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ABSTRACT

This study focuses on an improvement in medical storage, which is one of the major
expenses in a hospital. Based on a real case study of a medium-sized private hospital in Thailand,
the study is conducted in two steps. The first step classifies medical (drug) items into three
classes using the ABC analysis. Then, in the second step, a simulation-based optimization
method using ARENA with the OptQuest Optimization tool is developed. The method optimizes
the inventory policy’s parameters, to minimize the total relevant costs of keeping the drug items
by combining the ordering and holding costs. We have applied four inventory policies to all
samples of the drug items in class A, which contains the highest usage values. Then, a
comparison is made with the hospital’s current practice to find possible savings. From the
findings, cost savings of nearly 50% from the case of current practice can be achieved. The
proposed methodology can assist and provide the best decisions in managing the medical
inventory of this hospital under an uncertain environment of customer demand and supply lead
time.

Keywords: Inventory management; Replenishment policy; Medical storage; Medium-sized
hospital; Simulation-based optimization

1. Introduction their health. However, the operating cost of a
Good healthcare is an essential factor ~ hospital to maintain the good service and
in our lives. In fact, the healthcare business quality level has increased nowadays. As a
keeps growing due to an increase of aging  result, only well-managed hospitals can
citizens, with more people paying attention to survive in this competitive environment.
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Inventory management plays an
important role because healthcare requires a
large budget for the inventory cost, which
represented approximately 10% of the annual
healthcare expenditures in the United States
and about $600 billion globally in 2009 [1].
Several researchers have estimated that
inventory investments in healthcare range
between 10% and 18% of total revenues [2-3].
Essential healthcare items, either directly or
indirectly, are required in the patient healing
process, with monitoring and control. Hence,

inventory control systems need to be aligned
with patient conditions [4]. Technically and
scientifically, the demand for healthcare
items is closely linked to physician
recommendations, based on patient
conditions [5].

Over-supply or shortages of such
medicines would jeopardize the operations of
hospitals. As a result, hospitals have to well-
manage orders and their inventories to
adequately provide medicines to patients
with the lowest cost. In most situations,
inventory  planning  becomes  more
complicated when patient demand behaves
stochastically, ~— which  causes  severe
fluctuations in demand. Hospitals need to
keep their inventory high enough to minimize
the number of drug shortages. However, the

storage of surplus drug items costs both time
and money. Balancing these two aspects is
essential, and it is necessary to find the best
policy of how much to replenish and when to
replenish.

As a result, this study focuses on the
process of selecting an appropriate policy to
manage the medical inventory in a medium-
sized hospital using a real case study. In this
study, several policies of managing the drug
inventory in a hospital are introduced and
compared by simulation-based optimization.
The main contribution of this study is to
recommend the best policy with the possible
amount of savings for managing medical
inventory in a certain business environment.

The rest of this paper is organized as
follows. The related literature is provided in
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Section 2. Then, Section 3 presents the
background of the case study. Next, the
methodology and simulation experiment are
explained in Sections 4 and 5, respectively.
Section 6 analyzes and discusses the
proposed method. Managerial implications
and conclusions are in Sections 7 and 8,
respectively.

2. Literature Review
2.1 Inventory model

An inventory model helps businesses
to determine the optimum level of inventories
that should be maintained by managing the
frequency of ordering and deciding on the
quantity of goods or raw materials to be
stored [6]. The model also assists in tracking
the flow of raw materials and goods to
provide uninterrupted service to customers
without any delay in delivery. It includes
various inventory policies attempting to
answer when and how much to order. Such
questions have a major influence on the
amount of inventory a business unit carries
and the number of transactions (and
corresponding overhead) a unit must support.

Research in inventory management is
vast. Some of the related topics (especially
related to healthcare service) are introduced
here. Beheshti et al. [7] stated that ABC
classification analysis is a well-established
inventory planning and control method,
which is proper to apply in inventory
management to reduce the related inventory
costs by arranging different classes of
inventory based on their total usage values.
Kelle et al. [6] tried to improve the current
inventory management policy by suggesting
the reorder point and order-up-to level, to
control an automated ordering system. Their
parameters are based on a near-optimal
allocation policy of cycle stock and safety
stock under a storage space constraint.
Uthayakumar and Priyan [8] established a
mathematical inventory model that combines
a continuous review with production and
distribution for a supply chain in a
pharmaceutical company and a hospital
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supply chain. The suggested model can meet
the target of the customer service level at the
minimum total PSC (Pharmaceutical Supply
Chain) inventory cost and can maintain a
suitable level of stock.

Moreover, Darwish et al. [9] introduced
randomness of demand into their model by
assuming that the safety stock is equal to a
safety factor, multiplied by the standard
deviation of the lead time demand. They
generalized the  classical  stochastic
continuous-review inventory-control (Q, R)
model for the case when the production rate
is finite and unmet demand is partially
backordered. Hovav and Tsadikovich [10]
then wused supply chain concepts and
techniques to minimize the total costs of the
vaccination supply chain while upholding
allocation-related costs (costs associated with
the selection of relevant manufacturers and
the assignment of the distribution centers to
the manufacturers), the distribution center’s
expenses including the costs of transporting
vaccines from the manufacturer to the
distribution center, inventory holding costs,
service costs, and costs associated with
possible vaccine shortage.

2.2 Simulation-based optimization
Simulation =~ modeling  basically
represents an actual situation. It is the
procedure to create and analyze a digital
prototype of a physical model for evaluating
and predicting its performance. For
simulation-based optimization, the mapping
from decision variables to objectives and
constraints is at least partially implicit,
requiring the execution of a computational
model. Algorithms typically treat this model
as a “black box”, iteratively setting
parameter values, running the simulation,
and adapting based on the objective and
constraint information returned. A review of
research on simulation-based optimization
methods can be found in [11-13]. A problem
in simulation-based optimization is to find
which set of a large number of sets of model
specifications have led to the optimal output
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performance. However, there have only been
a small number of research papers using the
simulation methodology to improve the
system performance in healthcare businesses.
For example, Belciug and Gorunescu [14]
used a simulation-based methodology, based

on real data collected from the geriatric
department of a hospital in the UK. They
presented the M/PH/c queuing model for bed-

occupancy in hospitals. Their novel
evolutionary-based  approach  optimizes
hospital management by providing an
efficient way to estimate the system control
parameters. It is the approach to obtain the
proportion of refused patients, the
corresponding average time spent in the
hospital, the corresponding average number
of patients in the hospital, and the bed
occupancy.

Bhattacharjee and Ray [15] stated that
properly modeling the patient flows would
help the healthcare department to make the
right decisions on how to allocate the existing
resources. Their model can identify existing
problems and provide alternatives for
improving the performance of a healthcare
system. Simulation methodology is then used
due to its flexibility in modeling patient flow
complexities and the time-dependent
behavior of a system. However, the real-life
queuing situations normally have non-
Poisson and time-varying arrivals and non-
exponential service time distributions. These
characteristics need to be incorporated in the
patient flow model by combining the
optimization techniques with patient flow
models for optimizing the performance
metric(s).

Much research has utilized the
simulation methodology to determine the
optimal operating parameters for other
systems such as production, transportation,
and supply chain systems. For example, Jung
et al. [16] used the simulation based-
optimization method to determine the
optimal safety stock level in planning and
scheduling models. Later, Azadeh et al. [17]
presented and integrated the Analytic
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Hierarchy Process (AHP) and Genetic
Algorithm (GA) with computer simulation
for the optimization of operator allocation in
a Cellular Manufacturing System (CMS)
with weighted variables, to control the
material flow of traditional non-hybrid
production control systems and hybrid
systems under restricted conditions. Kelle [6]
determined the reorder point and order-up-to

level (called the min and max par levels) that
control the automated ordering system. These
parameters are based on a near-optimal
allocation policy of cycle stock and safety
stock under a storage space constraint.

Schmitt et al. [18] studied the impact of
disruption as an alternative to expediting
intervention using the simulation experiment
in a four-echelon supply chain. Simulation
experiments reveal that the impact of
disruption as an alternative to expediting
interventions, dynamic order-up-to policies
showed promising results as an adaptive
mitigation tool. Tsai and Chen [19] proposed
a simulation-based solution framework for
tackling the multi-objective inventory
optimization problem under the goal which to
find appropriate settings of reorder point and
order quantity. Pacheco and Cannella et al.
[20] performed a  simulation-based
optimization onreal-world data with demand
variations. They proposed an order-up-to-
level policy, which provided better
performance, particularly in terms of
bullwhip effect reduction and improved the
service level. Enhancing a typical periodic
review policy with a backroom for perishable
products in a retail business under an
uncertain environment was carried out by
Heng and Chiadamrong [21]. They used the
simulation-based optimization with Genetic
Algorithm (GA) to search for the best
operating parameters in their study.

Based on the health care industry in
this study, the simulation and optimization
are completed with the ARENA simulation
software and the OptQuest optimization tool.
Similar to other simulation software
embedded with the optimization tool, it
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requires the specifications of lower and upper
values for the input variables that are to be
optimized. The OptQuest tool is an iterative
heuristic combining three meta-heuristics

(i.e., scatter search, tabu search, neural
network). Examples of a successful
application of scatter search with the
OptQuest tool were reported in Bulut [22].
Setyaningsih and Basri [23] also developed
the simulation-based optimization model
using the OptQuest optimization tool to
optimize and improve the inventory system
with the periodic review period. Al-Fandi et
al. [24] employed the OptQuest tool to
manage and optimize the stock-out or
overstock of medical supply in a hospital.
The continuous review (s, S) policy was used
to manage the inventory in their study.

Sadeghi et al. [25] integrated design and
control phases in a three-echelon supply
chain system of a blood sugar strip
manufacturer. The OptQuest optimization
tool was also used to obtain the lowest total
cost by searching the best setting of inventory
parameters and expected cell utilization.

3. Background of the Case Study
The hospital in this case study is a
medium-sized hospital located in

Samutsakorn province in Thailand with a
service area of 10,000 square meters. It was
established in March 2006 with 100 fully-
equipped inpatient beds and 20 examination
rooms. The facility provides services for up
to 1,000 out-patients per day. One of the main
problems in the hospital during our first visit
is its drug storage. The hospital is concerned
that it did not manage its inventory
appropriately, causing over-supply of its
stock, resulting in a high amount of drug
inventory.

Currently, the hospital has 967 drug
items in the main medical storage. There are
another 2 sub-storages (located on different
floors) for pulling the medical items from the
main storage when required. The flow of
medical storage is shown in Fig. 1. Its current
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inventory control policy operates as the max-

min concept (see Fig. 2). Orders are issued to
suppliers or the main storage every time the
inventory level drops to a pre-determined

minimum level. The amount of an order is

Supplier Main Store

)

Hardly managed storage

” [ Sub Storage 1 ’
“ [ Sub Storage 2 ’

fulfilled up to the pre-determined maximum
level. Under such practice, the amount of an
order for each drug item should be the same
in every order.

Patients

-

Fig. 1. Components of medical storage.

Inventory
on Hand

Max Invento
A Y

Demand X Lead time¢

= (Demand X Lead time) + (Demand X Ordering Cycle Time) + Safety Stock

MAX

\‘\ Min Inventory (Reorder Point) = (Demand X Lead time) + Safety Stock

4 Safety Stock i
® ® >
Time
ILead time ILead time
L
To Ordering Cycle Time: OC T,

Fig. 2. Current inventory replenishment policy of the hospital (Max-min policy).

However, four main problems could be
identified during our investigation and data
collection periods.

1. Since the availability of drugs for
the patients is critical, the hospital tended to
keep too high an inventory level to avoid any
possible shortages. It was also found that the
maximum levels of some drug items
exceeded their pre-determined maximum
levels.

2. The ordering amount of drugs
varied in every order as the hospital operators
did not adhere strictly to the max-min policy.
Sometimes, there were multiple orders in one
day.
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3. Lead times for medical inventory
replenishment fluctuated. From the historical
records, they could vary from 1 day to 12
days, depending on each drug item and each
medical supplier.

4. The max-min policy may not be the
most cost-effective method for all drugs as
this policy is required to keep a higher level
of inventory in relation to other policies. The
max-min policy has a mechanism to control
and optimize the ordering amount in which
this policy needs to make an order in every
cycle, which can cause too many unnecessary
orders.
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A fishbone diagram (see Fig. 3) was
also constructed to systematically analyze the
cause and effect of over-supply on drug
storage. In this study, we focus on unsuitable
methods and inappropriate  parameter
settings since they are controllable factors
and their savings can be tangible, measurable,
and substantial. Other causes (people,
equipment, materials, environment) are
uncontrollable factors or they are caused by
human error

4. Methodology

Since the hospital has nearly 1,000
drug items in storage and they did not keep
the historical records of all items, especially
with low value or rarely used items, a
comparison cannot be made of all drug items.
This study separates the experiment into two
steps. In the first step, this study attempts to
classify a total of 967 drug items into 3
groups.

QOur attention

\
\

Confusion

Parameter setting

Inconsistency inappropriale

Lack of knowledge ! Unsuitable method E Over-supply in drug storage !

\
\

Under-stock

Qui-of=date ilems

Defects

\

A

Over-Supply of

Old computer syslems

Uncertainty
(particular-demand,
supplier lead time)

Drug Storage

/

Data arc not

updated real time /

Pressure from eustomers

This study uses the ABC classification
according to total usage values where class A
contains 70% of total usage values, class B
contains 20% of total usage values and class
C contains 10% of total usage values. For the
purpose of demonstration, we first put our
focus on class A items, as they represent the
highest total usage, by using an appropriate
sample size from the total number of items in
the group.

Equation (4.1) is used to find the
appropriate sample size [26]. In this study, a
90% confidence level is used.

G NZ’P@-P)
d?(N-1)+Z2?P1-P)’
where

(4.1)

Fig. 3. Fishbone diagram (cause and effect analysis).
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n'=sample size with finite population,
N = Population size,
z = Z statistic for a level of confidence
(z=128),
P = Expected prevalence or proportion,
d? = Precision.
Under the class A items, with a
population size of 94 items and a 90%

confidence level, a sample size of 37 units is
calculated as follows:

. 94(1.28)2(0.9)(1-0.9)
©0.05%(94-1) +(1.28)%(0.9)(1-0.9)

n'=37 Samples
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Naing et al. [26] recommended to use P
around 10% to 90%. In this case, we used

90%. So, P=0.9 with a precision (d) of 5%.

Next, four main inventory control
policies are introduced into all samples to
find the most suitable policy for each item.
All scenarios are simulated using the ARENA
simulation software with the OptQuest,
optimization tool, to determine the optimal

levels of the operating parameters. The tool
can ascertain that each policy operates at its
optimal or close to its optimal level, where
the total relevant costs (ordering + holding
cost) are the cheapest. Finally, the current
practice is compared with other policies to
find possible savings from such an
implementation. Fig. 4 depicts a flow chart of
the method of how the best policy is
identified.

Step 1
ABC Classification
I
v v
Class A Class B Class C
70% of Total usage value 20% of Total usage value 10% of Total usage value
I
v Step 2
Select 37 sample drugs
for class A
Simulation-based optimization by OptQuest
(Simulation Modelling: ARENA)
I
v v v v
Reorder Level with ;
Reorder Level Reorder Cycle Periodic Review s,S Policy
[ [ I |
v
Comparison of the results to suggest the best policy for each class

Fig. 4. Methodology.
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Sub-Storage 1
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--------------- )
i ! Medical
| Patient —» Registration —»
i ! Treatment
NO
Back home |«
T 3 Ordering Medicine
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Inventory
i Main Storage
Level < min

f

Lead Time

Fig. 5. Current Policy.
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5. Simulation Experiment
5.1 Model configuration

In the current practice, the hospital
operates on the max-min concept (see Fig. 5)
where orders are issued to suppliers every
time the inventory level drops to the pre-
determined minimum level or the Reorder
Level (ROL) that can be calculated by Eq.
5.1).

The amount of an order will increase
the inventory level up to the pre-determined
maximum level that can be calculated by Eq.

(5.2), where the amount of safety stock is
calculated by Eq. (5.3). The hospital currently
uses these equations to set its Max-Min
policy parameters for its current practice,
with a service level of 99.9% (Z =3). This is
to make sure that the hospital holds sufficient
stock to avoid any possibility of shortages. In
fact, this service level leads to a probability

of 0.1% that the lead time demand is higher
than the safety stock.

MIN or ROL=(DxLT)+SS, 5.1
where

D = Average customer demand per period,
LT = Lead-time for a supplier to replenish
the item requested,

SS = Safety stock.

MAX or TSL=Dx (LT +T)+SS,  (5.2)

where

D = Average customer demand per period,
LT = Lead-time for a supplier to replenish
the item requested,

T = Ordering cycle time (Review period),

SS = Safety stock.

Safety Stock = 2x /LT xo? +D? x o2,
(5.3)
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where

Z=Appropriate value from a table of standard
normal distribution probabilities,

LT- Average supplier lead time,

D = Average customer demand per period,

op = Standard deviation of the demand per
period,
6,1 = Standard deviation of the supplier lead

time.

For comparison, four typical inventory
models, which are the Reorder Level,
Reorder Cycle, Reorder Level with Periodic
Review, and (s,S) policies are applied (see
Tersine [27] for more details). For the
Reorder Level Policy (as shown in Fig. 6), an
order is issued every time the amount of
ending stock reaches the minimum level
(Reorder Level (ROL)) with an equal amount
of the Economic Order Quantity (EOQ). The
amount of the EOQ can normally be
calculated by Eq. (5.4). However, this
calculated EOQ is subject to certain customer
demand with no lead time. With an uncertain
customer demand and varying suppliers’ lead
times in our case, Eq. (5.4) no longer yields
the optimal ordering size. Thus, the OptQuest
optimization tool is introduced to search for
the best amount to meet the objective
function value.

EOQ = 2xRC><D,
\J HC

RC = Ordering cost per order,

54

where

D = Average customer demand per period,

HC = Holding cost per unit per period.
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Medical
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Come back to check

the next day.

Sub-Storage 2

Come back to check
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Q = EOQ
the next day. ‘

—i Main Storage

f

Lead Time

Fig. 6. Reorder level policy.

For the Reorder Cycle policy (see Fig.
7), the depleted items are ordered in every
fixed time interval, known as the ordering
cycle time, with the amount equal to the gap
between the Target Stock Level (TSL) (also
searched by the OptQuest optimization tool)
minus the Stock On Hand (SOH). In this
study, the ordering cycle time is set to be one
week.

The Reorder Level with Periodic
Review policy reviews the stock at every
fixed time interval on a weekly basis.

Medical

Patient i—b Registration |—»|
| Treatment

NO
Back home 4

Get the

Ordering Medicine
Q =TSL - SOH

However, when the amount of ending stock
reaches the ROL level at each review period,
an order is issued with an amount equal to the
EOQ. The concept of the Reorder Level with
Periodic Review policy is shown in Fig. 8.

For the (s, S) policy, the stock is reviewed
at every fixed time interval, which is every
week. However, when the amount of ending
stock reaches the ROL level at each review
period, an order is issued with an amount
equal to the TSL minus SOH. The concept of
the (s, S) policy can be seen in Fig. 9.
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Lead Time

Fig. 7. Reorder cycle policy.
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Fig. 8. Reorder level with periodic review policy.

Registration

Medical

Treatment

Get the

Sub-Storage 1

drug

NO

Back home |«

Sub-Storage 2

Come back to check at

the end of the next cycle.
(Next week)

Ordering Medicine
Q=TSL-SOH

Lead Time

Fig. 9. (s, S) Policy.

116

Come back to check at
the end of the next cycle.
(Next week)

Pickup the drug

Q=TSL - SCH
A 4
«( Main Storage
A



S. Srizongkhram et al. | Science & Technology Asia | Vol.26 No.1 January - March 2021

5.2 Decision variables

Each replenishment policy requires
different decision variables, as shown in
Table 1. These decision variables explain
when and how much of an order should be

placed. Their optimal settings are searched by
the OptQuest optimization tool embedded in
the ARENA simulation software, to minimize
the objective value, which is the total relevant
costs.

Table 1. Decision variables for each inventory policy.

Policies Decision How much in an order? When to place
Variables the order
(1) Reorder Level EOQ, ROL EOQ When the stock reaches ROL

(2) Reorder Cycle TSL TSL-SOH In every ordering cycle

(3) Reorder Level with EOQ, ROL EOQ Review at every ordering cycle and

Periodic Review when the inventory level falls below
ROL

(4) (s, S) policy TSL, ROL TSL-SOH Review at every ordering cycle and

when the inventory level falls below
ROL

Table 2. Setting values of lower bound and upper bound.

Class Bound Inventory Policy
Reorder Level Reorder Reorder Level with s,S) Policy
Cycle Periodic Review
EOQ ROL TSL EOQ ROL s S
(units) (units) (units) (units) (units) (units) (units)
A Lower 0 0 0 0 0 0
Upper 5,000 5,000 10,000 5,000 5,000 5,000 10,000
Tablc?g presents the searching bounds b Backlog cost per unit (THB),
of each decision variable where the bounds of D . . .
. o it Patient demand of drug item i at
the lower limit and upper limit are set. They - . .
are guaranteed to be large enough to ensure storage j in period ¢ (Units),
that the optimal values fall between the lower Eijt Average stock level of drug item i at
and upper bounds. storage jin period t (Units),
fii Frequency of ordering of drug item i
5.3 Analytical model formulation st .. iod ¢ (Units)
Even though the model is constructed at stotage Jin perio ns),
by the simulation method, the analytical h Unit holding cost per year (%),
model formu}atio.n is pr@sented below to HC Holding cost (THB)
clarify the objective function and important .
0 Ordering cost per order (THB),

constraints in the hospital operations.

Notations
Indexes:

i index of drug items (i =1,...,1),

J index of storages ( j =1,...,J),

t index of time periods (t =1,...,T ).
Parameters:

byt Backlog unit of drug item i at

storage j in periodt (Units),
BC Backlog cost (THB),

ocC Ordering cost (THB),

POR;; Order quantity of drug item i at
storage jin period t (Units),

S, Staff salary per period (THB),

SOHj; Stock on hand of drug item i at

storage jin period t (Units),
TRC Total Relevant Costs (THB),
Value of drug item i at storage j in

period t (THB).

ijt
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Decision variables:

EOQ; Fixed economic order quantity of
drug item i at storage j (Units),

ROL;  Minimum reorder level of drug item
iat storage j (Units),

TSL; Maximum target stock level of drug

item i at storage j (Units).

Objective Function

Minimizing the total relevant costs is
the objective function of this study and it can
be defined as follows:

MIN TRC =0C + HC +BC, (5.5)
Subject to:
Financial constraints
oc= ZLZ;ZLP - fi (5.6)
HC = Z;Zjﬂ ::1h “€ijt * Vijt (5.7)
BC= > > beiby. (5.8)
Ordering cost(OC) as stated in

constraint 5.6, is the cost incurred when the
main storage places an order to its suppliers.

(0) was
obtained by the hospital. It was calculated by
the total procurement operations including

The ordering cost per order

staff salary (St), which is estimated at
70,000 THB per month divided by the annual
frequency of ordering (fijt), 11,325 times

per year as explained below.

;
0==7 Z:Jt_lst I
thlz j:lZi:l fi
~70,000x12
11,325

=74.17 THB per order.

(5.9)

Holding cost (HC) as stated in
constraint 5.7, is the cost of holding medical
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items in storage. In this case, the holding cost
(h) is estimated to be at 30% of the medical
value per year. All holding costs are
calculated based on an average level of
inventory.

Backlog cost (BC) as stated in

constraint 5.8, is the cost of shortage for
medical items that have not been shipped
based on patient requirements. As the
hospital policy is to avoid any shortage, the
backlog cost per unit was deliberately set
with a high value so as to avoid any chance
of occurring in the study.

Inventory balance constraints
Inventory balance constraints control
the flow of inventory drug) in the hospital.

(5.10)
Constraint 5.10 is the inventory

balance constraint for its respective units of
interest, ensuring that the drug items entering
plus the inventory from the previous period
equal the drug items leaving plus the
inventory stored at the end of that period.

For the reorder cycle policy (periodic
review) and (s, S) policy at the end of each
review period.

POR, = max{(TSLy, — SOH,, ),0}, Vi, j,t.
(5.11)

According to constraint 5.11, the order
quantity in each cycle for each drug item is
equal to the gap between the Target Stock
Level (TSL) minus its inventory on hand in
that cycle. The TSL is one of the decision
variables required to be searched for its
optimal setting.

For the reorder level policy and the
reorder level with periodic review policy
when SOH;, <ROL;;.

ijt =

POR;; = EOQ; Vi, )t (5.12)
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According to  constraint  5.12,
whenever the stock on hand falls below the
minimum stock level set by ROL, an order
will be issued equal to EOQ. The order
quantity in any period for each drug item and
ROL are the decision variables, which need to
be searched for their optimal settings.

5.4 Simulation experimental conditions
Ten replicates were simulated with a

replication length of 356 days or one year per

replicate. Based on 10 replicates, the 95

percent confidence interval of the throughput
had a width of less than 5 percent of its mean.

The patient demand in all models has been set
equal to the actual patient demands, which
were recorded by the hospital in the past year.

The initial level of inventory of each drug
item has also been set at the actual inventory
level of each drug item from the current
practice. As a result, all policies start with and

are comparable under the same initial
conditions, with similar patient demand
throughout the simulation period.

B O R S T
Name of Medicines £ Values (Baht) Total Usage Total Usage Cumulative % Group
Jan Dec Values (Baht) Values (%)

1 |MCELET1 139,.841.95 156,741.09 | 1,915.445.52 4.75% 4.75% A
2 |MCEF3I8 45,577.72 280,402.06 | 1,635,348.41 4.06%| 8.81% A
3 [MACTHOL 41,730.00 - 229,515.00 0.37%)| 9.38% A
4 |MIPDIL 99,296.00 109,639.33 | 1,163,831.87 2.89%)| 12.26% A
5 |MDYNAITL 87,251.01 89,722.71 | 1,151,220.84 2.86%)| 15.12% A
6 |METORT3 48,164.52 72,208.79 840,446.95 2.08% 17.20% A
7 |MPENTAIL 64,345.91 85,707.00 837.450.09 2.08% 19.28% A
8 |MAUGMETS 57,111.23 59,946.73 740,882.50 1.84% 21.12% A
9 |MCEFs51 48,720.00 81,120.00 671,520.00 1.67%)| 22.78% A
10 |MVENTOS1 41,700.58 38,067.93 594,264.13 1.47%)| 24.26% A
31 |IMELOME1 15,095.03 38,240.73 312,970.19 0.78% 45.24% A
93 |MGARSIL 12,381.42 4,127.14 109,369.21 0.27%)| 69.64% A
94 |MCONTTL 11,842.31 3,710.25 108,532.39 0.27% 69.91% A
95 |MIEPVL2 10,432.50 8,023.00 104,325.00 0.26%)| 0.26% B
9% |MBUSCT1 6,968.70 10,213.61 104,028.32 0.26%)| 0.52% B
261 |MDILATRTI1 3.812.00 922.77 28,600.91 0.07% 19.94% B
262 |MSINGT4 - 3,120.75 4,761.50 0.01%)| 19.95% B
263 |MHIBSC2/4 2,700.00 2,580.00 28,300.00 0.07%)| 0.07% C
264 |MFOSMIL - 2,953.20 4,675.90 0.01%| 0.08% C
966 |MREGELC1 0.00%)| 10.14% C
967 |MSICFM1 0.00%)| 10.14% C

Fig. 10. ABC Classification in Microsoft Excel.

6. Analysis of the Results comparison.
.1 1: ABC Classificati
‘ StePII)aVing (Sa(s:si?is:; lzﬁtlc(i)rllllg items into 6.2 Step 2
6.2.1 Sampling

three classes based on their total usage values,
Fig. 10 presents the ABC classification in
which there are 94 medical items (70% total
usage values) in class A, 168 items (20% of
total usage values) in class B, and 705 items
(10% of total usage values) in class C. As the
drug items in class A share the highest total
usage value (70%), we use these class A items
to be a sample and a benchmark, for
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The appropriate number of samples in
each class of drug items is shown in Table 3.

Table 3. Number of sample of drugs in each
class.

Medical Class Population Size Sample
Size
A 94 37
B 168 44
C 705 55
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Table 4. Information on the samples of drug items in class A.

Medicine Main Storage Sub-Storage 1 Sub-Storage 2 Best fit Distribution of Leadtir
No (units) (units) (units) and its Parameters
Min Max Min Max Min Max
1 30 50 5 10 2 4 TRIA(2.5,3.3,9.5)
2 26 48 7 12 5 10 2.5+ LOGN(2.22,1.92)
3 27 47 3 7 4 9 UNIF(1.5, 8.5)
4 70 100 5 15 4 9 UNIF(1.5, 9.5)
5 39 76 1 2 10 20 UNIF(1.5, 7.5)
6 50 90 5 15 10 20 TRIA(1.5,5.6,7.5)
7 240 480 30 50 15 25 TRIA(0.5, 4.75, 6.5)
8 150 300 20 50 - - TRIA(1.5,5,7.5)
9 84 140 - - - - TRIA(4.5,5.5,6.5)
10 280 560 60 340 - - TRIA(15,4,7.5)
11 98 406 30 72 - - UNIF(2.5,7.5)
12 112 168 28 56 60 88 TRIA(L.5, 6.86, 7.5)
13 150 300 10 20 10 20 NORM(5.29, 1.16)
14 100 200 50 150 - - 15+ WEIB(4.24, 1.64)
15 240 480 100 220 - - 15+ERLA(.33,2)
16 150 300 80 110 - - TRIA(15,5.1,7.5)
17 90 180 10 28 12 24 2.5+ LOGN(1.42, 1.54)
18 60 100 20 40 - - 2.5+ WEIB(2.22, 1.51)
19 150 300 60 120 - - TRIA(L.5, 6, 8.5)
20 200 700 30 130 76 126 UNIF(3.5,7.5)
21 560 1680 350 462 28 84 TRIA(15,5,7.5)
22 1442 2884 322 462 60 102 TRIA(1.5,5.17,7.5)
23 3900 7800 900 1400 - - TRIA(1.5,5.37,7.5)
24 840 1540 280 420 - - TRIA(0.5, 6, 7.5)
25 3000 5000 500 700 55 95 15+ ERLA(1.21, 3)
26 720 1320 130 280 - - 1.5 + ERLA(0.755, 4)
27 350 658 98 168 - - TRIA(0.5, 4, 16.5)
28 240 450 70 190 - - TRIA(15,7,7.5)
29 1110 2370 240 390 - - 1.5+ GAMM(0.767, 3.88)
30 240 460 100 140 5 15 UNIF(2.5, 7.5)
31 196 364 168 280 - - 1.5 + ERLA(0.85, 4)
32 145 299 30 60 20 40 TRIA(25,6.2,7.5)
33 40 80 3 6 10 20 TRIA(1.5,5.31,7.5)
34 100 150 25 45 1 3 2.5+ LOGN(2.37, 2.39)
35 129 248 15 30 10 20 TRIA(15,7,7.5)
36 150 300 15 35 15 30 UNIF(2.5, 5.5)
37 20 40 2 4 5 15 UNIF(1.5,7.5)

6.2.2 Current practice with the Max-
Min policy

The hospital uses the Max-Min policy
for controlling their drug storage in the
current practice. The max-min levels and
daily patient demands of all 37 sample drugs
in class A can be collected as shown in Table
4 from the hospital by the assistance of the
hospital manager. Then, we attempt to build
the simulation model (following the flow
diagram presented in Fig. 5) to represent the
current practice of the hospital’s drug storage
system and use it as a benchmark for
comparison. These obtained max-min levels
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are set in the simulation model and used with
the real, daily patient demand with the
appropriate  supplier lead time. These
parameters are fitted by the best distribution
recommended by the ARENA output
analyzer with p < 0.05. The performance of
the system as a whole, in terms of the total
relevant costs, can then be obtained. The
result shows that the total relevant costs of
using the Max-Min policy in the hospital’s
current practice are 496,980 THB with
350,313 THB of holding cost and 146,667
THB of reordering cost. Details of each drug
item are shown in Table 5.
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Table 5. Classification of the total relevant costs of the samples of drug items in class A.

No. Holding Reorder Total No. Holding Reorder Total
Cost (THB)  Cost (THB) (THB) Cost (THB)  Cost (THB) (THB))

1 15,575 5,540 21,115 20 5,998 2,165 8,163
2 7,194 3,270 10,464 21 12,966 3,078 16,044
3 3,206 4,294 7,500 22 20,834 5,043 25,877
4 6,570 5,154 11,724 23 51,476 4,769 56,245
5 3,172 3,827 6,999 24 9,124 4,005 13,129
6 1,474 4,554 6,028 25 26,004 3,886 29,890
7 6,189 3,218 9,407 26 5,404 5,243 10,647
8 4,275 2,447 6,722 27 11,814 5,080 16,894
9 3,912 3,545 7,457 28 12,295 3,782 16,077
10 8,783 3,270 12,053 29 23,178 4,769 27,947
11 4,852 2,581 7,433 30 6,217 4,138 10,355
12 3,805 2,588 6,393 31 7,691 5,496 13,187
13 3,382 2,328 5,710 32 8,732 4,613 13,345

14 4,895 2,870 7,765 33 3,202 3,938 7,140
15 6,588 3,411 9,999 34 8,475 5177 13,652
16 3,833 4,709 8,542 35 15,526 4,190 19,716
17 1,916 1,564 3,480 36 20,557 3,330 23,887
18 1,277 6,148 7,425 37 6,139 4,168 10,307
19 3,783 4,479 8,262 Total 350,313 146,667 496,980

6.2.3 Simulation-based optimization

Four replenishment policies (i.e.,
Reorder Level, Reorder Cycle, Reorder
Level with Periodic Review, and (s, S)
policies) have been applied in the
simulation model of the hospital inventory
system. With the actual daily patient
demand and best-fitted distribution of the
supplier lead time of each drug item, the
OptQuest optimization tool can suggest the
optimal settings of the parameters from
each model that can minimize the total
relevant costs. Tables 6 - 9 present the total
relevant costs and the best settings of each
replenishment policy’s parameters obtained
from the OptQuest optimization tool with
an example of a drug item (MELOME1) in
the class A.

6.2.4 Comparison of total relevant
costs

With all 37 sample drug items, it was
found that the Reorder Level policy cannot
give the lowest total relevant costs while
the Reorder Cycle policy gives the lowest
total relevant costs of 7 items. The Reorder
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Level with Periodic Review policy also
gives the lowest total relevant costs of 8
items, and the (s, S) policy gives the lowest
costs of 22 items. If all samples are applied
with their best policy, the overall cost
savings are 235,429 THB or 47.37% from
the cost of the current practice, as reported
in Table 10. These savings are a result of
applying the right policy with the
appropriate setting parameters under an
uncertain ~ environment.  With  the
deterministic inventory models, a set of
assumptions is required in the calculation,
to obtain the operating parameters. These
assumptions could conflict with the real
working environment. For instance, the

normal distribution must be used to
describe uncertainty in both the demand
during the replenishment lead time and the
suppliers lead time. However, in real

practice, this may not always be the case, as
they are rarely deterministic or normally
distributed (see Table 4). Thus, the obtained
parameter values are not guaranteed to have
the best expected outcome as intended.
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In addition, applying different recommended that a common policy should
policies to different drug items could cause be applied to all items to avoid such
confusion for operators. Even with only one confusion for the operators. Table 11 shows
common policy in the current practice, the the cost savings from applying one
operators are regularly reported to make common policy to all samples, in which the
mistakes and are confused with when and (s, S) policy shows the highest cost savings.
how many to order. Implementing many It can help to reduce the total relevant costs
policies at the same time would definitely by 195,054 THB, or a savings of 39.25%
cause more mistakes, as different operating from the current practice. Even though it
parameters (amount and timing) are does not save as much as applying the best
required from different polices. These could policy for each item, it makes the operation
mix-up the operation, especially during a run more appropriately.

busy period of the day. As a result, it was

Table 6. Parameters of an example drug item for the reorder level policy.

MELOME1 Optimization
Total Relevant Costs Parameters (units)
(THB)
Reorder Level Policy 16,044 Order Quantity (Main Storage) 6
Order Quantity (Sub-Storage 1) 6
Order Quantity (Sub-Storage 2) 4
Reorder Level (Main Storage) 8
Reorder Level (Sub-Storage 1) 5
Reorder Level (Sub-Storage 2) 5
Table 7. Parameters of an example drug item for the reorder cycle policy.
MELOME1 Optimization
Total Relevant Costs Parameters (units)
(THB)
Reorder Cycle Policy 14,936 Target Stock Level (Main Storage) 15
Target Stock Level (Sub-Storage 1) 25
Target Stock Level (Sub-Storage 2) 9

Table 8. Parameters of an example drug item for the reorder level with periodic review policy.

MELOME1 Optimization
Total Relevant Costs Parameters (units)
(THB)

Reorder Level with 15,004 Order Quantity (Main Storage) 17
Periodic Review Policy Order Quantity (Sub-Storage 1) 11
Order Quantity (Sub-Storage 2) 12

Reorder Level (Main Storage) 10

Reorder Level (Sub-Storage 1) 23

Reorder Level (Sub-Storage 2) 4
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Table 9. Parameters of an example drug item for the (s, S) policy.

MELOME1 Optimization
Total Relevant Costs Parameters (units)
(THB)

s,S) Policy 13,431 Target Stock Level (Main Storage) 21
Target Stock Level (Sub-Storage 1) 23
Target Stock Level (Sub-Storage 2) 9
Reorder Level (Main Storage) 10
Reorder Level (Sub-Storage 1) 20
Reorder Level (Sub-Storage 2) 4

Table 10. Comparison of total relevant costs and cost reduction for the best solution.

Policy Number of drug items  Total Relevant Total Cost Total Cost
showing the best Costs (THB) Reduction Reduction
policy (THB) (%)
Current practice 496,980
Reorder Level 261,551 235,429 47.37%
Reorder Cycle
Reorder Level with Periodic
Review
s, S)Policy 22
Table 11. Comparison of total relevant cost and costs reduction for each policy.
Policy Total Relevant Total Cost Total Cost
Costs (THB) Reduction Reduction
(THB) (%)
Current Practice 496,980
Reorder Level 349,062 147,918 29.76%
Reorder Cycle 334,428 162,552 32.70%
Reorder Level with Periodic Review 328,434 168,546 3391%
s, S)Policy 301,926 195,054 39.25%

7. Managerial Implications

This study shows that it is essential
to include uncertainties in the optimization
algorithm. By  incorporating  the
uncertainties, the stochastic nature of the
system can cause inaccuracy in the
calculation of the basic deterministic
inventory model. As a result, integrating the
simulation model with the optimization tool
(simulation-based optimization) is applied
in this study. While the simulation model
determines the impact of uncertainties on
the objective value, the optimization tool
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then finds the best settings to achieve the
best objective value.

With a large number of inventory
items, ABC classification helps to identify
the items that contain the highest total usage
values as they are the main items to be
investigated. From the results of this study,
it can be concluded that the best
performance of this hospital’s drug
replenishment policy depends on each drug.
However, it is difficult to operate with
several policies at the same time as it would
create confusion for the operators. As a
result, selecting one common policy, which
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gives the highest cost savings among all
possible alternatives, is recommended in this
case. The (s, S)policy is selected in this study
since it dominates other policies as the best
policy among the sample drug items in class
A and gives the highest amount of cost
savings (up to 39.25%). This amount of
savings could be increased if a similar
methodology is applied to all drug items and
to all classes. However, it should be noted
that different classes of drug items can lead
to different bestreplenishment policies, as

they have different characteristics. Again, a
similar methodology can be applied to the
sample drug items in classes B and C, as this
study has used only the drug items in class A
(the highest wusage values) for the
demonstration.

8. Conclusions

The medical inventory problem
presents a large expense and a large chance
of savings in the hospital business. Under an
uncertain situation, different sources of
uncertainty in a hospital can exist,
encompassing suppliers, service processes,
and patients. These sources can be identified
with the inclusion of different types of
uncertainties (e.g., demand, lead time, and
process). In most situations, to compensate
for these uncertainties, hospitals tend to keep
their stock too high to minimize the number
of lost sales. The main contribution of this
study is to improve the existing inventory
management policies and recommend the
best policy for managing medical storage in
a hospital business. In this study, several
policies were compared and benchmarked
with the Max-Min policy, as it is the policy
currently implemented in the hospital by
means of simulation-based optimization.
Simulation models were constructed to
simulate the replenishment policies, subject
to real patient requirements (customer
demand) and uncertain suppliers’ lead time.
This is more realistic than the result given by
the deterministic analytical model where it is
solved without operating uncertainties.
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Our current results are useful for
hospitals that face a high level of inventory
inaccuracy. Hospitals can then examine
procedures or technologies to eliminate them.
To give some guidelines, the results of our
methodology indicate that the elimination of
over-stock and inventory inaccuracy can
reduce the cost by up to 40%. Additional
savings can also be expected if awareness
building for operators and process
improvements can be carried out. For
instance, automatic identification
technologies such as RFID will be, and in
many cases have been, adopted in leading
hospitals to replace the old barcode systems.

The limitations and further research
directions of this study are as follows:

- More mechanisms can be added into the
proposed simulation-based optimization, to
improve the effectiveness and timing of the
computation.

- A sensitivity analysis of the cost structure
can be done, to see the effects of varying each
cost on the conclusion.

- Other parameters that may influence the
outcome, such as buying discounts from
suppliers, can also be considered.

- Lastly, there is a concern about the number
of decision variables in each policy. Having
too few decision variables can give poor
results but adding too many variables can
interfere with the searching process to find an
optimal solution, resulting in a long
computational time. Thus, the number of
significant decision variables for each policy
is another issue worth considering.
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