
 

 
 

  
THESIS APPROVAL 

 

GRADUATE  SCHOOL,  KASETSART  UNIVERSITY 
 

 

DEGREE 
 
 

   
FIELD  DEPARTMENT 

 
 

TITLE: Design and Development of a Lattice Structure Dependency Parser for 

 Under-Resourced Languages 
  
  
  

 

NAME: Mr. Sutee  Sudprasert 
 

 

THIS  THESIS  HAS  BEEN  ACCEPTED  BY 
 

  THESIS  ADVISOR 

(  )  

 THESIS CO-ADVISOR 

(  )  

 DEPARTMENT  HEAD 

(  )  
 

APPROVED  BY  THE  GRADUATE  SCHOOL ON  
 

 DEAN 

( Associate Professor Gunjana  Theeragool, D.Agr. ) 
 

Doctor of Engineering (Computer Engineering) 

Computer Engineering Computer Engineering 

Associate Professor Asanee  Kawtrakul, D.Eng. 

Associate Professor Punpiti  Piamsa-Nga, D.Sc. 

Assistant Professor Kemathat  Vibhatavanij, Ph.D. 



THESIS

DESIGN AND DEVELOPMENT OF A LATTICE STRUCTURE

DEPENDENCY PARSER FOR UNDER-RESOURCED

LANGUAGES

SUTEE SUDPRASERT

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Engineering (Computer Engineering)

Graduate School, Kasetsart University

2010



Sutee Sudprasert 2010: Design and Development of a Lattice Structure

Dependency Parser for Under-Resourced Languages. Doctor of Engineering

(Computer Engineering), Major Field: Computer Engineering, Department of

Computer Engineering. Thesis Advisor: Associate Professor

Asanee Kawtrakul, D.Eng. 80 pages.

Dependency representations have become fashionable againin various Natural

Language Processing areas, such as Machine Translation, Information Extraction, Text

Summarization, and Ontology. However, the development of agood dependency

parser requires some resources such as training corpora or grammar rules and also

morphosyntactic analysis tools as preprocessing tools. Unfortunately, many languages

do not have a large training corpus nor reliable morphosyntactic analysis tools.

We present here a corpus-based approach for building a dependency parser

especially for under-resourced languages. Dealing with unreliable morphosyntactic

analysis tools, we propose a methodology for dependency parsing outputting all

possible of morphosyntactic analysis by modifying the Eisner’s algorithm (O(n3)), a

bottom-up dynamic programming chart parsing algorithm, that does not increase the

time complexity order. For computing the parse score, we useMaximum Entropy

Models and train the model with a small training corpus (716 sentences). Because

the training corpus is very small, we also propose a method for adjusting the parse

score by using a Dependency Insertion Grammar (DIG) inducedfrom the corpus.

The adjustment will be applied if invalid trees are producedby the statistical model.

Moreover, the use of DIG can make it easier for us to observe language behavior and

detect annotation errors through the induced DIG rather than looking into the corpus

directly. We tested the system by using NAiST Thai Dependency Treebank as training

data and the accuracy of the parsing results was 80% if sentences were word-segmented

correctly and 85% if the sentences were also part-of-speechtagged.

Student’s signature Thesis Advisor’s signature

/ /



ACKNOWLEDGEMENTS

I would like to grateful thank to Assoc. Prof. Dr. Asanee Kawtrakul, my thesis adviser

for advice, encouragement, and valuable comments for my thesis. She was the first

one who introduced me to the field of natural language processing and taught me a lot

about research methodology. I also would like to thank Prof.Dr. Christian Boitet and

Dr. Vincent Berment, my French co-advisers from Franco-Thai NLP project, for their

valuable comments, suggestion, and patiently correcting my English.

Finally, I would like to thank to all members of the NAiST Laboratory.

Sutee Sudprasert

March 2010



i

TABLE OF CONTENTS

Page

TABLE OF CONTENTS i

LIST OF TABLES ii

LIST OF FIGURES iii

LIST OF ABBREVIATIONS v

INTRODUCTION 1

OBJECTIVES 5

LITERATURE REVIEW 6

MATERIALS AND METHODS 18

Materials 18

Methods 26

RESULTS AND DISCUSSION 47

Results 47

Discussion 55

CONCLUSION AND RECOMMENDATION 56

Conclusion 56

Recommendation 57

LITERATURE CITED 59

APPENDICES 67

Appendix A Part-of-speech 67

Appendix B Grammatical Functions 72

Appendix C Extracted Elementary Trees from NAIST Treebank 75

Appendix DK-best Parsing Results 77

CURRICULUM VITAE 80



ii

LIST OF TABLES

Table Page

1 The ambiguity of the training corpus for LM 45

2 Results comparing our systems with MSTparser where the input is

perfect (forMAXDIG, we setk = 1, b = ∞ ande= 2). 49

3 Results comparing our systems with the MSTparser where theinput

is the lattice or the text analyzed by the morphosyntactic analyzer

(for MAX∗DIG andMAX∗DIG-LM, we setk = 10,b = 0 ande= 5). 51

4 Results comparing the accuracy of morphosyntactic analysis 51

5 Speed of parsing with morphosyntactic lattices. 52

6 The accuracy of oracle parse in the 10-best parses 53



iii

LIST OF FIGURES

Figure Page

1 An example of machine translation using dependency structure as

intermediate structure 1

2 Example of discontinuous constituents: the noun phrase “aboy who

was your son” and the verb phrase “saw yesterday” are “shuffled”. 3

3 A morphosyntactic lattice that encodes all possible word

segmentations and part-of-speech tagging results of a Thaitext that

means “I stand (to) expose to (the) air” (the bold lines represent the

correct result). 3

4 Example: dependency structure of the sentence “A boy runs”. 6

5 Constituent structure of English sentence “John loves a woman” 7

6 Dependency structure of English sentence “John loves a woman” 7

7 A concept of dependency parsing based on the graph-based models 12

8 An example of items in the morphosyntactic dictionary 19

9 An example of the POS tagged corpus 19

10 A snapshot of NAiST dependency treebank 20

11 A screen shot of the tree editor tool 22

12 A screen shot of keywords searching interface. 23

13 A screen shot of the DIG viewer (1). 24

14 A screen shot of the DIG viewer (2). 25

15 A screen shot of the DIG viewer (3). 25

16 Training and run time of the parsing system. 26

17 Type-A and Type-B elementary trees. Note: the @ symbol marks

the head node of the tree. 27

18 The insertion operation in DIG. -2,-1, +1, and +2 are relative

positions. 27

19 Three forms of elementary trees. Note: the“c” and “a” functions

stand respectively for “complement” and “adjunct”. 29

20 An example of the relaxation of DIG 29



iv

LIST OF FIGURES (Continued)

Figure Page

21 An example of extracting the extended forms of elementarytrees

from a parse tree. 31

22 An example of elementary trees file. 32

23 An example of parsing with a) a correct morphosyntactically

analyzed text and b) a morphosyntactic lattice 38

24 Features (basic features) 41

25 Features (combined features) 42

26 An example of adjusting the scores of edges by using DIG for“I

run fast”. 43

27 DP of thek-best oracle on the test data 53

28 TF of thek-best oracle on the test data 54

Appendix Figure

C1 Top 5 of the most occurrence relaxed elementry trees of transitive

verb (vt) 76

C2 Top 5 of the most occurrence relaxed elementry trees of intransitive

verb (vi) 76

C3 Top 5 of the most occurrence relaxed elementry trees of preposition

(prep) 76



v

LIST OF ABBREVIATIONS

MT = Machine Translation

CFG = context-free grammars

DIG = Dependency Insertion Grammar

DG = Dependency Grammar

DP = Dependency Parsing

CDG = Constraint Dependency Grammar

WCDG = Weighted Constraint Dependency Grammar

TAG = Adjoining Grammar

CCG = Combinatory Categorial Grammar

CSP = Constraint Satisfaction Problem

POS = part-of-speech

LM = language model



1

DESIGN AND DEVELOPMENT OF A LATTICE STRUCTURE
DEPENDENCY PARSER FOR UNDER-RESOURCED

LANGUAGES

INTRODUCTION

Projective and non-projective dependency structures haverecently become

quite fashionable again in various NLP areas, such as MT (Ding and Palmer, 2005),

Information Extraction (Yakushijiet al., 2005), Text Summarization (Gagnon and

Sylva, 2005), and Ontology (Kim and Park, 2004). In these applications, an input

text will be syntactically analyzed into a dependency structure that can reduce forms

of ambiguity in the input text.

Figure 1 shows an example of MT using dependency structure asintermediate

structure. An input sentence will be analyzed into dependency structure first, then

the system transforms that structure into a dependency structure of a target language

and generates a translation result. Note that the meaning ofpart-of-speech notions are

presented in Appendix Part-of-speech.

Figure 1 An example of machine translation using dependency structure as
intermediate structure

By using the parser, the translation process will be easier than without it. There

are several reasons for that (Boitet and Zaharin, 1988):

• they are more economical (they have less nodes) and hence perspicuous than

constituent structures;



2

• they can represent some discontinuous constituents in a projective way. For

example, in “he gave the money back to the vendor”,gave. . . backis a discontinuous

constituent which cannot be represented by a constituent tree having a projective

correspondence with the sentence. However, the following dependency tree is

projective:

he gave the money back to the vendor
�

subj

�

det

�

det

W

obj

W

pobj

W

adv

W

prep

That is not always possible. For example, “Ces femmes, les hommesne les ontpas

encoretous comprises.” (“These women, the men did not yet understand themwomen

allmen.”) has no reasonable projective dependency tree.

• they represent long-distance dependencies and predicate-argument relations

(information needed in these applications) in a clearer way.

Figure 2 shows an example of discontinuous constituents represented by a

dependency structure. In this case, there is no way to draw the correspondence lines

between the nodes of the dependency tree and the words of the sentence (written as

usual linearly) without any crossing pair of lines. The expression “tree without crossing

lines” if often found in the literature but is faulty, as a tree canalwaysbe drawn on

a plane without any crossing branches. The thing which is projective or not is the

correspondencebetween the string and the tree, which should better be represented by

“liaison elements”, as in entity-relation diagrams. We then say that the tree is “non-

projective”.

Dependency representations date back to Tesnière (1959) and have been

used extensively in NLP by Western and Eastern European and Japanese research

groups since the early 1960’s, notably for Machine Translation (MT). Constituent or

“phrase-based” representations have also been used, primarily for other applications

such as Natural Language (NL-)based information retrieval, mainly because of their



3

ROOT I saw a boy yesterday who was your son
W

SENT

�

subj

�

det

W

dobj

W

rel

�

subj

W

pred

�

poss

W

modp

Figure 2 Example of discontinuous constituents: the noun phrase “a boy who was
your son” and the verb phrase “saw yesterday” are “shuffled”.

Figure 3 A morphosyntactic lattice that encodes all possible word segmentations
and part-of-speech tagging results of a Thai text that means“I stand (to)
expose to (the) air” (the bold lines represent the correct result).

good formal characterization by context-free grammars (CFG), and the existence of

polynomial all-path algorithms (notably the CYK algorithm, for CFGs in Chomsky

normal form, and Earley’s algorithm, for any CFG).

Written Thai, the language worked on this research, does nothave word

delimiters, and there are no reliable word segmenters and part-of-speech taggers for

this language. Therefore, syntactic analysis of Thai should start from multiple results

of a morphosyntactic lattice (see Figure 3), rather than from a dubiously disambiguated

string (a dubiously disambiguated string means a string disambiguated by an unreliable

morphosyntactic analyzer). Previous work is generally based on the assumption that



4

the input is a disambiguated morphosyntactic string. Unfortunately, this is not very

realistic for a language like Thai with its potential ambiguities due to multiple word

segmentation and part of speech tagging. This is why an extended parsing technique

was proposed, able to handle as input a morphosyntactic lattice, with multiple ways of

segmentation and part-of-speech tagging.

The research is presented here in order to deals with the above-mentioned

problems. A possible solution for parsing a morphosyntactic lattice is proposed. To

deal with the under-resourced situation, A combination of a“statistical” and an “expert”

approach is invented in order to increase the parser accuracy by using a Dependency

Insertion Grammar (DIG) (Ding and Palmer, 2004) which is automatically extracted

from a tree-annotated corpus. A method for rescoring sub-trees with a language model

is also proposed. This method is necessary when the Eisner’salgorithm is applied

to parse a morphosyntactic lattice. Furthermore, those extensions do not increase the

time complexity order, it is stillO(n3). The time complexity ofk-best parsing is only

increased by a multiplicative factor,O(k logk).

The contribution of this research are

1. a new dependency parsing algorithm for word lattices (Sudprasertet al.,

2009),

2. a Thai dependency treebank and its annotation guidelines(http://naist.

cpe.ku.ac.th/tred/),

3. and treebank manipulating tools: Tree finder and DIG viewer (http://

naist.cpe.ku.ac.th/tred/digviewer/)



5

OBJECTIVES

1. Develop an algorithm for dependency parsing an input lattice structure.

2. Improve of the quality of parsing output by automaticallyinduced grammars.

3. Learn a DIG grammar from a very small tree-annotated corpus.

4. Learn a human-readable grammars that can be understood bylinguists.



6

LITERATURE REVIEW

In this section, the background concerning Dependency Grammar (DG) and

Dependency Parsing (DP) that are necessary for understanding the rest of the thesis is

presented. For more detail about the state of the art in dependency-based parsing, please

see Nivre (2005).

1. Dependency Grammar

The staring of the modern theoretical tradition of DG has often been referred to

the work of Tesnière (1959). However, Covington (1984) argued that DG has been used

since the Middle Ages. Western and Eastern European and Japanese research groups

has used DG extensively in NLP since the early 1960’s, notably for Machine Translation

(MT).

The intuition behind the DG is simple that: in one sentence, all words depend

on other words, except a unique word that does not depend on any other word, and is

called the root of the sentence. An example of a simple DG analysis of the sentence “A

boy runs’ is shown below. Its dependency structure is demonstrated in Figure 4.

a depends on boy
boy depends on runs
run depends on nothing (root of the sentence)

A boy runs
� �

Figure 4 Example: dependency structure of the sentence “A boy runs”.

The difference between constituency and dependency representations is the lack

of phrasal nodes in the constituency representations. Thiscan be seen by comparing the

constituency representation of an English sentence in Figure 5, to the corresponding

dependency representation in Figure 6.



7

S

NP VP

NP PU

N V DET N

John loves a woman
.

Figure 5 Constituent structure of English sentence “John loves a woman”

JohnN lovesV aDET womanN .PU
�

subj

�

det

W

dobj

W

p

Figure 6 Dependency structure of English sentence “John loves a woman”

Normally, relations of dependencies are categorized into two types:

complements and modifiers (adjunct). The modifiers are optional dependents that

can be removed without disrupting the syntactic structure and the complements are

obligatory dependents.

After the work of Tesnière there was a number of studies on dependency

representations and various types of DG were proposed. The well known are Word

Grammar (Hudson, 1990) and Meaning Text Theory (Mel’čuk, 1988) proposed a

variety of computable syntactic dependency formalisms. Functional Dependency

Grammar (Tapanainen and Järvinen, 1997) follows Tesnière’s model by distinguishing

between dependency rules and rules for surface linearization. It adopts Tesnières notion

of nuclei that are the primitive elements of FDG structures.Some researchers (Karlsson,

1990; Maruyama, 1990) were interested in treating the parsing of dependency structures

as a constraint-based satisfaction problem that led to Constraint Dependency Grammar

(CDG) and its descendent Weighted Constraint Dependency Grammar (WCDG).



8

Another important independency representation is Functional Generative

Description (Sgallet al., 1986), Based on the assumption of a language-independent

underlying order, FDG represents a projective dependency tree and maps via ordering

rules to the concrete surface realization. It is the core theoretical foundation of the

Prague Dependency Treebank (Hajičet al., 2000). Finally, there are some works (Joshi

and Rambow, 2003; Clarket al., 2001) that tried to produce dependency structures

from mildly context-sensitive formalisms such as Adjoining Grammar (TAG) and

Combinatory Categorial Grammar (CCG), which represent semantic dependencies

and also handle non-projective structure naturally. However, those approaches were

not often used for syntactic parsing because inheritance ofmildly context-sensitive

formalism leads to higher computing time. In worst case, thetime complexity is

O(n6) (Vijay-Shankar and Joshi, 1985). DIG also was inspired by TAG coming up

with only one operation for derivation that is not a kind of adjoining operation. This

makes the DIG simple to understand and easy to design an effective parsing algorithm.

The details of DIG will be explained in MATERIALS AND METHODSchapter.

2. Dependency Parsing

2.1 Grammar-driven parsing

2.1.1 Context-free dependency grammars

In the earliest work on parsing with dependency representations

Hays (1964) and Gaifman (1965), a dependency grammar was formulated in a way

similar to the way CFGs were defined. The formulation composses of three rules: 1)

determining dependents and their positions (left or right)of a given category, 2) giving

every category belonging to a given word and 3) selecting a governor of a sentence

from given list of all categories. This formulation can be transformed to lexicalized

context-free grammar (as shown below) and is possible to be parsed with the standard

context-free parsing algorithms (CKY, Earley, etc).

H→ L1 ... Lm h R1 ... Rn



9

H ∈VN; h∈VT ; L1...Lm,R1...Rn ∈V∗N.

whereVN andVT are non-terminal and terminal vocabularies.

Such formulations are restricted to the derivation of projective

dependency structures. There are frameworks that allow post-processing and introduce

non-projective structures such as Sleator and Temperly (1991). They proposed a method

to solve crossing links which occur because of coordinatingconjunctions.

Many of these frameworks can be included to the notion ofbilexical

grammarsof Eisner (2000) which consists of three elements:

1. A setV of words, called thevocabularycontaining a distinguished symbol

ROOT,

2. A setM of one or moremodifier rolesand

3. A pair of deterministic finite-state automatalw andrw that accepts some set

of string over the alphabetV ×M. The lw specifies the possible sequences of left

dependents forw. Therw specifies the possible sequences of right dependents forw.

For example, the bilexical grammars that recognize the dependency

tree shown in Figure 6 can be written as

V ={v1 = lovesV,v2 = womanN}

M ={m1 = (JohnN,subj),m2 = (womanN,dobj),m3 = (aDET,det),m4 = (.PU,p)}

l lovesVis an automata that accepts {(v1,m1)}

r lovesVis an automata that accepts {(v1,m2),(v1,m4)}

lwomanNis an automata that accepts {(v2,m3)}

The general parsing algorithm proposed by Eisner for bilexical



10

grammars is a bottom-up dynamic parsing algorithm. It proceeds by linkingspans

or sub-trees (where roots occur either leftmost or rightmost) instead ofconstituents

(see more details in MATERIALS AND METHODS section 3.1.1). Therefore, the

time complexity reduces fromO(n5) to O(n3). Moreover, Eisner also shows how the

framework of bilexical grammar, and the cubic-time parsingalgorithm, can be modified

to capture a number of different parsing frameworks and approaches. The previous

are those of 1) Milward (1994) who proposed Dynamic Dependency Grammar and

proved that the grammar can be recognized inO(n3), 2) Alshawi (1996) who used head

automata (costed bidirectional finite state automata associated with the head of words

of phrases) for representing a language model of a machine translation, and 3) Sleator

and Temperly (1991) who developed Link Grammar.

2.1.2 Constraint dependency grammar

In the Constraint dependency grammar, the dependency parsing is

characterized as a Constraint Satisfaction Problem (CSP).As usual, parsing algorithm

must fight two fundamental forms of ambiguity: the lexical ambiguity (the ambiguity of

an individual word or phrase used in different contexts to express two or more different

meanings) and the structural ambiguity (the ambiguity of a phrase or sentence that

there are more than one underlying structure). It is convincingly demonstrated that

constraint-based techniques can effectively handle such ambiguities. This approach

is also called “eliminative parsing”. Since sentences are analyzed by the successive

eliminating representations, that violate constraints until the only valid representations

remain. For example, suppose there are role constraints forsubjectandadjective.

Subject: the subject of a finite verb must be either a noun or a

pronoun, it must agree with verb, and must have nominative case:

Γsub ject(w,w′) ≡ cat(w′) ∈ {n,pro}

∧arg(w) = arg(w′)

∧arg(w′) ∈ NOM



11

Adjective: an adjective may modify a noun and must agree with it:

Γad jective(w,w′) ≡ cat(w) = n

∧cat(w′) = adj

∧arg(w) = arg(w′)

By following the these constraints, dependency trees with the

structures conflicting to them will be eliminated. In practice, there are many constraints

needed for building a dependency parsing based on CSP such aslexical constraints,

valency constraints , role constraints, treeness constraints, etc (Duchier, 2000).

Maruyama (1990) was the first one who proposed a complete

treatment of dependency parsing as a CSP and described parsing as a process of

incremental disambiguation by generalizing the notion of tag to pairs consisting of a

syntactic label and an identifier of the head node. This kind of representation is the

fundamental of many different approaches to dependency parsing. Because it provides

a way to reduce the parsing problem to a tagging or classification problem. Harper

(1995) continued this line of research and proposed severalalgorithmic improvements.

The FDG system (Tapanainen and Järvinen, 1997) is also classified as the approach

of (Maruyama, 1990). It plus combines the eliminative parsing with a non-projective

dependency grammar inspired by Tesnière (1959).

CSPs in general are NP-complete. It means relaxation have to

be allowed to ensure reasonable computing time. In Maruyama(1990) and Harper

and Helzerman (1995), the worst case of polynomial complexity is obtained only by

considering local information in the application of constraints.

Parsing as solving a CSP is a rule-based approach. Therefore, it

is impossible to avoidunder-generation(no analysis satisfying all constraints) and

over-generation(more than one satisfied analysis) situations. Heineckeet al. (1998)

extends the CDG framework of Maruyama (1990) with graded (weighted) constraints,

by assigning a scorew (0.0≤ w≤ 1.0) to each constraint, indicating the seriousness



12

of the violation of that constraint. The constraints are categorized into three types:

hard constraints (score= 0), typical well-formedness conditions (score≈ 0), weak

constraints (score≈ 1).

2.2 Data-driven parsing

2.2.1 Graph-based models

In graph-based models, the parsing models (Eisner, 1996;

McDonald, 2006) conceptually consist of two parts: the permissible enumeration of

all dependency trees according to a grammar or a constraint,and the selection of the

most probable analysis according to a statistical model learned from a training corpus

(see Figure 7 for an example).

Figure 7 A concept of dependency parsing based on the graph-based models

An influential approach developed by Eisner (1996), are the threes

probabilistic models (bigram lexical affinities, selectional preferences, and recursive

generation) for dependency parsing that are evaluated by using supervised learning

with data from the Penn Treebank. In the work of McDonald (2006), he applied

discriminative estimation methods by using an online learning algorithm named

MIRA (Crammeret al., 2006), instead of using generative methods of Eisner (1996), to

probabilistic dependency parsing. Moreover, he applied the Maximum Spanning Trees

(MST) algorithm to find the best tree. McDonald’s methods canhandle both projective

trees and non-projective trees (Edmonds, 1967; Chu and Liu,1965).

Collins et al. (1999) applied the generative probabilistic parsing

models of Collins (Collins, 1997 1999) to dependency parsing by using data from the

Prague Dependency Treebank. This requires preprocessing to transform dependency

structures into flat phrase structures and post-processingto extract dependency



13

structures from the phrase structures produced by the parser.

Another probabilistic approach of dependency parsing, that

incorporates labeled dependencies, is extending an existing grammar-based model with

a generative probabilistic model. In this approach, the grammar can be seen as a

supertagging representing constraints on possible heads and dependents. Then the

actual dependency links is determined from the supertag assignment. Examples of this

approach are the CDG parser (Wang and Harper, 2004), the LTAGparser (Shen and

Joshi, 2005), and the CCG parser (Clark and Curran, 2004).

2.2.2 Transition-based models

The approach is based on purely discriminative models of inductive

learning in combination with a deterministic parsing strategy. The parsing model may

define (McDonald and Nivre, 2007)

1. a setC of parser configurations, each of which defines a (partially built)

dependency graphG

2. a setT of transitions, each a functiont : C→C

3. for every sentencex = w0,w1, ...,wn,

1. a uniqueinitial configurationcx

2. a setCx of terminalconfigurations.

A transition sequenceCx,m = (cx,c1, ...,cm) for a sentencex is a

sequence of configurations such thatcm ∈ Cx, and for everyci(ci 6= cx), there is a

transitiont ∈ T such thatci = t(ci−1). The dependency graph assigned tox by Cx,m

is the graphGm defined by the terminal configurationcm.

The deterministic discriminative approach was first proposed by

Yamada and Matsumoto (2003). They used Support Vector Machines (SVM) to train



14

classifiers to predict the next action of a deterministic parser which is implemented

in a form of shift-reduce parsing with three possible actions (Shift, Right, andLeft).

The parser processes the input from left to right repeatedlyuntil there is no more

dependencies are left. It means that up ton−1 passes over the input may be required to

construct a complete dependency tree, giving the worst casetime complexity ofO(n2)

(the worst case seldom occurs in practice).

Nivre et al. (2004) proposed a dependency parsing framework

similar to Yamada and Matsumoto (2003), but the system can construct labeled

dependency representations. Moreover, it can construct a complete dependency tree

in a single pass over the data. They use memory-based learning to induce classifiers to

predict the next parsing action based on conditional features.

3. Related Works

Our parsing algorithm falls into the data-driven graph-based parsing approach.

Since, the algorithm used for selecting the best tree is based on Eisner (1996),

a generative model with a cubic time parsing algorithm that based on a graph

factorization. In this research, the Eisner’s algorithm ismodified in order to handle

a lattice input and used DIG as a constraint for limiting the enumeration of all analyses.

McDonald (2006) and Jinshanet al.(2004) also developed their parsers based on

Eisner’s algorithm. McDonald focused on non-projective parsing with a discriminative

learning algorithm, MIRA (Margin Infused Relaxed Algorithm). The accuracy of

McDonald’s parser is quite high i.e. 90% approximately for English, and was claimed

to be state-of-the-art in this area. Jinshanet al. (2004) proposed a dependency parsing

algorithm that is trainable with small data. The algorithm is similar to Eisner’s for

finding the best path from all the parsing results. Jinshanet al.(2004) trained the models

by using only part-of-speech and head-dependent distance information.

As a pioneer, another kind of algorithm for data-driven parsing that makes

decision in a shift-reduce parsing is the algorithms of Ratnaparkhi (1999). He first

used Maximum Entropy Models to determine the action of a shift-reduce parser for



15

constituent structures. The accuracy of his parser was state-of-the-art in that time.

Afterwards, Nivre and Scholz (2004) and Yamada and Matsumoto (2003) also applied

the same idea to dependency parsing. The difference betweenthose two works is that

the former trained the model by using SVM while the latter used a memory-based

learning.

McDonald and Nivre (2007) report that the average of accuracy of graph-

based model and transition-based model for data-driven dependency parsing is similar.

Hence, this research decided to start from Eisner’s algorithm because of its dynamic

programming character capable to extend in supporting multiple input and combining

with grammatical rules.

Dependency grammars have a long history in the formal linguistics and

computational linguistics communities. The first person who has been considered

starting on modern dependency grammar is Tesnière (1959).After the work of

Tesnière, there were many researches on dependency representations (grammars)

and their relationships to other formalisms. The first researchers who studied the

mathematical properties of DG were Hays (1964) and Gaifman (1965). Many

dependency representations proposed after that were such as Functional Generative

Description (Sgallet al., 1986), Dependency Unification Grammar (Hellwig, 1986),

Meaning Text Theory (Mel’čuk, 1988), Word Grammar (Hudson, 1990), Functional

Dependency Grammar (Tapanainen and Järvinen, 1997), Dependency Insertion

Grammar (Ding and Palmer, 2004), etc.

Now, many types of dependency representations were proposed with in less

different abilities. Their generative power usually in therange between context-free to

mildly context-sensitive (Joshi and Schabes, 1997). In this research, DIG was used,

although it is not the most powerful dependency grammar. However, it is a simple one

with a few components (2 types of elementary trees and 1 type of operation). Because

of its minimalist, it is easy to integrate the DIG with statistical parsing models and it is

also easy to validate them for the linguists who maintain thegrammar.

In recent years, various researchers have started to build parsers with small



16

annotated corpora or without corpora. For example, Jinshanet al. (2004) proposed

a method to build a dependency parser for Chinese. They used apurely statistical

approach and relied only on part-of-speech information. Hwa et al. (2005) proposed a

method for building a parser based on a parallel corpus, by inducing parse trees on the

basis of parallel text. To do so, they need a parallel corpus and a reliable parser of the

source language. However, all of them assumed that the morphosyntactic analysis work

properly.

Previous works are generally based on the assumption that the input is a

disambiguated morphosyntactic string. Unfortunately, this is not very realistic for a

language like Thai because of its potential ambiguities dueto word segmentation and

part of speech tagging. This is why an extended parsing technique is proposed to handle

an input as a morphosyntactic lattice, with multiple ways ofsegmentation and part-of-

speech tagging.

The idea of parsing multiple versions of a given sentence hasbeen proposed

before by Tomita (1986). he proposed an efficient word lattice parsing algorithm that

can be viewed as an extended LR parsing algorithm for context-free phrase structure

grammars. Dependency parsing of word graphs has also already been proposed by

Harperet al. (1993). The parser was an extended version of the CDG parser developed

by Maruyama (1990). It actually was used to eliminate multiple sentence hypotheses

produced by the speech recognizer. The complexity of the parser isO(n4), where

binary constraints were used and the complexity will increase with the number of

constraints. In a recent work, Collinset al. (2004) extended head-driven parsing

models of Collins (Collins, 1999) to parse word lattices, inorder to use simultaneously

a language model and a parser for large-vocabulary speed recognition. The system

experimented on the Wall Street Journal treebank shows better accuracy than the

standardn-gram language model.

All previous researches put efforts on word lattice parsingintended to improve

the accuracy of continuous speech recognition. In this work, a different method, a data-

driven parser based on Eisner’s algorithm (Eisner, 1996) ispresented. By using the

invented algorithm, the time complexity of the parser isO(n3), the same as Eisner’s.



17

Moreover, the proposed parser can be augmented with DIG (Ding and Palmer, 2004)

for eliminating wrong trees. This method can improve the accuracy of the parser for

under-resourced languages.



18

MATERIALS AND METHODS

Materials

1. Computer

The parsing algorithms are implemented by using the Python and C

programming language. The experiments are tested under thefollowing computer

specification:

1. Intel Xeon 64bit (Quad Core) Dual processor 2.00 GHz.

2. RAM 8 GB

3. Hard Disk (RAID-3) 650 GB

4. OS Debian GNU/Linux lenny/sid

2. Data

There are 3 linguistic resources that are needed for our system : a

morphosyntactic dictionary, a part-of-speech (POS) tagged corpus, and a dependency

treebank.

2.1 Morphosyntactic dictionary

Morphosyntactic dictionary is a list of pairs of a word and all its

possible POS. It is used for creating a morphosyntactic lattice by mapping a given

sentence with the items in the dictionary, thereby using a dynamic backtracking

algorithm (Thumkanon, 2001). It will generate all possibleword segmentations and

part-of-speech tagging results of the given sentence; thenthe multiple results are

encoded into a lattice. The morphosyntactic dictionary used in this research contains

16,816 entries. An example of items in the morphosyntactic dictionary is shown in

Figure 8.



19

Figure 8 An example of items in the morphosyntactic dictionary

2.2 POS tagged corpus

The POS tagged corpus contains sentences that were word-segmented

and POS-tagged correctly. It is used for training the language model (LM) used for

rescoring sub-trees. The size of POS tagged corpus is 40,494sentences containing 49

tags, 18,396 words, and 548,431 tokens. Figure 9 shows a snapshot of the POS tagged

corpus.

Figure 9 An example of the POS tagged corpus

2.3 Dependency treebank

In this work, we use NAiST Dependency treebank. The treebankconsists

of about 816 tree-annotated sentences that were prepared bylinguists. A snapshot of

the NAiST dependency treebank is shown in Figure 10.

2.3.1 Sources and Characteristics

We have tried to collect sentences from texts in various domains

and genres such as agricultural news, encyclopedia, and health care.



20

Figure 10 A snapshot of NAiST dependency treebank

2.3.2 Annotation Standard

Since our lab is pioneering the building of a Thai Dependency

treebank, there was no presence annotation guidelines for this task. At first, we had

to create the guidelines by adopting guidelines available for other languages such as

Danish Treebank, Prague Treebank, and Penn Treebank (Even the Penn Treebank is

phrase-based but it was annotated with grammatical functions which can be used to

label the edges of dependency trees).

Having investigated the existing guidelines and compared them

to Thai, we designed our annotation standard (http://naist.cpe.ku.ac.th/tred/

static/guideline/Thai_Dependency_Guideline_v.1.4.pdf). It consists of 30

grammatical functions which are divided into two main typesi.e. complement (12)

and adjunct (18), which could represent all syntactical patterns of Thai writing. For

more detail please see in the Appendix on Grammatical Functions.

We have annotated the sentences using Tred (http://naist.

cpe.ku.ac.th/tred (Wacharamanothamet al., 2007)), a web-based tree editing

component which has a full set of facilities for manipulating the corpus such as

graphical tree editor, revision control, permission control, and querying tools. For



21

internal use, the annotated trees are restored in JSON format (JSON is a lightweight

computer data interchange format). It is more concise than XML, and also easy to use

in Ajax web application programming which has been used for implementing our tools.

For external interchange, the dependency trees are stored in the format which is used

in MSTParser (http://sourceforge.net/projects/mstparser/). Each sentence

is represented by 3 or 4 lines and sentences are separated by anew line.

The general format is:

w1 w2 ... wn

p1 p2 ... pn

l1 l2 ... ln
d1 d2 ... dn

where,

• w1 ... wn are then words of the sentences (tab delimited).

• p1 ... pn are the part-of-speech tags for each word.

• l1 ... ln are the labels (grammatical functions) of the incoming edgeto each

word.

• d1 ... dn are integers representing the position of each words parent.

For example, the dependency tree of sentence “John loves a

woman” shown in Figure 6 can be represented in

John loves a woman
N V DET N

subj root det dobj
2 0 3 2

2.3.3 Tree editor

The tree editor is an important component of treebank preparing

process. It is a web-based application that can be run on any operating systems via



22

web browser (http://naist.cpe.ku.ac.th/tred/corpora/list). However, the

program can only be run on Firefox version 3, because of the use of the SVG (Scalable

Vector Graphics) language for drawing the tree which is now supported only by Firefox.

Figure 11 A screen shot of the tree editor tool

The tree editor (see figure 11) consists of 4 widgets: tree drawing,

attributes editor, span editor, and string display. The tree drawing widget is the main

part of the program which is used for manipulating the structure of the tree (only moving

the nodes in the tree). Adding a new node or deleting some nodes in the tree is done

by using the span editor. The attribute editor is used for editing the part-of-speech and

grammatical function of each word. The last widget, string display, shows the flat string

corresponding to the tree (by flattening the tree projectively).

All changes of the tree are saved with information proper to the

editor such as history of revisions which is useful for collaborative work, when more

than one linguist works on the same tree. Moreover, each linguist can put some

questions or comments for annotating the tree, these notes will be used later as

discussion topics.



23

2.3.4 Attributes search

Tred provides two interfaces for retrieving the trees: Attributes

search and DIGs viewer. Attributes search is a simple interface: one enters included

and excluded keywords i.e. surface words, parts-of-speechand grammatical functions,

and it returns the trees matching the keywords. In figure 12 isa screen shot of the

program.

Figure 12 A screen shot of keywords searching interface.

2.3.5 DIGs viewer

The another querying tool is the DIG viewer tool (http://naist.

cpe.ku.ac.th/tred/digviewer/). We can use this tool for retrieving the trees in the

treebank which correspond to an elementary DIG tree. In other words, that is like using

a elementary tree as a keyword for finding the trees.

At first, the DIG viewer shows all heads (word or word with its



24

part-of-speech) of the three special forms of elementary trees (as Figure 13). Users can

see elementary trees by clicking on a head in the list, and then the elementary trees

will be shown beside the clicked head (as Figure 14). If usersclick on a elementary

tree, details such as local word ordering, original tree (the tree in treebank from which

the elementary was extracted) , and link to the original tree, will be shown in another

window (see Figure 15). The original tree is drawn with two colors green and yellow,

to indicate complement and adjunct relations, respectively. The nodes colored blue in

the original constitute the extracted elementary tree.

Figure 13 A screen shot of the DIG viewer (1).

The DIG viewer can be used not only for viewing all extracted

elementary trees from the treebank, but also for detecting errors in the treebank, since

the three special forms of the elementary were designed to belinguistically sound. If

odd elementary trees appear, then the treebank must containsome errors. By using the

DIG viewer, it is easy to find the errors and go to the original tree in the treebank in order

to correct it. For example, the elementary trees for “vi” (intransitive verb) should not

have object grammatical function (“pobj”, “dobj”, and “iobj”). If one of them appears,

it means that the part-of-speech tagging is wrong (it shouldbe “vt” transitive verb) or

that the grammatical function annotation is incorrect.



25

Figure 14 A screen shot of the DIG viewer (2).

Figure 15 A screen shot of the DIG viewer (3).



26

Methods

1. System Overview

Figure 16 Training and run time of the parsing system.

The diagram in Figure 16 depicts graphically the training time (dependency

scores learning and DIG elementary trees learning) and the run time (parsing a lattice

input) of the parser described in this thesis. It shows the different steps that take

place during training time, i.e. the learning of the elementary trees and dependency

scores from a treebank, and run time, i.e. using the learned grammar and the learned

scores to parse (k-best parse) a lattice input. More specifically, at trainingtime, the

elementary trees are extracted from a treebank and the dependency scores are learned

by using a machine learning model that uses the treebank as training data. At run time,

the dependency scores are adjusted by DIG and are used by the parsing algorithm to

produce thek best parse trees. In addition, sub-trees produced in the parsing process

are rescored by using LM, in order to promote the sub-trees which also have good

morphosyntactic analysis.

In the following sections, we will describe the basis of DIG and each of the

modules in the larger system.



27

2. Dependency Insertion Grammar

2.1 Basis of DIG

A grammar expressed in the DIG formalism (Ding and Palmer, 2004)

consists of two parts: elementary trees and insertion operation. Each node in an

elementary tree consists of: a lexical item, a corresponding part-of-speech and a local

word ordering. The elementary trees are of two types: Type-Aand Type-B. The

difference between them (see Fig. 17) is that the root node ofa Type-A tree is lexicalized

and is the head of the tree, while the root of a Type-B tree is not lexicalized but one of

the lexicalized nodes is the head of the tree.

Figure 17 Type-A and Type-B elementary trees. Note: the @ symbol marksthe head
node of the tree.

Insertion is the only operation used for DIG derivation: when an

unlexicalized node of an elementary tree is of the same type,i.e. category, as the head

node of another elementary tree, the two can be unified into a single node and a new

elementary tree can be built (see Fig. 18).

Figure 18 The insertion operation in DIG. -2,-1, +1, and +2 are relative positions.



28

2.2 The extended forms of elementary trees

The DIG formalism itself does not impose any constraints on the shape of

the elementary trees, as long as they satisfy the requirements of Type-A and Type-B

elementary trees. Therefore, given a corpus, there can be a number of elementary trees,

each of which covers the corpus. To say that some elementary trees cover the corpus

implies that each dependency tree in the corpus can be generated by combining the

elementary trees by the insertion operation.

Like Xia (1999) who proposed a method for extracting LTAGs

(Lexicalized Tree-Adjoining Grammars) from a bracketed corpus, we need to define

extended forms of elementary trees in order to ensure that the extracted grammar is

both compact and linguistically sound.

We consider extended elementary trees of the following forms (see

Figure 19):

• Type-I tree: a type A tree with only complement functions (syntactic

arguments, i.e. strongly bound complements).

• Type-II tree: a type B tree with only two nodes, the unique arcbearing an

adjunct function (circumstantial complements).

• Type-III tree: a combination of Type-I and Type-II.

Given the fact that our tree-annotated corpus is very small,it is unavoidable

to run into the data sparseness problem. In order to minimizethis problem, we used

relative direction instead of relative position i.e. all positions≤ −1 be reduced to left

(L) and position≥ +1 will be reduced to right (R). We call this the “relaxation of

relative positions”.

Figure 20 shows an elementary tree corresponding to “eat [VT]” (transitive

verb). The left-hand side tree is a normal elementary tree ofType-I, waiting for “PPER”



29

Type-I Type-I I Type-I I I

[V]

word [pos] @

[N]

[V]

word [pos] @

word [pos] @

[N] [N]

a

c

c c a

[N]

c

Figure 19 Three forms of elementary trees. Note: the“c” and “a” functions stand
respectively for “complement” and “adjunct”.

Figure 20 An example of the relaxation of DIG

(personal pronoun) at position -2 or -1 and “NCN” (common noun) at position +1 or +

2. When the constraints are relaxed, the elementary tree is changed to the right-hand

side tree.

2.3 Extracting elementary trees from the treebank

The code of in Algorithm 1 is used for extracting elementary trees of the

above three mentioned forms from the treebank. The algorithm starts from the root

node and traverses each node in order to recognize patterns of the extended forms.

Given a training dependency tree, the algorithm traverses each node of the

tree (line 2). At any visited nodex, if the inward edge has a complement function (c)

then a Type-I tree will be built where the visited node is the root and the part-of-speech

of its children which have complement functions (line 3-6, 25). If an adjunct relation

(a) on an outward edge is found, there are two possible cases.(1) If a child of a visited

nodey doesn’t have any children, a Type-II tree will be built immediately by using the



30

Algorithm 1 ExtractDIG(T)

Input: T a parse tree object
Output: a set of elementary trees

1 ElementaryTrees← [ ]
2 for all x in T.nodes() do
3 T1← newtree(x.word,x.pos)
4 for all y in x.children() do
5 if y. f unction= ‘c’ and x. f unction= ‘c’ then
6 T1.connectat root(null,y.pos)
7 else ify. f unction= ‘a’ then
8 if y.children() = [ ] then
9 T2← newtree(null,x.pos)

10 T2.connectat root(y.word,y.pos)
11 ElementaryTrees.append(T2)
12 else
13 T3← newtree(null,x.pos)
14 tmp← newtree(y.word,y.pos)
15 for all z in y.children() do
16 if z.label = ‘c’ then
17 tmp.connectat root(null,z.pos)
18 end if
19 end for
20 T3.connectat root(tmp)
21 ElementaryTrees.append(T3)
22 end if
23 end if
24 end for
25 ElementaryTrees.append(T1)
26 end for
27 return ElementaryTrees

part-of-speech of the visited nodex as the root and its child nodey as the child (line

8-11). (2) Otherwise, if a child of the visited nodey has children, the algorithm will

do like above and construct a Type-I tree in order to produce asub-tree (line 14-19). A

Type-III tree will be built by using the part-of-speech of the visited nodex as the root,

connecting the produced sub-treetmpto the root. If the child of the visited nodey does

not have any children, a Type-II tree will be built instead (line 20-21).

Figure 21 shows an example of DIG elementary trees extractedfrom the

annotated-tree text “I ate boiled rice with my friend”.



31

Figure 21 An example of extracting the extended forms of elementary trees from a
parse tree.

2.4 Formatting of elementary trees file

It is necessary to mindfully design the format used for storing the

elementary trees into a file because the format should not only be parsed by a machine,

but should also read by humans. Storing elementary trees into a readable format will let

the linguists observe the behavior of the language and also detect errors of annotation by

identifying odd elementary trees which is easier than to observe the treebank directly.

A DIG file consists of two sections: elementary tree section and local word

ordering section. Figure 22 shows some parts of the DIG file. The Elementary Section

consists of elementary trees that are indexed by the heads (ahead can only be a part-of-

speech or a word with a part-of-speech) and type (I, II, or III). The float number which

comes after the elementary trees indicates the conditionalprobability of the elementary

tree given its head. As for the Word Ordering Section, the word ordering of nodes of

the elementary trees are stored in this part. The list of numbers which comes after each

the word ordering contains the reference IDs of the tree in the training corpus. It is used

to get back to the original tree in order to analyze where corresponding the errors come

from when some the elementary tree is incorrect.



32

### Elementary Tree Section ###
...
I:vi

[vi] -> [pref1@subj],[conjncl@sconj]:0.004566
[vi] -> [ncn@subj],[pref1@subj]:0.004566

...
II:adj

[cl] -> [adj@modp]:0.027473
[adj] -> [adj@modr]:0.013736
[pref1] -> [adj@modr]:0.010989

...

### Word Ordering Section ###
...
[adj] -> [adj@modr]

-1 -> 0:1.000000: #10549,10578,10685,10735
[adj] -> [adv@modp]

1 -> 0:0.500000: #10450,10592
-1 -> 0:0.500000: #10506,10626

Figure 22 An example of elementary trees file.

3. Dependency Parsing Techniques

The dependency parsing technique we use is based on the assumption that the

score (probability) of a dependency tree is the sum of the scores of all edges in the tree,

and thata best parse treeis one withthe highest score. This approach consists of two

processes: searching for a best tree among all possible trees and computing the scores

of edges.

3.1 Searching the best tree

3.1.1 Eisner’s algorithm

In the traditional approach, the input is a disambiguated

morphosyntactic stringw1. . .wN whereN is the number of words in the string. AN×N

Dependency Matrix,DM, is built, whereDM [i, j] contains the best relationrel between



33

Algorithm 2 Eisner’s algorithm
Input: DM a dependency matrix sizen×n; n > 1
Output: a score of the best parse tree
1 for all p,d,c in {1..n}×{⇐,⇒}×{0,1} do
2 C[p, p,d,c]← 0.0
3 end for
4 for m= 1 to n do
5 for p = 1 ton−mdo
6 t← p+m
7 for r = p to t do
8 if r < t then
9 C[p,t,⇐,0] ← max(C[p,t,⇐,0],C[p, r,⇒,1] + C[r + 1,t,⇐,1] + DM[t, p]) /* create left

incomplete items */
10 C[p,t,⇒,0] ← max(C[p,t,⇒,0],C[p, r,⇒,1] + C[r + 1,t,⇐,1] + DM[p,t]) /* create right

incomplete items */
11 C[p,t,⇐,1]←max(C[p,t,⇐,1],C[p, r,⇐,1]+C[r,t,⇐,0]) /* create left complete items */
12 else ifr > p then
13 C[p,t,⇒,1]←max(C[p,t,⇒,1],C[p, r,⇒,0]+C[r,t,⇒,1]) /* create right complete items */
14 end if
15 end for
16 end for
17 end for
18 return C[(1,n,⇒,1)]

wi andw j , with a scores.

DM [i, j] =











(rel,s) if i 6= j

empty otherwise
(1)

For example, if the input is “I love you” and the scores of

dependencies are computed as following (Here, we do not takerelationrel into account

for simplicity)

head dependent score

I −→ love = 0

love −→ I = 5

I −→ you = 1

you −→ I = 1

love −→ you = 4

you −→ love = 0



34

then, a DM of the sentence “I love you” is

1 2 3

I love you

1 I 0 5 1

2 love 0 0 0

3 you 1 4 0

where a row index represents position of a head and a column index

represents postion of a dependent.

One may use a brute-force algorithm that generates all possible

dependency trees and then selects the highest score tree. Here the highest score tree

is

ROOT I love you
�

5

W

4

W

Unfortunately, the brute-force algorithm has exponential

computing time and cannot be used for parsing a long length sentence in practice.

In fact, we can apply Eisner’s algorithm (Eisner, 1996)

(See (McDonald, 2006; Eisner, 1996) for more details) to findthe best projective

dependency tree among all possible results in the dependency matrix within O(n3).

Eisner’s algorithm is a bottom-up parsing algorithm just like the CKY parsing

algorithm: it finds optimal subtrees for substrings of increasing length. The idea is

to parse the left and right dependents of a word independently, and combine them later.

That requires only two additional binary variables to specify the direction of the item

and whether the item is complete, i.e.,d andc which will be explained more in the

following.



35

In the dynamic programming tableC of Eisner’s algorithm,

C[p, t,d,c] stores the score of the best subtree from positionp to position t, with

directiond and complete valuec. The variabled indicates the direction of the subtree

(whether it gathers left (⇐) or right (⇒) dependents). The variablec indicates whether

a subtree is complete (c= 1, no more dependents) or not (c= 0, needs to be completed).

The pseudo-code of Eisner’s algorithm is shown in Algorithm2.

The pseudo-code compute only the score of a best parse tree. We must also store back

pointers so that it is possible to reconstruct a best tree from the chart item that spans

the entire sentence. In this work, we assume that the output is an unlabeled dependency

tree, thereforeDM contains only scores.

Consider line 9 in Algorithm 2. It finds the best score for an

incomplete left subtree from positionp to t, C[p, t,⇐,0]. We need to find an index

r (p≤ r < t) that gives the best (maximum) possible score for combiningtwo complete

subtrees,C[p, r,⇒,1] andC[r +1, t,⇐,1]. The score of the tree obtained by combining

these two complete trees is the score of these subtrees plus the score of the chosen

dependency relation fromvi to v j . This is guaranteed to be a score of the best subtree

because we are considering all possible combinations by enumerating all values ofr.

By forcing the root node to be at the left-hand side of the sentence, the score of the best

tree for the sentence isC[1,n,⇒,1].

3.1.2 Extended parsing technique for handling a lattice structure

In order to extend this parsing technique for handling lattice

structures, we use exactly the same Dependency Matrix as in (1), but we add one more

condition to check whether there is a non-empty path fromwi to w j in the lattice, which

is acc(i, j) in (2). Algorithm 3 shows the adaptation of Eisner’s algorithm to find a best

projective dependency tree.



36

Algorithm 3 Modified Eisner’s algorithm for handling a lattice input
Input: DM a dependency matrix sizen×n; n > 1
Output: a score of the best parse tree
1 for all p,d,c in {1..n}×{⇐,⇒}×{0,1} do
2 C[p, p,d,c]← 0.0
3 end for
4 for m= 1 to n do
5 for p = 1 ton−mdo
6 t← p+m
7 for r = p to t do
8 for all q in get next(r) do
9 if r < t andIsLegal(p, r,q,t) then

10 C[p,t,⇐,0]←max(C[p,t,⇐,0],C[p, r,⇒,1]+C[q,t,⇐,1]+DM[t, p])
11 C[p,t,⇒,0]←max(C[p,t,⇒,0],C[p, r,⇒,1]+C[q,t,⇐,1]+DM[p,t])
12 end if
13 end for
14 if r < t andIsLegal(p, r, r,t) then
15 C[p,t,⇐,1]←max(C[p,t,⇐,1],C[p, r,⇐,1]+C[r,t,⇐,0])
16 end if
17 if r > p andIsLegal(p, r, r,t) then
18 C[p,t,⇒,1]←max(C[p,t,⇒,1],C[p, r,⇒,0]+C[r,t,⇒,1])
19 end if
20 end for
21 end for
22 end for
23 return C[1,n,⇒,1]

TheDM matrix will be (2)

DM [i, j] =











(rel,s) if i 6= j and acc(i, j)

empty otherwise
(2)

The modification to Eisner’s original algorithm consists just in

adding the conditionIsLegal(line 9, 14 and 17 in Algorithm 3) and call to the function

get next (in line 8) to validate the built subtrees along the lattice structure. The call

get next(n) returns all next adjacent nodes ofn, and

IsLegal(p, r,q, t) = acc(p, r)∧acc(q, t) (3)

In order to illustrate this, let’s take a look at Fig. 23, showing



37

the parsing processes respectively of Eisner’s algorithm (Algorithm 2) and ours

(Algorithm 3).

Figure 23a shows how to find the best incomplete sub-tree

corresponding to the sub-stringp...t of Eisner’s algorithm. The best incomplete sub-tree

for sub-stringp...t is the combination of sub-treesp...r andr +1...t plus a dependency

betweenwp andwt , which has received the highest score whenp≤ r < t.

If the input is a morphosyntactic lattice, not every point ofsub-trees

can be combined to generate a new sub-tree. Only a combination which is in atrajectory

can be generated. We calltrajectoryany sequence of directly linked vertices in a lattice

beginning withI and ending withF. The pth trajectoryhas the formTp = I → wp1→

...→ wplp → F. By looking at Figure 23b, we can see that the selectable sub-strings

need to contain a link between a starting node and an ending node. For example, sub-

string 1...2 cannot be selected, because there is no path from 1 to 2 (validated byIsLegal

condition). Moreover, when we try to combine two sub-trees,we also have to check that

there is an arc connecting the last node of the first sub-tree,r, to the first node of the

second sub-tree,q (limited by get next function).

The computing time is increased by testing the condition and

looking for all nodesq directly connected fromr. Both can be done in constant time

equaling the branching factor (maximum number of outward edges of each node in the

lattice). Hence we are still inO(n3) wheren is the number of nodes in the lattice.

Hence, there is no increase in time complexity.

3.2 Computing the scores of edges

In fact, a function for computing the scores of edges can easily be

estimated by using machine learning models such as Maximum Entropy Models or

SVM. But in our case where the training corpus is very small, the use of a machine

learning model alone may lead the parser to produce invalid parse trees. In addition,

we assumed that dependencies in a sentence are independent of each other, hence the

score of a dependency tree is the sum of the scores of all its edges. However, relying



38

Figure 23 An example of parsing with a) a correct morphosyntacticallyanalyzed
text and b) a morphosyntactic lattice

solely on the score of edges is not appropriate to compute thescore of dependency

trees for each possible output from a morphosynatic analyzer (which are encoded in

a lattice structure). Because it is possible that the parserwill select a parse tree that

has the highest score but the parse tree is not necessarily tobe a correct morphosynatic

analysis. See an example of parsing a simple sentence “\chan(I) \kin(eat)\kaw(rice)”.

It can be encoded into a morphosyntactic lattice

that\chanhas two possible parts-of-speech i.e. personal pronoun (pper) and transitive

verb (vt) while\kin and\kawhave one possibility, transitive verb and common noun

(ncn) respectively. In this context,\chanshould be personal pronoun. But the parser



39

Algorithm 4 K-best version of the modified Eisner’s algorithm for latticestructure
combining a DIG and a language model
Input: DM a dependency matrix sizen×n; n > 1, k≥ 1, b≥ 0, ande> 0
Output: a list ofk-best parse tree
1 for all p,d,c in {1..n}×{⇐,⇒}×{0,1} do
2 C[p, p,d,c]← [ ]
3 for i = 1 to k do
4 C[p, p,d,c].append(newTreeOb ject())
5 end for
6 end for
7 for m= 1 to n do
8 for p = 1 ton−mdo
9 t← p+m

10 for r = p to t do
11 for all q in get next(r) do
12 if r < t andIsLegal(p, r,q,t) then
13 C[p,t,⇐,0]←merge≤k(C[p,t,⇐,0],dig mult≤k(C[p, r,⇒,1],C[q,t,⇐,1],DM[t, p],b,e)
14 C[p,t,⇒,0]←merge≤k(C[p,t,⇒,0],dig mult≤k(C[p, r,⇒,1],C[q,t,⇐,1],DM[p,t],b,e)
15 end if
16 end for
17 if r < t andIsLegal(p, r, r,t) then
18 C[p,t,⇐,1]←merge≤k(C[p,t,⇐,1],dig mult≤k(C[p, r,⇐,1],C[r,t,⇐,0],0,b,e)
19 end if
20 if r > p andIsLegal(p, r, r,t) then
21 C[p,t,⇒,1]←merge≤k(C[p,t,⇒,1],dig mult≤k(C[p, r,⇒,0],C[r,t,⇒,1],0,b,e)
22 end if
23 end for
24 end for
25 end for
26 return C[1,n,⇒,1]

will produce

\chanvt \kinvt \kawncn
W

svp

W

dobj

instead of

\chanpper \kinvt \kawncn
�

subj

W

dobj



40

This is because, in Thai, subjects are often omitted that makes the score of which the

first word is transitive verb and also is a root of a sentence isvery high. But if we look

in morphosyntactical context, “\chanvt \kinvt \kawncn” is invalid. (Note thatsvpis for

annotating serial verb modification.)

In order to overcome these problems, we will introduce two more methods

for computing the score of a parse tree: adjusting the score of edges computed and

filtering out invalid trees by applying the DIG and the rescoring sub-trees by using a

Language Model (LM).

In addition, as our parsing algorithm is inspired by Eisner’s algorithm that

allows fork-best extensions, we can also extend our adapted algorithm to compute the

k-best trees. With thek-best extension, if the functionf that computes a new score by

merging two sub-trees is monotonic, the complexity of the parsing algorithm will be

increased by a multiplicative factor,O(k log k) (Huang and Chiang, 2005).

We will present a method that efficiently computes the score of the best

tree for the morphosyntactic lattice, and is a monotonic function. That will increase the

time complexity ofk-best parsing only by a multiplicative factorO(k logk).

The pseudo-code of the complete parsing algorithm is shown in

Algorithm 4. In the algorithm, there are three parts that aredifferent from Algorithm 3.

First, items of tableC are list ofTreeOb jectelements, each containing a tree structure

with its score (line 2-5). Second,dig mult≤k is used to find thek-best trees of all

multiplications between two lists of trees (line 13,14,18,21). Third, we replacemaxwith

merge≤k (line 13,14,18,21). The detail ofdig mult≤k andmerge≤k will be described in

the sections 3.2.2 and 3.2.3 respectively.

3.2.1 The scores of the edges

The score of an edge measures the probability of the dependency

relation established between two words. This score has beenused by many researchers

and can be computed in various ways, for example, by using machine learning



41

Basic features (4 categories, 18 types)
Category Feature Feature type Feature values (Number of values)

number

A

1 lexeme ofxi (head) (40,000)
2 POS ofxi ncn (common noun), vt (transitive verb),... (51)
3 generalized POS ofxi N (noun), V (verb),... (13)
4 lexeme ofyi (dependant) same as feature number 1
5 POS ofyi same as feature number 2
6 generalized POS ofyi same as feature number 3

B
7 distance betweenxi andyi 1,2,3,4,5,[6-10],[11-15],[16-inf) (8)
8 position ofyi referredxi left, right (2)

C

9 POS ofxi−1 same as feature number 2
10 generalized POS ofxi−1 same as feature number 3
11 POS ofxi+1 same as feature number 2
12 generalized POS ofxi+1 same as feature number 3
13 POS ofyi−1 same as feature number 2
14 generalized POS ofyi−1 same as feature number 3
15 POS ofyi+1 same as feature number 2
16 generalized POS ofyi+1 same as feature number 3

D
17 POS betweenxi andyi (51!)
18 generalized POS betweenxi andyi (13!)

Figure 24 Features (basic features)

methods such as Maximum Entropy Models (Uchimotoet al., 1999), Support Vector

Machines (Kudo and Matsumoto, 2000), and MIRA (McDonald, 2006) or conditional

probabilistic models (Eisner, 1996; Jinshanet al., 2004), to estimate the score from

linguistic features of various kinds of the two words.

In our work, we used Maximum Entropy Models for learning the

scores. The features for training the model used here are similar tothe first-order

features used in (McDonald, 2006). But, we added more back-off features by adding

a new tag set which is a POS (part-of-speech) generalization. For example, the seven

tags of noun i.e., ‘NCN’, ‘NCT’,‘NNUM’, ‘NORM’, ‘NPN’, ‘NTI T’, and ‘NLAB’, and

a personal pronoun, ‘PPER’ will be reassigned to ‘N’. The generalized part-of-speech

has 18 different tags. Moreover, we discard 5-gram prefix feature (The 5-gram of a

surface word will used as a feature if the word is longer than 5characters, for instance

the 5-gram feature of “general” is “gener”.) because it is not appropriate for Thai

because Thai is isolating languages and consists of more than 60 characters (excluding

symbolic characters). Therefore it is highly possible thatwords having the same 5-gram

prefix are not related. The model is used to estimate dependency probabilities. These

probabilities will then be used as scores. In the implementation, we take the logarithm

of the probabilities to avoid floating overflow.



42

Combined features (9 categories, 100 types)
Combination type Category Feature set
Bigram features: (A1,A2,B) A1 = {1,2,3,(1,2),(1,3)},A2 = {4,5,6,(4,5),(4,6)},
related to the information of B = {7,8,ε}
head and the information of
its dependent
Surround features: ({2},{5},C1,C2,B) C1 = {9,11},C2 = {13,15}
related to the POS surrounding ({3},{6},C3,C4,B) C3 = {10,12},C4 = {14,16}
head and its dependent
In Between POS features: ({2},{5},D1,B) D1 = {17}
the POS features for all the ({3},{6},D2,B) D2 = {18}
words in-between the head
and its dependent

Figure 25 Features (combined features)

The features used in this work are listed in Figures 24 and 25.

We use the Maximum Entropy Modeling Toolkit for Python (http:

//www.homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html)

for implementing the computing score model. The model is a two-class classifier,

deciding whether a pair of words should have a dependency relation or not. In this

work, we focus primarily on unlabeled dependencies, but themodel can be extended to

assign grammatical functions to the dependency structure by using a single-stage (joint

labeling) or two-stage method (see (McDonald, 2006) for more detail).

3.2.2 Adjusting the score of edges and filtering out invalid trees

Since our corpus is small (resource-poor languages), the use of the

scores of edges mentioned above is not enough. Hence, we propose the use of DIG

for adjusting the scores. We adjust the scores of edges by checking whether the tree

satisfies a given DIG. If it does not, the score of the edge usedto build the tree is

decreased and if the number of unsatisfactoriness is greater than a constantb, the tree

will be filtered out. In order to filter out the invalid tree, webuild larger subtrees and

derive their corresponding elementary trees as the same time. If the elementary trees

cannot be derived, we will adjust the score of the built dependency trees. The score will

be decreased by a positive constante if the insertion of two smaller elementary trees

fails. An example of adjusting the score of edges is shown in Fig. 26.

Figure 26 gives an example of computing the score of a new subtree



43

Figure 26 An example of adjusting the scores of edges by using DIG for “Irun fast”.

where there are two possibilities to build a new subtree fromT[1− 2] andT[3− 3]:

connecting “I” to “fast” and “run” to “fast” (see 26a). But, the insertion between their

elementary trees satisfies only the connection from “run” to“fast” (as 26b), hence the

score of the tree constructed from connecting “fast” to “I” is decreased by the constant

e (as 26c), while the score of connecting “fast” to “run” is computed normally (as 26d).

If all possible elementary trees corresponding to each substring are

kept, the time complexity of the parsing algorithm will beO(gnn3), whereg is the

maximal number of corresponding elementary trees per a smallest substring (a word).

In fact, we do not need to keep all possible complete elementary trees. We can keep

only the status of the elementary trees corresponding to each word, since the parsing

algorithm considers only building dependency relation between two words.

In fact, when the insertion is performed, only the category and

relative position of the elementary tree of the inserted tree are considered. Consider

again Figure 26b. It shows that the insertion of “I” and “run”into elementary trees

correspond to “fast”. We do not need to know the elementary trees of “I run”. We

consider only what the elementary trees of “fast” are waiting for (in this case “fast” is

waiting for “V”). Therefore, the time complexity becomesO(gn3).

The operation of adjusting the scores of edges and filtering out the

invalid trees are embedded into the operationdig mult≤k (see Algorithm 5) i.e. the



44

modified version ofmult≤k (Huang and Chiang, 2005), the multiplication operation

that produces thek best trees of all multiplications between two lists of trees. The time

complexity of the operationmult≤k is O(k logk).

Algorithm 5 dig mult≤k(C1,C2,score,b,e)

Input: C1 andC2 are two lists ofTreeOb jects,k > 0,
score≥ 0, b≥ 0, ande> 0

Output: a list ofTreeOb jects
1 results← [ ]
2 for all t1,t2 in mult≤k(C1,C2) do
3 if badness(t1,t2)≤ b then
4 tree← combine(t1,t2)
5 if checkdig(t1,t2) then
6 tree.score← t1.score+ t2.score+score−e
7 else
8 tree.score← t1.score+ t2.score+score
9 end if

10 results.append(tree)
11 end if
12 end for
13 return results

In Algorithm 5, thebadness(t1, t2) function returns the number of

dependencies that do not satisfy the DIG ift1 andt2 are combined, andcheckdig(t1, t2)

returnstrue if combination oft1 andt2 is satisfied by DIG, otherwisef alse. Finally,

combine(t1, t2) returns a new sub-tree which is a combination oft1 andt2. Thebconstant

is used for limiting the value “badness” (the number of dependencies not satisfying

DIG) that is allowed to occur in the parse trees. Theb will be increased dynamically by

one if any parse tree cannot be generated.

By adding the operation of adjusting the score of edges and filtering

out invalid trees processes into thek-best parsing, the multiplicative factor is still

O(k logk). However, the best sub-tree is no longer optimal because thepenalty will

be only applied to thek-best sub-trees in each step, so that it is possible that another

sub-tree that is not penalized will have a higher score than asub-tree in thek-best list

which is penalized. Therefore, the value ofk has an effect on the parsing accuracy: if

we increasek, the search space of finding the best sub-trees is also increased. Even

though this method does not guarantee the optimum solution,the parsing accuracy can

be improved with a smallk (see chapter Experiments for the detail of the experiments).



45

3.2.3 Rescoring sub-trees by using a language model

Rescoring sub-trees by using a LM is very important for finding the

best parse tree from all possible segmented words and part-of-speech tagged sentences,

since the use of the score of dependencies does not guaranteethat the tree with the

highest score will correspond to the best word segmentationand best part-of-speech

tagging of the sentence (as mentioned in section 3.2). We usea LM to help the parser

select a good parse tree which is also a good morphosyntactically analyzed text. Here,

we use a trigram model on the part-of-speech as our the LM.

P(t1,n) =
n

∏
i=1

P(ti|wi)P(ti−2, tt−1|ti) (4)

whereti andwi are part-of-speech and word at positioni in a given sentence respectively.

n is the length of the sentence.

In this work, we use the trigram model because it is fast, simple

and easy to implement. Other methods could also give us a reasonable score

of morphosyntactic analyzed input, such as Conditional Random Fields, that are

theoretically better than the trigram model, but more complex to implement.

Table 1 The ambiguity of the training corpus for LM

ambiguity words tokens
1 16,262 (88.40%) 239,810 (43.73%)
2 1,789 (9.73%) 144,429 (26.34%)
3 270 (1.47%) 94,036 (17.15%)
4 56 (0.30%) 28,241 (5.15%)
5 14 (0.08%) 19,919 (3.63%)
6 5 (0.03%) 21,996 (4.01%)

The trigram model was trained on 40,494 part-of-speech tagged

sentences containing 49 tags, 18,396 words and 548,431 tokens. Table 1 shows the

detail of the training corpus related to the part-of-speechambiguity that we found.

The accuracy of the word segmenter and of the part-of-speech



46

tagger by using the trigram model is about 95% and 90% respectively.

Algorithm 6 merge≤k(C1,C2)

Input: C1 andC2 are two lists ofTreeOb jects andk > 0.
Output: a list ofTreeOb jects
1 R← [ ]
2 L1← rescoreby lang model(C1)
3 L2← rescoreby lang model(C2)
4 while len(L1) > 0 andlen(L2) > 0 andlen(R) < k do
5 if L1. f irst ≥ L2. f irst then
6 R.append(L1. f irst)
7 L1.remove(L1. f irst)
8 else
9 R.append(L2. f irst)

10 L2.remove(L2. f irst)
11 end if
12 end while
13 while len(L1) > 0 andlen(R) < k do
14 R.append(L1. f irst)
15 L1.remove(L1. f irst)
16 end while
17 while len(L2) > 0 andlen(R) < k do
18 R.append(L2. f irst)
19 L2.remove(L2. f irst)
20 end while
21 return rescoreby edgesscore(R)

We added a rescoring process into the functionmerge≤k, which

takes two sorted lists of lengthk (or fewer) as input, and outputs the topk in sorted order

of the 2k elements. For parsing a single input, the elements (sub-trees) are sorted by the

score of edges, but here, for parsing a morphosyntactic lattice, the elements are sorted

by the score of LM instead. This can be done inO(k logk) then the overall multiplicative

factor (dig mult≤k and merge≤k operations) is stillO(k logk). The pseudo-code is

shown in Algorithm 6.

In fact, the rescoring process can be added into the final parse trees,

but we may have to setk extremely high in order to find the true best parsing (taking

the LM into account).



47

RESULTS AND DISCUSSION

Results

1. Evaluation Methods

To evaluate our methods, we set up three experiments. In the first, we assume

that inputs are correctly word segmented and part-of-speech tagged. In this experiment,

we can directly compare our method to the others. In the second experiment, we will not

assume that the inputs are perfect, but we will convert the inputs into morphosyntactic

lattices to test our method. For the others, the inputs will be analyzed by the existing

morphosyntactic tools. Finally, we study the oracle parse (Shen, 2006), or the best parse

among the topk parses in order to measure the performance of thek-best parsing.

For the experiments, we used 716 sentences of the NAiST treebank for training

and 100 other sentences for testing. We measured DependencyPrecision (DP),

Complete Rate (CR) and Root Accuracy (RA) to evaluate the parsing results. We

measured only the correctness of the dependency structures, without considering the

grammatical functions.

DP =
number of correct dependencies

total number of reference dependencies

CR =
number of complete parse trees

total number of sentences

RA =
number of correct root nodes

total number of sentences

In the second and third experiments, we also measured the correctness of the

morphosyntactic analysis. We used Token Precision (TP), Token Recall (TR), and

Token F-measure (TF).



48

TP =
number of correct tokens

total number of reference tokens

TR =
number of correct tokens

total number of hypothesis tokens

TF =
2×TP×TR

TP+TR

Here, the number of correct tokens means the number of the tokens that are correctly

word-segmented and part-of-speech tagged.

2. Extracted elementary trees

The extended forms of elementary trees were extracted from the training corpus,

716 sentences, there are 8,172 tokens, of which 1,996 are type-I, 4,342 are type-II and

1,834 are type-III.

In the elementary trees extracted using the algorithm described in section 2.3,

there are 981 different types of elementary trees (175, 400 and 406 for Type-I, Type-

II and Type-III, respectively), and 497 of them appear only once. Some of these

elementary trees are abnormal structures, especially those of low number of occurrences

in the corpus.

Obviously, the extracted elementary trees do not cover all the words. Therefore,

if the lexicalized elementary trees (the head is a lexicon with its part-of-speech) can

not be found, the unlexicalized elementary trees (the head is a part-of-speech) will be

matched instead. Specifically, the unlexicalized elementary trees which have a high

number of occurrences in the corpus (> 3) will be used in order to avoid using noisy

elementary trees.

3. Parsing with perfect inputs

Although parsing with perfect inputs are not the main focus of this work,

observing the accuracy of parsing with a perfect input can help investigate the

performance of combining DIG with a data-driven parsing method, and also with



49

other parsers. Here, we use the MSTparser (http://sourceforge.net/projects/

mstparser), a statistical dependency parser freely available on the web. The

MSTparser was trained with the parametersk = 5 and N = 10, as reported

in (McDonald, 2006) yielding a good accuracy and training the model in reasonable

time.

For our parsing algorithm, there are three parameters whichcan affect the

performance i.e.k, e, andb. Therefore, we set up another experiment for observing

the effect of these parameters by letting them vary.

Having experimented, we found that increasingk does not improve the accuracy.

Moreover, the accuracy dropped at some higherk. The idea of usingb does not seem to

work in this case, because the accuracy improves ifb is disabled (set to∞). Thee that

can improve the accuracy from the baseline (e= 0 andb = ∞) is 0< e≤ 2.

From the experiments, we should prioritize the score of edges computed from

a data-driven model rather than weighting the score by DIG for parsing with perfect

inputs.

Table 2 Results comparing our systems with MSTparser where the input is perfect
(for MAXDIG, we setk = 1, b = ∞ ande= 2).

DP CR RA
MAX (baseline) 86.03 21.00 90.00
MSTpro j 83.40 15.00 94.00
MAXDIG 88.66 27.00 92.00

Results of parsing with perfect inputs are shown in Table 2. We use subscript

DIG to denote the use of DIG whileMAX represents our learning model i.e. Maximum

Entropy Models andMSTpro j is MSTparser using projective parsing algorithm for

training the model.

For overall performance,MAXDIG is the best one. It confirms that the use of the

DIG can improve the parsing accuracy of a data-driven parsing model. The accuracy



50

of MSTpro j is lower than the baseline, even if MSTparser uses the learning model,

MIRA (Crammeret al., 2006), that is theoretically better than the model used in the

baseline. We think that this is due to the 5-gram prefix features used in MSTParser that

does not make sense for Thai, and the simplified part-of-speech features that was added

into the baseline model. Also, we see that the better performance of MIRA via the root

accuracy ofMSTpro j is higher than the others, because MIRA learns the scores of edges

by using a whole dependency tree rather than each pair of dependency nodes.

4. Parsing with morphosyntactic lattices

In this experiment, we created a morphosyntactic lattice bymapping a dictionary

using a dynamic backtracking algorithm (Thumkanon, 2001),and generating all

possible word segmentations and part-of-speech tagging results. Here, we assume

there is no unknown word in the input text, in order to assure that there is a correct

homophrasein the lattice. For the other methods that cannot take the lattice structure

as input, we used input texts that were morphosyntacticallyanalyzed by the analyzer

instead. We used the trigram model trained by the same corpusthat was used in the LM

rescoring process.

Like in the previous experiment, we also observe the effect of varying the

parameters. As we expected, the result is the opposite to those obtained in the

experiment with perfect inputs. The parsing accuracy improved whenk increased and

was stable whenk≥ 10 (k varied from 1 to 20). The accuracy is highest whenb = 0

and 4≤ e≤ 5.

The experiment shows that we can trust the use of DIG more thanin the score

computed by the learning model, unlike in the previous experiment, because when the

input is a lattice, the effect of the independence assumption is more evident, and many

invalid dependencies are produced. Hence, the use of DIG plays an important role in

this experiment.

Table 3 compares the results. We use the superscript∗ to indicate methods

taking a lattice as input, and superscriptd to indicate that the input is a dubiously



51

Table 3 Results comparing our systems with the MSTparser where the input is the
lattice or the text analyzed by the morphosyntactic analyzer (for MAX∗DIG
andMAX∗DIG-LM, we setk = 10,b = 0 ande= 5).

DP CR RA
MAXd (baseline) 68.01 4.00 75.00
MAXd

DIG 68.39 5.00 77.00
MSTd

pro j 65.99 4.00 78.00
MAX∗ 66.42 4.00 76.00
MAX∗DIG 68.39 4.00 79.00
MAX∗LM 73.43 5.00 79.00
MAX∗DIG-LM 74.32 6.00 81.00

disambiguated string. We also used subscript theLM to indicate the use of a language

model for rescoring.

TheMAX∗DIG-LM method is the best one, and its accuracy is far better than that of

the parsers used on inputs produced by the used morphosyntatical analyzer. Moreover,

the accuracy of morphosyntactic analysis of the results is also improved, as shown in

Table 4.

Table 4 Results comparing the accuracy of morphosyntactic analysis

TR TP TF
trigram model 88.64 87.34 87.99
MAX∗ 87.12 88.08 87.59
MAX∗DIG 88.11 88.88 88.49
MAX∗LM 92.86 93.27 93.06
MAX∗DIG-LM 93.15 93.49 93.32

The MAX∗ method is the worst: the accuracy of parse trees and the accuracy

of morphosyntactic analysis are lower than the baseline. That is similar to the

MAX∗DIG method, which shows that using only the DIG can slightly improve the parse

accuracy only, but does not improve the morphosyntactic analysis, because the score

of morphosyntactic analysis is not taken into account. The use of DIG can improve

the parsing accuracy, but it is not enough. By contrast,MAX∗LM uses only the LM but



52

obviously improves the accuracy of morphosyntactic analysis and that of the parse trees.

The results show that if we perform morphosyntatic analysisand syntactic

analysis simultaneously by using their information to helpeach other (here we use

the score of morphosyntactic analysis to rescore the parse trees), the accuracy of

that combination is better than that of the usual sequence (morphosyntactic analysis

followed by syntactic analysis).

Table 5 Speed of parsing with morphosyntactic lattices.

num. of words num. of nodes num. of all paths execution time (sec)
1-5 7.39 15.42 0.17020
6-10 15.17 518.87 2.5216
11-15 23.55 7,418.24 9.1375
16-20 30.89 488,910.57 30.6499
21-25 39.58 6,063,285.00 93.3398
26-30 47.25 54,095,126.00 328.7566

Table 5 shows speed of parsing comparing to number of words, number of nodes

and number of paths in the input lattices. The results shows that the speed of our parsing

model depends on the number of nodes (in order ofO(n3)) in a input lattice as we

mentioned before.

5. K-best parsing

The next experiment is onk-best parsing. We use the same algorithm with the

best parameter settings (b = 0 ande= 5) as in the previous section, and we also study

the oracle parse, or the best parse, among the top 10 parses. The result is shown in

Table 6. Note that the MSTparser which we used cannot producethek best parse trees,

hence no result is given for it.

For the oracle parse, theMAX∗DIG method becomes the best one. In addition, if

we increasek to 100,MAX∗ also outperformsMAX∗LM andMAX∗DIG-LM. It shows that

the models using a LM for rescoring worse in the oracle parse.



53

Table 6 The accuracy of oracle parse in the 10-best parses

DP CR RA
MAXd 72.44 7.00 89.00
MAXd

DIG 73.03 9.00 90.00
MAX∗ 74.43 12.00 84.00
MAX∗DIG 78.02 13.00 93.00
MAX∗LM 76.03 11.00 84.00
MAX∗DIG-LM 76.42 11.00 84.00

Figure 27 DP of thek-best oracle on the test data

We notice that the methods using a LM for rescoring produce a lot of parse trees

having duplicated patterns of morphosyntactic analysis. This is because the rescoring

by the LM method lets the parsing process consider the score of LM first and the score

of dependencies later. In other words, the text of highest score of LM is first selected and

as many corresponding parse trees as possible will be generated. It leads to imbalanced

decision-making by the parser, that too much emphasizes thescore of LM. This problem

occurs only in thek-best parsing, it does not affect the best parsing. Therefore, the

rescoring method should not be used ink-best parsing.

Figures 27 and 28 show the DP and the TF of the oracle onk-best parsing where



54

k is 10, 20, 30, 50 and 100.

Figure 28 TF of thek-best oracle on the test data

The DP and the TF of oracle in 100-best parsing with theMAX∗DIG method are

81.21% and 95.18%, respectively, and both tend to continuously increase ifk increases

even more. That is similar to other methods for which the input is a morphosyntactic

lattice. Unlike the methods where the input is a dubiously disambiguated string, the DP

of oracle tends to improve at first, but slightly increases whenk increases even more and

becomes saturated whenk≥ 50: the accuracy of the morphosyntactic analysis cannot

improve anymore. In other words, the parsing accuracy is first limited by the accuracy

of morphosyntactic analysis of the input. Conversely, if weincreasek when inputs are

morphosyntactic lattices, the search space for finding boththe best morphosyntactic

analysis and the best parse tree is enlarged. Hence, the chance to find a best parse tree

amongk-parse trees is higher than when the inputs are dubiously disambiguated strings.

Clearly, the use of a morphosyntactic lattice as input, in case of thek-best

parsing, significantly and decisively improves the accuracy (relative to the oracle parse)

of the morphosyntactic analysis and the parsing process.



55

Discussion

The limitation of the proposed parser caused by three types of input.

Noun-phrase with multiple nouns: If a subject or an object ofa sentence is

modified by nouns, the parser would select the wrong subject or object. The modifier is

usually selected instead of the true subject or object.

Relative pronoun omission: In Thai, relative pronouns, clue words for indicating

relative clauses, are usually omitted. The parser will select the root incorrectly by

promoting the verb of the relative clause instead of selecting the verb of the main clause.

Spoken language: In the spoken language, some constituentsof sentences are

omitted such as subject, object and main verb. The errors will occur if the main verb, the

root, is omitted. However, the parser can handle the sentences that subject and object

are omitted.



56

CONCLUSION AND RECOMMENDATION

Conclusion

Syntactic parsers are very important for development of NLPapplications such

as machine translation, information extraction, text summarization, etc. In this work, we

built a dependency parser that suits to under-resourced languages (no huge treebank and

no good morphosyntactic analyzer), hence we proposed a dependency parsing method

for languages without reliable morphosyntactic analysis tools. For this, we represent

the input as a morphosyntactic lattice structure, and applyan adaptation of Eisner’s

algorithm to find projective dependency trees. From the experimental results, our

method performs better than the results working on dubiously disambiguated strings.

In addition, we also show the use of Dependency Insertion Grammar (DIG) to adjust

the scores computed by the statistical parsing models, and the rescore of the parse trees

by the LM, and ak-best extension of the parser.

The results show that our methods can significantly improve the parsing

accuracy. The highest parsing accuracy (DP) reported in this paper is 74.32% which

is 6.31% improvement compared to the models taking as inputsthe results of unreliable

morphosyntactic analysis tools. Even if the obtained accuracy is not enough for high-

level NLP applications such as MT, Information Extraction and Text Summarization, it

is still useful for a corpus preparing process that requestsa parser which can produce

reasonablek-best parse trees in order to let annotators start from the best tree among

k-best trees rather than from a doubtful parse tree.

This work is the first step of development of a dependency parser for under-

resourced languages. There are many opened problems which the solution could

improve the parsing models in the future. For instance, the proper combination of the

morphosyntactic process and the syntactic process can improve the performance of each

other and the use of linguistic knowledge can improve the data-driven parsing model.



57

Recommendation

1. Language Independent

Although we proposed a dependency parsing method for Thai, the proposed

method can be applied to other languages with a little effort. Before applying our

parsing method to a new language, we need at least one method to classify between

the complement and the adjunct dependencies in order to be able to extract elementary

trees.

In addition, tuning of feature selection for the learning model is also necessary,

because each language has its own specific behavior. If a proper feature space

is selected, the parsing accuracy can be significantly improved as shown in our

experiments: the less performance learning method beats upthe better one which the

proper feature space is obtained.

2. Components

The parsing system in this study is based on the algorithm (Algorithm 4) that

can effectively decode the highest score projective dependency tree among all weighted

dependencies established in the lattice structure. Therefore, the parsing accuracy of the

system depends on a method used for computing the score (weight) of the dependencies.

In this work, The proposed method for computing the score consists of three processes

and each process works independently of each other. Hence, each process can be

substituted by others that works in the same manner.

The first process is the computing the score of edges (dependencies) by using

machine learning model. Here, Maximum Entropy Models is used. It can be replaced

by any learning methods that can also produce the reasonablescore such as MIRA,

Support Vector Machine, etc.

The second process is the adjusting the score and filtering out the invalid parse

trees. In this report, we proposed the use of DIG. In fact, other methods that can



58

linguistically validate parse trees can be used in place or one may try to use other

grammars instead of the DIG.

The last process is the rescoring parse trees by using LM. Thetrigram model

based on part-of-speech is used to represent the LM. Essentially, there are methods that

can also be used for represent the LM, i.e. Conditional Random Fields.

It is believed the parsing accuracy can be further improved and it depends on

the methods used in each process.



59

LITERATURE CITED

Alshawi, H.. 1996. Head Automata and Bilingual Tiling: Translation with Minimal

Representations, pp. 167–176.In Proceedings of the 34th Annual Meeting of

the Association for Computational Linguistics (ACL ’96).

Boitet, C. and Y. Zaharin. 1988. Representation Trees And String-Tree

Correspondences, pp. 59–64.In Proceedings of the 4th international

conference on Computational Linguistics (COLING 1988). Budapest,

Hungary.

Chu, Y. J. and T. H. Liu. 1965. On the shortest arborescence ofa directed graph.

Science Sinica. 14:1396–1400.

Clark, S. and J. Curran. 2004. Parsing the WSJ using CCG and log-linear models, p.

103.In Proceedings of the 42nd Annual Meeting on Association for

Computational Linguistics. Barcelona, Spain.

Clark, S., J. Hockenmaier and M. Steedman. 2001. Building deep dependency

structures with a wide-coverage CCG parser, pp. 327–334.In Proceedings of

the 40th Annual Meeting on Association for Computational Linguistics

(ACL ’02) . Philadelphia, Pennsylvania.

Collins, C., B. Carpenter and G. Penn. 2004. Head-driven parsing for word lattices, p.

231.In Proceedings of the 42nd Annual Meeting on Association for

Computational Linguistics. Barcelona, Spain.

Collins, M.. 1997. Three generative, lexicalised models for statistical parsing, pp.

16–23.In Proceedings of the 35th Annual Meeting of the Association for

Computational Linguistics and Eighth Conference of the European

Chapter of the Association for Computational Linguistics. Madrid, Spain.

Collins, M.. 1999.Head-driven statistical models for natural language parsing.

Ph.D. thesis. Computer and Information Science, University of Pennsylvania.



60

Collins, M., L. Ramshaw, J. Hajič and C. Tillmann. 1999. A statistical parser for

Czech, pp. 505–512.In Proceedings of the 37th annual meeting of the

Association for Computational Linguistics on Computational Linguistics.

College Park, Maryland.

Covington, M.. 1984.Syntactic theory in the High Middle Ages: Modistic models

of sentence structure. Cambridge University Press.

Crammer, K., O. Dekel, J. Keshat and S. Shalev-Shwartz. 2006. Online

Passive-aggressive algorithms.Journal of Machine Learning Research.

7:551–585.

Ding, Y. and M. Palmer. 2004. Synchronous Dependency Insertion Grammars: A

Grammar Formalism for Syntax-Based Statistical MT.In Proceedings of the

workshop on Recent Advances in Dependency Grammars, The 20th

International Conference on Computational Linguistics (COLING 2004).

Geneva, Switzerland.

Ding, Y. and M. Palmer. 2005. Machine translation using probabilistic synchronous

dependency insertion grammars, pp. 541–548.In Proceedings of the 43rd

Annual Meeting on Association for Computational Linguistics (ACL-05).

Association for Computational Linguistics, Ann Arbor, Michigan.

Duchier, D.. 2000. Constraint Programming For Natural Language Processing.In

Lecture Notes, ESSLLI 2000.

Edmonds, J.. 1967. Optimum Branchings.Journal of Research of the National

Bureau of Standards. 71B:233–240.

Eisner, J.. 1996. Three New Probabilistic Models for Dependency Parsing: An

Exploration, pp. 340–345.In Proceedings of the 16th International

Conference on Computational Linguistics (COLING-96). Copenhagen.

Eisner, J.. 2000. Bilexical Grammars and Their Cubic-Time Parsing Algorithms.In

H. Bunt and A. Nijholt, eds.,Advances in Probabilistic and Other Parsing

Technologies. pp. 29–62. Kluwer Academic Publishers.



61

Gagnon, M. and L. D. Sylva. 2005. Text Summarization by Sentence Extraction and

Syntactic Pruning.In Proceedings of the 3rd Computational Linguistics in

the North East (CliNE-05). Université du Québec en Outaouais, Gatineau,

Canada.

Gaifman, H.. 1965. Dependency Systems and Phrase-Structure Systems.Information

and Control. 8(3):304–337.

Hajič, J., A. Böhmová, E. Hajičová and B. Vidová-Hladká. 2000. The Prague

Dependency Treebank: A Three-Level Annotation Scenario.In A. Abeillé, ed.,

Treebanks: Building and Using Parsed Corpora. pp. 103–127. Amsterdam:

Kluwer Academic.

Harper, M. and R. Helzerman. 1995. Extensions to constraintdependency parsing for

spoken language processing.Computer Speech and Language. 9:187–234.

Harper, M., L. Jamieson, C. Zoltowski and R. Helzerman. 1993. Semantics and

Constraint Parsing of Word Graphs, pp. 63–66.In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing.

Minneapolis, Minnesota.

Hays, D.. 1964. Dependency Theory: a Formalism and Some Observations.

Language. 40(4):511–525.

Heinecke, J., J. Kunze, W. Menzel and I. Schröder. 1998. Eliminative parsing with

graded constraints, pp. 526–530.In Proceedings of the 36th Annual Meeting

of the Association for Computational Linguistics and 17th International

Conference on Computational Linguistics. Montreal, Quebec, Canada.

Hellwig, P.. 1986. Dependency Unification Grammar, pp. 195–198.In Proceedings of

the 11th coference on Computational linguistics. Bonn, Germany.

Huang, L. and D. Chiang. 2005. Better k-best parsing.In Proceedings of the

International Workshop on Parsing Technologies (IWPT). Vancouver, B.C.,

Canada.

Hudson, R.. 1990.English Word Grammar . Blackwell.



62

Hwa, R., P. Resnik, A. Weinberg, C. Cabezas and O. Kolak. 2005. Bootstrapping

parsers via syntactic projection across parallel texts.Natural Language

Engineering. 11(3):311–325.

Jinshan, M., Z. Yu, L. Ting and L. Sheng. 2004. A Statistical Dependency Parser of

Chinese under Small Training Data.In Proceedings of the 1st International

Joint Conference on Natural Language Processing (IJCNLP). Sanya City,

Hainan Island, China.

Joshi, A. and O. Rambow. 2003. A Formalism for Dependency Grammar Based on

Tree Adjoining Grammar.In Proceedings of the Conference on

Meaning-Text Theory. Paris, France.

Joshi, A. and Y. Schabes. 1997. Tree-Adjoining Grammars.In Handbook of Formal

Languages, vol. 3. pp. 69–124. Springer, Berlin, New York.

Karlsson, F.. 1990. Constraint grammar as a framework for parsing running text, pp.

168–173.In Proceedings of the 13th conference on Computational

linguistics. Helsinki, Finland.

Kim, J. J. and J. C. Park. 2004. Annotation of Gene Products inthe Literature with

Gene Ontology Terms Using Syntactic Dependencies, pp. 528–534.In

Proceedings of the 1st International Joint Conference on Natural

Language Processing (IJCNLP). Sanya City, Hainan Island, China.

Kudo, T. and Y. Matsumoto. 2000. Japanese Dependency Structure Analysis Based on

Support Vector Machines, pp. 18–25.In Proceedings of the Joint SIGDAT

conference on Empirical Methods in Natural Language Processing and

Very Large Corpora (EMNLP/VLC-2000) . Hong Kong.

Maruyama, H.. 1990. Structural disambiguation with constraint propagation, pp.

31–38.In Proceedings of the 28th annual meeting on Association for

Computational Linguistics. Association for Computational Linguistics,

Pittsburgh, Pennsylvania, USA.



63

McDonald, R.. 2006.Discriminative Training and Spanning Tree Algorithms for

Dependency Parsing. Ph.D. thesis. Computer and Information Science,

University of Pennsylvania.

McDonald, R. and J. Nivre. 2007. Characterizing the Errors of Data-Driven

Dependency Parsing Models.In Proceedings of Conference on Empirical

Methods in Natural Language Processing and Natural Language Learning

(EMNLP-CoNLL) . Prague, Czech Republic.

Mel’čuk, I.. 1988.Dependency Syntax: Theory and Practice. The SUNY Press.

Milward, D.. 1994. Dynamic dependency grammar.Linguistics and Philosophy.

17:561–605.

Nivre, J.. 2005. Dependency Grammar and Dependency Parsing. MSI report 05133.

School of Mathematics and Systems Engineering, Växjö University.

Nivre, J., J. Hall and J. Nilsson. 2004. Memory-Based Dependency Parsing, pp.

49–56.In Proceedings of the 8th Conference on Computational Natural

Language Learning (CoNLL-2004). Boston, Massachusetts, USA.

Nivre, J. and M. Scholz. 2004. Deterministic dependency parsing of English text,

p. 64.In Proceedings of the 20th international conference on

Computational Linguistics (COLING ’04) . Geneva, Switzerland.

Ratnaparkhi, A.. 1999. Learning to Parse Natural Language with Maximum Entropy

Models.Machine Learning. 34(1-3):151–175.

Sgall, P., E. Hajicová and J. Panevová. 1986.The Meaning of the Sentence in its

Semantic and Pragmatic Aspects. Springer. 1st edn.

Shen, L.. 2006.Statistical LTAG Parsing. Ph.D. thesis. Computer and Information

Science, University of Pennsylvania.

Shen, L. and A. K. Joshi. 2005. Incremental LTAG parsing, pp.811–818.In

Proceedings of the conference on Human Language Technologyand

Empirical Methods in Natural Language Processing. Vancouver, B.C.,

Canada.



64

Sleator, D. and D. Temperly. 1991. Parsing English with a link grammar, pp. 277–292.

In Proceedings of the third International Workshop on Parsing

Technologies (IWPT).

Sudprasert, S., A. Kawtrakul, C. Boitet and V. Berment. 2009. Dependency Parsing

with Lattice Structures for Resource-Poor Languages.IEICE Transactions on

Information and Systems. E92-D(10):2122–2136.

Tapanainen, P. and T. Järvinen. 1997. A non-projective dependency parser, pp. 64–71.

In Proceedings of the 5th Conference on Applied Natural Language

Processing. Association for Computational Linguistics, Washington,D.C.

Tesnière, L.. 1959.́Eléments de syntaxe structurale. Editions Klincksieck, Paris.

Thumkanon, C.. 2001.A Statistical Model for Thai Morphological Analysis .

Master’s thesis. Computer Engineering, Kasetsart University.

Tomita, M.. 1986. An Efficient Word Lattice Parsing Algorithm for Continuous

Speech Recognition.In Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing. Tokyo, Japan.

Uchimoto, K., S. Sekine and H. Isahara. 1999. Japanese dependency structure analysis

based on maximum entropy models, pp. 196–203.In Proceedings of the 9th

conference on European chapter of the Association for Computational

Linguistics. Association for Computational Linguistics, Bergen, Norway.

Vijay-Shankar, K. and A. Joshi. 1985. Some computational properties of Tree

Adjoining Grammars, pp. 82–93.In Proceedings of the 23rd annual meeting

on Association for Computational Linguistics. Association for

Computational Linguistics, Morristown, NJ, USA.

Wacharamanotham, C., M. Suktarachan and A. Kawtrakul. 2007. The Development of

Web-based Annotation System for Thai.In Proceedings of the 7th

International Symposium on Natural Language Processing. Pattaya,

Chonburi, Thailand.



65

Wang, W. and M. Harper. 2004. A Statistical Constraint Dependency Grammar (CDG)

Parser, pp. 42–49.In Proceedings of the ACL Workshop Incremental

Parsing: Bringing Engineering and Cognition Together. Association for

Computational Linguistics, Barcelona, Spain.

Xia, F.. 1999. Extracting Tree Adjoining Grammars from Bracketed Corpora.In the

5th Natural Language Processing Pacific Rim Symposium (NLPRS-99).

Beijing, China.

Yakushiji, A., Y. Miyao, Y. Tateisi and J. Tsuji. 2005. Biomedical Information

Extraction with Predicate-Argument Structure Patterns, pp. 60–69.In

Proceedings of the First International Symposium on Semantic Mining in

Biomedicine. Hinxton, Cambridgeshire, UK.

Yamada, H. and Y. Matsumoto. 2003. Statistical Dependency Analysis With Support

Vector Machines, pp. 195–206.In Proceedings of the 8th International

Workshop on Parsing Technologies. Nancy, France.



66

APPENDICES



67

Appendix A

Part-of-speech



68

Noun

1. proper noun (npn)

2. cardinal number (nnum)

3. ordinal number marker (norm)

4. label noun (nlab)

5. common noun (ncn)

6. collective noun (nct)

7. title noun (ntit)

Pronoun

1. personal pronoun (pper)

2. demonstrative pronoun (pden)

3. indefinite pronoun (pind)

4. possessive pronoun (ppos)

5. reflexive pronoun (prfx)

6. reciprocal pronoun (prec)

7. relative pronoun (prel)

8. interrogative pronoun (pint)

Verb

1. intransitive verb (vi)



69

2. transitive verb (vt)

3. causative verb (vcau)

4. complementary state verb (vcs)

5. existential verb (vex)

6. pre-verb (prev)

7. post-verb (vpost)

8. honorific marker (honm)

Determiner

1. determiner (det)

2. indefinite determiner (indet)

Adjective

1. adjective (adj)

Adverb

1. adverb (adv)

2. adverb marker 1 (adm1)

3. adverb marker 2 (adm2)

4. adverb marker 3 (adm3)

5. adverb marker 4 (adm4)

6. adverb marker 5 (adm5)



70

Classifier

1. classifier (cl)

Conjection

1. conjection (conj)

2. double conjection (conjd)

3. noun clause conjection (conjncl)

Preposition

1. preposition (prep)

2. co-preposition (prepc)

Interjection

1. interjection (int)

Prefix

1. Prefix 1 (pref1)

2. Prefix 2 (pref2)

3. Prefix 3 (pref3)

Particle



71

1. affirmative (aff)

2. particle (part)

Negative

1. negative (neg)

Punctuation

1. punctuation (punc)

Idiom

1. idiom (idm)

Passive Voice Marker

1. passive voice marker (psm)

Symbol

1. symbol (sym)



72

Appendix B

Grammatical Functions



73

We classify Thai grammartical functions into two main groups i.e. complements

and adjuncts. There are 12 complements and 17 adjuncts.

Complements

1. subject (subj)

2. clausal subject (csubj)

3. direct object (dobj)

4. indirect object (iobj)

5. prepositional object (pobj)

6. prepositional complement (pcomp)

7. subject or object predicative (pred)

8. clausal predicative (cpred)

9. conjunction (conj)

10. subordinating conjunction (sconj)

11. nominalizer (nom)

12. adverbalizer (advm)

Adjuncts

1. parenthetical modifier (modp)

2. restrictive modifier (modr)

3. mood modifier (modm)

4. aspect modifier (moda)

5. locative modifier (modl)



74

6. parenthetical apposition (appa)

7. restrictive apposition (appr)

8. relative clause modification (rel)

9. determiner (det)

10. quantifier (quan)

11. classifier (cl)

12. coordination (coord)

13. negation (neg)

14. punctuation (punc)

15. double preposition (dprep)

16. parallel serial verb (svp)

17. sequence serial verb (svs)



75

Appendix C

Extracted Elementary Trees from NAIST Treebank



76

Appendix Figure C1 Top 5 of the most occurrence relaxed elementry trees of
transitive verb (vt)

Appendix Figure C2 Top 5 of the most occurrence relaxed elementry trees of
intransitive verb (vi)

Appendix Figure C3 Top 5 of the most occurrence relaxed elementry trees of
preposition (prep)



77

Appendix D

K-best Parsing Results



78

Input: “\mare(mother)\kuay(buffalo)\liang(take care)\look(kid) \keng(well)”

Output: 5-best unlabeled parse trees

1. score=2.863449

ROOT \maencn \khwaincn\liengvt \lukncn \kengadv
W W W W W

2. score=2.760695

ROOT \maencn \khwaincn\liengvt \lukncn \kengvi
W W W W W

3. score=-0.622163 (correct tree)

ROOT \maencn \khwaincn\liengvt \lukncn \kengadv
W W� WW

4. score=-0.724917

ROOT \maencn \khwaincn\liengvt \lukncn \kengvi
W W W� W



79

5. score=-0.840073

ROOT \maencn \khwaincn\liengvt \lukncn \kengvi
W W W W W



80

CURRICULUM VITAE

NAME : Mr. Sutee Sudprasert

BIRTH DATE : March 15, 1979

BIRTH PLACE : Bangkok, Thailand

EDUCATION : YEAR INSTITUTE DEGREE/DIPLOMA

2001 Kasetsart Univ. B.Eng (Computer Engineering)

2005 Kasetsart Univ. M.Eng (Computer Engineering)

POSITION/TITLE : Lecturer

WORK PLACE : Faculty of Science, Kasetsart University

SCHOLARSHIP/AWARDS : Commission on Higher Education 2003-2008




