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LITERATURE REVIEW 

 

The following literature review is divided into three main topics, and it 

provides some background on related work and concepts in this field of study.  The 

first topic covers basic theory of optimization model and differential evolution 

approach and its application to a variety of optimization problems in field of water 

resources engineering.  The second topic review pertaining to artificial neural network 

and intelligent control, and their application to various water resources management 

problems.  Finally, the third topic describes and examines the technical features of the 

River Operation Model (ROM). The ROM was used as unsteady hydrodynamic and 

water quality simulation modeling and then was linked by optimization mathematical 

modeling, i.e. differential evolution for determination of the optimal costal gate 

operation strategies.  

 

1. Differential Evolution Algorithm 

      

1.1  General concepts of optimization problems 

 

        In computer science, optimization problem concerns the problem of 

finding the best solution from all feasible solutions.  More formally, it finds a solution 

in the feasible region which has the minimum (or maximum) value of the objective 

function (Black, 1999).  The aim of engineering design is to obtain the maximum 

benefit and at the same time requires minimization of any effects resulting from the 

design as well.  Hence, most engineering problems are optimization problems (Price 

and Storn, 1997a).  Typically, optimization method can be classified into two types: 

deterministic search algorithm and stochastic search algorithm.  The deterministic 

search algorithm is conventional method, which is based on gradient method by 

means of calculus.  The examples of this method are linear programming, integer 

programming, nonlinear programming, dynamic programming, etc.  From many 

researches in the past, it was found that the disadvantage of the application of 

deterministic search algorithm in solving engineering problems, especially relatively 
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complex problems, is to obtain local optimum solution instead of global optimum 

solution.  For this reasons, in recent years the stochastic search algorithm become 

more and more popular approach for optimization problems because of its capability 

in solving complicated problem such as nonlinear function, non-differentiate function, 

and multi-model optimization (Hendershot, 2004) and in obtaining global optimum 

solution.  Genetic Algorithm (GA) (Goldberg, 1989), Simulated Annealing (SA) 

(Kirkpatrick et. al., 1983), and Differential Evolution (DE) (Price and Stron, 1997b) 

are the examples of stochastic search algorithm (Prempree 2005; Charoenongart 

2005).  In addition, the main difference between stochastic search algorithm and 

deterministic search algorithm is that the first method only require information 

regarding objective function in solving the problems (Babu and Angira, 2003; Babu 

et.at., 2003).         

      

       Currently, optimization techniques have been successfully applied in 

many water resources engineering problems.  Unver and Mays (1990) employed a 

nonlinear programming model for real-time optimal flood operation of river-reservoir 

systems.  Kuo (1995) used genetic algorithms for optimizing the benefits of water and 

crop management in an irrigation project.  Ko et al. (1997) applied dynamic 

programming to the problems of multiobjective analysis of service-water-transmission 

systems.  Rauch and Harremoes (1999) utilized genetic algorithms in real time control 

of urban wastewater systems.  Basri (2001) deployed nonlinear programming and 

genetic algorithms for optimal design of subsurface barrier to control seawater 

intrusion.  Fayad (2001) applied genetic algorithms for solving conjunctive water use 

problems.  Laksanapanyakul (2001) used dynamic programming for management of 

water quality in a river.  Tooychai (2001) applied stochastic dynamic programming 

for reservoir operation planning.  Sethi et al. (2002) developed linear programming 

for determination of optimal crop planning and conjunctive use water resources in a 

coastal river basin.  Muleta and Nicklow (2004) developed decision support model for 

watershed management using evolutionary algorithms.  Shie-Yui et al. (2004) applied 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II), for reservoir operation 

problem.  Bhattacharjya and Datta (2005) applied genetic algorithms for optimal 
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management of coastal aquifers.  Kulthai (2005) used linear and integer programming 

for estimating dry season cropping area.  

 

1.2 Theory of differential evolution algorithm 

 

        Differential Evolution (DE) was initially introduced and developed by 

Price and Storn in 1996 in an attempt to solve the Chebychev Polynomial fitting 

Problem.  DE is an evolutionary optimization technique or population-based 

optimization algorithm based on stochastic approach.  It is an improved version of 

Genetic Algorithms (GA) for simple structure, ease of use, speed and robustness 

(Babu and Angira, 2003).  The principal difference between GA and DE is that GA 

relies on crossover, which is a mechanism of probabilistic and useful exchange of 

information among solutions to locate better solutions whereas DE use mutation as 

the primary search mechanism.  As with all evolutionary optimization algorithms, DE 

operates on a population, PG, of candidate solutions, not just a single solution.  DE 

uses a non uniform crossover that can take child vector parameters from one parent 

more often than it does from others.  By using components of existing population 

members, it can construct trial vectors, recombine efficiently shuffles information 

about successful combinations, and enable the search for an optimum to focus on the 

most promising area of solution space (Vasan and Raju, 2005).  

 

        At present, there are numerous variants of DE.  Price and Storn (1997a) 

gave the working principle of DE with single strategy.  Later on, they suggested ten 

different strategies; namely:- DE/rand/1/bin, DE/best/1/bin, DE/best/2/bin, 

DE/rand/2/bin, DE/randtobest/1/bin, DE/rand/1/exp, DE/best/1/exp, DE/best/2/exp, 

DE/rand/2/exp, DE/randtobest/1/exp (Price and Storn, 2006).  DE/x/y/z indicates DE 

for Differential Evolution, x is a string which denotes the vector to be perturbed, y 

denotes the number of difference vectors taken for perturbation of x, and z is the 

crossover method.  The special variant used throughout this investigation is the 

DE/rand/1/bin scheme.  This scheme will be discussed here and more detailed 

descriptions are provided.  Since the DE algorithm was originally designed to work 
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with continuous variables, the optimization of continuous problems is discussed first.  

Handling discrete variables is explained later. 

 

 

        In general, the function to be optimizes, f, is the form: 

 

                                        ( ) : Df x R R→                                                         (1) 

 

        The optimization target is to maximize or minimize the value of this 

objective function f(x), 

 

                                      ( )( )max  or min f x                                                   (2) 

 

by optimizing the values of its parameters: 

 

                                          ( )1 2 3, , ,..., ,    D

DX x x x x X R= ∈                                         (3) 

 

where X denotes a vector composed of D objective function parameters.  Typically, 

the parameters of the objective function are also subject to lower and upper boundary 

constraints, x
(L)
 and x

(U)
, respectively: 

 

                              
( ) ( )

  1,2,3,...
L U

j j jx x x j D≤ ≤ =                                             (4) 

 

        DE’s algorithm consists of four main processes: initialization, mutation, 

crossover, and selection (Price and Storn, 1997a; Price and Storn, 1997b; Srinivas and 

Rangaiah, 2007; Onwubolu and Dravendra, 2006).  The process starts with specifying 

DE’s parameters, i.e. maximum number of generations, population size (NP), 

weighting factor (F), and crossover constant (CR).  Then the four main steps are 

carried out as follows.  
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        1) Initialization: As with all evolutionary optimization algorithms, DE 

works with a population of solutions (or candidate solutions), not just a single solution 

for optimization problem.  The population, P, of generation, G, contains constant 

population size, NP, solution vectors calls individuals of the population (or candidate 

solutions) and each vector represents potential solution for the optimization problem. 

 

                           , max  1, 2,3,..., ,  1,2,3,..G i GP X i NP G G= = =                          (5) 

    

where i is index of the population and G is the generation to which the population 

belongs.  Additionally, each vector contains D real parameters (chromosome of 

individuals): 

 

                                  , , .   1,2,3,..., ,  1, 2,3,...,   i G j i GX x i NP j D= = =                            (6) 

 

              In order to determine a starting point for optimal seeking, the 

population must be initialized.  Due to no more knowledge available about the 

location of a global optimum, the initial population is randomly generated from 

specified boundary constraints using the uniformly distribution random numbers to 

cover the entire solution space. 

 

            
( ) [ ] ( ) ( )( )0 , ,0 0,1   1, 2,3,..., ,   1, 2,3,...,
L U L

j i j j j jP x x rand x x i NP j D= = + ⋅ − = =    (7) 

 

where randj[0,1] represents a uniformly distributed random value within range: 

[0.0,1.0] that is chosen a new for each j.  After generation of initial population, the 

objective function values of all the individuals are calculated and the best solution is 

determined. 

 

                    2) Mutation: DE uses a self-referential population recombination scheme, 

which is different from the other evolutionary algorithms, for creating new 

generation.  From the first generation onward, vectors in the current population, PG, 

are randomly sampled and combined to create candidate vectors for the subsequent 
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generation, PG+1.  The population of candidate, or mutant vectors, P’G+1 = Vi,G+1, is 

generated as follows:  

 

                       ( ), 1 1, 2, 3, ,  i=1,2,3,...,NPi G r G r G r GV X F X X+ = + −                                   (8) 

 

where r1,r2 and r3 belongs to set {1,2,3,…, NP} and Xr1,G, Xr2,G and Xr3,G represents 

the three random individuals chosen in the current generation, G, to reproduce the 

mutant vector for the next generation Vi,G+1.  The random numbers r1, r2 and r3 should 

be different from each other and also different from the running index, i.  Hence, NP 

should be at least 4 to allow mutation.  F is weighting factor, which is the real number 

between 0 and 2.  This value is used to control the amplification of the differential 

variation between the two random vectors. 

 

        3) Crossover: This process is performed to increase the diversity of the 

perturbed parameter vectors.  In this step, the trial vector, Ui,G+1 is produced by 

duplicating some elements of the mutant vector, Vi,G+1 or  some elements of  the target 

vector, Xi,,G with proability equal to CR.  For the first generation, target vector is the 

best vector from all individuals in initial population and it is the best vector from all 

individuals obtained from selection process (as will be described in the next topic) for 

subsequent generation.  As shown in Figure 1, a random number (ran) is generated for 

each element of the target vector.  If randb(j) ≤ CR or j = rnbr(i), the element of 

mutant vector is copied, otherwise the target vector element is copied.  The trial can 

be expressed as: 

         

                          ( ), 1 1 , 1 2 , 1 , 1, ,...,i G i G i G Di GU U U U+ + + +=                                          (9) 

 

and the crossover process can be presented in mathematical form as:  

 

                        
( )( ) ( )
( )( ) ( )

, 1

, 1

,

        

        

i G

i G

i G

V if randb j CR or j rnbr i
U

X if randb j CR or j rnbr i

+

+

 ≤ =
= 

> ≠
          (10) 
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where randb(j) is the j
th
 evaluation of a uniform random number generator with 

outcome ∈ [0,1]; CR is the crossover constant ∈ [0,1] which has to be determined by 

the users; rnbr(i) is a randomly chosen index ∈ 1,2,3,..,D which ensures that Uj,i,G+1 

gets at least one parameters from Vj,I,G+1.  Usually, suitable values for F, CR and NP 

can be found by experimentation after a few tests using different values.  Practical 

advice on how to select control parameters NP, F and CR can be found in Storn and 

Price (1997a).  A reasonable first guess is: F = 0.9, CR = 0.9 and NP = 10D. 

 

 

 

Figure 1  Illustration of the crossover process for D = 7 parameters. 

Source: Modified from Stron and Price (1997); Srivinas and Rangaiah (2006). 

 

                    4) Selection: The selection scheme of DE also differs from other 

evolutionary algorithms.  On the basis of the target vector of current population, Xj,i,G 

and the trail vector of next population Vj,i,G+1, the child population, Xj,i,G+1 is created 

as follows: 

 

                    
( ) ( ), 1 , , 1 , 1 ,

, 1

,

 if  better than  

 otherwise

i G j i G i G i G

i G

i G

U u f U f X
X

X

+ + +
+

 =
= 


                   (11) 

 

In equation 11, the trial vector Ui,G+1 is compared to the target vector Xi,G using the 

greedy criterion.  If vector Ui,G+1 yields a better cost function value than Xi,G, then 

Xi,G+1 is replaced by the trial vector Ui,G+1; otherwise, the old value of the target vector 

Xi,G is retained.  The process of mutation, crossover, and selection is repeated until a 

xx xx xx xx xx xx xx 

vv xx vv xx vv vv xx 

vv vv vv vv vv vv vv 

Target vector, XG 

Trail vector, UG+1 

Mutant vector, VG+1 



 15 

termination criterion such as maximum number of generation is satisfied.  The 

algorithm then terminates proving the best point that has been explored over all the 

generations.  The overall process for DE is presented in Figure 2.  Figure 3 also shows 

the example of using DE for solving a simple objective function: f(x) = x1+ x2+ x3+ 

x4+ x5. 

 

 

Figure 2  The overall processes of DE. 

                          Source: Modified from Srivinas and Rangaiah (2006). 
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Figure 3  The example of using DE for solving a simple objective function. 

Source: Lampinen (2006). 
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                    1.2.1 Handling simple boundary constraints  

 

                             It is important to notice that as results of the recombination 

operation of DE, it is possible to extend the search outside of the initialized range of 

the search space.  It is also worthwhile to notice that sometimes this is a beneficial 

property in problems with no boundary constraints because it is possible to find the 

optimum that is located outside of the initialized range.  However, in boundary-

constrained problems, it is essential to ensure that parameter values lie inside their 

allowed ranges after recombination.  Several methods have been proposed to cope 

with this problem (Lampinen, 2006; Onwubolu and Dravendra, 2006).  A simple way 

to guarantee this is to replace parameter values that violate boundary constraints with 

random values generated within the feasible range: 

 

           

( ) [ ] ( ) ( )( ) ( ) ( )
, 1 , 1

, 1

, 1

0,1 ,   if <  or >  

 otherwise,

L U L L U

j j j j i G j i G j

i G

i G

x rand x x U x U x
U

U

+ +
+

+

 + × −
= 


      (12) 

 

where i ∈ [1,NP]; j ∈ [1,D].   

 

                 Another simple but less efficient method is to reproduce the boundary 

constraint violating values according to equation 10 as many times as is necessary to 

satisfy the boundary constraints.  The simple method that allows bounds to be 

approached asymptotically while minimizing the amount of disruption that results 

from resetting out of bound values (Price, 1999) is 

 

                         

( ) ( )( ) ( )

( ) ( )( ) ( )

, 1

, 1 , 1

, 1

2,   if < ,

2,   if > ,

 otherwise.

G L L

j j i G j

G U U

i G j j i G j

i G

x x U x

U x x U x

U

+

+ +

+

 +



= +




                                        (13) 

 

                 Another method presented and then applied in this study is to replace 

parameter values that violate boundary constraints with boundary value. 
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( ) ( )

( ) ( )

, 1

, 1

, 1

,   if < ,

,   if > .

L L

j i G j

i G U U

j i G j

x U x
U

x U x

+

+

+


= 


                                            (14) 

 

                    1.2.2 Handling discrete variables 

 

                              As described above, the DE algorithm was originally designed to 

work with continuous variables but the determination of optimal coastal gate 

operation involves solving the discrete variable problem.  Therefore, it is necessary to 

investigate approaches to deal with discrete variable optimization.  Round off method, 

which round off the variable to the nearest available value before evaluating each trial 

vector, is a simple, popular and effective way.  To keep the population robust, 

successful trial vectors must enter the population with all of the precision with which 

they were generated (Price and Storn, 1997b).  In its canonical form, the differential 

evolution algorithm is only capable of handling continuous variables.  Extending it for 

optimization of integer variables, however, is rather easy.  This is the method that was 

used for this work.  In addition, the initialization of population and handling boundary 

constraint method should be modified as presented in equations 15 and 16 instead of 

equations 7 and 12, respectively (Lampinen, 2006; Onwubolu and Dravendra, 2006).  

 

( ) [ ] ( ) ( )( )0 , ,0 0,1 1   1,2,3,..., ,   1,2,3,...,
L U L

j i j j j jP x x rand x x i NP j D= = + ⋅ − + = =         (15) 

 

( ) [ ] ( ) ( )( ) ( ) ( )
, 1 , 1

, 1

, 1

0,1 1 ,   if INT( ) <  or INT( ) >  

 otherwise,

L U L L U

j j j j i G j i G j

i G

i G

x rand x x U x U x
U

U

+ +
+

+

 + × − +
= 


    

                                                                                                                                   (16) 
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            1.3  Multiple objective optimization  problem in DE  

                    

                   The coastal gate operation problem concerns in an attempt to compromise 

several water quantity and quality parameters simultaneously.  Hence, in this topic, 

the basic theory of multiple-objective optimization is reviewed.  In principle, 

multiobjective optimization is very different from single-objective optimization.  In 

single-objective optimization, one attempts to obtain the best design or decision, 

which is usually the global minimum or the global maximum, depending on whether 

the optimization problem is one of minimization or maximization.  On the other hand, 

the multiple objectives may not be one solution that is the best (global minimum or 

maximum) with respect to all objectives.  Solutions to a multiobjective optimization 

problem are mathematically expressed in terms of nondominated or superior point.  In 

fact, none of the solutions in the nondominated set is absolutely better than any others, 

any one of them is an acceptable solution.  Thus, one solution chosen by a designer 

may not be acceptable to another designer or in a changed environment (Srinivas and 

Deb, 1994). 

 

                   In general, multiobjective optimization problem consists of a number of 

objectives and is associated with a number of inequality and equality constraints.  The 

problem can be mathematically written as follows (Rao, 1991). 

 

                           ( )/    1,2,...,iMinimize Maximize f x i N=                                        (17) 

                            Subject to 

                                         ( ) 0  1,2,...,ig x j J≤ =  

                                         ( ) 0  1,2,...,kb x k K= =  

 

The parameters x is a p dimensional vector having p design or decision variables.  

                    

                   The classical method for solving multiobjective optimization is to 

scalarize the objective vector into one objective.  For example, the method of 
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objective weighting, the simplest of all classical techniques, combines multiple 

objective functions into one overall objective function, Z, as follows: 

 

                                                           ( )
1

N

i ii
Z w f x

=
=∑                                             (18) 

 

where ,x X∈  X represents the feasible region; the weight wi are fractional numbers 

( 0 1iw≤ ≤ ), and all weight are summed up to 1, or 
1

1
N

ii
w

=
=∑ .  From equation 18, it 

shows that the optimal solution is controlled by the weight vector w.  In addition, the 

preference of an objective can be changed by modifying the corresponding weight. 

Mathematically, a solution obtained with equal weights to all objectives may offer 

least objective conflict; however, as a real-world situation demands a satisfying 

solution, priority must be induced in the formulation.  The advantage of using this 

method is that the emphasis of one objective over the other can be controlled, and the 

obtained solution is usually a Pareto-optimum solution.  To apply the classical method 

for solving multiobjective optimization, the decision makers require knowledge of the 

individual optimum prior to vector optimization.  For different situations, different 

weight vectors need to be used and the same problem need to be solved a number of 

times to obtain various alternative Pareto-optimal solutions instead of a Pareto-

optimal solution.  

                    

                   Although several new techniques of differential evolution approach have 

been developed for serving the multiobjective optimization solutions, for example 

Differential Evolution for Multiobjective Optimization (DEMO), Pareto Differential 

Evolution (PDE) algorithm, and Vector Evaluated Differential Evolution (VEDE) 

(Madavan, 2002; Robic and Filipic, 2005; Parsopoulos et al., 2006), the weighting 

method is still chosen in this research.  This is because it is quite comfortable for 

developing model and also writing computer program.  Furthermore, one of the most 

important reason to select weighting method in this study is that such method requires 

computation time lesser than the new ones due to only solving a single point of 

solution.  Hence, it is more appropriate to utilize this method for the problems 

concerning sequential optimal control, which involves calling the mathematical 
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simulation model several thousands of times for each time step of control horizon.  

Consequently, it leads to the requirement of a significant amount of the computation 

time for determining optimal control variables throughout control horizon.  The 

weighting method has ever been used in the development of AQUARIUS model, 

which is an aiding tool for operational management of regional water systems by 

several water boards of the Netherlands (Lobbrecht and Solomatine, 1999; Lobbrecht 

et al., 2005). 

 

1.4  Application of DE in water resources engineering problems 

   

        Differential Evolution was successfully applied in various optimization 

problems (Lakari et al., 2003; Hrstka and Kucerova, 2004; Onwubolu and Davendra, 

2006).  It is interesting to review some papers in which differential evolution has been 

applied to water resource engineering problems as follows. 

 

        Babu and Angira (2003) used differential evolution approach to solve a 

classical optimization problem of water pumping system.  The objective function used 

in this study is to minimize increased pressure due to pump.  Comparison is made 

with Branch & Reduce algorithm in terms of the number of objective function 

evaluations.  The results indicated that the performance of DE is better than the 

Branch & Reduce algorithm.  

 

        Charoenongart (2005) applied differential evolution to the problem of an 

optimal planning process for pipe replacement of the pipe distribution network.  The 

EPANET model, which is mathematical model for study of behaviors of water flow 

and water quality in piping system, was linked with computer code of differential 

evolution.  The main objective of developed model is to find the most necessary 

replaced pipelines under the determined constraints of the pipe network.  To 

demonstrate and evaluate the developed model, two case studies, including the pipe 

distribution networks of Nakhon Sawan province and of Wangthong House village, 

Bueng Kum District of MWA area, were modeled and simulated for determining 

pipelines to be replaced under the consideration of limited budget, pipe lifetime, and 
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hydraulic constraints.  The study results illustrated that the developed could select the 

most appropriate pipelines to be replaces with reasonable replacement cost closed to 

the limited budget.  As a result, the developed model is valuable for planners to 

effectively plan for replacement schedule and with the most beneficial use of 

available budget.  

 

        Prempree (2005) developed methodology for optimal design of pipe size 

and pump type in water distribution system using differential evolution algorithm.  In 

this research, the computer simulation model was developed by integrating 

differential evolution approach and existing hydraulic simulation model, EPANET, 

together.  The developed model was verified by using three case studies of water 

distribution network of Nakhon Sawan province.  The first case study only concerned 

finding least cost of pipe network.  The second case considered both pipe and 

operation cost of pipe network.  Finally, the last case considered the optimal cost of 

the system including pipe cost, operation cost, and the most cost of appropriate pump.  

The study results showed that differential evolution could search the better optimal 

solution when compared to using original method and simulated annealing method 

under the same conditions.  Thus, it confirmed that differential evolution algorithm is 

an efficient optimization method, which was succefully applied for the discrete 

optimization problem in the design of water distribution system. 

 

        Thasaduak and Chittaladakorn (2005) applied differential evolution for 

searching the optimal reservoir operation rule for efficient use of water corresponding 

to water supply and water demand.  They proposed the decision making process for 

reservoir operation through the development of objective function.  The developed 

model was composed of water balance model, and optimization model.  To test the 

efficient of differential evolution for solving the problem of reservoir operation, the 

Mae Ngad Somboon Chol dam was used as a case study.  The results showed that the 

Differential Evolution was the efficient method for searching the optimal operation 

rule curve with relatively quick converging to the solution.    
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        Vasan and Raju (2005) used differential evolution to determine the 

suitable cropping pattern, which yields maximum net benefits, of Bisalpur project, 

Rajasthan, India.  In this work, the performance of ten different strategies of DE for 

finding optimal cropping pattern was investigated with various needed DE’s 

parameters, namely population size, crossover constant and weighting factors.  In 

addition, the results of DE were also compared with the solution of Linear 

Programming (LP).  It was concluded that DE can be appropriately applied for 

irrigation planning problem. 

 

       Based on available literature, it was found that no prior work applying DE 

or other optimization techniques has been done in which a model for planning coastal 

gate operations is developed. 

 

2. Artificial Neural Networks  

     

Artificial Neural Networks (ANNs) was first developed in 1940s.  It is an 

information processing system that roughly emulates the behavior of a human brain 

by replicating the operations and connectivity of biological neurons (Tsoukalas and 

Uhrig, 1997).  In general, neural network do not need detailed description or 

formulation of the underlying physical processes that it attempts to model.  

Furthermore, neural network is refers to as connectionist systems or distributed 

parallel processing systems.  It is also comprised of a set of highly interconnected but 

simple processing units, called nodes or neurons, each responsible for carrying out a 

few rudimentary computations (Khalil, 2002).  The nodes are usually organized into 

groups called layers.  Each layer is referred to as an input layer, a hidden layer, and an 

output layer.  

 

Figure 4 shows a typical neural network structure.  The nodes in one layer are 

connected to those in the next layer or to those in the same layer through functional 

linkages, which are weighted to represent their connection strengths (Fayad, 2001; 

Khalil, 2002).  Thus, the output of a node in any layer is determined by applying a 
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nonlinear transforming, sometimes called activation function, to the sum of the 

weights input which receive from the nodes of previous layers. 

 

 

 

Figure 4  A typical neural network structure.  

 

Neural network performs two major functions: learning and recall (Tsoukalas 

and Uhrig, 1997).  Learning is referred to the process that adjusts the connection 

weights in network in order that the calculated output vector is close to desired output 

vector as much as possible.  Conversely, recall is the process that receives an input 

data and then produces an output respond in accordance with the trained network.  

Typically, there are three types of learning process: supervised learning, unsupervised 

learning (i.e., self-organization), and reinforcement learning (Rogers and Dowla, 

1994; Tsoukalas and Uhrig, 1997).  

 

In supervised learning, series of connecting weights are adjusted in order to fit 

the series of inputs to another series of known outputs.  That is, knowledge is acquired 

by the network through a learning process, and synaptic weights are used to store the 

knowledge.  On the other hand, in unsupervised learning, there is no specific respond 

sought, but rather the respond is based on the networks ability to organize itself.  Only 

the input stimuli are applied to the input buffers of the networks.  The network then 

organizes itself internally so that each hidden neuron responds strongly to a different 

set of input stimuli.  These sets of input stimuli represent clusters in the input space.   
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Reinforcement learning relies on a “tutor” grading the ANN’s output responses to the 

training patterns.  A high grade results in synaptic weight reinforcement; a low grade 

results in an adjustment of the weights to determine whether the grade can be 

improved. 

 

The vast majority of learning in engineering application, especially in water 

resources engineering problems, involves supervised learning (Lobbrecht and 

Solomatine, 1999; Lobbrecht and Solomatine, 2002; Lobbrecht et al., 2005; Darsono 

and Labadie, 2006).  As a result, this learning process is deployed in this dissertation 

research.  In the following topic, two types of supervised learning algorithms, 

namely:- feed forward back propagation algorithm and generalized regression neural 

networks, are discussed in more detailed information. 

 

2.1  Feed forward back propagation algorithm 

 

                    Multilayer feed forward network with BP learning algorithm is one of the 

most popular neural network architectures, which has been deeply studied and widely 

used in many fields.  The feed-forward architecture allows connections only in one 

direction, i.e. there is no back-coupling between neurons, and the neurons are 

arranged in layers, starting from a first input layer and ending at the final output layer 

with one or more hidden layers.  The information passes from the input to the output 

side.  Figure 4 also presents a typical three-layered feed-forward architecture 

(Rumelhart et al., 1986).  The three layers consist of an input layer, a hidden layer and 

an output layer.  Each layer is made up of several neurons, and the layers are 

interconnected by sets of weights.  The neurons in the input layer receive input 

directly from the input variables.  The neurons in the hidden and output layers receive 

input from the interconnections.  Neurons operate on the input and transform it to 

produce an analogue output.  The transformation is performed in two stages.  First, 

input from each neuron is multiplied with weights and a weighted sum is performed.  

Next, an activation function such as the sigmoid function converts such a weighted 

sum to be the output of each neuron, which becomes the input to neurons of the 

succeeding layer.  
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                    Learning is normally accomplished through an adaptive procedure or 

algorithm that incrementally adjusts weights of the connections in order to improve a 

predefined performance measure, such as average absolute error, R-squared, mean 

squared error.  Due to supervised learning algorithm, the input data and expected (or 

output) data are specified.  Initially, since the weights to the interconnections are 

randomly generated, the difference between the predicted and desired output values 

can be large.  Learning therefore involves iteratively adjusting the connection weights 

to minimize these differences.  And the other two parameters: learning rate, α, and a 

momentum rate, β, are selected.  The learning rate, α, controls the incremental change 

in the interconnection weights during iterative training as a percentage of the 

difference between the desired or target output and the NN computed output.  Thus, a 

high learning rate generally results in a larger weight change and faster learning.  The 

momentum rate is a means to increase the rate of learning and at the same time, 

avoiding the possibility of getting trapped in local optima.  The momentum rate is a 

multiplication factor to the change in the previous interconnection weights 

(Sivapragasam and Muttil, 2005).   

. 

                    Training of back propagation neural network involves two stages (Kumar 

et al., 2002).  In the first stage (forward pass), the input signals propagate from the 

network input to the output.  The calculation of the output is carried out, layer by 

layer, in the forward direction.  The output of one layer is the input to the following 

layer.  In the second stage (backward pass), the calculated error signals propagate 

backward through the network, where they are used to adjust the weights.  The 

weights of the output neuron layer are adjusted first because the target value of each 

output neuron is available to guide the adjustment of the associated weights.  The 

learning process of back propagation neural network can be illustrated in Figure 5. 
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Figure 5  Flowchart of the Back Propagation Algorithm. 

                         Source: Manusthiparom (2000). 

  

2.2  Generalized regression neural networks 

         

                    The generalized regression neural network (GRNN) was originally 

developed by Nadaraya (1964) and Watson (1964) and rediscovered by Specht (1991) 

to perform general (linear or nonlinear) regressions.  The GRNN is a special extension 

of the radial basis function network (RBFN) (Tsoukalas and Uhrig, 1997).  This type 

of neural network was utilized to solve a variety of problems such as prediction, 

control, plant process modeling or general mapping problems (Patterson, 1995).  The 

GRNN (Tsoukalas and Uhrig, 1997; Niwa, 2003) is a memory-based feed forward 

network, consisting of 4 layers: input, hidden or pattern, summation, and output layers 

as illustrated in Figure 6.  Whereas the neurons in the first three layers are fully 
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connected, each output neuron is connected only to some processing units in the 

summation layer.  In the individually pattern units, they compute their activation 

using a radial basis function (RBF) instead of the sigmoid activation function often 

used in neural networks.  The number of inputs is equal to the number of independent 

features.  In general, the Gaussian kernel function as depicted in Figure 7 is used 

where σ  is the width of the radial function or smoothing parameter.  Typically, the 

larger values of the smoothing parameter of the pattern units lead to the smoother 

interpolation of the output vectors values.  On the other hand, the smaller values of 

the smoothing parameter of the pattern units result in the hazard that wild points may 

have too great an effect on the estimate (Tsoukalas and Uhrig, 1997; Cigizoglu and 

Alp, 2006).  The summation layer has two different types of processing units: the 

summation units and a single division unit.  The number of the summation units is 

always the same as the number of the GRNN output units.  The division unit only 

sums the weighted activations of the pattern units without using any activation 

function.  Each of the GRNN output units is connected only to its corresponding 

summation unit and to the division unit; there are no weights in these connections.  

The function of the output units is to combine the signal received from the summation 

unit and that received from the division unit.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6  The architecture of the generalized regression neural network. 

Source: Tsoukalas and Uhrig (1997). 
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        Figure 7  Pattern unit of the radial basis function network. 

       Source: Tsoukalas and Uhrig (1997). 

 

                    Unlike back propagation algorithm which requires an iterative learning 

procedure, the GRNN is a one pass learning algorithm.  It can be used for estimation 

of discrete and/or continuous variables and converges to the underlying regression 

surface.  Consequently, it can quickly learn and fast converge to an optimal regression 

surface as the number of samples becomes large (Ben-Nakhi and Mahmoud, 2004; 

Cigizoglu and Alp, 2006).  In addition, when training data set becomes large size, the 

estimation error approaches zero.  The GRNN is also reported to respond better than 

back propagation in many types of problems (Noghondari and Rashidi, 2004).  As one 

pass learning algorithm, the centers of the radial basis function of the pattern units and 

the connecting weights of the pattern units and the processing units in summation 

layer are assigned simultaneously.  The unsupervised learning algorithm (a special 

clustering algorithm) is used for training of the pattern unit by specifying the radius of 

the clusters.  The first input vector in the training set is determined as the center of the 

radial basis function of the first pattern unit.  The next input vector is then compared 

with the center of the first pattern unit.  If such different value is less than the 

prespecified radius, this input vector (the next input vector) is assigned to the same 

pattern unit (cluster).  Otherwise, it becomes the center of the radial basis function of 

the next pattern unit.  This process is repeated until all the other input vectors are 
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compared one-by-one with all the pattern units already set.  As this process is running, 

the connecting weights between the input units and the corresponding pattern unit are 

adjusted.  Furthermore, the values of the weights, which connect between the neurons 

in the pattern layer and the summation layer, are set using the supervised learning 

algorithm (Tsoukalas and Uhrig, 1997).  The GRNN used in this study is genetic 

adaptive, i.e. it uses a genetic algorithm to find the input smoothing factor adjustment.  

This is used to adapt the overall smoothing factor to provide a new value for each 

input.  

 

2.3  Neural network as intelligent controller 

                    

                   Neural network can be adapted for several engineering control tasks.  By 

definition, control is action taken to achieve a desired result or goal (Tsoukalas and 

Uhrig, 1997).  For instance, the use of a thermostat for controlling the temperature in 

a room, the thermostat turns the furnace on when the temperature is lower than a 

desired temperature; otherwise, the thermostat turns the furnace off.  The intelligent 

controller refers to the application of artificial intelligence (AI) techniques such as 

neural network or fuzzy logic to produce control actions (Lobbrecht and Solomatine, 

1999l; Lobbrecht and Solomatine, 2002).  The model-based controller optimization is 

commonly used in current neural control system.  It involves a model of the 

controlled system or process and consists of three main components; namely:- a 

reference model, a trainable intelligent controller, and the process or system under 

control.  In supervised control, the neural network is used to mimic the behavior of 

reference model (see Figure 8).  The coupling simulation and optimization model as 

will be described in the following chapter is used as reference model to conduct the 

off-line adaptive learning procedure of the intelligent controller.  The neural receives 

the same input and (desired) output as the reference model, and training proceeds in 

the same way as described in the previous topics.  When training is completed over 

the appropriate range of variables, the trained neural network can replace the 

reference model to control considered system (see Figure 9).  It should be noted that 

adaptivity is a property of training and does not characterize the use of the trained 

system.  In fact, the trained neural network will not automatically adapt well to the 
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changing properties of the controlled system.  If the controlled system is changed, 

they must be re-trained on the basis of the new data (Lobbrecht and Solomatine, 

2002).  Tsoukalas and Uhrig (1997) pointed that the performance of the neural 

network control system can be no better than the control by the reference model. 

 

 

 

 

 

 

 

                  

Figure 8  Training process of supervised control. 

 

 

 

 

 

 

 

                  Figure 9  The use of trained neural network for control. 
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simulation-optimization models in optimization process (Rogers and Dowla, 1994; 

Rao et al., 2004; Muleta and Nicklow, 2005).  Finally, genetic algorithm can be used 

to find the suitable neural network architecture and the optimal connectivity among 

input, hidden, and output layers (Tsoukalas and Uhrig, 1997).  The genetic algorithm 

uses a fitness measure to determine which of the individuals in the population survive 

and reproduce.  The measure of fitness for the neural network is the mean squared 

error of the outputs for the entire data set (Ben-Nakhi and Mahmoud, 2004).  The 

genetic adaptive algorithm seeks to minimize this mean squared error.  It is clear that 

this fashion is effective way and do not require considerable effort to obtain such 

architecture like using trial & error method.   

        

2.5  NeuroGenetic Optimizer 

 

        The neural network development system (NeuroGenetic Optimizer or 

NGO, Version 2.6) was deployed to develop neural network controller for operating 

coastal gate corresponding multiple desired criteria simultaneously.  NGO is software 

package developed by BioComp System, Inc. for use on Microsoft Windows based 

computers.  The NGO is an automated neural network design and development 

system by using Genetic Algorithms to search the optimal neural network structures 

and select which input variables are the keys to your success.  The NGO also provides 

seven different network types, including: Back Propagation, Continuous Adaptive 

Time Neural Network, Time Delay Neural Network, Probabilistic Neural Network, 

Generalized Regression Neural Network, Self Organizing Map, and Temporal Self 

Organizing Map for solving the problems.  And it also configures to support four 

different application types such as Function Approximation, Diagnosis, Classification 

and Time Series Prediction.  

 

        Function Approximation is another word for “modeling”.  In this type of 

application, the NGO is attempting to develop neural networks that model the 

relationships between the input variables and the output variables.  Diagnosis 

applications involve developing systems that will predict whether a condition exists or 

not.   The neural network is trying to learn to distinguish between two or more states.   
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Output values are usually binary, with the first column of output data set at “1” for the 

condition existing and “0” when not.  Classification applications involve developing 

systems that will predict which category an item falls into.  The neural network is 

trying to learn to distinguish between two or more categories you provide based on 

the features of the input data.  Clustering applications involve developing neural 

networks that automatically place records with similar characteristics into like groups.  

The distinction between Classification and Clustering is that in Classification, you tell 

the NGO what groups each record falls into and the NGO builds networks that 

approximate the relationship between input variables and the group.  In Clustering, 

the NGO builds SOM networks that automatically place records into desired groups 

without any specification of which group on your part.  Time Series applications 

involve developing systems that will predict one or more variables over a period of 

time.   

 

        The NGO is being used in a wide variety of applications, including 

financial markets predictions, forecasting demand in banking and manufacturing, 

medical diagnosis, market classification, modeling manufacturing processes and 

resulting product quality, classification of biological organisms, job cost estimating, 

fraud detection and many others. 

 

2.6  Application of ANNs in water resources engineering problems 

          

        In the field of water resources engineering, the Artificial Neural 

Networks (ANNs) have been successfully applied to various problems such as 

hydrological forecasting (EL-Din and Smith, 2002; Huang and Foo, 2002; Agarwal 

and Singh, 2004; Kumar et al., 2004), function approximation problems (Lorrai and 

Sechi, 1995; Sivapragasam and Muttil, 2005).  In this section, it is interesting to 

review some papers concerning two types of the ANN’s application in water 

resources management such as deriving general operating rules and control problems. 
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          2.6.1  Application of ANNs for deriving general operating rules 

 

                   Since ANNs is more effective fashion than other techniques, it has 

become popular method for deriving general rule at present.  The reasons why ANNs 

should be selected to serve such purpose are the following: a) ANN does not need 

programming, but it can be directly learned from the data; b) ANN is massively 

parallel, so it has high speed performance in decision making; c) ANN has the ability 

to generalize, i.e. to extend their decision making to novel data not seen by the 

network during the training; and d) ANN can be successfully applied in a complex 

decision problem such as in classification or pattern recognition (Cancelliere et al., 

2002).  

    

                   Raman and Chandramouli (1996) deployed neural network for 

deriving a general operating policy of Aliyar reservoir in Tamil Nadu, India.  The 

input and output information for training neural network were generated by using 

dynamic programming for 20 years of fortnightly historic data.  The objective 

function for this case study was to minimize the squared deficit of release from the 

irrigation demand.  In training process of a feed-forward neural network with one 

hidden layer, the value of initial storage, inflow, and irrigation demand were selected 

as input data, and the value of optimal release was chosen as output data.  The 

performance of neural network procedure based on dynamic programming (DRN 

model) was compared with linear regression procedure based on dynamic 

programming, a stochastic dynamic programming, and a standard operating policy.  It 

was found that DPN model provided better performance than the other models. 

 

                   Cancelliere et al. (2002) applied neural network to derive monthly 

operating rules for an irrigation reservoir of the Pozzillo reservoir on Salso River.  To 

obtain reservoir operation rules, two step process were proposed.  In the first step, a 

dynamic programming technique, which determines the optimal releases subject to 

various constraints by minimizing the sum of squared deficits, was applied on a long 

period, including severe drought events.  The Dynamic Programming (DP) and 

Constrained Dynamic Programming (CDP) were used herein.  The CDP was utilized 
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to increase more realistic solution by introducing a penalty term into DP.  In the 

second step, a neural network model based on the results from dynamic programming 

was developed to determine optimal release as a function of available information at 

the beginning of month, namely:- storage volume, and release at previous month.   In 

this study, there were six different trained networks (one for each irrigation month) 

for determining the operating rules.  After training of the networks, the obtained 

operating rules have been validated by using coupling reservoir simulation model and 

trained neural networks to simulate the behavior of the reservoir over shorter period, 

not include in the period used for training the networks, and through simulation of the 

soil water balance to evaluate a crop yield index.  Results show that the use of neural 

networks should improve the reservoir performance during drought conditions. 

 

                   Chandramouli and Raman (2002) developed a dynamic 

programming-based neural network model for optimal multireservoir operation.  The 

supervised learning approach with the back-propagation algorithm was selected in this 

case study.  The historic data of three reservoir system in Parambikulan Aliyar project 

were used to generate various operating information through dynamic programming 

and then these data were used as input and output data for neural network model.  The 

value of initial storage, inflow, and irrigation demand of each reservoir were selected 

as input data, and the value of optimal release of each reservoir were specified as 

output data.  The performance of the developed model was compared with (1) the 

regression-based approach used for deriving the multiple reservoir operating rules 

from optimization results; and (2) the single-reservoir dynamic programming-neural 

network model approach.  The study results indicated that neural network based on 

dynamic programming results had the better performance in operating multiple 

reservoirs than the other models.    

 

                   Chandramouli and Deka (2005) developed neural network based 

decision support model (DSM) for optimal operation of two reservoirs e.g. Aliyar and 

Thirumurthi reservoirs in the south of India.  In this work, they applied a combination 

of a rule based expert system and ANN models for developing DSM.  ANN was 

trained using the results from deterministic single reservoir dynamic programming 
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(DP).  In addition to ANN models, the multiple linear regression equations were used 

to determine the relationship of single reservoir dynamic programming results.  The 

function of rule based expert system is to fire the appropriate neural network based on 

specified criteria such as time period, storage level; the selected ANN model makes 

an estimation of the optimal release reservoir.  Three different DSM models e.g. 

DSM1, DSM2, and DSM3 were developed.  The DSM1 was developed by 

segregating the optimization results by considering different time periods; an ANN 

was trained for each time period.  Further, the rule bases of DSM2 and DSM3 are 

made to fire the ANN by considering a particular time period and the storage 

available at the beginning of time period.  As DSM1 and DSM2 used the information 

of storage, inflow, and demand at current time period as input data of ANN, DSM3 

used the information of inflow and demand at previous time period as input data of 

ANN.  The results of six different models (DP based on neural network, DP based on 

regression, DSM1 based on neural network, DSM1 based on regression, DSM2 based 

on neural network, and DSM2 based on regression) were compared in terms of 

reservoir performance in this study. 

  

         2.6.2  Application of ANNs for control 

 

                   Lobbrecht and Solomatine (1999) applied Artificial Neural 

Network (ANNs) and Fuzzy Adaptive Systems (FAS) for the problem of water level 

management.  Since Aquarius model requires high CPU time, especially for complex 

water system, for solving coupling simulation and optimization model in order to 

derive the optimal control actions, this model may not be appropriate real-time control 

tasks.  Thus, the ANN and FAS were used to replicate control actions prepared by 

Aquarius model in both local and centralized dynamic control modes for controlling 

the polder water levels.  The control variable was pumping rate of drainage station.  

The influencing parameters were water level, pump status, and moving average 

precipitation.  For model simulation, the 30 years of real hydrological data were 

available.  In addition to the extreme hydrological events, the random generated data 

were used to train ANN and FAS model.  The obtained results illustrated that ANNs 

and FAS were able to replicate the behavior of the Aquarius control component with 
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accuracy in the range 90-97%.  This also showed that it was possible to replace the 

slow computational components by the fast-running trained intelligent controllers. 

 

                   Lobbrecht and Solomatine (2002) investigated the possibility of 

using machine-learning methods of Artificial Neural Networks (ANNs) and Fuzzy 

Adaptive Systems (FAS) to replicate behavior of an on-line deterministic model in 

preventing flooding of Delfland in the western part of the Netherlands.  The local 

control, which involves a single regulating structure in a water system and is executed 

on the basis of data gathered in the vicinity of that structure, of Duifpolder and 

Woudse Droogmakerij.  The centralized dynamic control, which typically requires 

data from various locations in the water system, of Woudse Droogmakerij areas was 

also considered in this study.  AQUARIUS model was calibrated using large data set 

covering many years of precipitation and then employed to generated data sets for 

training the intelligent controllers.  In addition to the existing actual time series data 

set, a data set representing excessive precipitation was constructed for the purpose of 

increasing a large variation in training data and the number of excessive events.  For 

local control mode, water level and pump operation in previous time step t-1, and 

difference between water level in current and previous time step were used as input 

data and current pump operation was used as output data.  In addition to input data 

used in local control, moving average of predicted precipitation and previous pump 

operation were used as input data for centralized control.  They recommended that 

intelligent controller can be only quasi-optimum. It also requires retraining of 

intelligent controllers when the properties of a water system changed.  The intelligent 

controllers appeared to be robust and capable of solving real-time control (RTC) 

problems on the basis of information measures only locally. 

 

                   Lobbrecht et al. (2005) applied neural networks and fuzzy system 

for controlling water level of the overwaard polder, a drainage basin located in South-

Holland, The Netherlands.  The objective of this study is to investigate the possibility 

of using artificial intelligence techniques such as artificial neural networks and fuzzy 

systems for water system control.  The existing AQUARUIS model, which is 

combined simulation and mathematical optimization model, was used as a reference 
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model for training intelligent controller.  For training network networks and fuzzy 

system controllers, the data generated with the AQUARIUS model in dynamic control 

mode were used.  The water levels in the upper and lower basins in the previous time 

step t-1, and 8 h moving average values of precipitation (t-1,…t-32) were used as 

input data and the number of pumps to be switched on at time was used output data.  

The study results showed that such two trainable intelligent controllers can save 

computational time when compared to using AQUARIUS.  Moreover, it found that 

neural networks controllers can approximate the water levels in the upper and lower 

basin better than fuzzy system controllers.  

 

                   Darsono and Labadie (2006) deployed a recurrent Jordan neural 

network architecture for real-time regulation of in-line storage in combined sewer 

systems.  Due to computation time and complexity the primary limitation in 

employing the accurate models necessary for efficient real-time control, application of 

dynamic or recurrent artificial neural networks (ANNs) may provide the analysis 

speed, generalization ability and high fault tolerance needed for effective 

implementation.  In this work, they utilized a highly accurate, but computationally 

time consuming, optimal control model, coupling simulation-optimization model, to 

provide the training data set for a recurrent ANN under a wide range of sewer inflow 

conditions.  For training of the dynamic neural control module, which is a supervised 

learning process, rain gauge measurements for various historical storm events were 

used as input data set and the optimal gate controls, which were calculated offline by 

the optimal control module, were used as output data set.  The data set, not included 

in the ANN training, was used to compare the performance of ANN controller and of 

optimal control module.  The neural-optimal control algorithm is demonstrated in a 

simulated real-time control experiment for the King County combined sewer system, 

Seattle, Washington, USA.  The results indicated that dynamic neural control module 

is effectively capable of an adaptive learning from optimal control model while 

satisfying the time constraints of real-time implementation. 

 

                   Based on available literature, there is no prior work that applies 

ANNs controller or other machine learning techniques for real-time control of coastal 
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gate, which simultaneously concerns various environmental, ecological and hydraulic 

conditions.   

 

3. River Operation Model  

 

This section prepares a review of detailed description of River Operation 

Model (ROM).  The ROM, developed by Royal Irrigation Department (RID) in 2004, 

is mathematical simulation modeling used in this work.  This model includes five 

main sub-modules, namely:- Hydrodynamic Model (HD), Water Quality Model 

(WQ), Water Demand Model (WD), Rainfall-Runoff Model, and Forecasting Model.   

The more detailed information for each module can be discussed as follows. 

 

3.1  Hydrodynamic Model  

 

                    The HD is mathematical model which uses for analysis of the behaviors 

of water level, flow velocity, and discharge in the river network and flood plain for 

both steady and unsteady conditions.  This model also comprises five sub-models, 

namely:- Node-Branch Model (NB), Flood Plain Model (FP), Structural Model 

(STR), Gate Operation Model (GOP), and Rating Curve Model (RC).  The HD can 

thus analyze the flow through hydraulic control structure such as gate, weir, bridge, 

and culvert, and also can model the operation of gates to investigate the effects of 

various gate control strategies to water level, flow velocity, and discharge in the river 

network.  The HD implicitly solves an integrated form of the Saint-Venant equations 

of continuity and momentum equations for one-dimensional unsteady open-channel 

flow.  Such equations can be mathematically expressed as: 

 

Continuity equation: 

 

 0
Q A

q
x t

∂ ∂
+ − =

∂ ∂
 (19) 

 

 

 

 



 40 

Momentum equation: 
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where Q is discharge (m
3
/s); A is cross section of river (m

2
); q is lateral discharge 

(m
3
/m/s); H is water level (m); g is gravitational acceleration (m/s

2
); n = Manning’s 

roughness coefficient; β is correction factor;  R is hydraulic radius (m); x is distance 

(m); and t is time (s). 

 

                    Before applying this model for river system analysis purposes, Manning’s 

coefficient of river reach and flood plain, and discharge’s coefficient of hydraulic 

structures must be calibrated.  That is, the observed water levels (or discharge) are 

compared to the simulated water level (or discharge).  The input data for each sub-

model of HD model are presented in Table 1.  In addition to such input data, the HD 

requires upper boundary condition (upstream discharge), lower boundary condition 

(downstream water level), and initial condition, which is the water level and discharge 

data at the initial time of program execution.  The output data for this model are the 

information of discharge, velocity, water level with respect to space and time.  

 

Table 1  The input and output data requirement for hydrodynamic model.  

 

Sub-model Input data 

NB model 

FB model 

 STR model 

 GOP mode 

RC model 

cross section, length of river reach, roughness N 

area elevation, flood cell link 

structure dimension 

gate opening and criteria for operation 

discharge-elevation relationship 

 

Source: RID (2004) 
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3.2  The Water Quality Model  

 

        The WQ is another sub-module of ROM.  It uses for the study of mass 

transportation in watercourse.  The water quality parameters, which can be analyzed 

by WQ model, are salinity, dissolved oxygen, biological oxygen demand, and pH.  

Typically, the dissolved oxygen and biological oxygen demand are analyzed 

simultaneously because the organic decomposition process requires oxygen from 

reaeration process.  This model thus comprises three sub-models, namely:- BOD/DO 

Model, pH Model, and Salinity Model.  The WQ can analyze each sub-model or all 

sub-models at one time.  Before executing this model, the HD has to be run first and 

then the water level and discharge data obtained from HD are used for analysis of 

mass transportation.  The WQ utilizes finite difference technique for solving the 

advection-diffusion equation as expressed in equation 21.  
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where c is mass concentration (kg/m
3
); A is cross section (m

2
); u is flow velocity 

(m/s); D is diffusion coefficient (m
2
/s); x is distance (m); t is time (s); and S is 

source/sing term (kg/m/s).  The first term in equation 21 represents the rate of mass; 

the second term shows mass advection process.  The third term represents mass 

diffusion process.  And the last term is sink or source term of precipitation or 

decomposition.  The diffusion coefficient (DX) of each parameter, decay rate (K1), 

reaeration rate (K2), settling removal rate (K3) must be calibrated before applying this 

model for the analysis of water quality in river; i.e., the observed concentration of 

considered water quality parameters  are compared to that from model simulation.  

 

       The input data required to run the WQ contain the details of types of 

nodes, types of boundary, initial condition of desired water quality parameters at 

nodes in river network, diffusion coefficient, the parameters of BOD and DO, 

namely:- decaying rate (K1), settling rate (K3), sediment oxygen demand (SOD), 

reaeration rate (K2), temperature, and dissolved oxygen saturation (DOS), and 
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pollution loads.  The outputs for this model are the information of concentration of 

considered water quality parameters with respect to space and time.    

 

3.3  Water Demand Model  

 

        This model uses for the determination of water demand, especially 

irrigation water demand, of study area.  In addition to irrigation water demand, other 

demands can be specified in this model.  The water demand quantities of total 

activities are then used as input data for HD.  The irrigation demand model 

(Kirdphitak, 1995) calculates the weekly irrigation water demand and return flow, and 

these values then summed up to become monthly irrigation water demand and return 

flow.  Indeed, the irrigation areas in a considered watershed are divided into several 

irrigation blocks.  The irrigation efficiency requires to be calibrated when applying 

this model.  To perform model simulation, the information of irrigation area, cropping 

activity, effective rainfall, potential evapotranspiration, crop coefficient, other 

demands, and rainfall are required as input data for model.  The output data is the 

quantity of water demand and return flow for each irrigation block.      

  

3.4 Tank Model  

 

        The tank model, which is usually classified as a lumped conceptual 

model, is adopted herein as rainfall–runoff relationship model to determine upstream 

boundary data used in HD.  This model was first introduced by Sugawara (1961) for 

analyzing the occurrence of runoff in several Japanese Rivers.  

 

         Figure 10 (Setiawan, et al., 2006) shows the Standard Tank Model and 

hypothetical water regimes in a watershed.  This model is constructed of four vertical 

reservoirs, of which from top to bottom parts represents the Surface Reservoir (A), 

Intermediate Reservoir (B), Sub-base Reservoir (C), and Base Reservoir (D).  In this 

concept, water can fill the underneath reservoir, and can go reversibly if 

evapotranspiration is so predominant.  The horizontal outlet reflects the outflow, 

consisting of Surface Flow (Ya2), Subsurface Flow (Ya1), Intermediate Flow (Yb1), 
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Sub-base Flow (Yc1), and Base Flow (Yd1).  Each outflow only occurs when the 

water level at each reservoir (Ha, Hb, Hc and Hd) is higher than its outlet (Ha1, Ha2, 

Hb1 and Hc1).  The outflow at each outlet is also influenced by the characteristics of 

the outlet, i.e., A0, A1, A2, B0, B1, C0, C1, and D1.  The twelve parameters, namely:- 

Ha, Hb, Hc and Hd, A0, A1, A2, B0, B1, C0, C1, and D1, of the Tank Model need to 

be determined before using the model.  In calibration process, the observed discharge 

data obtained from water measurement station are compared to the discharge data 

obtained from model calculation. 

 

       The input requirements for the Tank model contain physical 

characteristics of a watershed, hourly rainfall data, evapotranspiration data, and initial 

condition of soil water content.  The outputs are the information of hourly runoff. 

 

 

Figure 10  Schematic standard Tank Model. 

                            Source: Setiawan, et al. (2006) 
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3.5  Forecasting Model 

 

        In the case of the requirements of water management in advance, Auto 

Regressive & Updating Procedure model (AR model) and harmonic analysis model as 

two Forecasting models are applied to synthesize upper boundary and lower boundary 

data, respectively.  The detailed information of each model can be described as 

follows. 

 

       3.5.1  Harmonic Analysis Model (HA) 

 

                  The fluctuation of sea water level results from the influence of the 

relative motion of the earth, moon and sun as well as the effect of oceanography.  In 

general, the sea water level information is analyzed by means of harmonic analysis, 

which is the analysis of a certain periodic wave.  Tidal characteristics can be explored 

using a harmonic analysis model as follows (RID, 2004): 
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where η(t) is the resultant tidal variation at a particular locality and is composed of N 

constitutents; a0 is displacement from the reference datum to the mean level; N is the 

number of harmonic constituent; ai is the amplitude of the i
th
 constitutents; Ti is period 

of the i
th
 constitutents; and δi is phase of the i

th
 constitutents.    

 

                  The equation 22 is used in conjunction with the measured sea water 

level to determine the values of amplitude and phase when the period specified by 

using the following equations. 
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                  The application of harmonic analysis for sea water level 

forecasting in the duration of 1 to 2 days in advance consists of two stages.  In the 

first stage, the measured sea water level at previous day (t-1) obtained from 

telemeterimg station is used to determine the value of mean amplitude and phase of 

specified constituent.  For Pak Phanang River Basin Development Project, the two 

constituent of M2 (T= 12.4206 hrs.) and K1 (T= 23.9346 hrs.) are used (RID, 2004). 

In the second stage, such two parameters and the values of time (t) are substituted in 

harmonic equation, and then the forecasted sea water level is calculated at any times.  

 

       3.5.2  Auto Regressive Model (AR) 

 

                  The forecast of discharge in river comprise the four main 

components, namely:- the measuring and sending real-time data, the hydrological and 

hydraulic model, the rainfall prediction, and updating procedure or data assimilation 

procedure.  The accuracy of runoff prediction depends upon selected model quality, 

the precision of rainfall forecasting, and the efficiency of chosen updating procedure. 

The updating procedure or data assimilation procedure is feedback procedure by using 

the measured real-time data to improve initial state of system before forecasting.  In 

addition, the updating procedure is deployed to correct the results obtained forecasting 

model during running processes.  The updating procedure (RID, 2004) has several 
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types depending on selected variables for analysis such as input variables, model 

states, model parameter, and output variables.  For Pak Phanang River Basin 

Development Project, the updating output variables procedure is selected since it is 

widespread method for forecasting discharge and is appropriate for conceptual 

rainfall-runoff model like Tank Model.  Furthermore, this method has been used in 

several marketing software package such as MIKE II-FF, and ISIS.   

 

                              Besides the accuracy of rainfall prediction, time of concentration of 

a interesting point is another factor resulting in the result of discharge forecasting.  

That is, if time of concentration of interesting point is more than forecast lead time, 

the result of model prediction is promising, but if time of concentration of interesting 

point is less than forecast lead time, the result of model prediction depend on the 

accuracy of rainfall prediction.  For the discharge forecasting during dry season (no 

rainfall), the discharge in river depends on base flow, hence the discharge forecasting  

in this period of time is acceptable due to no need of rainfall prediction.  The updating 

output variable method or error correction method is the correction process of 

discharge simulated by Tank model.  Such method can be mathematically expressed 

in the following equation.  

 

                                                    1, 11 tsim ttQ Q Z
∧ ∧
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where 1tQ
∧

+  is measured discharge at time t+1; and , 1sim tQ +  is discharge simulated by 

Tank model at time t+1 by means of rainfall forecasting; 1tZ
∧

+  is model error at time 

t+1.  The model forecast error can be determined using the following equation.  
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where { }tZ  is sequence of observed model error.  When considering the equation 29, 

there is no term of rainfall data at previous time (t-1).  In fact, this term is already 
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included in term of discharge.  The relationship of equation 29 can be determined by 

the observed discharge data and the discharge data simulated by Tank model at the 

same time.  There are various models which use for determining such relationship 

such as Autoregressive Model (AR), Autoregressive Moving Average Model 

(ARMA), Neural Networks, Genetic Programming, and Kalman Filter.  For Pak 

Phanang River Basin Development Project, the Autoregressive Model (AR) was 

selected, which can show the equation as follow: 
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where iφ  is model parameter; and P is order of model.  The model parameter can be 

determined by using existing data, and the suitable order can be obtained from model 

calibration.  The analysis results (RID, 2004) found that AR model order 3 is the most 

appropriate model for Pak Phanang River Basin Development Project, which can 

express the equation as follow: 
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The ROM can be used to simulate situation both event mode, which uses for 

project planning and system analysis purposes, and real time mode, which cooperates 

with the data obtained from telemetering system.  The schematic diagram of the 

model components in the case of real-time and forecast modes are presented in 

Figures 11 and 12, respectively. 
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Figure 11  Schematic diagram of ROM model: real time mode. 

                   Source: RID (2004) 
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Figure 12  Schematic diagram of ROM model: forecasting mode. 

                 Source: RID (2004) 


