FPCs is in the 2

  and 2

  variance components. 
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3.2 Expected mean squares for unbalanced data 
 

The effects model for the unbalanced two-factor factorial design is: 

 

1,2,...,

( ) ; 1, 2,...,

1, 2,...,

ijk i j ij ijk

ij

i a

y j b

k n

    

 


     
 

,                                                           (16) 

where the difference between equations (16) and (1) is that equation (16) has unequal replication.  

 

The expected mean squares for unbalanced data are found by applying the method for finding expected mean squares 

for balanced data but modifying matrices ; = 1,2,3,4p pA  to account for unequal ijn . Since the variance and covariances for 

unbalanced data are the same as for balanced data, then the expected value of quadratic form y Ay  is still 

   E tr  y Ay AV μ Aμ .    

Case 1: Since 
i  and 

j  are selected from finite populations, then the variance and covariance in Case 1 can be 

written in matrix form as  
1f   *

1 1
F F

V 11 V  where 2 2 2

1

1 1 1

a b ab

f
N N N

    
     

          
     

  and 
*
1F

V  is given in (14). 

We now show how to find expected mean squares of Case 1.   The components that are used to determine 

     F A F B F ABSS , SS , SSE E E  and  F ESSE in the unbalanced data are shown in Table 1. 

 

Table 1. The components used in determination of   F ASSE ,  F BSSE ,  F ABSSE , and  F ESSE  for Case 1 for unbalanced data. 

*
1

(c)
F

V  is the component of 
*
1F

V  for Case c. 

 

Case Freq 

The first row of Matrix 
pA   

 

*
1

( )c
F

V  

1A  2A  3A  4A  

       

1; *, *, *c i i j j k k      1 

1

1 1
1

n a

 
 

 
 

1

1 1
1

n b

 
 

 
 

11

1 1 1
1 1

n a b

  
   

  
  

11

1
1

n

 
 

 
 

11V  

2; *, *, *c i i j j k k   

 
11 1n   

1

1 1
1

n a

 
 

 
 

1

1 1
1

n b

 
 

 
 

11

1 1 1
1 1

n a b

  
   

  
 

11

1

n

 
 
 

 
12V  

3; *, *c i i j j    
1 11n n   

1

1 1
1

n a

 
 

 
 

1

1 1

n b

 
 
 

 

11

1 1 1
1

n a b

  
   

  
 

0 
13V  

4; *, *c i i j j    

1 1 11

2

a

i

i

n n n



   

1

1 1

n a

 
 
 

 

1

1 1
1

n b

 
 

 
 

11

1 1 1
1

n a b

  
   
  

 

0 
14V  

5; *, *c i i j j    
 

   

1

2

1 1 11

a

i i

i

n n

n n n n





  



   


 

1

1 1

n a

 
 
 

 

1

1 1

n b

 
 
 

 

11

1 1 1

n a b

  
   
  

 

0 
15 0V  

       

 

Note that “c” is the case of variance component in 
*
1F

V  from equation (14) where c  =  1, 2, …, 5. 

 In Table 1, the first column presents the possible cases of the ( , )i j  treatment combination for the 
thk  replication. 

The second column shows the frequency of each c which is in the first row of the matrix ; = 1,2,3, 4p pA .  The 
*
1F

V  

components in the variance and covariance matrix are in the last column.  Note that:  

1 1

a b

i j

i j

N n n 

 

    and  define
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2

1

1 1

a b
ij

i j i

n
C

n  

   and 

2

2

1 1

a b
ij

i j j

n
C

n  

  .   

 

The EMS can be modified by multiplication of each column in this table as follows: 

For factor A,     *
1

F A 1SSE tr
F

A V   

                                 *
1

5

1 1

1

Freq value ( ) Dimensionc

c

c


    
  F

A V A  

                                 11 12 13 14

1 1

1 1 1 1
1 1 1 1

a b
ij

ij i ij j ij

i j i

n
n n n n n

n a a a a
 

  

        
                  

        
 V V V V

 

                             

 
2

11 12

1 1

2 2

13 14

1 1 1 1 1 1 1

1
1 1

1 1
1

a b
ij

i j i

a a b a b a b
ij ij j ij

i

i i j i j i ji i i

n
a a

n a

n n n n
n

n a n n a

  





        

  
          

      
                   



   

V V

V V

 

                               
 

1
11 12 1 13 1 14

1 1

1 1
1 1

1

a b
ij j

i j i

n nC
a N C C

a a a a n



  

   
                

V V V V . 

 

Then, the expected mean square is 

    
 

1
F A 11 12 1 13 1 14

1 1

1 1
MS 1 .

1

a b
ij j

i j i

n nC
E N C C

a a a a n



  

    
               

V V V V  

For factor B,    *
1

F B 2SSE tr
F

A V  

           *
1

5

2 2

1

Freq value ( ) Dimensionc

c

c


    
  F

A V A  

                11 12 13 14

1 1

1 1 1 1
1 1 1 1

a b
ij

ij i ij j ij

i j j

n
n n n n n

n b b b b
 

  

        
                  

        
 V V V V  

              
 

 
 

11 2 12 2 13 2 14

1 1

1 11
1

a b
ij i

i j j

n nb b
b C b C N C

b n b b



  

   
             

V V V V  

                                            
 

 2
11 12 2 13 2 14

1 1

1 1
1 1

1

a b
ij i

i j j

n nC
b C N C

b b b n b



  

    
                

V V V V . 

 

Then, the expected mean square is  
 

 2
F B 11 12 2 13 2 14

1 1

1 1
MS 1

1

a b
ij j

i j j

n nC
E C N C

b b b n b



  

    
                 

V V V V . 

 

For the AB interaction,    *
1

F AB 3SSE tr
F

A V     

                  *
1

5

3 3

1

Freq value ( ) Dimensionc

c

c


    
  F

A V A   

                           
 

   

11 12

1 1

13 14

1 1 1 1
1 1 1 1 1

1 1 1 1
1 1

a b

ij

i j

i ij j ij

n
a b a b

n n n n
a b a b

 

 

     
            

     

     
            

      

 V V

V V
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     
 

     11 12 13 141 1 1 1 1 1 1 1
N ab N N

a b a b a b a b
ab ab ab


           V V V V

    11 12 13 141 1 1
N N N

a b
ab ab ab

  
        

  
V V V V . 

 

Then, the expected mean square  F AB 11 12 13 14MS 1
N N N

E
ab ab ab

 
     

 
V V V V , 

and for the error,     *
1

F E 4SSE tr
F

A V  

      *
1

5

4 4

1

Freq value ( ) Dimensionc

c

c


    
  F

A V A   

  11 12

1 1

1
1 1

a b

ij ij

i j ij

n n
n 

  
      

   
 V V  

   
11 11 12 12N ab N ab   V V V V  

     11 12N ab  V V . 

Then, the expected mean square  F E 11 12MSE  V V . 

Consequently, the EMS of the unbalance in Case 1 is summarized in Table 2. 

 
Table 2. Expectations of mean squares when sampling a finite population for the unbalanced Case 1. 

 

Effect Component EMS (Finite) for unbalanced case 

   

i  

 

 

j  

 

 

( )ij  

 

ijk  

2

  

 

 

2

  

 

 

2

  

 

2  

 
 

1
11 12 1 13 1 14

1 1

1 1
1

1

a b
ij j

i j i

n nC
N C C

a a a a n



  

    
              

V V V V  

 
 2

11 12 2 13 2 14

1 1

1 1
1

1

a b
ij i

i j j

n nC
C N C

b b b n b



  

    
                

V V V V  

11 12 13 141
N N N

ab ab ab

 
    
 

V V V V  

 

11 12V V  

 

 

Case 2: Since 
i  are fixed effects and 

j  are selected from the finite population then the variance and covariance of 

this case can be written in matrix form as  
*

2 2
2f  F F

V 11 V  where 

2 2

2

b ab

f
N N

     
         
   

 and 
*
2F

V  is given in (15). 

The components that are used to determine    F A F BSS , SS ,E E  F ABSSE , and  F ESSE in the unbalanced data 

are summarized in Table 3. 

 

 The method of using Table 1 for Case 1 is now applied to Table 3 for Case 2.  

 

For factor A,    *
2

F A 1 1SSE tr  
F

A V μ A μ   

                                                *
2

4

1 1 1

1

Freq value ( ) Dimensionc

c

c


      
  F

A V A μA μ     

                                               2

21 22 23

1 1 1

1 1 1
1 1 1

a b a
ij

ij j ij i i

i j ii

n
n n n n

n a a a
 

  

      
              

      
 V V V  
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 
2 2

2

21 22 23

1 1 1 1 1 1 1

1 1
1 1

a b a b a b a
ij ij j ij

i i

i j i j i j ii i i

n n n n
a a n

n a n n a






        

      
                       

   V V V       

 
 

21
21 22 1 23

1 1 1

1
1 1

1 1

a b a
ij j i

i

i j ii

n n nC
a C

a a a n a


 

  

   
                

 V V V . 

 

Then, the expected mean square is  
 

21
F A 21 22 1 23

1 1 1

1
MS 1

1 1

a b a
ij j i

i

i j ii

n n nC
E C

a a a n a


 

  

  
             

 V V V . 

Note that 

2

1

1 1

a b
ij

i j i

n
C

n  

  . 

 

Table 3. The components used in determination of   F ASSE ,  F BSSE ,  F ABSSE , and  F ESSE  for Case 2 with unbalanced data. 

*
2

(c)
F

V  is the component of 
*
2F

V  for Case c. 

 

Case  Freq 

The first row of Matrix pA   
 

*
2

( )c
F

V  

1A  2A  3A  4A  

       

1; *, *, *c i i j j k k      1 

1

1 1
1

n a

 
 

 
 

1

1 1
1

n b

 
 

 
 

11

1 1 1
1 1

n a b

  
   

  
  

11

1
1

n

 
 

 
 

21V  

2; *, *, *c i i j j k k   

 
11 1n   

1

1 1
1

n a

 
 

 
 

1

1 1
1

n b

 
 

 
 

11

1 1 1
1 1

n a b

  
   

  
 

11

1

n

 
 
 

 
22V  

3; *, *c i i j j    
1 11n n   

1

1 1

n a

 
 
 

 

1

1 1
1

n b

 
 

 
 

11

1 1 1
1

n a b

  
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Note that “c” is the case of variance component in 
2
*F

V  from equation (15) where c  =  1, 2, …, 4. 
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Note that: 
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For the AB interaction,    *
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Then, the expected mean square is   F AB 21 22 23MS 1
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and for the error,    *
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Then, the expected mean square is  F E 21 22MSE  V V . 

Consequently, the EMS of the unbalanced in Case 2 is summarized in Table 4. 

 
Table 4. Expectations of mean squares when sampling a finite population for the unbalanced Case 2. 
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The EMS when sampling from a finite population 

will be different from the EMS for an infinite population 

( Sahai & Ojeda, 2004) .  In particular, the multipliers of the 

variance components for each model effect are not the same 

when the random effects are sampled from a finite population. 

 

4. Conclusions 
 

In this research, we have determined the expected 

mean squares for the random effects in the random and mixed 

effects models in two-factor factorial model assuming finite 
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populations for A, B, and AB interaction effects. The error, 

however, is assumed to be 2N(0, ) .  

For the case of balanced data, the expected mean 

square formulas for factors A, B, and the AB interaction when 

the random effects are sampled from finite populations are the 

same as the infinite population case. However, the primary 

differences are the values of the variance components. In the 

infinite case, 2 ,  2 ,  and 2

  are assumed to follow nor-

mal distributions, while in the finite case they are the va-

riances of finite populations. 

For an unbalanced case, the expected mean square 

of error for finite population is equal to the expected mean 

square for an infinite population. For the expected value of 

mean square in factor A, B, and the AB interaction will not be 

the same, because they depend on the multiplier values of the 

population variances. Also, for the infinite case, 2 ,  2 ,  and 

2

   are the variances of normally distributed random varia-

bles. For the finite case, they are the variances of finite popu-

lations. 
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