TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	v
INTRODUCTION	1
OBJECTIVES	6
LITERRATURE REVIEW	8
MATERIALS AND METHODS	50
Materials	50
Methods	50
RESULTS AND DISCUSSION	83
CONCLUSION AND RECOMMENDATION	138
Conclusion	138
Recommendation	142
LITERATURE CITED	145
APPENDICES	154
Appendix A the details of input information of a Pak Phanang	
coastal gate system	155
Appendix B the details of input information used for providing	
the training and testing data set for Artificial Neural Networks	215
Appendix C the configuration of CoastalGate model	243

LIST OF TABLES

Table		Page
1	The input and output data requirement for hydrodynamic model	40
2	The principal subcatchment areas of Pak Phanang River Basin	71
3	The details of telemetering stations installed Pak Phanang River Basin	72
4	The sensitivity analysis results The sensitivity analysis results of	
	maximum number of generations and number of population.	85
5	Satisfaction function value on effects of varying F and CR values for	
	Pak Phanang coastal gate system	86
6	The values of weighting factor and relative importance given for	
	FOP#1	88
7	The values of weighting factor and relative importance given for	
	FOP#2	89
8	The values of weighting factor and relative importance given for	
	FOP#3	89
9	The desired criteria used for controlling a coastal gate system located	
	in PPRB	90
10	Comparison of satisfaction function value for four study cases	98
11	Summary results of state variables at control points of ten controlled	
	gates for four study cases	109
12	The sensitivity analysis results of maximum number of generations	123
13	The sensitivity analysis results of the number of population	123
14	Satisfaction function value on effects of varying F and CR values for a	
	hypothetical coastal gate	125
15	Sample of training data set for Artificial Neural Networks	126
16	Details of input variables used for training different ANNs controller	128
17	Training and testing results of ANNs model for coastal gate operations	129
18	State variables comparison between ANNs and reference model	
	controllers	133

LIST OF TABLES (continued)

Appendix Table

A1	Node information of river network	156
A2	Branch information of river network	158
A3	Cross section and roughness coefficient of river network	161
A4	Structural information	185
A5	Transition sectional data	186
A6	Flow direction data	190
A7	Sample of gate operation data	193
A8	Node and upstream hydrograph pattern number data	194
A9	Upstream hydrograph pattern data	196
A10	Downstream boundary data	198
A11	Initial discharge data	199
A12	Initial water level data	201
A13	Node information used for salinity submodel	203
A14	Boundary condition (ppt) used for salinity submodel	204
A15	Initial condition (ppt) used for salinity submodel	205
A16	Diffusion coefficient (m ² /s)used for salinity submodel	206
A17	Node information used for BOD/DO submodel	207
A18	BOD boundary condition (mg/l) used for BOD/DO submodel	208
A19	DO boundary condition (mg/l) used for BOD/DO submodel	208
A20	Initial condition (mg/l) used for BOD/DO submodel	209
A21	Diffusion coefficient (m ² /s)used for BOD/DO submodel	210
A22	Load data of BOD/DO used for BOD/DO submodel	211
A23	BOD and DO parameters used for BOD/DO submodel	213
B1	Node information of river network	216
B2	Branch information of river network	216
B3	Cross section and roughness coefficient of river network	217
B4	Structural information	223

LIST OF TABLES (continued)

Appendix Table

Page

B5	Transition sectional data	223
B6	Flow direction data	224
B7	Sample of gate operation data	224
B8	Node and upstream hydrograph pattern number data	224
B9	Sample of upstream hydrograph pattern data	225
B10	Sample of downstream boundary data	227
B11	Sample of initial discharge data	229
B12	Sample of initial water level data	230
B13	Node information used for salinity submodel	231
B14	Boundary condition (ppt) used for salinity submodel	232
B15	Sample of initial condition (ppt) used for salinity submodel	233
B16	Diffusion coefficient (m^2/s) used for salinity submodel	233
B17	Node information used for BOD/DO submodel	233
B18	BOD boundary condition (mg/l) used for BOD/DO submodel	234
B19	DO boundary condition (mg/l) used for BOD/DO submodel	235
B20	Sample of initial condition (mg/l) used for BOD/DO submodel	236
B21	Diffusion coefficient (m ² /s)used for BOD/DO submodel	236
B22	Load data of BOD/DO used for BOD/DO submodel	237
B23	BOD and DO parameters used for BOD/DO submodel	241
B24	The values of weighting factor and relative importance used	
	for deriving coastal gate operating rules	241
B25	The desired criteria used for deriving coastal gate operating rules	242

LIST OF FIGURES

Figure		Page
1	Illustration of the crossover process for $D = 7$ parameters	14
2	The overall processes of DE	15
3	The example of using DE for solving a simple objective function	16
4	A typical neural network structure	24
5	Flowchart of the Back Propagation Algorithm	27
6	The architecture of the generalized regression neural network	28
7	Pattern unit of the radial basis function network	29
8	Training process of supervised control	31
9	The use of trained neural network for control	31
10	Schematic standard Tank Model	43
11	Schematic diagram of ROM model: real time mode	48
12	Schematic diagram of ROM model: forecasting mode	49
13	The overall framework of coupling simulation and optimization model	57
14	Sample code fragment from routine to prevent violation of physical	
	bounds on gate operations	58
15	Sample code fragment from routine to prevent alternate optimal	
	solution	60
16	The input-output file management of hydrodynamic and water quality	
	model	65
17	Flow diagram of the main processes in CoastalGate model	68
18	A satellite image showing the boundary of the Pak Phanang River	
	Basin	70
19	Map showing the location of telemetering stations installed in PPRB	73
20	Schematic diagram showing coastal gate system of PPRB	75
21	Schematic diagram of hypothetical coastal gates system	79
22	The overall framework of NGO-ROM model	82
23	Optimal crest level setting for Uthokawiphatprasit gate	91

LIST OF FIGURES (continued)

Figure

Page

24	Optimal gate opening for Sua Hueng gate	92
25	Optimal gate opening for Pakrawa gate	92
26	Optimal gate opening for Emergency gate	93
27	Optimal gate opening for Thapraya gate	93
28	Optimal gate opening for Klong Khong gate	94
29	Optimal gate opening for Chian Yai gate	94
30	Optimal gate opening for Bang Sai gate	95
31	Optimal gate opening for Sukoom gate	95
32	Optimal gate opening for Praekmueng gate	96
33	Satisfaction function value for coastal gate system versus control	
	horizon	98
34	The state variables versus control horizon at checkpoints of	
	Uthokawiphatprasit gate	112
35	The state variables versus control horizon at checkpoints of	
	Sua Hueng gate	113
36	The state variables versus control horizon at checkpoints of Pakrawa	
	gate	114
37	The state variables versus control horizon at checkpoints of	
	Emergency gate	115
38	The state variables versus control horizon at checkpoints of Taphraya	
	gate	116
39	The state variables versus control horizon at checkpoints of	
	Klong Khong gate	117
40	The state variables versus control horizon at checkpoints of	
	Chian Yai gate	118
41	The state variables versus control horizon at checkpoints of Bang Sai	
	gate	119

LIST OF FIGURES (continued)

Figure		Page
42	The state variables versus control horizon at checkpoints of Sukoom	
	gate	120
43	The state variables versus control horizon at checkpoints of	
	Praekmueng gate	121
44	Comparison of input patterns and ANN types in terms of AAE	131
45	Comparison of input patterns and ANN types in terms of R ²	131
46	Comparison of upstream water levels under the control of ANNs and	
	CoastalGate model	134
47	Comparison of downstream water levels under the control of ANNs	
	and CoastalGate model	134
48	Comparison of upstream salinity concentrations under the control of	
	ANNs and CoastalGate model	135
49	Comparison of downstream salinity concentrations under the control	
	of ANNs and CoastalGate model	135
50	Comparison of upstream DO concentration under the control of ANNs	
	and CoastalGate model	136
51	Comparison of downstream DO concentration under the control of	
	ANNs and CoastalGate model	136
52	Comparison of gate openings under the control of ANNs and	
	CoastalGate model	137
Append	dix Figure	

C1	DE's parameters and configuration input window	244
C2	Observation points input window	245
C3	Constraints input window	246
C4	Upper boundary input window	247
C5	Lower boundary input window	248

LIST OF FIGURES (continued)

Appendix Figure

Page

C6	Point source input window	249
C7	File management input window	249
C8	Criteria input window	250
C9	Weighting factor input window	251
C10	Node data input window	252
C11	Branch data input window	252
C12	Node section data input window	253
C13	Floodplain data input window	253
C14	Structural data input window	254
C15	Flow direction data input window	254
C16	Gate operation data input window	255
C17	Upper boundary and lateral discharge data input window	255
C18	Lower boundary data input window	256
C19	Initial condition data input window	256
C20	Time data input window	257
C21	Node and time step data input window for salinity model	258
C22	Boundary condition data input window for salinity model	258
C23	Initial condition data input window for salinity model	259
C24	Diffusion coefficient data input window for salinity model	259
C25	Node and time step data input window for BOD/DO model	260
C26	Boundary condition data input window for BOD/DO model	260
C27	Initial condition data input window for BOD/DO model	261
C28	Diffusion coefficient data input window for BOD/DO model	261
C29	Waste load data input window for BOD/DO model	262
C30	Water quality's parameters data input window for BOD/DO model	262

LIST OF ABBREVIATIONS

a _i	=	the amplitude of the i th constitutents
a_0	=	displacement from the reference datum to the mean level
A	=	cross section of river (m^2)
AAE	=	average absolute error
ANNs	=	Artificial Neural Networks
AR	=	auto regressive & updating procedure model
ARMA	=	Autoregressive Moving Average Model
β	=	correction factor
BOD	=	biological oxygen demand
с	=	mass concentration (kg/m^3)
С	=	constant coefficient
CR	=	crossover constant
δ_ι	=	phase of the i th constitutents
D	=	diffusion coefficient (m^2/s)
DE	=	Differential Evolution
DEMO	=	Differential Evolution for Multiobjective
DO	=	dissolved oxygen
DOS	=	dissolved oxygen saturation
ϕ_{i}	=	model parameter
F	=	weighting factor
FAS	=	fuzzy adaptive systems
FP	=	flood plain model
g	=	gravitational acceleration (m/s ²)
ga	=	the matrix of gate setting
\overline{g} and \underline{g}	=	the upper and lower bounds for gate setting, respectively
G	=	the generation to which the population belongs
GA	=	Genetic Algorithm
GOP	=	gate operation model
Н	=	water level (m)
HA	=	harmonic analysis model
i	=	index of the population
HD	=	hydrodynamic model
K1	=	decay rate
K2	=	reaeration rate
K3	=	settling removal rate
n	=	Manning's roughness coefficient
η(τ)	=	the resultant tidal variation at a particular locality

LIST OF ABBREVIATIONS (continued)

Ν	=	the number of harmonic constituent
N _d	=	number of data
NB	=	node-branch model
NGO	=	NeuroGenetic Optimizer
NP	=	population size
Р	=	population
PDE	=	Pareto Differential Evolution algorithm
q	=	lateral discharge (m ³ /s)
Q	=	discharge (m ³ /s)
\hat{Q}_{t+1}	=	measured discharge at previous time (t+1)
$Q_{sim,t+1}$	=	discharge simulated by Tank model at time t+1
R	=	hydraulic radius (m)
R^2	=	correlation coefficient
R _{di,i}	=	relative importance of interesting parameter j
5		in water subsystem i within a particular area
$rand_{j}[0,1]$	=	uniformly distributed random value within range [0.0,1.0]
Randb(j)	=	the j th evaluation of a uniform random number generator
		with outcome Î [0,1]
Rnbr(i)	=	a randomly chosen index \in 1,2,3,,D
RC	=	rating curve model
RID	=	Royal Irrigation Department
ROM	=	River Operation model
RTC	=	real-time control
S	=	source/sing term (kg/m/s)
$S_{i,j}(\overline{x},\overline{u})$	=	satisfaction function j for water subsystem i
SOD	=	sediment oxygen demand
SOM	=	Self Organizing Map
STR	=	structural model
t	=	time (s)
T_i	=	period of the i th constitutents
u	=	flow velocity (m/s)
\overline{u}	=	time-dependent control variables
$U_{i,G+I}$	=	the trial vector
$V_{i,G+1}$	=	the mutant vectors
VEDE	=	Vector Evaluated Differential Evolution
w	_	the weight vector

LIST OF ABBREVIATIONS (continued)

 W_{ai} = weighting factor for an area in the objective function WD = water demand model WQ = water quality model wq = water quality parameters x = distance(m) \overline{x} = time-dependent state variables $x^{(L)}$ and $x^{(U)}$ = lower and upper boundary constraints, respectively $X_{i,G}$ = the target vector $X_{r1,G}$, $X_{r2,G}$ and $X_{r3,G}$ = three random individuals chosen in the current generation $x_{calculated}$ = state variables obtained from calculation of simulation model $x_{desired}$ = desired state variables \overline{x} = state variables X_u = upper limits on state variables x_i = lower limits on state variables $Y_{desired}$ = desired output $Y_{\text{predicted}}$ = predicted output Z = objective function Z_{t+1} = model error at time t+1

 $\{Z_t\}$ = sequence of observed model error