THESIS APPROVAL

GRADUATE SCHOOL, KASETSART UNIVERSITY

Doctor of Engineering (Computer Engineering)
DEGREE

Computer Engineering Computer Engineering

FIELD DEPARTMENT

TITLE: Design and Development of a Lattice Structure Dependency Parser for
Under-Resourced Languages

NAME: Mr. Sutee Sudprasert

THIS THESIS HAS BEEN ACCEPTED BY

THESIS ADVISOR

(Associate Professor Asanee Kawtrakul, D.Eng.)

THESIS CO-ADVISOR

(Associate Professor Punpiti Piamsa-Nga, D.Sc.)

DEPARTMENT HEAD

(Assistant Professor Kemathat Vibhatavanij, Ph.D.)

APPROVED BY THE GRADUATE SCHOOL ON

DEAN

THESIS

DESIGN AND DEVELOPMENT OF A LATTICE STRUCTURE
DEPENDENCY PARSER FOR UNDER-RESOURCED
LANGUAGES

SUTEE SUDPRASERT

A Thesis Submitted in Partial Fulfillment of
the Requirements for the Degree of
Doctor of Engineering (Computer Engineering)
Graduate School, Kasetsart University

2010

Sutee Sudprasert 2010: Design and Development of a LatticetGre
Dependency Parser for Under-Resourced Languages. DddEoigmeering
(Computer Engineering), Major Field: Computer EnginegriDepartment of
Computer Engineering. Thesis Advisor: Associate Professo

Asanee Kawtrakul, D.Eng. 80 pages.

Dependency representations have become fashionableiagainous Natural
Language Processing areas, such as Machine Translatiormation Extraction, Text
Summarization, and Ontology. However, the development gbad dependency
parser requires some resources such as training corporeammgr rules and also
morphosyntactic analysis tools as preprocessing tooléortdmately, many languages

do not have a large training corpus nor reliable morphosyittanalysis tools.

We present here a corpus-based approach for building a depey parser
especially for under-resourced languages. Dealing witteliadble morphosyntactic
analysis tools, we propose a methodology for dependencsingaoutputting all
possible of morphosyntactic analysis by modifying the Eisnalgorithm Q(n?)), a
bottom-up dynamic programming chart parsing algorithrat thoes not increase the
time complexity order. For computing the parse score, weMagimum Entropy
Models and train the model with a small training corpus (7&6tences). Because
the training corpus is very small, we also propose a methoadjusting the parse
score by using a Dependency Insertion Grammar (DIG) inddo@d the corpus.
The adjustment will be applied if invalid trees are produbgdhe statistical model.
Moreover, the use of DIG can make it easier for us to obsemguage behavior and
detect annotation errors through the induced DIG rather thaking into the corpus
directly. We tested the system by using NAIST Thai Depengdmeebank as training
data and the accuracy of the parsing results was 80% if sesgevere word-segmented

correctly and 85% if the sentences were also part-of-speggied.

Y S

Student’s signature Thesis Advisor’s signature

ACKNOWLEDGEMENTS

| would like to grateful thank to Assoc. Prof. Dr. Asanee Keakul, my thesis adviser
for advice, encouragement, and valuable comments for ngigthé&he was the first
one who introduced me to the field of natural language praogssd taught me a lot
about research methodology. | also would like to thank Pwf. Christian Boitet and
Dr. Vincent Berment, my French co-advisers from Francoi NP project, for their

valuable comments, suggestion, and patiently correctingnglish.

Finally, I would like to thank to all members of the NAIST Latadory.

Sutee Sudprasert
March 2010

TABLE OF CONTENTS

TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS
INTRODUCTION
OBJECTIVES
LITERATURE REVIEW
MATERIALS AND METHODS
Materials
Methods
RESULTS AND DISCUSSION
Results
Discussion
CONCLUSION AND RECOMMENDATION
Conclusion
Recommendation
LITERATURE CITED
APPENDICES
Appendix A Part-of-speech

Appendix B Grammatical Functions

Appendix C Extracted Elementary Trees from NAIST Treebank

Appendix DK-best Parsing Results
CURRICULUM VITAE

Page

18
18
26
47
47
55
56
56
57
59
67
67

72

5 7
77
80

Table

LIST OF TABLES

Page

The ambiguity of the training corpus for LM 45
Results comparing our systems with MSTparser where the isp
perfect (forMAXp g, we sekk =1, b = co ande = 2). 49
Results comparing our systems with the MSTparser whetiapiog

is the lattice or the text analyzed by the morphosyntactatyaer

(for MAXE, g andMAXS, - m» We sek = 10,b = 0 ande = 5). 51
Results comparing the accuracy of morphosyntactic aisalys 51
Speed of parsing with morphosyntactic lattices.

The accuracy of oracle parse in the 10-best parses 53

Figure

18

19

20

LIST OF FIGURES

Page

An example of machine translation using dependency sirelets
intermediate structure 1
Example of discontinuous constituents: the noun phrabeyavho
was your son” and the verb phrase “saw yesterday” are “shltiffle 3
A morphosyntactic lattice that encodes all possible word
segmentations and part-of-speech tagging results of até&ktahat
means “| stand (to) expose to (the) air” (the bold lines reene the
correct result). 3
Example: dependency structure of the sentence “A boy runs” 6
Constituent structure of English sentence “John lovesraavd 7
Dependency structure of English sentence “John loves aanbm 7

A concept of dependency parsing based on the graph-basielsnal 2

An example of items in the morphosyntactic dictionary 19
An example of the POS tagged corpus 19
A snapshot of NAIST dependency treebank 20
A screen shot of the tree editor tool 22
A screen shot of keywords searching interface. 23
A screen shot of the DIG viewer (1). 24
A screen shot of the DIG viewer (2). 25
A screen shot of the DIG viewer (3). 25
Training and run time of the parsing system.

Type-A and Type-B elementary trees. Note: the @ symboksnar
the head node of the tree. 27
The insertion operation in DIG. -2,-1, +1, and +2 are nedat
positions. 27
Three forms of elementary trees. Note: the“c” and “a” tions
stand respectively for “complement” and “adjunct”.

26

29

An example of the relaxation of DIG 29

Figure

21

22
23

24
25
26

27
28

LIST OF FIGURES (Continued)

Page

An example of extracting the extended forms of elementags
from a parse tree. 31
An example of elementary trees file. 32

An example of parsing with a) a correct morphosyntadsical

analyzed text and b) a morphosyntactic lattice 38
Features (basic features) 41
Features (combined features) 42

An example of adjusting the scores of edges by using DIGIfor

run fast”. 43
DP of thek-best oracle on the test data 53
TF of thek-best oracle on the test data 54

Appendix Figure

Cl

Cc2

C3

Top 5 of the most occurrence relaxed elementry trees o$itrae

verb (vt) 76
Top 5 of the most occurrence relaxed elementry treesmainsitive
verb (vi) 76

Top 5 of the most occurrence relaxed elementry trees pbgrgon
(prep) 76

MT
CFG
DIG
DG
DP
CDG
WCDG
TAG
CCG
CSP
POS
LM

LIST OF ABBREVIATIONS

Machine Translation

context-free grammars
Dependency Insertion Grammar
Dependency Grammar
Dependency Parsing

Constraint Dependency Grammar
Weighted Constraint Dependency Grammar
Adjoining Grammar

Combinatory Categorial Grammar
Constraint Satisfaction Problem
part-of-speech

language model

DESIGN AND DEVELOPMENT OF A LATTICE STRUCTURE
DEPENDENCY PARSER FOR UNDER-RESOURCED
LANGUAGES

INTRODUCTION

Projective and non-projective dependency structures magently become
quite fashionable again in various NLP areas, such as MTgamd Palmer, 2005),
Information Extraction (Yakushijet al, 2005), Text Summarization (Gagnon and
Sylva, 2005), and Ontology (Kim and Park, 2004). In theseliegions, an input
text will be syntactically analyzed into a dependency dtmecthat can reduce forms

of ambiguity in the input text.

Figure 1 shows an example of MT using dependency structuirgersnediate
structure. An input sentence will be analyzed into depeoglestructure first, then
the system transforms that structure into a dependencgtsteuof a target language
and generates a translation result. Note that the meanipgrobf-speech notions are

presented in Appendix Part-of-speech.

Figure 1 An example of machine translation using dependency stre/ets!
intermediate structure

By using the parser, the translation process will be eals@ar without it. There

are several reasons for that (Boitet and Zaharin, 1988):

e they are more economical (they have less nodes) and herg@qeus than

constituent structures;

¢ they can represent some discontinuous constituents injacgix@ way. For
example, in “he gave the money back to the vendgédye. .. backs a discontinuous
constituent which cannot be represented by a constituest having a projective
correspondence with the sentence. However, the followiageddency tree is

projective:
pre

obj pobj

subj et et

he gave the nmoney back to the vendor

That is not always possible. For example, “Ces femmes, lesnesne les ontpas
encoretous comprises.” (“These women, the men did not yet undedstaeny,omen

allmen”) has no reasonable projective dependency tree.

e they represent long-distance dependencies and prediggueient relations

(information needed in these applications) in a clearer. way

Figure 2 shows an example of discontinuous constituentsesepted by a
dependency structure. In this case, there is no way to drawdirespondence lines
between the nodes of the dependency tree and the words oénitense (written as
usual linearly) without any crossing pair of lines. The egsion “tree without crossing
lines” if often found in the literature but is faulty, as adreanalwaysbe drawn on
a plane without any crossing branches. The thing which igeptiwe or not is the
correspondencbetween the string and the tree, which should better besepted by
“liaison elements”, as in entity-relation diagrams. Werlsay that the tree is “non-

projective”.

Dependency representations date back to Tesniere (19%®)have been
used extensively in NLP by Western and Eastern European apandse research
groups since the early 1960’s, notably for Machine TraratafMT). Constituent or
“phrase-based” representations have also been used,rityifioa other applications

such as Natural Language (NL-)based information retrjaveinly because of their

| saw a boy yesterday who was your son

Figure 2 Example of discontinuous constituents: the noun phraseyanho was
your son” and the verb phrase “saw yesterday” are “shuffled”.

5

an/vt
(expose to)

a1n/npn
(a2 province),

Figure 3 A morphosyntactic lattice that encodes all possible wogismtations
and part-of-speech tagging results of a Thai text that méastand (to)
expose to (the) air” (the bold lines represent the corresilte

good formal characterization by context-free grammars@;and the existence of
polynomial all-path algorithms (notably the CYK algorithrior CFGs in Chomsky

normal form, and Earley’s algorithm, for any CFG).

Written Thai, the language worked on this research, doeshawée word
delimiters, and there are no reliable word segmenters artebpapeech taggers for
this language. Therefore, syntactic analysis of Thai shetdrt from multiple results
of a morphosyntactic lattice (see Figure 3), rather thamfacdubiously disambiguated
string (a dubiously disambiguated string means a strirgnalsguated by an unreliable

morphosyntactic analyzer). Previous work is generallyedasn the assumption that

the input is a disambiguated morphosyntactic string. Unfately, this is not very
realistic for a language like Thai with its potential ambiges due to multiple word
segmentation and part of speech tagging. This is why an @&teparsing technique
was proposed, able to handle as input a morphosyntaciceaitith multiple ways of

segmentation and part-of-speech tagging.

The research is presented here in order to deals with theeabewntioned
problems. A possible solution for parsing a morphosyntdetitice is proposed. To
deal with the under-resourced situation, A combination‘statistical” and an “expert”
approach is invented in order to increase the parser agcbyaasing a Dependency
Insertion Grammar (DIG) (Ding and Palmer, 2004) which isoaudtically extracted
from a tree-annotated corpus. A method for rescoring sedstwith a language model
is also proposed. This method is necessary when the Eisagdsithm is applied
to parse a morphosyntactic lattice. Furthermore, thosenskins do not increase the
time complexity order, it is stilD(n®). The time complexity ok-best parsing is only

increased by a multiplicative factdd(klogk).

The contribution of this research are

1. a new dependency parsing algorithm for word lattices j&askrtet al,
2009),

2. a Thai dependency treebank and its annotation guidelime: / / nai st .
cpe. ku.ac.th/tred/),

3. and treebank manipulating tools: Tree finder and DIG viethet p: //

nai st.cpe. ku. ac. th/tred/ di gvi ewer/)

OBJECTIVES

. Develop an algorithm for dependency parsing an inputéstructure.
. Improve of the quality of parsing output by automaticatgiuced grammars.
. Learn a DIG grammar from a very small tree-annotated rpu

. Learn a human-readable grammars that can be understding)bigts.

LITERATURE REVIEW

In this section, the background concerning Dependency @@n{DG) and
Dependency Parsing (DP) that are necessary for understatidk rest of the thesis is
presented. For more detail about the state of the art in digmey-based parsing, please
see Nivre (2005).

1. Dependency Grammar

The staring of the modern theoretical tradition of DG hasmfieen referred to
the work of Tesniere (1959). However, Covington (1984)adthat DG has been used
since the Middle Ages. Western and Eastern European andespaesearch groups
has used DG extensively in NLP since the early 1960’s, npfabMachine Translation
(MT).

The intuition behind the DG is simple that: in one sententieyards depend
on other words, except a unique word that does not dependyather word, and is
called the root of the sentence. An example of a simple DGyaisabf the sentence “A
boy runs’ is shown below. Its dependency structure is detnatesl in Figure 4.

a depends on boy
boy depends on runs
run depends on nothing (root of the sentence)

A boy runs

Figure 4 Example: dependency structure of the sentence “A boy runs”.

The difference between constituency and dependency exgegns is the lack
of phrasal nodes in the constituency representations.cBni®e seen by comparing the
constituency representation of an English sentence inr&iguto the corresponding

dependency representation in Figure 6.

S
NP VP
NP PU
N \Y DET/\N
John loves ‘ a woman

Figure 5 Constituent structure of English sentence “John loves aamm
p
doby

subj et

Johrny loves, apet womary .py

Figure 6 Dependency structure of English sentence “John loves a woma

Normally, relations of dependencies are categorized ink@ ttypes:
complements and modifiers (adjunct). The modifiers are patidependents that
can be removed without disrupting the syntactic structur@ e complements are

obligatory dependents.

After the work of Tesniere there was a number of studies gpedédency
representations and various types of DG were proposed. Htiekmown are Word
Grammar (Hudson, 1990) and Meaning Text Theory (Mel'Cu888) proposed a
variety of computable syntactic dependency formalisms.nckanal Dependency
Grammar (Tapanainen and Jarvinen, 1997) follows Tesisienodel by distinguishing
between dependency rules and rules for surface linearizdtiadopts Tesnieres notion
of nuclei that are the primitive elements of FDG structu&sme researchers (Karlsson,
1990; Maruyama, 1990) were interested in treating the pgusiidependency structures
as a constraint-based satisfaction problem that led to t@onsDependency Grammar
(CDG) and its descendent Weighted Constraint Dependeram@ar (WCDG).

Another important independency representation is FunatiogGenerative
Description (Sgalkt al, 1986), Based on the assumption of a language-independent
underlying order, FDG represents a projective dependereeyand maps via ordering
rules to the concrete surface realization. It is the corergtecal foundation of the
Prague Dependency Treebank (Hai@l., 2000). Finally, there are some works (Joshi
and Rambow, 2003; Clarkt al, 2001) that tried to produce dependency structures
from mildly context-sensitive formalisms such as AdjomiGrammar (TAG) and
Combinatory Categorial Grammar (CCG), which representasgit dependencies
and also handle non-projective structure naturally. H@methose approaches were
not often used for syntactic parsing because inheritancmilofly context-sensitive
formalism leads to higher computing time. In worst case, tthee complexity is
O(nd) (Vijay-Shankar and Joshi, 1985). DIG also was inspired byaTéoming up
with only one operation for derivation that is not a kind ojading operation. This
makes the DIG simple to understand and easy to design anieffearsing algorithm.
The details of DIG will be explained in MATERIALS AND METHODG&hapter.

2. Dependency Parsing

2.1 Grammar-driven parsing

2.1.1 Context-free dependency grammars

In the earliest work on parsing with dependency representat
Hays (1964) and Gaifman (1965), a dependency grammar waslfared in a way
similar to the way CFGs were defined. The formulation comeess three rules: 1)
determining dependents and their positions (left or righg given category, 2) giving
every category belonging to a given word and 3) selecting\emgr of a sentence
from given list of all categories. This formulation can bansformed to lexicalized
context-free grammar (as shown below) and is possible tabsed with the standard

context-free parsing algorithms (CKY, Earley, etc).

H—Lq... Lmh R ...Rn

HeW; heVr; Li...Lm,R1...Ry EVR].

whereVy andVy are non-terminal and terminal vocabularies.

Such formulations are restricted to the derivation of ptye
dependency structures. There are frameworks that allotvgosessing and introduce
non-projective structures such as Sleator and Temper81(19T hey proposed a method

to solve crossing links which occur because of coordinatmgunctions.

Many of these frameworks can be included to the notidmlekical

grammarsof Eisner (2000) which consists of three elements:

1. A setV of words, called thevocabularycontaining a distinguished symbol
ROOT,

2. A setM of one or moranodifier rolesand

3. A pair of deterministic finite-state automdigandr,, that accepts some set
of string over the alphabé&f x M. Thel,, specifies the possible sequences of left

dependents faw. Thery, specifies the possible sequences of right dependents for

For example, the bilexical grammars that recognize therkgecy

tree shown in Figure 6 can be written as

V ={v; = lovesy, vy = womany }

M ={m; = (Johny, subj),my = (womany,dobj),m3 = (apgr,det),ms = (.py,p)}
lioves is an automata that accepts {(vq,mq)}
MNovesy 1S an automata that accepts {(vq,my), (vq,ms)}

lwoman, is an automata that accepts {(vg,ms3)}

The general parsing algorithm proposed by Eisner for habaxi

10

grammars is a bottom-up dynamic parsing algorithm. It pedseby linkingspans
or sub-trees (where roots occur either leftmost or rightinostead ofconstituents
(see more details in MATERIALS AND METHODS section 3.1.1)heFefore, the
time complexity reduces frof®(n°) to O(n®). Moreover, Eisner also shows how the
framework of bilexical grammar, and the cubic-time parstgprithm, can be modified
to capture a number of different parsing frameworks and @ggres. The previous
are those of 1) Milward (1994) who proposed Dynamic Depeagdgarammar and
proved that the grammar can be recognize@(n®), 2) Alshawi (1996) who used head
automata (costed bidirectional finite state automata &stgocwith the head of words
of phrases) for representing a language model of a maclanslation, and 3) Sleator

and Temperly (1991) who developed Link Grammar.

2.1.2 Constraint dependency grammar

In the Constraint dependency grammar, the dependencyngassi
characterized as a Constraint Satisfaction Problem (G&R)sual, parsing algorithm
must fight two fundamental forms of ambiguity: the lexicalaguity (the ambiguity of
an individual word or phrase used in different contexts foregs two or more different
meanings) and the structural ambiguity (the ambiguity ofheape or sentence that
there are more than one underlying structure). It is comeglg demonstrated that
constraint-based techniques can effectively handle sudbiquiities. This approach
is also called “eliminative parsing”. Since sentences ax@yaed by the successive
eliminating representations, that violate constraintd thre only valid representations

remain. For example, suppose there are role constrainssiipectandadjective

Subject: the subject of a finite verb must be either a noun or a

pronoun, it must agree with verb, and must have nominatise:ca

rsubjecl(W,V\/) = cat(w) € {n,pro}
Aarg(w) = arg(w)

Aarg(w') € NOM

11
Adjective: an adjective may modify a noun and must agree with it:

CadjectivdW,W) = cat(w) =n
Acat(w) = adj

Aarg(w) = arg(w)

By following the these constraints, dependency trees wheh t
structures conflicting to them will be eliminated. In praetithere are many constraints
needed for building a dependency parsing based on CSP sueRiea constraints,

valency constraints , role constraints, treeness conssratc (Duchier, 2000).

Maruyama (1990) was the first one who proposed a complete
treatment of dependency parsing as a CSP and describethgpa@sia process of
incremental disambiguation by generalizing the notionagf to pairs consisting of a
syntactic label and an identifier of the head node. This kihcepresentation is the
fundamental of many different approaches to dependensyrarBecause it provides
a way to reduce the parsing problem to a tagging or classdicgiroblem. Harper
(1995) continued this line of research and proposed seakgatithmic improvements.
The FDG system (Tapanainen and Jarvinen, 1997) is alseifid@sas the approach
of (Maruyama, 1990). It plus combines the eliminative pagsiith a non-projective

dependency grammar inspired by Tesniéere (1959).

CSPs in general are NP-complete. It means relaxation have to
be allowed to ensure reasonable computing time. In Maruyd®80) and Harper
and Helzerman (1995), the worst case of polynomial complegiobtained only by

considering local information in the application of coastis.

Parsing as solving a CSP is a rule-based approach. Theréfore
is impossible to avoidunder-generationno analysis satisfying all constraints) and
over-generationmore than one satisfied analysis) situations. Heinetka. (1998)
extends the CDG framework of Maruyama (1990) with gradeddated) constraints,

by assigning a score (0.0 < w < 1.0) to each constraint, indicating the seriousness

12

of the violation of that constraint. The constraints aresgatized into three types:
hard constraints (score 0), typical well-formedness conditions (scote0), weak

constraints (scores 1).

2.2 Data-driven parsing

2.2.1 Graph-based models

In graph-based models, the parsing models (Eisner, 1996;
McDonald, 2006) conceptually consist of two parts: the pssible enumeration of
all dependency trees according to a grammar or a consteaidtfhe selection of the
most probable analysis according to a statistical modehézhfrom a training corpus

(see Figure 7 for an example).

generating all possible
dependency trees et
. -

| eat rice |:>

selecting the best tree .-

i D e OB ®
=N =

Figure 7 A concept of dependency parsing based on the graph-basezisnod

An influential approach developed by Eisner (1996), areliheets
probabilistic models (bigram lexical affinities, select#b preferences, and recursive
generation) for dependency parsing that are evaluated img gsipervised learning
with data from the Penn Treebank. In the work of McDonald @0he applied
discriminative estimation methods by using an online leaynalgorithm named
MIRA (Crammeret al, 2006), instead of using generative methods of Eisner (1996
probabilistic dependency parsing. Moreover, he appliedMaximum Spanning Trees
(MST) algorithm to find the best tree. McDonald’s methods lecandle both projective
trees and non-projective trees (Edmonds, 1967; Chu and.R&B).

Collins et al. (1999) applied the generative probabilistic parsing
models of Collins (Collins, 1997 1999) to dependency par&iyn using data from the
Prague Dependency Treebank. This requires preprocessimngnisform dependency

structures into flat phrase structures and post-processingxtract dependency

13

structures from the phrase structures produced by themparse

Another probabilistic approach of dependency parsing,t tha
incorporates labeled dependencies, is extending anrexgtammar-based model with
a generative probabilistic model. In this approach, thengnar can be seen as a
supertagging representing constraints on possible headisigpendents. Then the
actual dependency links is determined from the supertagrasent. Examples of this
approach are the CDG parser (Wang and Harper, 2004), the Ipg&&er (Shen and
Joshi, 2005), and the CCG parser (Clark and Curran, 2004).

2.2.2 Transition-based models

The approach is based on purely discriminative models afdtide
learning in combination with a deterministic parsing sggt The parsing model may
define (McDonald and Nivre, 2007)

1. a setC of parser configurationseach of which defines a (partially built)

dependency grapB
2. asefl of transitions each a function:C — C
3. for every sentence= wp, w1, ..., Wn,

1. auniquenitial configurationcy

2. a setCy of terminalconfigurations.

A transition sequenc€,m = (Cx,C1,...,Cm) for a sentence is a
sequence of configurations such tlegt € C«, and for everyci(c # ¢x), there is a
transitiont € T such thatc; = t(ci_1). The dependency graph assignedtoy Cx m
is the graphG,, defined by the terminal configuratiap,.

The deterministic discriminative approach was first pregoby
Yamada and Matsumoto (2003). They used Support Vector MasHiSVM) to train

14

classifiers to predict the next action of a deterministicspawhich is implemented
in a form of shift-reduce parsing with three possible adi@@hift Right and Left).
The parser processes the input from left to right repeatadiyl there is no more
dependencies are left. It means that up tol passes over the input may be required to
construct a complete dependency tree, giving the worsttoasecomplexity ofO(n?)

(the worst case seldom occurs in practice).

Nivre et al. (2004) proposed a dependency parsing framework
similar to Yamada and Matsumoto (2003), but the system carstnact labeled
dependency representations. Moreover, it can construotmplete dependency tree
in a single pass over the data. They use memory-based Igaminduce classifiers to

predict the next parsing action based on conditional fesatur

3. Related Works

Our parsing algorithm falls into the data-driven graphdabparsing approach.
Since, the algorithm used for selecting the best tree isdase Eisner (1996),
a generative model with a cubic time parsing algorithm thaseadl on a graph
factorization. In this research, the Eisner’s algorithnmigdified in order to handle

a lattice input and used DIG as a constraint for limiting theraeration of all analyses.

McDonald (2006) and Jinsha al.(2004) also developed their parsers based on
Eisner’s algorithm. McDonald focused on non-projectivespay with a discriminative
learning algorithm, MIRA (Margin Infused Relaxed Algonit). The accuracy of
McDonald’s parser is quite high i.e. 90% approximately fogksh, and was claimed
to be state-of-the-art in this area. Jinskedml. (2004) proposed a dependency parsing
algorithm that is trainable with small data. The algorithensimilar to Eisner’s for
finding the best path from all the parsing results. Jingtah (2004) trained the models
by using only part-of-speech and head-dependent distafaaniation.

As a pioneer, another kind of algorithm for data-driven payshat makes
decision in a shift-reduce parsing is the algorithms of Rpamkhi (1999). He first

used Maximum Entropy Models to determine the action of atsbhduce parser for

15

constituent structures. The accuracy of his parser was-efahe-art in that time.
Afterwards, Nivre and Scholz (2004) and Yamada and Matsar¢&103) also applied
the same idea to dependency parsing. The difference betivesa two works is that
the former trained the model by using SVM while the lattercusememory-based

learning.

McDonald and Nivre (2007) report that the average of acquiaEcgraph-
based model and transition-based model for data-drivearakgmcy parsing is similar.
Hence, this research decided to start from Eisner’s alyoribecause of its dynamic
programming character capable to extend in supportingiphelinput and combining

with grammatical rules.

Dependency grammars have a long history in the formal Istgns and
computational linguistics communities. The first personowtas been considered
starting on modern dependency grammar is Tesniere (195%}er the work of
Tesniere, there were many researches on dependency eefatiens (grammars)
and their relationships to other formalisms. The first redeas who studied the
mathematical properties of DG were Hays (1964) and Gaifnm36%). Many
dependency representations proposed after that were suEhretional Generative
Description (Sgalket al, 1986), Dependency Unification Grammar (Hellwig, 1986),
Meaning Text Theory (Mel'Cuk, 1988), Word Grammar (Huds@890), Functional
Dependency Grammar (Tapanainen and Jarvinen, 1997), ndepey Insertion

Grammar (Ding and Palmer, 2004), etc.

Now, many types of dependency representations were propgsgk in less
different abilities. Their generative power usually in ta@ge between context-free to
mildly context-sensitive (Joshi and Schabes, 1997). Is tesearch, DIG was used,
although it is not the most powerful dependency grammar. é¥@w it is a simple one
with a few components (2 types of elementary trees and 1 tiypperation). Because
of its minimalist, it is easy to integrate the DIG with stéital parsing models and it is

also easy to validate them for the linguists who maintairgttaenmar.

In recent years, various researchers have started to baikeyrs with small

16

annotated corpora or without corpora. For example, Jingtaal. (2004) proposed
a method to build a dependency parser for Chinese. They ugenledy statistical
approach and relied only on part-of-speech informationaldtal. (2005) proposed a
method for building a parser based on a parallel corpus, dhydimg parse trees on the
basis of parallel text. To do so, they need a parallel corpdsaareliable parser of the

source language. However, all of them assumed that the rsyplactic analysis work

properly.

Previous works are generally based on the assumption teatinffut is a
disambiguated morphosyntactic string. Unfortunatelis th not very realistic for a
language like Thai because of its potential ambiguitiestdugord segmentation and
part of speech tagging. This is why an extended parsing tgglis proposed to handle
an input as a morphosyntactic lattice, with multiple waysejmentation and part-of-

speech tagging.

The idea of parsing multiple versions of a given sentencebleas proposed
before by Tomita (1986). he proposed an efficient word lattiarsing algorithm that
can be viewed as an extended LR parsing algorithm for coifitegtphrase structure
grammars. Dependency parsing of word graphs has also wlieseh proposed by
Harperet al. (1993). The parser was an extended version of the CDG pagselaped
by Maruyama (1990). It actually was used to eliminate midtgentence hypotheses
produced by the speech recognizer. The complexity of thegpas O(n*), where
binary constraints were used and the complexity will inseeavith the number of
constraints. In a recent work, Colliret al. (2004) extended head-driven parsing
models of Collins (Collins, 1999) to parse word latticespider to use simultaneously
a language model and a parser for large-vocabulary speedniion. The system
experimented on the Wall Street Journal treebank showerbaticuracy than the

standardh-gram language model.

All previous researches put efforts on word lattice parsmegnded to improve
the accuracy of continuous speech recognition. In this yadifferent method, a data-
driven parser based on Eisner’s algorithm (Eisner, 199@yaesented. By using the

invented algorithm, the time complexity of the parse©ig?®), the same as Eisner’s.

17

Moreover, the proposed parser can be augmented with DIGy(Binl Palmer, 2004)
for eliminating wrong trees. This method can improve theusacy of the parser for

under-resourced languages.

18

MATERIALS AND METHODS

Materials

1. Computer

The parsing algorithms are implemented by using the Pythod €
programming language. The experiments are tested undefiollbe/ing computer

specification:

1. Intel Xeon 64bit (Quad Core) Dual processor 2.00 GHz.
2. RAM 8 GB
3. Hard Disk (RAID-3) 650 GB

4. OS Debian GNU/Linux lenny/sid

2. Data

There are 3 linguistic resources that are needed for ouremsyst a
morphosyntactic dictionary, a part-of-speech (POS) tdggepus, and a dependency

treebank.

2.1 Morphosyntactic dictionary

Morphosyntactic dictionary is a list of pairs of a word and &b
possible POS. It is used for creating a morphosyntacticcéatty mapping a given
sentence with the items in the dictionary, thereby using madyc backtracking
algorithm (Thumkanon, 2001). It will generate all possiblerd segmentations and
part-of-speech tagging results of the given sentence; themmultiple results are
encoded into a lattice. The morphosyntactic dictionarydusehis research contains
16,816 entries. An example of items in the morphosyntadtitahary is shown in

Figure 8.

19

n9zaan vi adv ncn
Asyaandandas Vi adj
ATzARNING ncn
N9zA09INIAY adv
NSzaRIALLY adv

AR ncn
NSLANNTLINE vi adv
NSzIANAAWSIE Vi ad]

Figure 8 An example of items in the morphosyntactic dictionary

2.2 POS tagged corpus

The POS tagged corpus contains sentences that were warcestyl
and POS-tagged correctly. It is used for training the lagguaodel (LM) used for
rescoring sub-trees. The size of POS tagged corpus is 48gtdnces containing 49
tags, 18,396 words, and 548,431 tokens. Figure 9 shows alsoiaqf the POS tagged

corpus.

u1v/adj Wug/ncn aan/ncn Lan/vi wei/conj ulv/adj Wug/nen A/conj d/vt aan/ncn Tuaj/vi

weiag/adj Tu/ncn ag/prev Usgnausie/ves dau/nen wag/prep Au/nen Tu/nen waz/conj ¢éa/ncn Tu/nen
vm/adj a/punc tE1/ncn @awgu/ncn vl/prep au/ncn ag/prev vaaa/vi aan/vi Lm_ILﬂEI’J/Vt aanld/ncn
vmu/conj iWs1g/conj @sauasl/ncn fi/det fi/vt an®w/ncn $u/vt Fa/vt aau/ncn aﬂ/vpost wa2/vpost
usi/conj 81/conj tilu/ves &@/nen m/prel wilan/vi 9/punc s1@1/nen A/conj Jo/vi fiandle/adv

Figure 9 An example of the POS tagged corpus

2.3 Dependency treebank
In this work, we use NAIST Dependency treebank. The treelcankists
of about 816 tree-annotated sentences that were prepangtghists. A snapshot of
the NAIST dependency treebank is shown in Figure 10.

2.3.1 Sources and Characteristics

We have tried to collect sentences from texts in various diosna

and genres such as agricultural news, encyclopedia, attth lcage.

20

Home Comora Login

Tree Editor

e BIasvi@root
Twprep@subj nsx:/conf'@coard
ﬁ’\u?u//ncn@pnomp S'\u/cl?moﬂr iuvecs@conj
\fufdet@det 9/nnum@aquan Wprel@subj lerelz‘@pred
WuAt@modr Hudant@nom
Result: \#u&%a
Tudrwauiudrmdudiauasi um@svp Au/prep@modr - TnaSa/adv@modr
string: 1finint s w9 maTnguinfiug
aunalndge fufe -
Sn/adv@modp sti/cl@dobj g/p:afz/@pmmp

T

taTvauil/npn@pcomp

Figure 10 A snapshot of NAIST dependency treebank

2.3.2 Annotation Standard

Since our lab is pioneering the building of a Thai Dependency
treebank, there was no presence annotation guidelinesitask. At first, we had
to create the guidelines by adopting guidelines availatteother languages such as
Danish Treebank, Prague Treebank, and Penn Treebank (BEedPenn Treebank is
phrase-based but it was annotated with grammatical fumgtichich can be used to

label the edges of dependency trees).

Having investigated the existing guidelines and compahaint
to Thai, we designed our annotation standaitd p: / / nai st . cpe. ku. ac. th/ tred/
static/guidelinel Thai _Dependency_ Gui deline_v.1.4. pdf). It consists of 30
grammatical functions which are divided into two main types complement (12)
and adjunct (18), which could represent all syntacticalgopas of Thai writing. For

more detail please see in the Appendix on Grammatical Fomsti

We have annotated the sentences using Thedp(// nai st.
cpe. ku. ac.th/tred (Wacharamanothanet al, 2007)), a web-based tree editing
component which has a full set of facilities for manipulgtithe corpus such as

graphical tree editor, revision control, permission coltand querying tools. For

21

internal use, the annotated trees are restored in JSON f@¢d®@N is a lightweight
computer data interchange format). It is more concise thdih Xand also easy to use
in Ajax web application programming which has been usedfgriémenting our tools.
For external interchange, the dependency trees are stotbé format which is used
in MSTParserlftt p: // sour cef orge. net/ proj ect s/ nst parser/). Each sentence

is represented by 3 or 4 lines and sentences are separatatehyliae.

The general format is:

W1 W2 Wh
PL P2 .. Pn
T R
d d .. dy

where,

e Wj ... W, are then words of the sentences (tab delimited).
e 1 ... pn are the part-of-speech tags for each word.

e |1 ... I, are the labels (grammatical functions) of the incoming egeach

word.

e d; ... d, are integers representing the position of each words parent

For example, the dependency tree of sentence “John loves a

woman” shown in Figure 6 can be represented in

John loves a woman
N \ DET N
subj root det dobj
2 0 3 2

2.3.3 Tree editor

The tree editor is an important component of treebank pregar

process. It is a web-based application that can be run on pesating systems via

22

web browser Ift t p: // nai st. cpe. ku.ac.th/tred/ corporal/list). However, the
program can only be run on Firefox version 3, because of ta®tithe SVG (Scalable

Vector Graphics) language for drawing the tree which is nappsrted only by Firefox.

File Edit wiew History Bookmarks Tools Help

(\ZI - - l,\é‘-‘ Q ||| httpy/naist.cpe ku.ac.thitredtreseditor/editPtextunit_id=1242 - [| IGl~| png latex figure 4 @ -

| »l

(A

Home Corpora Login

Tree Editor

[WARNING: To save tree, you must login]

Back to corpus Next Text Unit ==
Reset
id: 1242 type: D rew: 10 by: tun

| Other revisions: [9]1[8] [71[6] [51[41[3]1[2][1][0]
' MNote: edit view

@ i Result:

tj/pref2@subj welo/nen@prad il

String: fremAuFindunds

Ju370
Jasii@nom . @ud3avi@rel - Su/ncn@modr
® add flauil L AnE e L unde

Attributes

e Aprel@subj el@d €] ER
. W
Apply |
37 /mnum@gquan il sl)
POS [men |
o | predicative ¢ [(complernent)
unction (6B + |(adjunct) ith "Tree Editor I" by Chatchavan W. e Aedindundeinszd| —
er Engine: "nonyipul by Chatchavan W. il
LIAET | abharaton: k teart Lnivarcih: Thailand 2
[4] el
& Find: | beundingBox 13} Next ¢ Previous [Highlight all [Match case
[Done @ @ Open Notebook

Figure 11 A screen shot of the tree editor tool

The tree editor (see figure 11) consists of 4 widgets: tre@idg
attributes editor, span editor, and string display. The tteawing widget is the main
part of the program which is used for manipulating the stiecof the tree (only moving
the nodes in the tree). Adding a new node or deleting somesnodde tree is done
by using the span editor. The attribute editor is used faireglthe part-of-speech and
grammatical function of each word. The last widget, strirgpthy, shows the flat string

corresponding to the tree (by flattening the tree projelgtjve

All changes of the tree are saved with information properm t
editor such as history of revisions which is useful for dotleative work, when more
than one linguist works on the same tree. Moreover, eachuisBhgan put some
guestions or comments for annotating the tree, these noiledeavused later as

discussion topics.

23

2.3.4 Attributes search

Tred provides two interfaces for retrieving the trees: iAtites
search and DIGs viewer. Attributes search is a simple iaterf one enters included
and excluded keywords i.e. surface words, parts-of-spaedlgrammatical functions,
and it returns the trees matching the keywords. In figure 12 ssreen shot of the

program.

File Edit View History Bookmarks Tools Help

,:] EL v e“ﬂ @ | [httpy//naist.cpe.ku.ac.th/red/corpus/search V‘ |-'_,]vj-:|.;n‘u_|.c- @
' [®] Querying Tool | dF v
Home Corpora Search Compare Consistency Login
corpus: | all v

Include

Word: |-ﬁn nuad |

POS: | |

function: | |

Exclude

POS:

Word: |'1'n$u |
function: |

i query || Reset |

Treebank Server Engine: "nonyipuk” by Chatchavan W. (maintained by Sutee 5.)

NAIST Laboratory Kasetsart University, Thailand

Figure 12 A screen shot of keywords searching interface.

2.3.5 DIGs viewer

The another querying tool is the DIG viewer tobt { p: / / nai st.
cpe. ku. ac. th/tred/ di gvi ewer/). We can use this tool for retrieving the trees in the
treebank which correspond to an elementary DIG tree. Inrotbeds, that is like using

a elementary tree as a keyword for finding the trees.

At first, the DIG viewer shows all heads (word or word with its

24

part-of-speech) of the three special forms of elementast{as Figure 13). Users can
see elementary trees by clicking on a head in the list, andl tiwe elementary trees
will be shown beside the clicked head (as Figure 14). If uske& on a elementary
tree, details such as local word ordering, original tree {the in treebank from which
the elementary was extracted) , and link to the original, tvak be shown in another
window (see Figure 15). The original tree is drawn with twtoes green and yellow,
to indicate complement and adjunct relations, respegtivihe nodes colored blue in

the original constitute the extracted elementary tree.

File Edit view History Bookmarks Tools Help delicic.us

(\,-j - - @J "Ijlr e | &l httpipvivaldi.cpe.ku.ac.th:a988/dig_editor/ [=]] I," 1004 [@J T

Login|

| TURBOL/EARS *

Load page I

Type of Head: POS Word&POS
Type-1 (448) Type-l (904) Type-ll (268)
1 -jeonj
2 nssfuit
3 nszvie/con)
4 n3aAt
5 nauht
6 nduNt
7 ndunsasht
8 nanuii
9 nanuiuivcs
10 nanant
11 nanadaivcs
12 prinfprep
13 ndnani
14 Aait

[Dane [@ open notebook | © [

Figure 13 A screen shot of the DIG viewer (1).

The DIG viewer can be used not only for viewing all extracted
elementary trees from the treebank, but also for detectiraysein the treebank, since
the three special forms of the elementary were designed timdpaistically sound. If
odd elementary trees appear, then the treebank must ceota@@ errors. By using the
DIG viewer, itis easy to find the errors and go to the originegtin the treebank in order
to correct it. For example, the elementary trees for “vit@msitive verb) should not
have object grammatical function (“pobj”, “dobj”, and “igh If one of them appears,
it means that the part-of-speech tagging is wrong (it shbeldvt” transitive verb) or

that the grammatical function annotation is incorrect.

25

File Edit View History Bookmarks Tools Help delicio.us i
@ - = @ X | @ ol httpiypvivaldi.cpe.ku.ac.th:8989/dig_editor/ |v| | [[Gl+| sooal: |L<.,| @ -
Login| |

256N

Type of Head: POS Word&POS
Type- (20) Type-ll (35) Type-ll (17)

1 adj
; 2 adv
3«
[vex] —=> [conj@modm]
[vi] --> [conj@maodm]
[vi] --= [conj@modr]
) [vcs] = [conj@modp]
i 4 conj [vt] —= [conj@modm]

[vt] --= [conj@meodr]
[ncn] —= [conj@coord]
[vt] --= [conj@modp]
[vcs] —= [conj@modm]

conjc
conjnel
det
honm
indet
10 ncn

W W N ;U

Load page |

| Done

ll i open Nntebonkl] |¥1

Figure 14 A screen shot of the DIG viewer (2).

File Edit wiew History Bookmarks Tools Help {F
@ Ll B @ X] ﬁ!]‘ ‘.i‘"\vald\.cpe‘ku.ac.th:89Bgfdigieditor,ftree?rule:\:[advml] --> [vt@advm] |v|,j:i B v|-,--""-:|ie |\\| @ -
tree: 12 I

[advm1}:0 —> [vi@advm]:1 Edit

Fad WHO 1@ 49 13 weasu @ fiag UAUH 97w wane q wvie 9z &n W nssudunts weasu ey seuin adre O UszAnBua

\iddlcoi\j@mot
ot nj
WHO/npn@subj ‘hfconjn?l@cprad
i %huM@sconj
n19/prefl@subj Fz/prev@modm ‘Zﬁfmnjnizt@soonj
: wadauii@nom ﬂlprapl@modr s tluvt@cpred
E Was/ncn@pcomp AszUIUNIS/Nen@subj sautwi@svp
UEﬁﬁNIl@modr uwaicl@cl wagauAt@modr mhd!adwiﬂ@mm
au/nen@dobj waiu/adj@quan fiivt@advm
“/punc@punc UszanBua/ncn@m

-

il I

D

|Done

|§| @ open Notebook i

Figure 15 A screen shot of the DIG viewer (3).

26

Methods
1. System Overview
training Learning scores of
parse trees edges model
Elementary trees
extractor Training Time
— Run Time
DIG elementry trees Adjusting the score
by using DIG
morphosyntactic The algorithm k best parse trees
lattice for parsing the lattice
Language model ul Rescoring subtrees
L process

Figure 16 Training and run time of the parsing system.

The diagram in Figure 16 depicts graphically the trainingeti(dependency
scores learning and DIG elementary trees learning) andutihéime (parsing a lattice
input) of the parser described in this thesis. It shows tlikereéint steps that take
place during training time, i.e. the learning of the eleraentirees and dependency
scores from a treebank, and run time, i.e. using the learr@drmgar and the learned
scores to parsek{pbest parse) a lattice input. More specifically, at trainiimge, the
elementary trees are extracted from a treebank and the depenscores are learned
by using a machine learning model that uses the treebankiasty data. At run time,
the dependency scores are adjusted by DIG and are used bgriegoalgorithm to
produce thek best parse trees. In addition, sub-trees produced in tlsngaorocess
are rescored by using LM, in order to promote the sub-treeshwalso have good

morphosyntactic analysis.

In the following sections, we will describe the basis of Di@daeach of the

modules in the larger system.

27

2. Dependency Insertion Grammar

2.1 Basis of DIG

A grammar expressed in the DIG formalism (Ding and Palmef420
consists of two parts: elementary trees and insertion tipara Each node in an
elementary tree consists of: a lexical item, a correspandart-of-speech and a local
word ordering. The elementary trees are of two types: Typand Type-B. The
difference between them (see Fig. 17) is that the root noddype-A tree is lexicalized
and is the head of the tree, while the root of a Type-B tree idaxicalized but one of

the lexicalized nodes is the head of the tree.

eat[VI@ cat[N] @ [VI:-1 [N]:-1
rat [N] @
[N]:-2,-1 [N]:+1,+2 usually [adv] @ big [adj] @
Type-A Type-B

Figure 17 Type-A and Type-B elementary trees. Note: the @ symbol niaksead
node of the tree.

Insertion is the only operation used for DIG derivation: whan
unlexicalized node of an elementary tree is of the same tygpegategory, as the head
node of another elementary tree, the two can be unified intogkesnode and a new

elementary tree can be built (see Fig. 18).

eat [V]
eat [V] @ [V]:-1 /<
insert _
h \
[N]:-2 [N]:+1,+2
[N]:-2,-1 [N]:+1,+2 usuaIIy [adV] @ usuaIIy [adv]

Figure 18 The insertion operation in DIG. -2,-1, +1, and +2 are reapositions.

28

2.2 The extended forms of elementary trees

The DIG formalism itself does not impose any constraintshanshape of
the elementary trees, as long as they satisfy the requitsnoéype-A and Type-B
elementary trees. Therefore, given a corpus, there can bber of elementary trees,
each of which covers the corpus. To say that some elememtey tover the corpus
implies that each dependency tree in the corpus can be geddrp combining the

elementary trees by the insertion operation.

Like Xia (1999) who proposed a method for extracting LTAGs
(Lexicalized Tree-Adjoining Grammars) from a bracketedpos, we need to define
extended forms of elementary trees in order to ensure tleaéxbracted grammar is

both compact and linguistically sound.

We consider extended elementary trees of the following $orisee
Figure 19):

e Type-l tree: a type A tree with only complement functions nfsytic

arguments, i.e. strongly bound complements).

e Type-ll tree: a type B tree with only two nodes, the unique lz@aring an

adjunct function (circumstantial complements).

e Type-lll tree: a combination of Type-I and Type-II.

Given the fact that our tree-annotated corpus is very sihallinavoidable
to run into the data sparseness problem. In order to minithigeproblem, we used
relative direction instead of relative position i.e. allsgmns< —1 be reduced to left
(L) and position> +1 will be reduced to right (R). We call this the “relaxation of

relative positions”.

Figure 20 shows an elementary tree corresponding to “edt [fansitive

verb). The left-hand side tree is a normal elementary tr@gpeé-1, waiting for “PPER”

29

[V]
word [pos] @ [V] , a
C/\C , a word [pos] @
[N] [N] word [pos] @ ¢ ¢
[N] [N]
Type-| Type-Ii Type-Ill

Figure 19 Three forms of elementary trees. Note: the“c” and “a” fuoe stand
respectively for “complement” and “adjunct”.

eat [VT] @ eat [VT] @
. relaxation
suwbl — > squj
[PPER]:-2,-1 [NCN]:+1,+2 [PPER]:L [NCN]:R

Figure 20 An example of the relaxation of DIG

(personal pronoun) at position -2 or -1 and “NCN” (commonmyat position +1 or +
2. When the constraints are relaxed, the elementary treeaisged to the right-hand

side tree.

2.3 Extracting elementary trees from the treebank

The code of in Algorithm 1 is used for extracting elementaegs$ of the
above three mentioned forms from the treebank. The algorgtarts from the root

node and traverses each node in order to recognize pattethms extended forms.

Given a training dependency tree, the algorithm traveraels rode of the
tree (line 2). At any visited nodg if the inward edge has a complement function (c)
then a Type-I tree will be built where the visited node is thetrand the part-of-speech
of its children which have complement functions (line 3-6).2If an adjunct relation
(a) on an outward edge is found, there are two possible célgeé$.a child of a visited

nodey doesn’t have any children, a Type-II tree will be built immegdly by using the

30

Algorithm 1 ExtractDIG(T)

Input: T a parse tree object
Output: a set of elementary trees
1 ElementaryTrees- []
2 forall xin T.nodeg) do
3 T; « newtregx.word, x.pos)
4 for all yin x.children() do

5 if y.function= ‘c’ and x. function= ‘c’ then
6 Ty.connectat_root(null,y. pos
7 else ify. function=‘a’ then
8 if y.children() =[] then
9 T, < newtree(null, x.pos
10 T,.connectat_root(y.word, y. pos)
11 ElementaryTreeappendT;)
12 else
13 T3 < newtree(null, x.pos
14 tmp«— newtree(y.word,y.pos
15 for all zin y.children() do
16 if zlabel =‘c’ then
17 tmpconnectat_root(null,z. pos)
18 end if
19 end for
20 Ts.connectat_root(tmp)
21 ElementaryTreeappendTs)
22 end if
23 endif
24 end for
25 ElementaryTreeappendT;)
26 end for

27 return ElementaryTrees

part-of-speech of the visited nodeas the root and its child nodeas the child (line
8-11). (2) Otherwise, if a child of the visited nogiehas children, the algorithm will
do like above and construct a Type-I tree in order to produsgbatree (line 14-19). A
Type-lll tree will be built by using the part-of-speech oéthisited nodex as the root,
connecting the produced sub-tt@epto the root. If the child of the visited nodedoes

not have any children, a Type-Il tree will be built instead€l20-21).

Figure 21 shows an example of DIG elementary trees extrdated the

annotated-tree text “l ate boiled rice with my friend”.

31

Type-lll

Figure 21 An example of extracting the extended forms of elementagstfrom a
parse tree.

2.4 Formatting of elementary trees file

It is necessary to mindfully design the format used for siprihe
elementary trees into a file because the format should ngtienparsed by a machine,
but should also read by humans. Storing elementary trees irgadable format will let
the linguists observe the behavior of the language and aksaterrors of annotation by

identifying odd elementary trees which is easier than teplesthe treebank directly.

A DIG file consists of two sections: elementary tree sectimhlacal word
ordering section. Figure 22 shows some parts of the DIG fitee Elementary Section
consists of elementary trees that are indexed by the hedgschcan only be a part-of-
speech or a word with a part-of-speech) and type (I, Il, 9r he float number which
comes after the elementary trees indicates the conditpoahbility of the elementary
tree given its head. As for the Word Ordering Section, thedwmdering of nodes of
the elementary trees are stored in this part. The list of rrawwhich comes after each
the word ordering contains the reference IDs of the treegririning corpus. Itis used
to get back to the original tree in order to analyze whereesponding the errors come

from when some the elementary tree is incorrect.

32

El enentary Tree Section

| vi
[vi] -> [prefl@ubj],[conjncl @conj]:0.004566
[vi] -> [ncn@ubj],[prefl@ubj]:0.004566

I'l:adj
[cl] -> [adj @odp]:0.027473
[adj] -> [adj @modr]:0.013736
[pref1] -> [adj @wodr]:0.010989

##4# Word Ordering Section ###

[adj] -> [ad] @modr]
-1 -> 0:1.000000: #10549, 10578, 10685, 10735
[adj] -> [adv@odp]
1 -> 0:0.500000: #10450, 10592
-1 -> 0:0.500000: #10506, 10626

Figure 22 An example of elementary trees file.

3. Dependency Parsing Techniques

The dependency parsing technique we use is based on themgsuthat the
score (probability) of a dependency tree is the sum of theesaaf all edges in the tree,
and thata best parse trees one withthe highest scoreThis approach consists of two
processes: searching for a best tree among all possibkarekcomputing the scores

of edges.
3.1 Searching the best tree
3.1.1 Eisner’s algorithm
In the traditional approach, the input is a disambiguated

morphosyntactic string; . . .wy whereN is the number of words in the string. M x N
Dependency MatrixpM, is built, whereDM [i, j] contains the best relatiorl between

33

Algorithm 2 Eisner’s algorithm

Input: DM a dependency matrix sizex n;n > 1
Output: a score of the best parse tree
1 forall p,d,cin {1..n} x {«<,=} x {0,1} do

2 Cip,p,d,c] 0.0
3 end for
4 for m=1tondo
5 for p=1ton—mdo
6 t—p+m
7 forr=ptotdo
8 if r <tthen
9 C[p,t,<,0] — maxC|p,t,<,0],C[p,r,=,1] + C[r + 1,t,<,1] + DMJt,p]) /* create left
incomplete items */
10 C[p,t,=,0] «— maxC[p,t,=,0],C[p,r,=,1] + C[r + 1,t,<,1] + DM[p,t]) /* create right
incomplete items */
11 C[p,t,<,1] «— maxC[p,t,«<,1],C[p,r,<,1] + C[r,t,<,0]) /* create left complete items */
12 else ifr > pthen
13 Clp.t,=,1] — maxC[p,t,=,1],C[p,r,=,0] +C[r,t,=,1]) /* create right complete items */
14 end if
15 endfor
16 end for
17 end for

18 return C[(1,n,=,1)]

w; andw;j, with a scores.

DM i, j] = (rel,s) if i+])

empty otherwise

For example, if the input is “I love you” and the scores of
dependencies are computed as following (Here, we do notédédonrel into account

for simplicity)

head dependent score
I — love = 0
love — I = 5
I — you = 1
you — I = 1
love — you = 4
you — love = 0

34

then, a DM of the sentence “| love you” is

1 2 3

I love | you
1 I 0 5
2 love | O 0 0
3 you |1 4 0

where a row index represents position of a head and a colutex in

represents postion of a dependent.

One may use a brute-force algorithm that generates all lpessi
dependency trees and then selects the highest score tree.thdehighest score tree

is

5 4

[N)

ROOT | love you

Unfortunately, the brute-force algorithm has exponential

computing time and cannot be used for parsing a long lengtiesee in practice.

In fact, we can apply Eisner's algorithm (Eisner, 1996)

(See (McDonald, 2006; Eisner, 1996) for more details) to fimel best projective
dependency tree among all possible results in the depepdeatrix within O(n3).

Eisner’s algorithm is a bottom-up parsing algorithm judtelithe CKY parsing
algorithm: it finds optimal subtrees for substrings of irasiag length. The idea is
to parse the left and right dependents of a word indepengamitl combine them later.
That requires only two additional binary variables to sfyettie direction of the item
and whether the item is complete, i.d.andc which will be explained more in the

following.

35

In the dynamic programming tabl€ of Eisner’s algorithm,
C[p,t,d,c| stores the score of the best subtree from posifioto positiont, with
directiond and complete value. The variabled indicates the direction of the subtree
(whether it gathers lefi«€) or right (=) dependents). The variabtendicates whether

a subtree is complete £ 1, no more dependents) or notf 0, needs to be completed).

The pseudo-code of Eisner’s algorithm is shown in Algorithm
The pseudo-code compute only the score of a best parse teemuét also store back
pointers so that it is possible to reconstruct a best trema ttee chart item that spans
the entire sentence. In this work, we assume that the owdaut unlabeled dependency

tree, therefor®M contains only scores.

Consider line 9 in Algorithm 2. It finds the best score for an
incomplete left subtree from positignto t, C[p,t,<,0]. We need to find an index
r (p <r <t)that gives the best (maximum) possible score for combitwrmycomplete
subtreesC|p,r,=,1] andC[r + 1,t, <, 1]. The score of the tree obtained by combining
these two complete trees is the score of these subtreesh@uscore of the chosen
dependency relation from to vj. This is guaranteed to be a score of the best subtree
because we are considering all possible combinations bsnerating all values of.
By forcing the root node to be at the left-hand side of theesse#, the score of the best

tree for the sentence@1,n,=,1].

3.1.2 Extended parsing technique for handling a lattiaecsire

In order to extend this parsing technique for handling datti
structures, we use exactly the same Dependency Matrix d3,ibyt we add one more
condition to check whether there is a non-empty path fwgito w; in the lattice, which
isacdi, j) in (2). Algorithm 3 shows the adaptation of Eisner’s alduaritto find a best

projective dependency tree.

36

Algorithm 3 Modified Eisner’s algorithm for handling a lattice input

Input: DM a dependency matrix sizex n;n > 1
Output: a score of the best parse tree
1 forall p,d,cin {1..n} x {«<,=} x {0,1} do

2 Cip,p,d,c] 0.0

3 end for

4 for m=1tondo

5 for p=1ton—mdo

6 t—p+m

7 forr=ptotdo

8 forall gin getnextr) do

9 if r <t andlsLegalp,r,q,t) then

10 Clp,t,«<,0] «— maxC|p,t,<,0],C[p,r,=,1] +C[q,t,<, 1] + DM[t, p])
11 C[p,t,=,0] «— maxCip,t,=,0],C[p,r,=,1] 4+ C[q,t,<, 1] + DM[p,t])
12 end if
13 end for
14 if r <t andlsLegalp,r,r,t) then
15 Clp,t,«<,1] «— maxC[p,t,<,1],C[p,I,<,1] + C[r,t,<,0])
16 end if
17 if r > pandlsLegalp,r,r,t) then
18 Clp,t,=,1] «— maxC[p,t,=,1],C[p,r,=,0] +C[r,t,=,1])
19 end if
20 end for
21 endfor
22 end for

23 return C[1,n,=,1]

The DM matrix will be (2)

rel,s) ifi+# jandacgi, |
DM i, j] = (rel,s) #] ¢i,j) o
empty otherwise

The modification to Eisner’s original algorithm consiststjun
adding the conditiomhsLegal(line 9, 14 and 17 in Algorithm 3) and call to the function
getnext (in line 8) to validate the built subtrees along the lattiteicture. The call

get.next(n) returns all next adjacent nodesrgfand

IsLegalp,r,q,t) = acqp,r) Aacdq,t) 3)

In order to illustrate this, let's take a look at Fig. 23, slogv

37

the parsing processes respectively of Eisner’s algoritigaofithm 2) and ours
(Algorithm 3).

Figure 23a shows how to find the best incomplete sub-tree
corresponding to the sub-stripg .t of Eisner’s algorithm. The bestincomplete sub-tree
for sub-stringp...t is the combination of sub-tregs..r andr + 1...t plus a dependency

betweenv, andw, which has received the highest score wipear < t.

If the input is a morphosyntactic lattice, not every poinsob-trees
can be combined to generate a new sub-tree. Only a combivaliich is in arajectory
can be generated. We cathjectoryany sequence of directly linked vertices in a lattice
beginning withl and ending witi=. The py, trajectory has the formil, =1 — wp; —

.. — Wp, — F. By looking at Figure 23b, we can see that the selectablesturigs
need to contain a link between a starting node and an endide,. rieor example, sub-
string 1..2 cannot be selected, because there is no path from 1 to 8dtexdi bylsLegal
condition). Moreover, when we try to combine two sub-treesalso have to check that
there is an arc connecting the last node of the first sub-trae,the first node of the

second sub-treej (limited by get nextfunction).

The computing time is increased by testing the condition and
looking for all nodegy directly connected from. Both can be done in constant time
equaling the branching factor (maximum number of outwagkesdf each node in the
lattice). Hence we are still i®(n®) wheren is the number of nodes in the lattice.

Hence, there is no increase in time complexity.

3.2 Computing the scores of edges

In fact, a function for computing the scores of edges canlyeds
estimated by using machine learning models such as Maximnirojgy Models or
SVM. But in our case where the training corpus is very smhk, ase of a machine
learning model alone may lead the parser to produce invalideptrees. In addition,
we assumed that dependencies in a sentence are indepehdanh®ther, hence the

score of a dependency tree is the sum of the scores of allgessedHowever, relying

38

a)

b)

~ _—
@4 su su flu fu A a1 AN an o
pper vt adj vi cl ncn vt npn

Figure 23 An example of parsing with a) a correct morphosyntacticafiglyzed
text and b) a morphosyntactic lattice

solely on the score of edges is not appropriate to computsdbee of dependency
trees for each possible output from a morphosynatic analyzieich are encoded in
a lattice structure). Because it is possible that the pardeselect a parse tree that
has the highest score but the parse tree is not necessaya@orrect morphosynatic
analysis. See an example of parsing a simple sentéptf{l) \kin(eat)\kaw(rice)”.

It can be encoded into a morphosyntactic lattice

that\chanhas two possible parts-of-speech i.e. personal pronower)jppd transitive
verb (vt) while\kin and\kaw have one possibility, transitive verb and common noun

(ncn) respectively. In this conteXtchanshould be personal pronoun. But the parser

39

Algorithm 4 K-best version of the modified Eisner’s algorithm for latt&teucture
combining a DIG and a language model

Input: DM a dependency matrix sizexn;n>1,k>1,b>0,ande>0
Output: a list ofk-best parse tree
1 forall p,d,cin {1..n} x {<,=} x {0,1} do
Clp, p.d,c] — []
fori=1tokdo
C[p, p,d,cl.appendnewTreeOb ject))
end for
end for
for m=1tondo
for p=1ton—mdo
t—p+m
10 forr=ptotdo
11 for all qin getnextr) do

O©oO~NOULAWN

12 if r <t andlsLegalp,r,q,t) then

13 C[p.t,<,0] — mergex(C[p,t, <, 0],dig-multk(C[p,r, =, 1],C[q,t, <, 1], DM[t, p], b, e)
14 C[p.t,=,0] «— mergex(C[p,t,=,0],dig-mult-«(C[p,r,=,1],C[q,t, <, 1], DM[p,t],b,e)
15 end if

16 end for

17 if r <t andlsLegalp,r,r,t) then

18 C[p.t, <, 1] — merge«(C[p,t, <, 1], dig-mult<x(C[p,r, <, 1],C[r,t,<,0],0,b, €)

19 end if

20 if r > pandlsLegalp,r,r,t) then

21 C[p.t,=,1] — merge«(C[p,t,=, 1], dig-mult<x(C[p,r,=,0],C[r,t,=,1],0,b, €)

22 end if

23 end for

24 end for

25 end for

26 return C[1,n,=,1]

will produce

SV dobj

\chant \Kiny \kawncn

instead of

subj /\
\cérbp}kmw \kaWnen

40

This is because, in Thali, subjects are often omitted thaes#tie score of which the
first word is transitive verb and also is a root of a senteneeiig high. But if we look
in morphosyntactical context)than: \kiny \kawnhcn' is invalid. (Note thatsvpis for

annotating serial verb modification.)

In order to overcome these problems, we will introduce tweoenmethods
for computing the score of a parse tree: adjusting the scbeslges computed and
filtering out invalid trees by applying the DIG and the resagrsub-trees by using a
Language Model (LM).

In addition, as our parsing algorithm is inspired by Eissiatgorithm that
allows fork-best extensions, we can also extend our adapted algoritltonpute the
k-best trees. With thk-best extension, if the functioh that computes a new score by
merging two sub-trees is monotonic, the complexity of thesipg algorithm will be

increased by a multiplicative factdd(k log k) (Huang and Chiang, 2005).

We will present a method that efficiently computes the scdih® best
tree for the morphosyntactic lattice, and is a monotonictiom. That will increase the

time complexity ofk-best parsing only by a multiplicative fact@(klogk).

The pseudo-code of the complete parsing algorithm is shown i
Algorithm 4. In the algorithm, there are three parts thatdfferent from Algorithm 3.
First, items of table€ are list of TreeOb jectelements, each containing a tree structure
with its score (line 2-5). Secondlig-mult- is used to find theé-best trees of all
multiplications between two lists of trees (line 13,1428, Third, we replacenaxwith
merge (line 13,14,18,21). The detail afig_mult-x andmerge-, will be described in

the sections 3.2.2 and 3.2.3 respectively.
3.2.1 The scores of the edges
The score of an edge measures the probability of the depeynden

relation established between two words. This score haslsshby many researchers

and can be computed in various ways, for example, by usinghimadearning

41

Basic features (4 categories, 18 types)
Category | Feature | Feature type Feature values (Number of values)
number
1 lexeme ofx; (head) (40,000)
2 POS ofx; ncn (common noun), vt (transitive verb),... (51)
A 3 generalized POS of N (noun), V (verb),... (13)
4 lexeme ofy; (dependant) same as feature number 1
5 POS ofy; same as feature number 2
6 generalized POS of same as feature number 3
B 7 distance betweex andy; 1,2,3,4,5,[6-10],[11-15],[16-inf) (8)
8 position ofy; referredx; left, right (2)
9 POS ofx_1 same as feature number 2
10 generalized POS of_; same as feature number 3
11 POS ofxi11 same as feature number 2
c 12 generalized POS of 1 same as feature number 3
13 POS ofyi_1 same as feature number 2
14 generalized POS of_1 same as feature number 3
15 POS ofyit1 same as feature number 2
16 generalized POS of 1 same as feature number 3
D 17 POS between; andy; (511
18 generalized POS betwegnandy; | (13!)

Figure 24 Features (basic features)

methods such as Maximum Entropy Models (Uchimetal., 1999), Support Vector
Machines (Kudo and Matsumoto, 2000), and MIRA (McDonald)@0or conditional
probabilistic models (Eisner, 1996; Jinsheainal., 2004), to estimate the score from

linguistic features of various kinds of the two words.

In our work, we used Maximum Entropy Models for learning the
scores. The features for training the model used here are similahé¢ofirst-order
features used in (McDonald, 2006). But, we added more bédeatures by adding
a new tag set which is a POS (part-of-speech) generalizaionexample, the seven
tags of nouni.e., ‘NCN’, ‘NCT’,'NNUM’, ‘NORM’, ‘NPN’, ‘NTI T’, and ‘NLAB’, and
a personal pronoun, ‘PPER’ will be reassigned to ‘N’. Theeagahized part-of-speech
has 18 different tags. Moreover, we discard 5-gram prefitufea(The 5-gram of a
surface word will used as a feature if the word is longer thahd&racters, for instance
the 5-gram feature of “general” is “gener”.) because it i$ appropriate for Thai
because Thai is isolating languages and consists of manesthaharacters (excluding
symbolic characters). Therefore it is highly possible thatds having the same 5-gram
prefix are not related. The model is used to estimate depepgenbabilities. These
probabilities will then be used as scores. In the implentemtawe take the logarithm

of the probabilities to avoid floating overflow.

42

Combined features (9 categories, 100 types)

Combination type Category Feature set
Bigram features: (A1,A2,B) A1=1{1,2,3,(1,2),(1,3)},A2 = {4,5,6,(4,5),(4,6)},
related to the information of B={7,8,¢}

head and the information of
its dependent

Surround features: ({2},{5},C1,C2,B) | C1 ={9,11},C, = {1315}
related to the POS surrounding ({3},{6},C3,C4,B) | C3={10,12},C4 = {14,16}
head and its dependent
In Between POS features: ({2},{5},D1,B) D1 = {17}
the POS features for all the ({3},{6},D2,B) D, = {18}
words in-between the head
and its dependent

Figure 25 Features (combined features)

The features used in this work are listed in Figures 24 and 25.

We use the Maximum Entropy Modeling Toolkit for Pythdr { p:
I I ww. homepages. i nf. ed. ac. uk/ s0450736/ maxent _tool kit.htm)
for implementing the computing score model. The model is a-tlass classifier,
deciding whether a pair of words should have a dependenagiaelor not. In this
work, we focus primarily on unlabeled dependencies, buirtbdel can be extended to
assign grammatical functions to the dependency struciuusing a single-stage (joint
labeling) or two-stage method (see (McDonald, 2006) forewstail).

3.2.2 Adjusting the score of edges and filtering out invakes

Since our corpus is small (resource-poor languages), thefuse
scores of edges mentioned above is not enough. Hence, wesardipe use of DIG
for adjusting the scores. We adjust the scores of edges lokiclgewhether the tree
satisfies a given DIG. If it does not, the score of the edge tsdulild the tree is
decreased and if the number of unsatisfactoriness is grisate a constart, the tree
will be filtered out. In order to filter out the invalid tree, vieiild larger subtrees and
derive their corresponding elementary trees as the sange tinthe elementary trees
cannot be derived, we will adjust the score of the built dejeecy trees. The score will
be decreased by a positive constaiitt the insertion of two smaller elementary trees

fails. An example of adjusting the score of edges is showngnZe.

Figure 26 gives an example of computing the score of a neweseibt

43

- Y

- --- N
. - K
. ” ‘e
“ 6

T[1-2] (@) TI[3-3] Score[1-3] = Score[1-2] + Score[3-3] + score(1,3)
run[Vi@ ===""" , vl
, insertX' |
I[N] ==="" fast [adv] @ ‘ @ @
E[1-2] (b) E[3-3] Score[1-3] = Score[1-2] + Score[3-3] + score(2,3)

Figure 26 An example of adjusting the scores of edges by using DIG fourilfast”.

where there are two possibilities to build a new subtree fiigth— 2] and T[3 — 3]:
connecting “I” to “fast” and “run” to “fast” (see 26a). Buth¢ insertion between their
elementary trees satisfies only the connection from “rurifast” (as 26b), hence the
score of the tree constructed from connecting “fast” to 8'tlecreased by the constant

e (as 26¢), while the score of connecting “fast” to “run” is qomed normally (as 26d).

If all possible elementary trees corresponding to eachtsogsare
kept, the time complexity of the parsing algorithm will k¥g"n3), whereg is the
maximal number of corresponding elementary trees per aeshalubstring (a word).
In fact, we do not need to keep all possible complete elemefrtaes. We can keep
only the status of the elementary trees corresponding to wacd, since the parsing

algorithm considers only building dependency relatiomieen two words.

In fact, when the insertion is performed, only the categamyg a
relative position of the elementary tree of the inserted e considered. Consider

HIH

again Figure 26b. It shows that the insertion of “I” and “runto elementary trees
correspond to “fast”. We do not need to know the elementagstrof “| run”. We
consider only what the elementary trees of “fast” are wgifor (in this case “fast” is

waiting for “V”). Therefore, the time complexity becom@$gr®).

The operation of adjusting the scores of edges and filtennghe

invalid trees are embedded into the operatibgmult, (see Algorithm 5) i.e. the

44

modified version ofmultx (Huang and Chiang, 2005), the multiplication operation
that produces thk best trees of all multiplications between two lists of treBlse time

complexity of the operatiomult is O(klogk).

Algorithm 5 dig-mult<x(Cy,Cp,scoreb, e)

Input: C; andC, are two lists ofTreeObjecs,k > 0,
score>0,b>0,ande>0
Output: alist of TreeObjecs
1 results—[]
2 forall t1,t2 in mult<(C1,Cy) do
3 if badnesf,tz) < bthen

4 tree<— combinéts,to)
5 if checkdig(ts,t2) then
6 treescore— ty.score+ tp.score+ score— e
7 else
8 treescore— t;.score+ tp.score+ score
9 endif
10 resultsappendtree)
11 endif
12 end for

13 return results

In Algorithm 5, thebadnesf,tz) function returns the number of
dependencies that do not satisfy the DI i&ndt; are combined, ancheckdig(ts,t2)
returnstrue if combination oft; andt; is satisfied by DIG, otherwiséalse Finally,
combinéts, to) returns a new sub-tree which is a combinatiot @indt,. Theb constant
is used for limiting the valuebfadness (the number of dependencies not satisfying
DIG) that is allowed to occur in the parse trees. Dhll be increased dynamically by

one if any parse tree cannot be generated.

By adding the operation of adjusting the score of edges ardffig
out invalid trees processes into thebest parsing, the multiplicative factor is still
O(klogk). However, the best sub-tree is no longer optimal becausedhalty will
be only applied to thé&-best sub-trees in each step, so that it is possible thahanot
sub-tree that is not penalized will have a higher score thsubatree in thé-best list
which is penalized. Therefore, the valuekdfias an effect on the parsing accuracy: if
we increase, the search space of finding the best sub-trees is also settedven
though this method does not guarantee the optimum solutierparsing accuracy can

be improved with a smak (see chapter Experiments for the detail of the experiments)

45

3.2.3 Rescoring sub-trees by using a language model

Rescoring sub-trees by using a LM is very important for figdime
best parse tree from all possible segmented words and papeech tagged sentences,
since the use of the score of dependencies does not guathatethe tree with the
highest score will correspond to the best word segmentaimhbest part-of-speech
tagging of the sentence (as mentioned in section 3.2). Wa u$é to help the parser
select a good parse tree which is also a good morphosyratgtmalyzed text. Here,

we use a trigram model on the part-of-speech as our the LM.
n
P(tin) = ﬂp(ti\wi)P(ti—z,tt—l\ti) (4)
i=

wheret; andw; are part-of-speech and word at positi@ma given sentence respectively.

nis the length of the sentence.

In this work, we use the trigram model because it is fast, Bmp
and easy to implement. Other methods could also give us amabk score
of morphosyntactic analyzed input, such as ConditionaldRan Fields, that are

theoretically better than the trigram model, but more caxpb implement.

Table 1 The ambiguity of the training corpus for LM

ambiguity words tokens
1 16,262 (88.40%) 239,810 (43.73%)
2 1,789 (9.73%) 144,429 (26.34%)
3 270 (1.47%) 94,036 (17.15%)
4 56 (0.30%) 28,241 (5.15%)
5 14 (0.08%) 19,919 (3.63%)
6 5 (0.03%) 21,996 (4.01%)

The trigram model was trained on 40,494 part-of-speechetgg
sentences containing 49 tags, 18,396 words and 548,43hs0Keable 1 shows the

detail of the training corpus related to the part-of-spesaibiguity that we found.

The accuracy of the word segmenter and of the part-of-speech

tagger by using the trigram model is about 95% and 90% reispbct

46

Algorithm 6 merge(Cq,Cy)

Input: C; andC; are two lists ofTreeObjecs andk > 0.
Output: alist of TreeObjecs

O©COoO~NOO UL WN P

Re]
L, < rescoreby_lang modelCy)
L, < rescoreby_lang model(Cy)
while len(L1) > 0 andlen(L,) > 0 andlen(R) < k do
if Lq.first > L. first then
R.appendL.first)
Li.removéL,. first)
else
R.appendL. first)
Lo.removéL,. first)
end if
end while
while len(L1) > 0 andlen(R) < k do
RappendL;.first)
Li.removéL;.first)
end while
while len(Lz) > 0 andlen(R) < k do
R.appendL.first)
Lo.removéLy. first)
end while
return rescoreby_edgesscoreR)

We added a rescoring process into the functioergex, which

takes two sorted lists of lengk{or fewer) as input, and outputs the tom sorted order

of the X elements. For parsing a single input, the elements (s@s)tere sorted by the

score of edges, but here, for parsing a morphosyntacticdathe elements are sorted

by the score of LM instead. This can be don®iiklogk) then the overall multiplicative

factor @ig-mult<x and merge operations) is stillO(klogk). The pseudo-code is

shown in Algorithm 6.

but we may have to sétextremely high in order to find the true best parsing (taking

In fact, the rescoring process can be added into the finag parss,

the LM into account).

47

RESULTS AND DISCUSSION

Results

1. Evaluation Methods

To evaluate our methods, we set up three experiments. Inrtteviie assume
that inputs are correctly word segmented and part-of-$pegmed. In this experiment,
we can directly compare our method to the others. In the seexperiment, we will not
assume that the inputs are perfect, but we will convert tpatsinto morphosyntactic
lattices to test our method. For the others, the inputs wilbalyzed by the existing
morphosyntactic tools. Finally, we study the oracle pa&e(, 2006), or the best parse

among the tofk parses in order to measure the performance okibest parsing.

For the experiments, we used 716 sentences of the NAiSTam&dbr training
and 100 other sentences for testing. We measured Dependecision (DP),
Complete Rate (CR) and Root Accuracy (RA) to evaluate thsipguresults. We
measured only the correctness of the dependency structuitesut considering the

grammatical functions.

number of correct dependencies

DP = -
total number of reference dependencies
CR - number of complete parse trees
N total number of sentences
RA — number of correct root nodes

total number of sentences

In the second and third experiments, we also measured thectoess of the
morphosyntactic analysis. We used Token Precision (TPReddRecall (TR), and

Token F-measure (TF).

48

number of correct tokens

TP =
total number of reference tokens
TR - number of correct tokens
~ total number of hypothesis tokens
2xTPx TR
TF = ——————
TP+TR

Here, the number of correct tokens means the number of tlemsakat are correctly

word-segmented and part-of-speech tagged.

2. Extracted elementary trees

The extended forms of elementary trees were extracted fiertrdining corpus,
716 sentences, there are 8,172 tokens, of which 1,996 aed ty¥p342 are type-Il and
1,834 are type-lll.

In the elementary trees extracted using the algorithm destin section 2.3,
there are 981 different types of elementary trees (175, 400486 for Type-I, Type-
Il and Type-lll, respectively), and 497 of them appear onhc& Some of these
elementary trees are abnormal structures, especiallg tifdsw number of occurrences

in the corpus.

Obviously, the extracted elementary trees do not covehalitords. Therefore,
if the lexicalized elementary trees (the head is a lexicath s part-of-speech) can
not be found, the unlexicalized elementary trees (the headpart-of-speech) will be
matched instead. Specifically, the unlexicalized elemgritaes which have a high
number of occurrences in the corpus 8) will be used in order to avoid using noisy

elementary trees.

3. Parsing with perfect inputs

Although parsing with perfect inputs are not the main foctighis work,

observing the accuracy of parsing with a perfect input calp hevestigate the

performance of combining DIG with a data-driven parsing hodt and also with

49

other parsers. Here, we use the MSTparket §: / / sour cef or ge. net/ proj ect s/
met parser), a statistical dependency parser freely available on tled. w The
MSTparser was trained with the parametdes= 5 and N = 10, as reported
in (McDonald, 2006) yielding a good accuracy and training thodel in reasonable

time.

For our parsing algorithm, there are three parameters wtach affect the
performance i.ek, e, andb. Therefore, we set up another experiment for observing

the effect of these parameters by letting them vary.

Having experimented, we found that increadidpes not improve the accuracy.
Moreover, the accuracy dropped at some hidghdrme idea of usingy does not seem to
work in this case, because the accuracy improvessfdisabled (set teo). Thee that

can improve the accuracy from the baseliae-(0 andb =) is0< e < 2.

From the experiments, we should prioritize the score of edgenputed from
a data-driven model rather than weighting the score by DIGo&rsing with perfect

inputs.

Table 2 Results comparing our systems with MSTparser where thd inperfect
(for MAXpic, we setk =1, b = 0 ande = 2).

DP CR RA
MAX (baseline) 86.03 21.00 90.00
MSToroj 83.40 15.00 94.00
MAXpiG 88.66 27.00 92.00

Results of parsing with perfect inputs are shown in Table 2. Uak subscript
DIG to denote the use of DIG whilAX represents our learning model i.e. Maximum
Entropy Models andMSTyoj is MSTparser using projective parsing algorithm for

training the model.

For overall performancéylAXpc is the best one. It confirms that the use of the

DIG can improve the parsing accuracy of a data-driven pgmsindel. The accuracy

50

of MSTyroj is lower than the baseline, even if MSTparser uses the legrmodel,
MIRA (Crammeret al,, 2006), that is theoretically better than the model usedhén t
baseline. We think that this is due to the 5-gram prefix festwsed in MSTParser that
does not make sense for Thai, and the simplified part-ofespfeEatures that was added
into the baseline model. Also, we see that the better pegoom of MIRA via the root
accuracy oMSTyoj is higher than the others, because MIRA learns the scoredgefse

by using a whole dependency tree rather than each pair ohdepey nodes.

4. Parsing with morphosyntactic lattices

In this experiment, we created a morphosyntactic latticebpping a dictionary
using a dynamic backtracking algorithm (Thumkanon, 20GNd generating all
possible word segmentations and part-of-speech taggsigtse Here, we assume
there is no unknown word in the input text, in order to asstie¢ there is a correct
homophrasen the lattice. For the other methods that cannot take tliedastructure
as input, we used input texts that were morphosyntacticalblyzed by the analyzer
instead. We used the trigram model trained by the same ctinptig/as used in the LM

rescoring process.

Like in the previous experiment, we also observe the efféctanying the
parameters. As we expected, the result is the opposite ®etbbtained in the
experiment with perfect inputs. The parsing accuracy imgdovhenk increased and
was stable whek > 10 (k varied from 1 to 20). The accuracy is highest wies 0
and 4< e <5.

The experiment shows that we can trust the use of DIG moreithdre score
computed by the learning model, unlike in the previous expent, because when the
input is a lattice, the effect of the independence assumjgionore evident, and many
invalid dependencies are produced. Hence, the use of DI pla important role in

this experiment.

Table 3 compares the results. We use the superserptindicate methods

taking a lattice as input, and superscripto indicate that the input is a dubiously

51

Table 3 Results comparing our systems with the MSTparser wherenfhe is the
lattice or the text analyzed by the morphosyntactic anal{foe MAXS, s
andMAXS, - v We sek = 10,b = 0 ande = 5).

DP CR RA
MAXY (baseline) 68.01 4.00 75.00
MAXY o 68.39 5.00 77.00
MSTo; 65.99 4.00 78.00
MAX* 66.42 4.00 76.00
MAXS o 68.39 4.00 79.00
MAX 73.43 5.00 79.00
MAXS -1 m 74.32 6.00 81.00

disambiguated string. We also used subscriptiieto indicate the use of a language

model for rescoring.

TheMAXS, - v Method is the best one, and its accuracy is far better thaoftha
the parsers used on inputs produced by the used morphasghéatalyzer. Moreover,
the accuracy of morphosyntactic analysis of the result$sis improved, as shown in
Table 4.

Table 4 Results comparing the accuracy of morphosyntactic arslysi

TR TP TF
trigram model 88.64 87.34 87.99
MAX* 87.12 88.08 87.59
MAXS, g 88.11 88.88 88.49
MAX\ 92.86 93.27 93.06
MAXS 1 G-Lm 93.15 93.49 93.32

The MAX* method is the worst: the accuracy of parse trees and theaagycur
of morphosyntactic analysis are lower than the baseline.at T similar to the
MAXS, s method, which shows that using only the DIG can slightly ioverthe parse
accuracy only, but does not improve the morphosyntactityaisa because the score
of morphosyntactic analysis is not taken into account. Tée af DIG can improve

the parsing accuracy, but it is not enough. By contrsl$t X, uses only the LM but

52

obviously improves the accuracy of morphosyntactic ansiysd that of the parse trees.

The results show that if we perform morphosyntatic analgsid syntactic
analysis simultaneously by using their information to hefrh other (here we use
the score of morphosyntactic analysis to rescore the paess)t the accuracy of
that combination is better than that of the usual sequenceptmsyntactic analysis

followed by syntactic analysis).

Table 5 Speed of parsing with morphosyntactic lattices.

num. of words num. of nodes num. of all paths execution time €x)

1-5 7.39 15.42 0.17020
6-10 15.17 518.87 2.5216
11-15 23.55 7,418.24 9.1375
16-20 30.89 488,910.57 30.6499
21-25 39.58 6,063,285.00 93.3398
26-30 47.25 54,095,126.00 328.7566

Table 5 shows speed of parsing comparing to number of woutisbar of nodes
and number of paths in the input lattices. The results shioatgle speed of our parsing
model depends on the number of nodes (in orde®@t®)) in a input lattice as we

mentioned before.
5. K-best parsing

The next experiment is ok:best parsing. We use the same algorithm with the
best parameter settings£ 0 ande = 5) as in the previous section, and we also study
the oracle parse, or the best parse, among the top 10 parkestedult is shown in
Table 6. Note that the MSTparser which we used cannot praithedebest parse trees,

hence no result is given for it.

For the oracle parse, theAXS,; method becomes the best one. In addition, if
we increase& to 100,MAX* also outperform$/IAX’, andMAXS, - m- It shows that

the models using a LM for rescoring worse in the oracle parse.

53

Table 6 The accuracy of oracle parse in the 10-best parses

DP CR RA
MAXA 72.44 7.00 89.00
MAXY, 73.03 9.00 90.00
MAX* 74.43 12.00 84.00
MAXS o 78.02 13.00 93.00
MAX 76.03 11.00 84.00
MAXS, 6-Lm 76.42 11.00 84.00

Figure 27 DP of thek-best oracle on the test data

DP

0.82 E
0.81
0.8
0.79
0.78
0.77
0.76
0.75
0.74
0.73
0.72

—o— MAX®
MAX o

—<— MAX

—t— MAXp6
MAX Ly
MAX pi6.im

In|
zh

0

10 20 30 40 50 60
k-best

70

80 90 100

We notice that the methods using a LM for rescoring produce aflparse trees

having duplicated patterns of morphosyntactic analyskis 1 because the rescoring

by the LM method lets the parsing process consider the s¢dl dirst and the score

of dependencies later. In other words, the text of highesesaf LM is first selected and

as many corresponding parse trees as possible will be dedeteleads to imbalanced

decision-making by the parser, that too much emphasizesstive of LM. This problem

occurs only in thek-best parsing, it does not affect the best parsing. Thexetbe

rescoring method should not be usedibest parsing.

Figures 27 and 28 show the DP and the TF of the oracleloest parsing where

54

kis 10, 20, 30, 50 and 100.

0.96
0.95
u_ -
F .04 -
8 —<— MAX
J T MAX bic
MAX | u
0.93 —— MAX*D\G-LM
0.92 T T T T T T T T T]
0 10 20 30 40 50 60 70 80 90 100

k-best
Figure 28 TF of thek-best oracle on the test data

The DP and the TF of oracle in 100-best parsing withM?eXs, ; method are
81.21% and 95.18%, respectively, and both tend to contsiyancrease ik increases
even more. That is similar to other methods for which the inp@a morphosyntactic
lattice. Unlike the methods where the input is a dubiousbadibiguated string, the DP
of oracle tends to improve at first, but slightly increasesmiincreases even more and
becomes saturated wh&n> 50: the accuracy of the morphosyntactic analysis cannot
improve anymore. In other words, the parsing accuracy isliinsted by the accuracy
of morphosyntactic analysis of the input. Conversely, ifim@easek when inputs are
morphosyntactic lattices, the search space for finding bathbest morphosyntactic
analysis and the best parse tree is enlarged. Hence, theectwafind a best parse tree

amongk-parse trees is higher than when the inputs are dubiousydigyuated strings.

Clearly, the use of a morphosyntactic lattice as input, isecaf thek-best
parsing, significantly and decisively improves the accy(aglative to the oracle parse)

of the morphosyntactic analysis and the parsing process.

55

Discussion

The limitation of the proposed parser caused by three typepot.

Noun-phrase with multiple nouns: If a subject or an objecadfentence is
modified by nouns, the parser would select the wrong subjesject. The modifier is

usually selected instead of the true subject or object.

Relative pronoun omission: In Thai, relative pronounsecslwrds for indicating
relative clauses, are usually omitted. The parser willdetlee root incorrectly by

promoting the verb of the relative clause instead of seigdtie verb of the main clause.

Spoken language: In the spoken language, some constitoiesg¢sntences are
omitted such as subject, object and main verb. The errofsedalr if the main verb, the
root, is omitted. However, the parser can handle the seeseih@t subject and object

are omitted.

56

CONCLUSION AND RECOMMENDATION

Conclusion

Syntactic parsers are very important for development of pplications such
as machine translation, information extraction, text samgation, etc. In this work, we
built a dependency parser that suits to under-resourcgdémes (no huge treebank and
no good morphosyntactic analyzer), hence we proposed andepey parsing method
for languages without reliable morphosyntactic analys@s. For this, we represent
the input as a morphosyntactic lattice structure, and apphadaptation of Eisner’s
algorithm to find projective dependency trees. From the exmntal results, our
method performs better than the results working on dubyodisiambiguated strings.
In addition, we also show the use of Dependency Insertioom@rar (DIG) to adjust
the scores computed by the statistical parsing models henieéscore of the parse trees

by the LM, and &-best extension of the parser.

The results show that our methods can significantly imprdwe parsing
accuracy. The highest parsing accuracy (DP) reported snpghper is 74.32% which
is 6.31% improvement compared to the models taking as irpetsesults of unreliable
morphosyntactic analysis tools. Even if the obtained amgurs not enough for high-
level NLP applications such as MT, Information Extractiowd&ext Summarization, it
is still useful for a corpus preparing process that requegtarser which can produce
reasonablé-best parse trees in order to let annotators start from thetlee among

k-best trees rather than from a doubtful parse tree.

This work is the first step of development of a dependencyepds under-
resourced languages. There are many opened problems wigchotution could
improve the parsing models in the future. For instance, tbpgr combination of the
morphosyntactic process and the syntactic process canwafite performance of each

other and the use of linguistic knowledge can improve tha-datven parsing model.

57

Recommendation

1. Language Independent

Although we proposed a dependency parsing method for Thaiptoposed
method can be applied to other languages with a little eff@efore applying our
parsing method to a new language, we need at least one metlubakssify between
the complement and the adjunct dependencies in order tol®¢cadxtract elementary

trees.

In addition, tuning of feature selection for the learningdabis also necessary,
because each language has its own specific behavior. If aepfepture space
is selected, the parsing accuracy can be significantly iwgaraas shown in our
experiments: the less performance learning method beatseulpetter one which the

proper feature space is obtained.

2. Components

The parsing system in this study is based on the algorithrggithm 4) that
can effectively decode the highest score projective degrarydiree among all weighted
dependencies established in the lattice structure. Towerehe parsing accuracy of the
system depends on a method used for computing the scorenfjveighe dependencies.
In this work, The proposed method for computing the scoreistéof three processes
and each process works independently of each other. Hemnch, process can be

substituted by others that works in the same manner.

The first process is the computing the score of edges (depeied¢ by using
machine learning model. Here, Maximum Entropy Models iglusecan be replaced
by any learning methods that can also produce the reasosabie such as MIRA,

Support Vector Machine, etc.

The second process is the adjusting the score and filterintheunvalid parse

trees. In this report, we proposed the use of DIG. In facteiothethods that can

58

linguistically validate parse trees can be used in placenar may try to use other

grammars instead of the DIG.

The last process is the rescoring parse trees by using LMtrigram model
based on part-of-speech is used to represent the LM. Eabgritiere are methods that

can also be used for represent the LM, i.e. Conditional Remiéields.

It is believed the parsing accuracy can be further improvetiindepends on

the methods used in each process.

59

LITERATURE CITED

Alshawi, H.. 1996. Head Automata and Bilingual Tiling: Tedation with Minimal
Representations, pp. 167-1T6 Proceedings of the 34th Annual Meeting of

the Association for Computational Linguistics (ACL '96).

Boitet, C. and Y. Zaharin. 1988. Representation Trees And¢iree
Correspondences, pp. 59—@d Proceedings of the 4th international
conference on Computational Linguistics (COLING 1988) Budapest,
Hungary.

Chu, Y. J. and T. H. Liu. 1965. On the shortest arborescenealotcted graph.
Science Sinical4:1396-1400.

Clark, S. and J. Curran. 2004. Parsing the WSJ using CCG grlthiear models, p.
103.In Proceedings of the 42nd Annual Meeting on Association for

Computational Linguistics. Barcelona, Spain.

Clark, S., J. Hockenmaier and M. Steedman. 2001. Buildirepdependency
structures with a wide-coverage CCG parser, pp. 327-4832roceedings of
the 40th Annual Meeting on Association for Computational Linguistics
(ACL ’'02) . Philadelphia, Pennsylvania.

Coallins, C., B. Carpenter and G. Penn. 2004. Head-drivesipgfor word lattices, p.
231.In Proceedings of the 42nd Annual Meeting on Association for

Computational Linguistics. Barcelona, Spain.

Collins, M.. 1997. Three generative, lexicalised modetsstatistical parsing, pp.
16-23.In Proceedings of the 35th Annual Meeting of the Association fo
Computational Linguistics and Eighth Conference of the Euppean

Chapter of the Association for Computational Linguistics Madrid, Spain.

Collins, M.. 1999.Head-driven statistical models for natural language parang.

Ph.D. thesis. Computer and Information Science, UniveddiPennsylvania.

60

Collins, M., L. Ramshaw, J. Haji¢ and C. Tillmann. 1999. Atstical parser for
Czech, pp. 505-512n Proceedings of the 37th annual meeting of the
Association for Computational Linguistics on Computatioral Linguistics.

College Park, Maryland.

Covington, M.. 1984 Syntactic theory in the High Middle Ages: Modistic models

of sentence structure Cambridge University Press.

Crammer, K., O. Dekel, J. Keshat and S. Shalev-Shwartz..2066ne
Passive-aggressive algorithndaurnal of Machine Learning Research
7:551-585.

Ding, Y. and M. Palmer. 2004. Synchronous Dependency lisse@rammars: A
Grammar Formalism for Syntax-Based Statistical MilProceedings of the
workshop on Recent Advances in Dependency Grammars, The 20t
International Conference on Computational Linguistics (COLING 2004).

Geneva, Switzerland.

Ding, Y. and M. Palmer. 2005. Machine translation using pimlistic synchronous
dependency insertion grammars, pp. 541-&roceedings of the 43rd
Annual Meeting on Association for Computational Linguistics (ACL-05).

Association for Computational Linguistics, Ann Arbor, Migan.

Duchier, D.. 2000. Constraint Programming For Natural Lueagge Processingn
Lecture Notes, ESSLLI 2000

Edmonds, J.. 1967. Optimum Branchingsurnal of Research of the National
Bureau of Standards 71B:233-240.

Eisner, J.. 1996. Three New Probabilistic Models for Degergt Parsing: An
Exploration, pp. 340-34%n Proceedings of the 16th International
Conference on Computational Linguistics (COLING-96) Copenhagen.

Eisner, J.. 2000. Bilexical Grammars and Their Cubic-Tiraeskhg Algorithms.n
H. Bunt and A. Nijholt, eds. Advances in Probabilistic and Other Parsing

Technologies pp. 29-62. Kluwer Academic Publishers.

61

Gagnon, M. and L. D. Sylva. 2005. Text Summarization by Sered-xtraction and
Syntactic Pruningln Proceedings of the 3rd Computational Linguistics in
the North East (CliINE-05). Université du Québec en Outaouais, Gatineau,

Canada.

Gaifman, H.. 1965. Dependency Systems and Phrase-Seusystemsinformation
and Control. 8(3):304-337.

Hajic, J., A. Bohmova, E. Hajicova and B. Vidova-Hlkad 2000. The Prague
Dependency Treebank: A Three-Level Annotation Scendnié\. Abeillg, ed.,
Treebanks: Building and Using Parsed Corpora pp. 103-127. Amsterdam:

Kluwer Academic.

Harper, M. and R. Helzerman. 1995. Extensions to constd@ipéndency parsing for

spoken language processingomputer Speech and Language9:187—-234.

Harper, M., L. Jamieson, C. Zoltowski and R. Helzerman. 133mantics and
Constraint Parsing of Word Graphs, pp. 63-#6Proceedings of the IEEE
International Conference on Acoustics, Speech and Signakécessing

Minneapolis, Minnesota.

Hays, D.. 1964. Dependency Theory: a Formalism and SomerGitgms.
Language 40(4):511-525.

Heinecke, J., J. Kunze, W. Menzel and I. Schroder. 1998niBative parsing with
graded constraints, pp. 526-530Proceedings of the 36th Annual Meeting
of the Association for Computational Linguistics and 17th hternational

Conference on Computational Linguistics Montreal, Quebec, Canada.

Hellwig, P.. 1986. Dependency Unification Grammar, pp. 198-In Proceedings of

the 11th coference on Computational linguisticsBonn, Germany.

Huang, L. and D. Chiang. 2005. Better k-best parsindg2roceedings of the
International Workshop on Parsing Technologies (IWPT) Vancouver, B.C.,

Canada.

Hudson, R.. 1990English Word Grammar . Blackwell.

62

Hwa, R., P. Resnik, A. Weinberg, C. Cabezas and O. Kolak. 2B0btstrapping

parsers via syntactic projection across parallel teXegtural Language
Engineering. 11(3):311-325.

Jinshan, M., Z. Yu, L. Ting and L. Sheng. 2004. A StatisticapBndency Parser of
Chinese under Small Training Data.Proceedings of the 1st International

Joint Conference on Natural Language Processing (IJCNLR)Sanya City,
Hainan Island, China.

Joshi, A. and O. Rambow. 2003. A Formalism for Dependencyr@rar Based on

Tree Adjoining Grammain Proceedings of the Conference on
Meaning-Text Theory. Paris, France.

Joshi, A. and Y. Schabes. 1997. Tree-Adjoining Grammlarslandbook of Formal
Languages vol. 3. pp. 69-124. Springer, Berlin, New York.

Karlsson, F.. 1990. Constraint grammar as a framework fasipg running text, pp.

168-173In Proceedings of the 13th conference on Computational
linguistics. Helsinki, Finland.

Kim, J. J. and J. C. Park. 2004. Annotation of Gene Produdtsam.iterature with
Gene Ontology Terms Using Syntactic Dependencies, pp.532BH
Proceedings of the 1st International Joint Conference on Naral
Language Processing (IJCNLP)Sanya City, Hainan Island, China.

Kudo, T. and Y. Matsumoto. 2000. Japanese Dependency Gteukhalysis Based on
Support Vector Machines, pp. 18—-26.Proceedings of the Joint SIGDAT

conference on Empirical Methods in Natural Language Procesing and
Very Large Corpora (EMNLP/VLC-2000) . Hong Kong.

Maruyama, H.. 1990. Structural disambiguation with castrpropagation, pp.
31-38.In Proceedings of the 28th annual meeting on Association for

Computational Linguistics. Association for Computational Linguistics,
Pittsburgh, Pennsylvania, USA.

63

McDonald, R.. 2006Discriminative Training and Spanning Tree Algorithms for
Dependency Parsing Ph.D. thesis. Computer and Information Science,

University of Pennsylvania.

McDonald, R. and J. Nivre. 2007. Characterizing the ErréiBata-Driven
Dependency Parsing Models. Proceedings of Conference on Empirical
Methods in Natural Language Processing and Natural Languag Learning
(EMNLP-CoNLL) . Prague, Czech Repubilic.

Mel’Cuk, I.. 1988.Dependency Syntax: Theory and PracticeThe SUNY Press.

Milward, D.. 1994. Dynamic dependency grammianguistics and Philosophy.
17:561-605.

Nivre, J.. 2005. Dependency Grammar and Dependency Paididreport 05133.

School of Mathematics and Systems Engineering, Vaxjwénsity.

Nivre, J., J. Hall and J. Nilsson. 2004. Memory-Based Depany Parsing, pp.
49-56.In Proceedings of the 8th Conference on Computational Natural

Language Learning (CoNLL-2004) Boston, Massachusetts, USA.

Nivre, J. and M. Scholz. 2004. Deterministic dependencgipgrof English text,
p. 64.In Proceedings of the 20th international conference on

Computational Linguistics (COLING '04) . Geneva, Switzerland.

Ratnaparkhi, A.. 1999. Learning to Parse Natural LanguageMaximum Entropy
Models. Machine Learning. 34(1-3):151-175.

Sgall, P., E. Hajicova and J. Panevova. 1986e Meaning of the Sentence in its

Semantic and Pragmatic AspectsSpringer. 1st edn.

Shen, L.. 2006Statistical LTAG Parsing. Ph.D. thesis. Computer and Information

Science, University of Pennsylvania.

Shen, L. and A. K. Joshi. 2005. Incremental LTAG parsing,§41—818In
Proceedings of the conference on Human Language Technolognd
Empirical Methods in Natural Language Processing Vancouver, B.C.,

Canada.

64

Sleator, D. and D. Temperly. 1991. Parsing English with la irammar, pp. 277-292.
In Proceedings of the third International Workshop on Parsing
Technologies (IWPT)

Sudprasert, S., A. Kawtrakul, C. Boitet and V. Berment. 20D8pendency Parsing
with Lattice Structures for Resource-Poor LanguadfekCE Transactions on
Information and Systems E92-D(10):2122—-2136.

Tapanainen, P. and T. Jarvinen. 1997. A non-projectivedi@gncy parser, pp. 64-71.
In Proceedings of the 5th Conference on Applied Natural Languge

Processing Association for Computational Linguistics, WashingtbnC.
Tesniére, L.. 1959Eleéments de syntaxe structurale Editions Klincksieck, Paris.

Thumkanon, C.. 2001A Statistical Model for Thai Morphological Analysis.

Master’s thesis. Computer Engineering, Kasetsart Uniyers

Tomita, M.. 1986. An Efficient Word Lattice Parsing Algomithfor Continuous
Speech Recognitiomn Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processintpkyo, Japan.

Uchimoto, K., S. Sekine and H. Isahara. 1999. Japanese depenstructure analysis
based on maximum entropy models, pp. 196—-208roceedings of the 9th
conference on European chapter of the Association for Compgational

Linguistics. Association for Computational Linguistics, Bergen, Nayw

Vijay-Shankar, K. and A. Joshi. 1985. Some computationaperties of Tree
Adjoining Grammars, pp. 82—98 Proceedings of the 23rd annual meeting
on Association for Computational Linguistics Association for

Computational Linguistics, Morristown, NJ, USA.

Wacharamanotham, C., M. Suktarachan and A. Kawtrakul. 208& Development of
Web-based Annotation System for Thiai.Proceedings of the 7th
International Symposium on Natural Language ProcessingPattaya,
Chonburi, Thailand.

65

Wang, W. and M. Harper. 2004. A Statistical Constraint Dejggrcy Grammar (CDG)
Parser, pp. 42—49 Proceedings of the ACL Workshop Incremental
Parsing: Bringing Engineering and Cognition Together Association for

Computational Linguistics, Barcelona, Spain.

Xia, F.. 1999. Extracting Tree Adjoining Grammars from Beaied Corporaln the
5th Natural Language Processing Pacific Rim Symposium (NLPB-99)
Beijing, China.

Yakushiji, A., Y. Miyao, Y. Tateisi and J. Tsuji. 2005. Bioweal Information
Extraction with Predicate-Argument Structure Patterps 60—-69.In
Proceedings of the First International Symposium on Semaimt Mining in

Biomedicine Hinxton, Cambridgeshire, UK.

Yamada, H. and Y. Matsumoto. 2003. Statistical Dependematysis With Support
Vector Machines, pp. 195-20B Proceedings of the 8th International

Workshop on Parsing TechnologiesNancy, France.

APPENDICES

66

Appendix A

Part-of-speech

67

Noun

Pronoun

Verb

. proper noun (npn)

. cardinal number (nnum)

. ordinal number marker (norm)
. label noun (nlab)

. .common noun (ncn)

. collective noun (nct)

. title noun (ntit)

. personal pronoun (pper)

. demonstrative pronoun (pden)
. indefinite pronoun (pind)

. possessive pronoun (ppos)

. reflexive pronoun (prfx)

. reciprocal pronoun (prec)

. relative pronoun (prel)

. interrogative pronoun (pint)

. intransitive verb (vi)

68

69

. transitive verb (vt)
. causative verb (vcau)
. complementary state verb (vcs)

. existential verb (vex)

pre-verb (prev)
post-verb (vpost)

honorific marker (honm)

Determiner

1.

2.

determiner (det)

indefinite determiner (indet)

Adjective

Adverb

. adjective (ad))

. adverb (adv)

. adverb marker 1 (adm1l)
. adverb marker 2 (adm2)
. adverb marker 3 (adm3)
. adverb marker 4 (adm4)

. adverb marker 5 (admb5)

Classifier

1. classifier (cl)

Conjection

1. conjection (conj)
2. double conjection (conjd)

3. noun clause conjection (conjncl)

Preposition

1. preposition (prep)

2. co-preposition (prepc)

Interjection

1. interjection (int)

Prefix

1. Prefix 1 (prefl)
2. Prefix 2 (pref2)

3. Prefix 3 (pref3)

Particle

70

1. affirmative (aff)

2. particle (part)

Negative

1. negative (neg)

Punctuation

1. punctuation (punc)

Idiom

1. idiom (idm)

Passive Voice Marker

1. passive voice marker (psm)

Symbol

1. symbol (sym)

71

Appendix B

Grammatical Functions

72

73

We classify Thai grammartical functions into two main greue. complements

and adjuncts. There are 12 complements and 17 adjuncts.

Complements

1. subject (subj)
2. clausal subject (csubyj)
3. direct object (dobj)
4. indirect object (iobj)
5. prepositional object (pobj)
6. prepositional complement (pcomp)
7. subject or object predicative (pred)
8. clausal predicative (cpred)
9. conjunction (conj)
10. subordinating conjunction (sconj)
11. nominalizer (nom)

12. adverbalizer (advm)

Adjuncts

1. parenthetical modifier (modp)
2. restrictive modifier (modr)

3. mood modifier (modm)

4. aspect modifier (moda)

5. locative modifier (modl)

10.

11.

12.

13.

14.

15.

16.

17.

parenthetical apposition (appa)
restrictive apposition (appr)

relative clause modification (rel)

. determiner (det)

quantifier (quan)

classifier (cl)

coordination (coord)
negation (neg)
punctuation (punc)

double preposition (dprep)
parallel serial verb (svp)

sequence serial verb (svs)

74

Appendix C

Extracted Elementary Trees from NAIST Treebank

75

76

(84)
(361) (124) (121) (89) VTL
VT:L VT@ VT@ Svp\ll

VT@
dObj¢ SVp¢ SUM[)J‘ Su bj¢ VT@
NCN:R VT@ NCN:L NCN:R NCN:L dObJ\l/

NCN:R

Appendix Figure C1 Top 5 of the most occurrence relaxed elementry trees of
transitive verb (vt)

(61)
(123) (95) (65) NeN:L (42)
Vi@ NCN:L VT:R rel VT:L
subj\ll modr\ll SVD\L Vi@ SVIO\ll
subj
NCN:L Vi@ VI:@ \l' Vi:@
PREL:L

Appendix Figure C2 Top 5 of the most occurrence relaxed elementry trees of
intransitive verb (vi)

(120) (101) (71) (66)
NCN:L (110) VTL PREF1:L VL
modr PREP@ modr\li modr\l, modr\li
PREP@ pcomp\l, PREP@ PREP@ PREP@
pcomp\l, NCN:R pcomp\ll pcomp‘l’ pcomp\l,
NCN:R NCN:R NCN:R NCN:R

Appendix Figure C3 Top 5 of the most occurrence relaxed elementry trees of
preposition (prep)

Appendix D

K-best Parsing Results

77

Input: “\mare(mother) kuay(buffalo)\liang(take care)look(kid) \keng(well)”

Output: 5-best unlabeled parse trees

aYavaral

ROOT \maeen \khwaicn\liengs \lukpen \kenggy

1. score=2.863449

2. score=2.760695

o MMM M

aecn \khwaicn\liengs \luknen \keng
3. score=-0.622163 (correct tree)

4. score=-0.724917

ROOT \m@wahcn\ iem ﬂengﬂ

78

5. score=-0.840073

RO@WQ’\@GH% \luknen \kengi

79

80

CURRICULUM VITAE

NAME : Mr. Sutee Sudprasert

BIRTH DATE : March 15, 1979

BIRTH PLACE : Bangkok, Thailand

EDUCATION : YEAR INSTITUTE DEGREE/DIPLOMA

2001 Kasetsart Univ. B.Eng (Computer Engineering)
2005 Kasetsart Univ. M.Eng (Computer Engineering)

POSITION/TITLE . Lecturer
WORK PLACE . Faculty of Science, Kasetsart University
SCHOLARSHIP/AWARDS : Commission on Higher Education 2003-2008

