TABLE OF CONTENTS

Page

TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	iv
ABBREVIATIONS AND SYMBOLS	xii
INTRODUCTION	1
LITERATURE REVIEWS	8
MATERIALS AND METHODS	18
Materials	18
Methods	25
RESULTS AND DISCUSSIONS	35
CONCLUSION	96
LITERATURE CITED	97
APPENDIX	101

LIST OF TABLES

Table	I	Page
1	Photoelectrochemical parameters obtained from dye-sensitized solar cells assembled with liquid electrolyte (batch 1).	63
2	Photoelectrochemical parameters obtained from dye-sensitized solar cells assembled with solid polymer electrolyte (batch 1).	64
3	Photoelectrochemical parameters obtained from dye-sensitized solar cells that sensitized with Ru complex (N3), using solid polymer electrolyte.	65
4	Photoelectrochemical parameters obtained from dye-sensitized solar cells that sensitized with roselle dye at various concentration of dye solutions (batch 2, 3), using solid polymer electrolyte.	67
5	Photoelectrochemical parameters obtained from dye-sensitized solar cells that sensitized with turmeric dye at various concentration of dye solutions (batch 2, 3), using solid polymer electrolyte.	68
6	Photoelectrochemical parameters obtained from dye-sensitized solar cells that sensitized with <i>Monascus</i> red dye at various concentration of dye solutions (batch 2, 3), using solid polymer electrolyte.	69
7	Photoelectrochemical parameters obtained from dye-sensitized solar cells that sensitized with <i>Monascus</i> yellow dye at various concentration of dye solutions (batch 2, 3), using solid polymer electrolyte.	70
8	Photoelectrochemical parameters obtained from dye-sensitized solar cells that sensitized with mixture dyes (batch 2) and using solid polymer electrolyte.	71
9	Photoelectrochemical parameters obtained from dye-sensitized solar cells that sensitized with crude dyes extracted from plants and <i>Monascus</i> rice cultures and mixed dyes (batch 4), using solid polymer electrolyte.	72

LIST OF TABLES (cont'd)

Table	Page
10 Photoelectrochemical parameters obtained from dye-sensitized solar cells that sensitized with crude dyes extracted from plants and <i>Monascus</i> rice cultures and mixed dyes (batch 5), using solid polymer electrolyte	74

iii

LIST OF FIGURES

Figur	e	Page
1	The components of dye-sensitized solar cell	1
2	The working principle of the dye-sensitized solar cell	2
3	I-V curve of a solar cell under illumination	3
4	Molecular structures of three ruthenium (Ru) complex dyes	5
5	Molecular structures of anthocyanin at various pH	6
6	Molecular structures of Curcumin	7
7	Molecular structures of pigment isolated from Monascus pigment	8
8	Molecular structures of (BIDC1), (BIDC2), (BIDC3) and (BIDC4)	10
9	Molecular structures of sensitizing dyes in Hideo Otaka et al.'s report	10
10	Molecular structure of 9-phenyl-2,3,7-trihydroxy-6-fluorone	11
11	Molecular structure of xylenol orange	11
12	Molecular structure of chlorophyll-a and chlorine-e ₆ (Chl-e ₆)	12
13	Molecular structure of Sqb and Cyb3	13
14	Molecular structure of $[Ru(II)(dcbpyH_2)(Cl_2)]\cdot 2H_2O$ (where dcbpyH ₂ = 4,4'-dicarboxy-2,2'-bipyridine)	15
15	A schematic diagram showing the construction of the 3-dye cell	16
16	Molecular structure of Shisonin: R = H and Malonylshisonin: R = Malonic acid	17
17	Preparation of dye adsorbed on a nanocrystalline TiO_2 film electrode	32

Figure	Page
18 The experimental setup for measuring the current-voltage characteristics of dye-sensitized solar cell	33
19 The current-voltage (I-V) curve	34
20 The absorption spectra of crude dyes extracted from plants and <i>Monascus</i> rice cultures in ethanol solution.	35
21 The absorption spectra of roselle, turmeric and mixture of roselle and turmeric extracts in ethanol solution	36
22 The absorption spectra of roselle, <i>Monascus</i> red and mixture of roselle and <i>Monascus</i> red extracts in ethanol solution.	36
23 The absorption spectra of roselle, <i>Monascus</i> yellow and mixture of roselle and <i>Monascus</i> yellow extracts in ethanol solution.	37
24 The absorption spectra of turmeric, <i>Monascus</i> red and mixture of turmeric and <i>Monascus</i> red extracts in ethanol solution.	37
25 The absorption spectra of turmeric, <i>Monascus</i> yellow and mixture of turmeric and <i>Monascus</i> yellow extracts in ethanol solution.	38
26 The absorption spectra of <i>Monascus</i> red, <i>Monascus</i> yellow and mixe of <i>Monascus</i> red and yellow extracts in ethanol solution. 38	ture
 26 The absorption spectrum of [Ru(4,4'-dicarboxylic bipyridyl)₂ (NCS)₂] or N3 dye in ethanol solution. 	39
28 The fluorescence spectrum of crude dye extracted from roselle in ethanol solution. The excitation wavelength was 380 nm.	40
29 The fluorescence spectrum of crude dye extracted from turmeric in ethanol solution. The excitation wavelength was 420 nm.	41
30 The fluorescence spectrum of crude dye extracted from <i>Monascus</i> red rice culture in ethanol solution. The excitation wavelength was 470 nm.	41

Figure	Page
31 The fluorescence spectrum of crude dye extracted from <i>Monascus</i> yellow rice culture in ethanol solution. The excitation wavelength was 410 nm.	42
32 The fluorescence spectrum of N3 dye in ethanol solution. The excitation wavelength was 460 nm.	43
33 Cyclic voltammograms of roselle extract in aqueous solution containing 1 M KNO ₃ as supporting electrolyte	44
34 Cyclic voltammograms of roselle extract in aqueous solution containing 0.1 M Na ₂ SO ₄ as supporting electrolyte	45
35 Cyclic voltammograms of turmeric extract in aqueous solution containing 1 M KNO ₃ as supporting electrolyte	46
36 Cyclic voltammograms of turmeric extract in aqueous solution containing 0.1 M Na ₂ SO ₄ as supporting electrolyte	46
37 Cyclic voltammograms of turmeric extract in ethanol solution containing 0.1 M LiClO ₄ as supporting electrolyte	47
38 Cyclic voltammograms of turmeric extract in aqueous solution containing B-R buffer (pH 4) as supporting electrolyte	47
39 Cyclic voltammograms of turmeric extract in aqueous solution containing acetate buffer (pH 4) as supporting electrolyte	48
40 Cyclic voltammograms of turmeric extract in aqueous solution containing phosphate buffer (pH 3) as supporting electrolyte	48
41 Cyclic voltammograms of <i>Monascus</i> red extract in aqueous solution containing 1 M KNO ₃ as supporting electrolyte	49
42 Cyclic voltammograms of <i>Monascus</i> red extract in aqueous solution containing 0.1 M Na ₂ SO ₄ as supporting electrolyte	49
43 Cyclic voltammograms of <i>Monascus</i> red extract in aqueous solution containing 1 M KCl as supporting electrolyte	50

Figure	Page
44 Cyclic voltammograms of <i>Monascus</i> red extract in ethanol solution containing 0.1 M LiClO ₄ as supporting electrolyte	50
45 Cyclic voltammograms of <i>Monascus</i> red extract in aqueous solution containing B-R buffer (pH 4) as supporting electrolyte	51
46 Cyclic voltammograms of <i>Monascus</i> red extract in aqueous solution containing acetate buffer (pH 4) as supporting electrolyte	51
47 Cyclic voltammograms of <i>Monascus</i> red extract in aqueous solution containing phosphate buffer (pH 3) as supporting electrolyte	52
48 Cyclic voltammograms of <i>Monascus</i> yellow extract in aqueous solution containing 1 M KNO ₃ as supporting electrolyte	53
49 Cyclic voltammograms of <i>Monascus</i> yellow extract in aqueous solution containing 0.1 M Na ₂ SO ₄ as supporting electrolyte	53
50 Cyclic voltammograms of <i>Monascus</i> yellow extract in aqueous solution containing 1 M KCl as supporting electrolyte	54
51 Cyclic voltammograms of <i>Monascus</i> yellow extract in ethanol solution containing 0.1 M LiClO ₄ as supporting electrolyte	54
52 Cyclic voltammograms of <i>Monascus</i> yellow extract in aqueous solution containing B-R buffer (pH 4) as supporting electrolyte	55
53 Cyclic voltammograms of <i>Monascus</i> yellow extract in aqueous solution containing acetate buffer (pH 4) as supporting electrolyte	55
54 Cyclic voltammograms of <i>Monascus</i> yellow extract in aqueous solution containing phosphate buffer (pH 3) as supporting electrolyte	56

Figure	Page
55 Cyclic voltammograms of mixture of roselle and turmeric extracts in aqueous solution containing 1 M KNO ₃ as supporting electrolyte	57
56 Cyclic voltammograms of mixture of roselle and <i>Monascus</i> red extracts in aqueous solution containing 1 M KNO ₃ as supporting electrolyte	g 57
57 Cyclic voltammograms of mixture of roselle and <i>Monascus</i> yellow extracts in aqueous solution containing 1 M KNO ₃ as supporting electrolyte	58
58 Cyclic voltammograms of mixture of turmeric and <i>Monascus</i> re extracts in aqueous solution containing 1 M KNO ₃ as supporting electrolyte	d g 58
59 Cyclic voltammograms of mixture of turmeric and <i>Monascus</i> yellow extracts in aqueous solution containing 1 M KNO ₃ as supporting electrolyte	59
60 Cyclic voltammograms of mixture of <i>Monascus</i> red and <i>Monascus</i> yellow extracts in aqueous solution containing 1 M KNO ₃ as supporting electrolyte	59
61 Cyclic voltammograms of $[Ru(4,4)$ -dicarboxylic bipyridyl) ₂ (NO or N3 dye in ethanol solution containing 0.1 M LiClO ₄ in ethanol solution as supporting electrolyte	CS) ₂] ol 60
62 Amount of roselle and turmeric dye adsorbed on TiO_2 film on varying the dye concentration	61
63 Amount of <i>Monascus</i> red and <i>Monascus</i> yellow adsorbed on Tio film on varying the dye concentration	D ₂ 62
64 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with roselle dye, using solid polymer electrolyte	77
65 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with turmeric dye, using solid polymer electrolyte	77

Figure	Page
66 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with <i>Monascus</i> red, using solid polymer electrolyte	78
67 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with <i>Monascus</i> yellow, using solid polymer electrolyte	78
68 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with mixture of roselle and turmeric dyes, using solid polymer electrolyte	79
69 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with mixture of roselle and <i>Monascus</i> red dyes, using solid polymer electrolyte	79
70 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with mixture of roselle and <i>Monascus</i> yellow dyes, using solid polymer electrolyte	80
71 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with mixture of turmeric and <i>Monascus</i> red dyes, using solid polymer electrolyte	80
72 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with mixture of turmeric and <i>Monascus</i> yellow dyes, using solid polymer electrolyte	81
73 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with mixture of <i>Monascus</i> red and <i>Monascus</i> yellow dyes, using solid polymer electrolyte	81
74 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with Ru complex (N3) dye (sample 7), using solid polymer electrolyte	82
75 Current-voltage (I-V) curve of dye-sensitized solar cell that sensitized with Ru complex (N3) dye (sample 8), using solid polymer electrolyte	82

Figure Page 76 Variation of short-circuit current (I_{sc}) and open-circuit voltage (V_{oc}) of TiO₂ solar cells sensitized with various concentrations of roselle on measuring under the sun at different hour of the day. 83 77 Variation of short-circuit current (I_{sc}) and open-circuit voltage (V_{oc}) of TiO₂ solar cells sensitized with various concentrations of turmeric on measuring under the sun at different hour of the day. 84 78 Variation of short-circuit current (I_{sc}) and open-circuit voltage (V_{oc}) of TiO₂ solar cells sensitized with various concentrations of *Monascus* red on measuring under the sun at different hour of the day. 85 79 Variation of short-circuit current (I_{sc}) and open-circuit voltage (V_{oc}) of TiO₂ solar cells sensitized with various concentrations of Monascus yellow on measuring under the sun at different hour of the day. 86 80 Variation of short-circuit current (I_{sc}) and open-circuit voltage (V_{oc}) of TiO₂ solar cells sensitized with mixture of dyes on measuring under the sun at different hour of the day. 87 81 Variation of short-circuit current (Isc) of TiO₂ solar cells sensitized with roselle, turmeric, Monascus red, Monascus yellow and mixture of dyes (batch 5) on measuring under the sun at different hour of the day. (day 1, a full bright day) 88 82 Variation of short-circuit current (Isc) of TiO₂ solar cells sensitized with roselle, turmeric, Monascus red, Monascus yellow and mixture of dyes (batch 5) on measuring under the sun at different hour of the day. (day 2 cloudy in the afternoon) 88 83 Variation of short-circuit current (I_{sc}) of TiO₂ solar cells sensitized with roselle, turmeric, Monascus red, Monascus yellow and mixture of dyes (batch 5) on measuring under the sun at different hour of 89 the day. (day 3, cloudy in the afternoon)

Figure	Page
84 Variation of short-circuit current (I_{sc}) of TiO ₂ solar cells sensitized with Ru complex (N3) dye (sample 8, batch5) on measuring under the sun at different hour of the day for 3 days. (cloudy in the afternoon)	90
85 Short-circuit current (I_{sc}) measured with an illuminator (3,000 K) after exposing the TiO ₂ solar cell sensitized with various concentrations of roselle under the sun at various hours	91
86 Short-circuit current (I_{sc}) measured with an illuminator (3,000 K) after exposing the TiO ₂ solar cell sensitized with various concentrations of turmeric under the sun at various hours	92
87 Short-circuit current (I_{sc}) measured with an illuminator (3,000 K) after exposing the TiO ₂ solar cell sensitized with various concentrations of <i>Monascus</i> red under the sun at various hours	92
88 Short-circuit current (I_{sc}) measured with an illuminator (3,000 K) after exposing the TiO ₂ solar cell sensitized with various concentrations of <i>Monascus</i> yellow under the sun at various hours	93
89 Short-circuit current (I_{sc}) measured with an illuminator (3,000 K) after exposing the TiO ₂ solar cell sensitized with dyes (batch 5) und the sun at various hours	der 94
90 Short-circuit current (I_{sc}) measured with an illuminator (3,000 K) after exposing the TiO ₂ solar cell sensitized with N3 dye under the sun at various hours	95

ABBREVIATIONS AND SYMBOLS

Abbreviations

CB	conduction band
DSSC	dye-sensitized solar cell
FF	fill factor
IPCE	incident photon to current efficiency
IR	infrared
ITO	indium tin oxide
IV	current-voltage
TBP	4- <i>tert</i> -butylpyridine
UV	ultraviolet
VB	valence band
<u>Symbols</u>	
e	electron
e ⁻ η	electron overall energy conversion efficiency
e ⁻ η hv	electron overall energy conversion efficiency light quantum
e ⁻ η hv I _{mp}	electron overall energy conversion efficiency light quantum current at the maximum power point
e ⁻ η hv I _{mp} I _{sc}	electron overall energy conversion efficiency light quantum current at the maximum power point short-circuit current
e^{-1} η hv I_{mp} I_{sc} P_{light}	electron overall energy conversion efficiency light quantum current at the maximum power point short-circuit current power of the incident light
e^{-1} η hv I_{mp} I_{sc} P_{light} P_{max}	electron overall energy conversion efficiency light quantum current at the maximum power point short-circuit current power of the incident light power at the maximum power point
e^{-1} η hv I_{mp} I_{sc} P_{light} P_{max} S	electron overall energy conversion efficiency light quantum current at the maximum power point short-circuit current power of the incident light power at the maximum power point sensitizer
e^{-} η hv I_{mp} I_{sc} P_{light} P_{max} S S^*	electron overall energy conversion efficiency light quantum current at the maximum power point short-circuit current power of the incident light power at the maximum power point sensitizer excited energy state of the sensitizer
e^{-1} η hv I_{mp} I_{sc} P_{light} P_{max} S S^{*} S^{+}	electron overall energy conversion efficiency light quantum current at the maximum power point short-circuit current power of the incident light power at the maximum power point sensitizer excited energy state of the sensitizer oxidized state of the sensitizer
e^{-} η hv I_{mp} I_{sc} P_{light} P_{max} S S^{*} S^{+} S^{0}	electron overall energy conversion efficiency light quantum current at the maximum power point short-circuit current power of the incident light power at the maximum power point sensitizer excited energy state of the sensitizer oxidized state of the sensitizer ground energy state of the sensitizer
e^{-} η hv I_{mp} I_{sc} P_{light} P_{max} S S^{*} S^{+} S^{0} V_{mp}	electron overall energy conversion efficiency light quantum current at the maximum power point short-circuit current power of the incident light power at the maximum power point sensitizer excited energy state of the sensitizer oxidized state of the sensitizer ground energy state of the sensitizer voltage at the maximum power point