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ABSTRACT 
This study focuses on an improvement in medical storage, which is one of the major 

expenses in a hospital. Based on a real case study of a medium-sized private hospital in Thailand, 

the study is conducted in two steps. The first step classifies medical (drug) items into three 

classes using the ABC analysis. Then, in the second step, a simulation-based optimization 

method using ARENA with the OptQuest Optimization tool is developed. The method optimizes 

the inventory policy’s parameters, to minimize the total relevant costs of keeping the drug items 

by combining the ordering and holding costs. We have applied four inventory policies to all 

samples of the drug items in class A, which contains the highest usage values. Then, a 

comparison is made with the hospital’s current practice to find possible savings. From the 

findings, cost savings of nearly 50% from the case of current practice can be achieved. The 

proposed methodology can assist and provide the best decisions in managing the medical 

inventory of this hospital under an uncertain environment of customer demand and supply lead 

time. 

Keywords: Inventory management; Replenishment policy; Medical storage; Medium-sized

hospital; Simulation-based optimization

1. Introduction
Good healthcare is an essential factor 

in our lives. In fact, the healthcare business 

keeps growing due to an increase of aging 

citizens, with more people paying attention to 

their health. However, the operating cost of a 

hospital to maintain the good service and 

quality level has increased nowadays. As a

result, only well-managed hospitals can

survive in this competitive environment. 
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Inventory management plays an 

important role because healthcare requires a 

large budget for the inventory cost, which 

represented approximately 10% of the annual 

healthcare expenditures in the United States 

and about $600 billion globally in 2009 [1]. 
Several researchers have estimated that 

inventory investments in healthcare range 

between 10% and 18% of total revenues [2-3]. 

Essential healthcare items, either directly or 

indirectly, are required in the patient healing 

process, with monitoring and control. Hence, 

inventory control systems need to be aligned 

with patient conditions [4]. Technically and 

scientifically, the demand for healthcare 

items is closely linked to physician 

recommendations, based on patient 

conditions [5]. 

Over-supply or shortages of such 

medicines would jeopardize the operations of 

hospitals. As a result, hospitals have to well-

manage orders and their inventories to 

adequately provide medicines to patients 

with the lowest cost. In most situations, 

inventory planning becomes more 

complicated when patient demand behaves 

stochastically, which causes severe 

fluctuations in demand. Hospitals need to 

keep their inventory high enough to minimize 

the number of drug shortages. However, the 

storage of surplus drug items costs both time 

and money. Balancing these two aspects is 

essential, and it is necessary to find the best 

policy of how much to replenish and when to 

replenish. 

As a result, this study focuses on the 

process of selecting an appropriate policy to 

manage the medical inventory in a medium-

sized hospital using a real case study. In this 

study, several policies of managing the drug 

inventory in a hospital are introduced and 

compared by simulation-based optimization. 
The main contribution of this study is to 

recommend the best policy with the possible 

amount of savings for managing medical 

inventory in a certain business environment. 

The rest of this paper is organized as 

follows. The related literature is provided in 

Section 2. Then, Section 3 presents the 

background of the case study. Next, the 

methodology and simulation experiment are 

explained in Sections 4 and 5, respectively. 
Section 6 analyzes and discusses the 

proposed method. Managerial implications 

and conclusions are in Sections 7 and 8, 

respectively. 

 

2. Literature Review 
2.1 Inventory model 

An inventory model helps businesses 

to determine the optimum level of inventories 

that should be maintained by managing the 

frequency of ordering and deciding on the 

quantity of goods or raw materials to be 

stored [6]. The model also assists in tracking 

the flow of raw materials and goods to 

provide uninterrupted service to customers 

without any delay in delivery. It includes 

various inventory policies attempting to 

answer when and how much to order. Such 

questions have a major influence on the 

amount of inventory a business unit carries 

and the number of transactions (and 

corresponding overhead) a unit must support.  
Research in inventory management is 

vast. Some of the related topics (especially 

related to healthcare service) are introduced 

here. Beheshti et al. [7] stated that ABC 

classification analysis is a well-established 

inventory planning and control method, 

which is proper to apply in inventory 

management to reduce the related inventory 

costs by arranging different classes of 

inventory based on their total usage values. 
Kelle et al. [6] tried to improve the current 

inventory management policy by suggesting 

the reorder point and order-up-to level, to 

control an automated ordering system. Their 

parameters are based on a near-optimal 

allocation policy of cycle stock and safety 

stock under a storage space constraint. 
Uthayakumar and Priyan [8] established a 

mathematical inventory model that combines 

a continuous review with production and 

distribution for a supply chain in a 

pharmaceutical company and a hospital 
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supply chain. The suggested model can meet 

the target of the customer service level at the 

minimum total PSC (Pharmaceutical Supply 

Chain) inventory cost and can maintain a 

suitable level of stock. 

Moreover, Darwish et al. [9] introduced 

randomness of demand into their model by 

assuming that the safety stock is equal to a 

safety factor, multiplied by the standard 

deviation of the lead time demand. They 

generalized the classical stochastic 

continuous-review inventory-control (Q, R) 
model for the case when the production rate 

is finite and unmet demand is partially 

backordered. Hovav and Tsadikovich [10] 
then used supply chain concepts and 

techniques to minimize the total costs of the 

vaccination supply chain while upholding 

allocation-related costs (costs associated with 

the selection of relevant manufacturers and 

the assignment of the distribution centers to 

the manufacturers), the distribution center’s 

expenses including the costs of transporting 

vaccines from the manufacturer to the 

distribution center, inventory holding costs, 

service costs, and costs associated with 

possible vaccine shortage. 

 

2.2 Simulation-based optimization 

Simulation modeling basically 

represents an actual situation. It is the 

procedure to create and analyze a digital 

prototype of a physical model for evaluating 

and predicting its performance. For 

simulation-based optimization, the mapping 

from decision variables to objectives and 

constraints is at least partially implicit, 

requiring the execution of a computational 

model. Algorithms typically treat this model 

as a “black box”,  iteratively setting 

parameter values, running the simulation, 

and adapting based on the objective and 

constraint information returned. A review of 

research on simulation-based optimization 

methods can be found in [11-13]. A problem 

in simulation-based optimization is to find 

which set of a large number of sets of model 

specifications have led to the optimal output 

performance. However, there have only been 

a small number of research papers using the 

simulation methodology to improve the 

system performance in healthcare businesses. 
For example, Belciug and Gorunescu [14] 

used a simulation-based methodology, based 

on real data collected from the geriatric 

department of a hospital in the UK. They 

presented the M/PH/c queuing model for bed-

occupancy in hospitals. Their novel 

evolutionary-based approach optimizes 

hospital management by providing an 

efficient way to estimate the system control 

parameters. It is the approach to obtain the 

proportion of refused patients, the 

corresponding average time spent in the 

hospital, the corresponding average number 

of patients in the hospital, and the bed 

occupancy. 

Bhattacharjee and Ray [15] stated that 

properly modeling the patient flows would 

help the healthcare department to make the 

right decisions on how to allocate the existing 

resources. Their model can identify existing 

problems and provide alternatives for 

improving the performance of a healthcare 

system. Simulation methodology is then used 

due to its flexibility in modeling patient flow 

complexities and the time-dependent 

behavior of a system. However, the real-life 

queuing situations normally have non-

Poisson and time-varying arrivals and non-

exponential service time distributions. These 

characteristics need to be incorporated in the 

patient flow model by combining the 

optimization techniques with patient flow 

models for optimizing the performance 

metric(s). 

Much research has utilized the 

simulation methodology to determine the 

optimal operating parameters for other 

systems such as production, transportation, 

and supply chain systems. For example, Jung 

et al. [16] used the simulation based-

optimization method to determine the 

optimal safety stock level in planning and 

scheduling models. Later, Azadeh et al. [17] 

presented and integrated the Analytic 
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Hierarchy Process (AHP) and Genetic 

Algorithm (GA) with computer simulation 

for the optimization of operator allocation in 

a Cellular Manufacturing System (CMS) 
with weighted variables, to control the 

material flow of traditional non-hybrid 

production control systems and hybrid 

systems under restricted conditions. Kelle [6] 

determined the reorder point and order-up-to 

level (called the min and max par levels) that 

control the automated ordering system. These 

parameters are based on a near-optimal 

allocation policy of cycle stock and safety 
stock under a storage space constraint. 
Schmitt et al. [18] studied the impact of 

disruption as an alternative to expediting 

intervention using the simulation experiment 

in a four-echelon supply chain. Simulation 

experiments reveal that the impact of 

disruption as an alternative to expediting 

interventions, dynamic order-up-to policies 
showed promising results as an adaptive 

mitigation tool. Tsai and Chen [19] proposed 
a simulation-based solution framework for 

tackling the multi-objective inventory 
optimization problem under the goal which to 

find appropriate settings of reorder point and 

order quantity. Pacheco and Cannella et al. 

[20] performed a simulation-based 

optimization on real-world data with demand 

variations. They proposed an order-up-to-

level policy, which provided better 

performance, particularly in terms of 

bullwhip effect reduction and improved the 
service level. Enhancing a typical periodic 

review policy with a backroom for perishable 

products in a retail business under an 

uncertain environment was carried out by 

Heng and Chiadamrong [21]. They used the 

simulation-based optimization with Genetic 

Algorithm (GA) to search for the best 

operating parameters in their study. 

Based on the health care industry in 

this study, the simulation and optimization 

are completed with the ARENA simulation 

software and the OptQuest optimization tool. 

Similar to other simulation software 

embedded with the optimization tool, it 

requires the specifications of lower and upper 

values for the input variables that are to be 

optimized. The OptQuest tool is an iterative 

heuristic combining three meta-heuristics 

(i.e., scatter search, tabu search, neural 

network). Examples of a successful 

application of scatter search with the 

OptQuest tool were reported in Bulut [22]. 
Setyaningsih and Basri [23] also developed 

the simulation-based optimization model 

using the OptQuest optimization tool to 

optimize and improve the inventory system 

with the periodic review period. Al-Fandi et 

al. [24] employed the OptQuest tool to 

manage and optimize the stock-out or 

overstock of medical supply in a hospital. 
The continuous review (s, S) policy was used 

to manage the inventory in their study. 
Sadeghi et al. [25] integrated design and 

control phases in a three-echelon supply 

chain system of a blood sugar strip 

manufacturer. The OptQuest optimization 

tool was also used to obtain the lowest total 

cost by searching the best setting of inventory 

parameters and expected cell utilization. 

 

3. Background of the Case Study 
The hospital in this case study is a 

medium-sized hospital located in 

Samutsakorn province in Thailand with a 

service area of 10,000 square meters. It was 

established in March 2006 with 100 fully-

equipped inpatient beds and 20 examination 

rooms. The facility provides services for up 

to 1,000 out-patients per day. One of the main 

problems in the hospital during our first visit 

is its drug storage. The hospital is concerned 

that it did not manage its inventory 

appropriately, causing over-supply of its 

stock, resulting in a high amount of drug 

inventory. 

Currently, the hospital has 967 drug 

items in the main medical storage. There are 

another 2 sub-storages (located on different 

floors) for pulling the medical items from the 

main storage when required. The flow of 

medical storage is shown in Fig. 1. Its current 
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inventory control policy operates as the max-
min concept (see Fig. 2). Orders are issued to 

suppliers or the main storage every time the 

inventory level drops to a pre-determined 
minimum level. The amount of an order is 

fulfilled up to the pre-determined maximum 

level. Under such practice, the amount of an 

order for each drug item should be the same 

in every order. 

  

 

 
Fig. 1. Components of medical storage. 

 

 
Fig. 2. Current inventory replenishment policy of the hospital (Max-min policy). 

 

However, four main problems could be 

identified during our investigation and data 

collection periods. 

1. Since the availability of drugs for 

the patients is critical, the hospital tended to 

keep too high an inventory level to avoid any 

possible shortages. It was also found that the 

maximum levels of some drug items 

exceeded their pre-determined maximum 

levels. 

2. The ordering amount of drugs 

varied in every order as the hospital operators 

did not adhere strictly to the max-min policy. 
Sometimes, there were multiple orders in one 

day. 

3. Lead times for medical inventory 
replenishment fluctuated. From the historical 

records, they could vary from 1 day to 12 

days, depending on each drug item and each 

medical supplier. 

4. The max-min policy may not be the 

most cost-effective method for all drugs as 

this policy is required to keep a higher level 
of inventory in relation to other policies. The 

max-min policy has a mechanism to control 

and optimize the ordering amount in which 

this policy needs to make an order in every 

cycle, which can cause too many unnecessary 

orders. 
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A fishbone diagram (see Fig. 3) was 

also constructed to systematically analyze the 

cause and effect of over-supply on drug 

storage. In this study, we focus on unsuitable 

methods and inappropriate parameter 

settings since they are controllable factors 

and their savings can be tangible, measurable, 

and substantial. Other causes (people, 

equipment, materials, environment) are 

uncontrollable factors or they are caused by 

human error 

 

4. Methodology 
Since the hospital has nearly 1,000 

drug items in storage and they did not keep 

the historical records of all items, especially 

with low value or rarely used items, a 

comparison cannot be made of all drug items. 
This study separates the experiment into two 

steps. In the first step, this study attempts to 

classify a total of 967 drug items into 3 

groups. 

 

 
Fig. 3. Fishbone diagram (cause and effect analysis). 

 

This study uses the ABC classification 

according to total usage values where class A 

contains 70% of total usage values, class B 

contains 20% of total usage values and class 

C contains 10% of total usage values. For the 
purpose of demonstration, we first put our 

focus on class A items, as they represent the 

highest total usage, by using an appropriate 

sample size from the total number of items in 

the group. 

Equation (4.1) is used to find the 

appropriate sample size [26]. In this study, a 

90% confidence level is used. 

 
2

2 2

(1 )
' ,

( 1) (1 )

−
=

− + −

NZ P P
n

d N Z P P
     (4.1) 

where   

' =n sample size with finite population, 

=N  Population size, 

=z  z  statistic for a level of confidence  

( 1.28=z ), 

=P   Expected prevalence or proportion,  
2 =d  Precision.  

Under the class A items, with a 

population size of 94 items and a 90% 
confidence level, a sample size of 37 units is 

calculated as follows: 
2

2 2

94(1.28) (0.9)(1 0.9)
'

0.05 (94 1) (1.28) (0.9)(1 0.9)

−
=

− + −
n  

 

' 37=n Samples 
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Naing et al. [26] recommended to use 𝑃 

around 10% to 90%. In this case, we used 

90%. So, 0.9=P  with a precision (d) of 5%. 

Next, four main inventory control 

policies are introduced into all samples to 

find the most suitable policy for each item. 
All scenarios are simulated using the ARENA 

simulation software with the OptQuest, 

optimization tool, to determine the optimal 

levels of the operating parameters. The tool 

can ascertain that each policy operates at its 

optimal or close to its optimal level, where 

the total relevant costs (ordering + holding 

cost) are the cheapest. Finally, the current 

practice is compared with other policies to 

find possible savings from such an 
implementation. Fig. 4 depicts a flow chart of 

the method of how the best policy is 

identified. 

 
 

Fig. 4. Methodology. 

 

 
 

Fig. 5. Current Policy. 



S. Srizongkhram et al. | Science & Technology Asia | Vol.26 No.1 January - March 2021 

114 

5. Simulation Experiment 
5.1 Model configuration 

In the current practice, the hospital 

operates on the max-min concept (see Fig. 5) 

where orders are issued to suppliers every 

time the inventory level drops to the pre-

determined minimum level or the Reorder 

Level (ROL) that can be calculated by Eq. 

(5.1).  
The amount of an order will increase 

the inventory level up to the pre-determined 
maximum level that can be calculated by Eq. 
(5.2), where the amount of safety stock is 
calculated by Eq. (5.3). The hospital currently 

uses these equations to set its Max-Min 

policy parameters for its current practice, 

with a service level of 99.9% (Z = 3). This is 

to make sure that the hospital holds sufficient 

stock to avoid any possibility of shortages. In 

fact, this service level leads to a probability 

of 0.1% that the lead time demand is higher 

than the safety stock. 

  ( ) ,MIN or ROL D LT SS=  +      (5.1) 

where   

𝐷 = Average customer demand per period, 

𝐿𝑇 =  Lead-time for a supplier to replenish 

the item requested, 

𝑆𝑆 = Safety stock. 

 

  ( ) ,=  + +MAX or TSL D LT T SS     (5.2) 

 

where   

𝐷 = Average customer demand per period, 

𝐿𝑇 = Lead-time for a supplier to replenish 

the item requested, 

𝑇 = Ordering cycle time (Review period), 

𝑆𝑆 = Safety stock. 
 

2 2 2 =   + D LTSafety Stock z LT D  

(5.3) 

where  

Z = Appropriate value from a table of standard 

normal distribution probabilities, 

LT = Average supplier lead time, 

D = Average customer demand per period, 

 =D  Standard deviation of the demand per 

period, 

 =LT  Standard deviation of the supplier lead 

time. 

For comparison, four typical inventory 

models, which are the Reorder Level, 

Reorder Cycle, Reorder Level with Periodic 
Review, and (s,S) policies are applied (see 

Tersine [27] for more details). For the 

Reorder Level Policy (as shown in Fig. 6), an 

order is issued every time the amount of 

ending stock reaches the minimum level 

(Reorder Level (ROL)) with an equal amount 

of the Economic Order Quantity (EOQ). The 

amount of the EOQ can normally be 

calculated by Eq. (5.4). However, this 

calculated EOQ is subject to certain customer 

demand with no lead time. With an uncertain 

customer demand and varying suppliers’ lead 

times in our case, Eq. (5.4) no longer yields 

the optimal ordering size. Thus, the OptQuest 

optimization tool is introduced to search for 

the best amount to meet the objective 

function value. 

 

2
,

 
=

RC D
EOQ

HC
      (5.4) 

 

where   

=RC  Ordering cost per order, 

=D Average customer demand per period, 

=HC Holding cost per unit per period. 
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Fig. 6. Reorder level policy. 

 

For the Reorder Cycle policy (see Fig. 

7), the depleted items are ordered in every 

fixed time interval, known as the ordering 

cycle time, with the amount equal to the gap 

between the Target Stock Level (TSL) (also 

searched by the OptQuest optimization tool) 

minus the Stock On Hand (SOH). In this 

study, the ordering cycle time is set to be one 

week. 

The Reorder Level with Periodic 

Review policy reviews the stock at every 

fixed time interval on a weekly basis. 

However, when the amount of ending stock 

reaches the ROL level at each review period, 

an order is issued with an amount equal to the 

EOQ. The concept of the Reorder Level with 

Periodic Review policy is shown in Fig. 8. 

For the (s, S) policy, the stock is reviewed 

at every fixed time interval, which is every 

week. However, when the amount of ending 

stock reaches the ROL level at each review 

period, an order is issued with an amount 

equal to the TSL minus SOH. The concept of 

the (s, S) policy can be seen in Fig. 9.  
 

 
 

Fig. 7. Reorder cycle policy. 
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Fig. 8. Reorder level with periodic review policy. 

 

 

 
 

Fig. 9. (s, S) Policy. 
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5.2 Decision variables 

Each replenishment policy requires 

different decision variables, as shown in 

Table 1. These decision variables explain 

when and how much of an order should be 

placed. Their optimal settings are searched by 

the OptQuest optimization tool embedded in 

the ARENA simulation software, to minimize 

the objective value, which is the total relevant 

costs. 
 

 

 
 

Table 2 presents the searching bounds 

of each decision variable where the bounds of 

the lower limit and upper limit are set. They 

are guaranteed to be large enough to ensure 

that the optimal values fall between the lower 

and upper bounds. 

 

5.3 Analytical model formulation  
Even though the model is constructed 

by the simulation method, the analytical 

model formulation is presented below to 

clarify the objective function and important 

constraints in the hospital operations. 

 

Notations 

Indexes: 

i  index of drug items ( 1,...,=i I ), 

j  index of storages ( 1,...,=j J ), 

t  index of time periods ( 1,...,=t T ). 

Parameters: 

ijtb  Backlog unit of drug item 𝑖  at 

storage 𝑗 in period 𝑡 (Units), 

BC  Backlog cost (THB), 

bc  Backlog cost per unit (THB), 

ijtD   Patient demand of drug item 𝑖  at 

storage 𝑗 in period 𝑡 (Units), 

ijte  Average stock level of drug item 𝑖 at 

storage 𝑗 in period 𝑡 (Units), 

ijtf  Frequency of ordering of drug item 𝑖 

at storage 𝑗 in period 𝑡 (Units), 

h  Unit holding cost per year (%), 

HC  Holding cost (THB) 

o  Ordering cost per order (THB), 

OC  Ordering cost (THB), 

ijtPOR  Order quantity of drug item 𝑖  at 

storage 𝑗 in period 𝑡 (Units), 

ts  Staff salary per period (THB), 

ijtSOH  Stock on hand of drug item 𝑖  at 

storage 𝑗 in period 𝑡 (Units), 

TRC Total Relevant Costs (THB), 

ijtv  Value of drug item 𝑖  at storage 𝑗  in 

period 𝑡 (THB). 

 

Table 1. Decision variables for each inventory policy. 
Policies Decision 

Variables 

How much in an order? When to place  

the order 

(1) Reorder Level EOQ, ROL EOQ When the stock reaches ROL 

(2) Reorder Cycle TSL TSL-SOH In every ordering cycle 

(3) Reorder Level with 
Periodic Review 

EOQ, ROL EOQ Review at every ordering cycle and 
when the inventory level falls below 

ROL 

(4) (s, S) policy TSL, ROL TSL-SOH Review at every ordering cycle and 

when the inventory level falls below 
ROL 

 
Table 2. Setting values of lower bound and upper bound. 

Class Bound Inventory Policy 

Reorder Level Reorder 

Cycle 

Reorder Level with 

Periodic Review 

(s,S) Policy 

EOQ 

(units) 
ROL 

(units) 
TSL 

(units) 
EOQ 

(units) 
ROL 

(units) 
s 

(units) 
S 

(units) 

A Lower 0 0 0 0 0 0 0 

Upper 5,000 5,000 10,000 5,000 5,000 5,000 10,000 
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Decision variables: 

ijEOQ  Fixed economic order quantity of 

drug item 𝑖 at storage 𝑗 (Units), 

ijROL  Minimum reorder level of drug item 

𝑖 at storage 𝑗 (Units), 

ijTSL  Maximum target stock level of drug 

item 𝑖 at storage 𝑗 (Units). 

 

Objective Function 

Minimizing the total relevant costs is 

the objective function of this study and it can 

be defined as follows: 
 

 ,= + +MIN TRC OC HC BC  (5.5) 
 

Subject to: 

Financial constraints 
 

1 1 1= = =
=   

T J I

ijtt j i
OC o f  (5.6) 

1 1 1= = =
=    

T J I

ijt ijtt j i
HC h e v   (5.7) 

1 1 1
.

= = =
=   

T J I

ijtt j i
BC bc b   (5.8) 

 

Ordering cost( )OC   as stated in 

constraint 5.6, is the cost incurred when the 

main storage places an order to its suppliers. 
The ordering cost per order ( )o   was 

obtained by the hospital. It was calculated by 

the total procurement operations including 

staff salary ( ),st  which is estimated at 

70,000 THB per month divided by the annual 

frequency of ordering ( ) ,ijtf  11,325 times 

per year as explained below. 
 

1

1 1 1

70,000 12
 74.17 

11,325
  .

T

tt

T J I

ijtt j i

THB per ord

f

r

o

e

s
=

= = =

=


= =



       

(5.9) 

 

Holding cost ( )HC  as stated in 

constraint 5.7, is the cost of holding medical 

items in storage. In this case, the holding cost 
(ℎ) is estimated to be at 30% of the medical 

value per year. All holding costs are 

calculated based on an average level of 

inventory. 

Backlog cost ( )BC  as stated in 

constraint 5.8, is the cost of shortage for 

medical items that have not been shipped 

based on patient requirements. As the 

hospital policy is to avoid any shortage, the 

backlog cost per unit was deliberately set 

with a high value so as to avoid any chance 

of occurring in the study. 

 

Inventory balance constraints 

Inventory balance constraints control 

the flow of inventory (drug) in the hospital. 
 

1 , , , .−= + − ijt ijt ijt ijtSOH SOH POR D i j t  

(5.10) 
 

Constraint 5.10 is the inventory 

balance constraint for its respective units of 

interest, ensuring that the drug items entering 

plus the inventory from the previous period 

equal the drug items leaving plus the 

inventory stored at the end of that period.  
For the reorder cycle policy (periodic 

review) and (s, S) policy at the end of each 

review period. 
 

( ) max ,0 , , , .= − ijt ijt ijtPOR TSL SOH i j t  

(5.11) 
 

According to constraint 5.11, the order 

quantity in each cycle for each drug item is 

equal to the gap between the Target Stock 

Level (TSL) minus its inventory on hand in 

that cycle. The TSL is one of the decision 

variables required to be searched for its 

optimal setting. 

For the reorder level policy and the 

reorder level with periodic review policy 

when ijt ijSOH ROL . 

 

, , , .= ijt ijPOR EOQ i j t         (5.12) 
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According to constraint 5.12, 

whenever the stock on hand falls below the 

minimum stock level set by 𝑅𝑂𝐿 , an order 

will be issued equal to 𝐸𝑂𝑄 . The order 

quantity in any period for each drug item and 

𝑅𝑂𝐿 are the decision variables, which need to 

be searched for their optimal settings. 

5.4 Simulation experimental conditions 

Ten replicates were simulated with a 

replication length of 356 days or one year per 

replicate. Based on 10 replicates, the 95 

percent confidence interval of the throughput 

had a width of less than 5 percent of its mean. 
The patient demand in all models has been set 

equal to the actual patient demands, which 

were recorded by the hospital in the past year. 
The initial level of inventory of each drug 

item has also been set at the actual inventory 

level of each drug item from the current 

practice. As a result, all policies start with and 

are comparable under the same initial 

conditions, with similar patient demand 

throughout the simulation period. 
 

 
 

Fig. 10. ABC Classification in Microsoft Excel. 
 

6. Analysis of the Results 
6.1 Step 1: ABC Classification 

Having classified all drug items into 

three classes based on their total usage values, 

Fig. 10 presents the ABC classification in 

which there are 94 medical items (70% total 

usage values) in class A, 168 items (20% of 

total usage values) in class B, and 705 items 

(10% of total usage values) in class C. As the 

drug items in class A share the highest total 

usage value (70%), we use these class A items 

to be a sample and a benchmark, for 

comparison. 
  

6.2 Step 2 

6.2.1 Sampling 

The appropriate number of samples in 

each class of drug items is shown in Table 3. 

 

Table 3. Number of sample of drugs in each 

class. 
Medical Class Population Size Sample 

Size 

A 94 37 

B 168 44 

C 705 55 
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6.2.2 Current practice with the Max-

Min policy 

The hospital uses the Max-Min policy 

for controlling their drug storage in the 

current practice. The max-min levels and 

daily patient demands of all 37 sample drugs 

in class A can be collected as shown in Table 

4 from the hospital by the assistance of the 
hospital manager. Then, we attempt to build 

the simulation model (following the flow 

diagram presented in Fig. 5) to represent the 

current practice of the hospital’s drug storage 

system and use it as a benchmark for 

comparison. These obtained max-min levels 

are set in the simulation model and used with 

the real, daily patient demand with the 

appropriate supplier lead time. These 

parameters are fitted by the best distribution 

recommended by the ARENA output 

analyzer with 𝑝 ≤ 0.05. The performance of 

the system as a whole, in terms of the total 

relevant costs, can then be obtained. The 

result shows that the total relevant costs of 

using the Max-Min policy in the hospital’s 

current practice are 496,980 THB with 

350,313 THB of holding cost and 146,667 

THB of reordering cost. Details of each drug 

item are shown in Table 5. 

Table 4. Information on the samples of drug items in class A. 
Medicine 

No 

Main Storage 

(units) 

Sub-Storage 1 

(units) 

Sub-Storage 2 

(units) 

Best fit Distribution of Leadtime 

and its Parameters 

Min Max Min Max Min Max 

1 30 50 5 10 2 4 TRIA(2.5, 3.3, 9.5) 

2 26 48 7 12 5 10 2.5 + LOGN(2.22, 1.92) 

3 27 47 3 7 4 9 UNIF(1.5, 8.5) 

4 70 100 5 15 4 9 UNIF(1.5, 9.5) 

5 39 76 1 2 10 20 UNIF(1.5, 7.5) 

6 50 90 5 15 10 20 TRIA(1.5, 5.6, 7.5) 

7 240 480 30 50 15 25 TRIA(0.5, 4.75, 6.5) 

8 150 300 20 50 - - TRIA(1.5, 5, 7.5) 

9 84 140 - - - - TRIA(4.5, 5.5, 6.5) 

10 280 560 60 340 - - TRIA(1.5, 4, 7.5) 

11 98 406 30 72 - - UNIF(2.5, 7.5) 

12 112 168 28 56 60 88 TRIA(1.5, 6.86, 7.5) 

13 150 300 10 20 10 20 NORM(5.29, 1.16) 

14 100 200 50 150 - - 1.5 + WEIB(4.24, 1.64) 

15 240 480 100 220 - - 1.5 + ERLA(1.33, 2) 

16 150 300 80 110 - - TRIA(1.5, 5.1, 7.5) 

17 90 180 10 28 12 24 2.5 + LOGN(1.42, 1.54) 

18 60 100 20 40 - - 2.5 + WEIB(2.22, 1.51) 

19 150 300 60 120 - - TRIA(1.5, 6, 8.5) 

20 200 700 30 130 76 126 UNIF(3.5, 7.5) 

21 560 1680 350 462 28 84 TRIA(1.5, 5, 7.5) 

22 1442 2884 322 462 60 102 TRIA(1.5, 5.17, 7.5) 

23 3900 7800 900 1400 - - TRIA(1.5, 5.37, 7.5) 

24 840 1540 280 420 - - TRIA(0.5, 6, 7.5) 

25 3000 5000 500 700 55 95 1.5 + ERLA(1.21, 3) 

26 720 1320 130 280 - - 1.5 + ERLA(0.755, 4) 

27 350 658 98 168 - - TRIA(0.5, 4, 16.5) 

28 240 450 70 190 - - TRIA(1.5, 7, 7.5) 

29 1110 2370 240 390 - - 1.5 + GAMM(0.767, 3.88) 

30 240 460 100 140 5 15 UNIF(2.5, 7.5) 

31 196 364 168 280 - - 1.5 + ERLA(0.85, 4) 

32 145 299 30 60 20 40 TRIA(2.5, 6.2, 7.5) 

33 40 80 3 6 10 20 TRIA(1.5, 5.31, 7.5) 

34 100 150 25 45 1 3 2.5 + LOGN(2.37, 2.39) 

35 129 248 15 30 10 20 TRIA(1.5, 7, 7.5) 

36 150 300 15 35 15 30 UNIF(2.5, 5.5) 

37 20 40 2 4 5 15 UNIF(1.5, 7.5) 
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6.2.3 Simulation-based optimization 

Four replenishment policies (i.e., 

Reorder Level, Reorder Cycle, Reorder 

Level with Periodic Review, and (s, S) 
policies) have been applied in the 

simulation model of the hospital inventory 

system. With the actual daily patient 

demand and best-fitted distribution of the 

supplier lead time of each drug item, the 

OptQuest optimization tool can suggest the 

optimal settings of the parameters from 

each model that can minimize the total 

relevant costs. Tables 6 - 9 present the total 

relevant costs and the best settings of each 

replenishment policy’s parameters obtained 

from the OptQuest optimization tool with 

an example of a drug item (MELOME1) in 

the class A. 

 

6.2.4 Comparison of total relevant 

costs 

With all 37 sample drug items, it was 

found that the Reorder Level policy cannot 

give the lowest total relevant costs while 

the Reorder Cycle policy gives the lowest 

total relevant costs of 7 items. The Reorder 

Level with Periodic Review policy also 

gives the lowest total relevant costs of 8 

items, and the (s, S) policy gives the lowest 

costs of 22 items. If all samples are applied 

with their best policy, the overall cost 

savings are 235,429 THB or 47.37% from 

the cost of the current practice, as reported 

in Table 10. These savings are a result of 

applying the right policy with the 

appropriate setting parameters under an 

uncertain environment. With the 

deterministic inventory models, a set of 

assumptions is required in the calculation, 

to obtain the operating parameters. These 

assumptions could conflict with the real 

working environment. For instance, the 

normal distribution must be used to 

describe uncertainty in both the demand 

during the replenishment lead time and the 

supplier’s lead time. However, in real 
practice, this may not always be the case, as 

they are rarely deterministic or normally 

distributed (see Table 4). Thus, the obtained 

parameter values are not guaranteed to have 

the best expected outcome as intended. 

 

Table 5. Classification of the total relevant costs of the samples of drug items in class A. 
No. Holding 

Cost (THB) 

Reorder 

Cost (THB) 

Total 

(THB) 

No. Holding 

Cost (THB) 

Reorder 

Cost (THB) 

Total  

(THB)) 

1 15,575 5,540 21,115 20 5,998 2,165 8,163 

2 7,194 3,270 10,464 21 12,966 3,078 16,044 

3 3,206 4,294 7,500 22 20,834 5,043 25,877 

4 6,570 5,154 11,724 23 51,476 4,769 56,245 

5 3,172 3,827 6,999 24 9,124 4,005 13,129 

6 1,474 4,554 6,028 25 26,004 3,886 29,890 

7 6,189 3,218 9,407 26 5,404 5,243 10,647 

8 4,275 2,447 6,722 27 11,814 5,080 16,894 

9 3,912 3,545 7,457 28 12,295 3,782 16,077 

10 8,783 3,270 12,053 29 23,178 4,769 27,947 

11 4,852 2,581 7,433 30 6,217 4,138 10,355 

12 3,805 2,588 6,393 31 7,691 5,496 13,187 

13 3,382 2,328 5,710 32 8,732 4,613 13,345 

14 4,895 2,870 7,765 33 3,202 3,938 7,140 

15 6,588 3,411 9,999 34 8,475 5,177 13,652 

16 3,833 4,709 8,542 35 15,526 4,190 19,716 

17 1,916 1,564 3,480 36 20,557 3,330 23,887 

18 1,277 6,148 7,425 37 6,139 4,168 10,307 

19 3,783 4,479 8,262 Total 350,313 146,667 496,980 
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In addition, applying different 

policies to different drug items could cause 

confusion for operators. Even with only one 

common policy in the current practice, the 

operators are regularly reported to make 

mistakes and are confused with when and 

how many to order. Implementing many 

policies at the same time would definitely 

cause more mistakes, as different operating 

parameters (amount and timing) are 

required from different polices. These could 

mix-up the operation, especially during a 

busy period of the day. As a result, it was 

recommended that a common policy should 

be applied to all items to avoid such 

confusion for the operators. Table 11 shows 

the cost savings from applying one 

common policy to all samples, in which the 

(s, S) policy shows the highest cost savings. 
It can help to reduce the total relevant costs 

by 195,054 THB, or a savings of 39.25% 
from the current practice. Even though it 

does not save as much as applying the best 

policy for each item, it makes the operation 

run more appropriately. 

 

 
 

 
 

 

Table 6. Parameters of an example drug item for the reorder level policy. 
MELOME1 Optimization 

Total Relevant Costs 
(THB) 

Parameters (units) 

Reorder Level Policy 16,044 Order Quantity (Main Storage) 6 

Order Quantity (Sub-Storage 1) 6 

Order Quantity (Sub-Storage 2) 4 

Reorder Level (Main Storage) 8 

Reorder Level (Sub-Storage 1) 5 

Reorder Level (Sub-Storage 2) 5 

 

Table 7. Parameters of an example drug item for the reorder cycle policy. 
MELOME1 Optimization 

Total Relevant Costs 
(THB) 

Parameters (units) 

Reorder Cycle Policy 14,936 Target Stock Level (Main Storage) 15 

Target Stock Level (Sub-Storage 1) 25 

Target Stock Level (Sub-Storage 2) 9 

 

Table 8. Parameters of an example drug item for the reorder level with periodic review policy. 
MELOME1 Optimization 

Total Relevant Costs 
(THB) 

Parameters (units) 

Reorder Level with 

Periodic Review Policy 

15,004 Order Quantity (Main Storage) 17 

Order Quantity (Sub-Storage 1) 11 

Order Quantity (Sub-Storage 2) 12 

Reorder Level (Main Storage) 10 

Reorder Level (Sub-Storage 1) 23 

Reorder Level (Sub-Storage 2) 4 
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7. Managerial Implications 
This study shows that it is essential 

to include uncertainties in the optimization 

algorithm. By incorporating the 

uncertainties, the stochastic nature of the 

system can cause inaccuracy in the 

calculation of the basic deterministic 

inventory model. As a result, integrating the 

simulation model with the optimization tool 

(simulation-based optimization) is applied 

in this study. While the simulation model 

determines the impact of uncertainties on 

the objective value, the optimization tool 

then finds the best settings to achieve the 

best objective value.  

With a large number of inventory 

items, ABC classification helps to identify 

the items that contain the highest total usage 

values as they are the main items to be 

investigated. From the results of this study, 

it can be concluded that the best 

performance of this hospital’s drug 

replenishment policy depends on each drug. 
However, it is difficult to operate with 

several policies at the same time as it would 

create confusion for the operators. As a 

result, selecting one common policy, which  

Table 9. Parameters of an example drug item for the (s, S) policy. 
MELOME1 Optimization 

Total Relevant Costs 
(THB) 

Parameters (units) 

(s,S) Policy 13,431 Target Stock Level (Main Storage) 21 

Target Stock Level (Sub-Storage 1) 23 

Target Stock Level (Sub-Storage 2) 9 

Reorder Level (Main Storage) 10 

Reorder Level (Sub-Storage 1) 20 

Reorder Level (Sub-Storage 2) 4 

 
Table 10. Comparison of total relevant costs and cost reduction for the best solution. 

Policy Number of drug items 

showing the best 

policy 

Total Relevant 

Costs (THB) 

Total Cost 

Reduction 

(THB) 

Total Cost 

Reduction 

(%) 

Current practice  496,980    

Reorder Level 0 261,551 235,429 47.37% 

Reorder Cycle 7 

Reorder Level with Periodic 

Review 

8 

(s, S) Policy 22 

 
Table 11. Comparison of total relevant cost and costs reduction for each policy. 

Policy Total Relevant 

Costs (THB) 

Total Cost 

Reduction 

(THB) 

Total Cost 

Reduction 

(%) 

Current Practice 496,980    

Reorder Level 349,062 147,918 29.76% 

Reorder Cycle 334,428 162,552 32.70% 

Reorder Level with Periodic Review 328,434 168,546 33.91% 

(s, S) Policy 301,926 195,054 39.25% 
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gives the highest cost savings among all 

possible alternatives, is recommended in this 

case. The (s, S) policy is selected in this study 

since it dominates other policies as the best 

policy among the sample drug items in class 

A and gives the highest amount of cost 

savings (up to 39.25%). This amount of 

savings could be increased if a similar 

methodology is applied to all drug items and 

to all classes. However, it should be noted 

that different classes of drug items can lead 

to different best-replenishment policies, as 

they have different characteristics. Again, a 

similar methodology can be applied to the 

sample drug items in classes B and C, as this 

study has used only the drug items in class A 

(the highest usage values) for the 

demonstration. 

 

8. Conclusions 
The medical inventory problem 

presents a large expense and a large chance 

of savings in the hospital business. Under an 

uncertain situation, different sources of 

uncertainty in a hospital can exist, 

encompassing suppliers, service processes, 

and patients. These sources can be identified 

with the inclusion of different types of 

uncertainties (e.g., demand, lead time, and 

process). In most situations, to compensate 

for these uncertainties, hospitals tend to keep 

their stock too high to minimize the number 

of lost sales. The main contribution of this 

study is to improve the existing inventory 

management policies and recommend the 

best policy for managing medical storage in 

a hospital business. In this study, several 

policies were compared and benchmarked 

with the Max-Min policy, as it is the policy 

currently implemented in the hospital by 

means of simulation-based optimization. 
Simulation models were constructed to 

simulate the replenishment policies, subject 

to real patient requirements (customer 

demand) and uncertain suppliers’ lead time. 
This is more realistic than the result given by 

the deterministic analytical model where it is 

solved without operating uncertainties. 

Our current results are useful for 

hospitals that face a high level of inventory 

inaccuracy. Hospitals can then examine 

procedures or technologies to eliminate them. 
To give some guidelines, the results of our 

methodology indicate that the elimination of 

over-stock and inventory inaccuracy can 

reduce the cost by up to 40%. Additional 

savings can also be expected if awareness 

building for operators and process 

improvements can be carried out. For 

instance, automatic identification 

technologies such as RFID will be, and in 

many cases have been, adopted in leading 

hospitals to replace the old barcode systems. 

The limitations and further research 

directions of this study are as follows: 

- More mechanisms can be added into the 

proposed simulation-based optimization, to 

improve the effectiveness and timing of the 

computation. 

- A sensitivity analysis of the cost structure 

can be done, to see the effects of varying each 

cost on the conclusion. 

- Other parameters that may influence the 

outcome, such as buying discounts from 

suppliers, can also be considered. 

- Lastly, there is a concern about the number 

of decision variables in each policy. Having 

too few decision variables can give poor 

results but adding too many variables can 

interfere with the searching process to find an 

optimal solution, resulting in a long 

computational time. Thus, the number of 

significant decision variables for each policy 

is another issue worth considering. 
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