APPENDICES

Appendix A

Determination of HCl reduction from copyrolysis of PVC with cattle manure

The percentage of HCl reduction was calculated from the amount of the remaining sodium hydroxide in absorber. The remaining sodium hydroxide in absorber was analyzed by titration with hydrochloric acid using phenolphthalein as an indicator. The calculation of percentage of HCl reduction is shown in an example below.

Example the calculation of percentage of HCl reduction at the heating rate of 1° C/min, reaction temperature of 250°C, reaction time of 60 min, and PVC:cattle manure of 1:5

Determination of the mol of HCl released from pyrolysis of PVC

0 1027 g							
0.1027 g							
Amount of NaOH (solution 300 ml)							
2.2015 g							
2.3788 g							
2.3758 g							
G	1						
Secc	nd	Average					
6.2	C	6.225					
6.9	C	6.900					
6.7	0	6.725					
ric acid 0.28	583 mol/l						
I before reaction	2.3683 / 40 =	= 0.0592075 mol (A)					
I after reaction (samp	ling 10ml)						
(0.28583 x 6.225) x	300 / 1000 = 0.0	053378752 mol (B)					
= mol of NaOH disap	peared $=(A)$) – (B)					
	= 0.0	016587475 mol					
on with Flask No.1							
0.0017287975 mol							
	0.1027 g 300 ml) 2.2015 g 2.3788 g 2.3758 g Seco 6.20 6.90 6.70 ric acid 0.283 I before reaction I after reaction (sample (0.28583 x 6.225) x = mol of NaOH disapton on with Flask No.1 0.0017287975 mol	0.1027 g 300 ml) 2.2015 g 2.3788 g 2.3758 g Second 6.20 6.90 6.70 tic acid 0.28583 mol/l H before reaction 2.3683 / 40 = H after reaction (sampling 10ml) (0.28583 x 6.225) x300 / 1000 = 0.0 = mol of NaOH disappeared = (A) = 0.0 on with Flask No.1 0.0017287975 mol					

```
Flask No.3
```

mol of HCl reased = 0.00030319 mol Total HCl released = 0.003690735 mol Mol of HCl released per weight of PVC = 359.3704966 mol/g

Determination of the mol of HCl released from pyrolysis of PVC and cattle manure mixture (1:5)

Amount of PVC powder	0.1021 g
Amount of NaOH (solutio	n 300 ml)
Flask No.1	2.2132 g
Flask No.2	2.2262 g
Flask No.3	2.3817 g

```
Volume of titration (ml)
```

Flask No	First	Second	Average
1	5.20	5.15	5.175
2	5.30	5.30	5.300
3	5.50	5.50	5.500
Concentration of	of hydrochloric acid	0.34939 mol/l	

Concentration of hydrochloric acid

Flask No.1 mol of NaOH before reaction $2.2132 / 40 = 0.055533 \mod (A)$ mol of NaOH after reaction (sampling 10ml)

(0.34939 x 5.175) x 300 / 1000 = 0.054242797 mol (B)

mol of HCl released = mol of NaOH disappeared =(A) - (B)

```
= 0.0010872025 mol
```

Flask No.2 similar calculation with Flask No.1

mol of HCl released = 0.00189315 mol

Flask No.3

mol of HCl released = 0.00010199 mol

Total HCl released = 0.0030823425 mol

mol of HCl released per weight of PVC = 296.9501445 mol/g

Therefore, the percentage of HCl reduction was (359.3704966 - 296.9501445) x100 / 359.3704966 = 17.37% Appendix B

Thermogravimetric data for investigating kinetic parameters

<u>Appendix Figure B1</u> Thermal decomposition profile of PVC and cattle manure mixture at various heating rates, and PVC: cattle manure ratio of 1:1

<u>Appendix Figure B2</u> Differential weight of thermal decomposition profile of PVC and cattle manure mixture at various heating rates, and PVC: cattle manure ratio of 1:1

<u>Appendix Figure B3</u> Thermal decomposition profile of PVC and cattle manure mixture at various heating rates, and PVC: cattle manure ratio

<u>Appendix Figure B4</u> Differential weight of thermal decomposition profile of PVC and cattle manure mixture at various heating rates, and PVC: cattle manure ratio of 1:3

<u>Appendix Figure B5</u> Thermal decomposition profile of PVC and cattle manure mixture at various heating rates, and PVC: cattle manure ratio of 1:5

<u>Appendix Figure 6</u> Differential weight of thermal decomposition profile of PVC and cattle manure mixture at various heating rates, and PVC: cattle manure ratio of 1:5

<u>Appendix Figure B7</u> Thermal decomposition profile of PVC and cattle manure mixture at various heating rates, and PVC: cattle manure ratio of 1:0

<u>Appendix Figure B8</u> Differential weight of thermal decomposition profile of PVC and cattle manure mixture at various heating rates, and PVC: cattle manure ratio of 1:0

Appendix C

Experimental data from dynamic degradation

α	$\ln(\beta/T_5)$	1/T ₅	$\ln(\beta/T_{10})$	1/T ₁₀	$\ln(\beta/T_{20})$	$1/T_{20}$
0.05	9.47332	0.001894	-8.86396	0.001855	-8.26411	0.001813
0.1	9.53312	0.001866	-8.91929	0.00183	-8.32456	0.001785
0.15	9.56543	0.001852	-8.94978	0.001816	-8.35606	0.001771
0.2	9.59111	0.00184	-8.97512	0.001805	-8.38269	0.001759
0.25	9.61302	0.00183	-8.996	0.001795	-8.40027	0.00175
0.3	9.63506	0.00182	-9.01951	0.001784	-8.42214	0.00174
0.35	9.66071	0.001808	-9.04557	0.001772	-8.4441	0.00173
0.4	9.70311	0.001789	-9.08623	0.001754	-8.47069	0.001718
0.45	9.78669	0.00175	-9.15878	0.001721	-8.50592	0.001702
0.5	9.87195	0.001712	-9.24304	0.001682	-8.566	0.001675
0.55	9.95051	0.001676	-9.32627	0.001644	-8.6631	0.001631
0.6	10.0421	0.001634	-9.42183	0.001601	-8.76237	0.001586
0.65	10.3978	0.001475	-9.76196	0.00145	-9.00764	0.001477
0.7	10.5085	0.001427	-9.86878	0.001403	-9.18136	0.001401
0.75	10.5747	0.001398	-9.93805	0.001374	-9.2553	0.001369
0.8	10.6299	0.001374	-9.99687	0.001348	-9.32377	0.00134
0.85	10.6974	0.001345	-10.0665	0.001319	-9.38195	0.001315

<u>Appendix Table C1</u> α -T data of copyrolysis of PVC and cattle manure mixture at the ratio of 1:0

α	$\ln(\beta/T_1)$	1/T ₁	$\ln(\beta/T_5)$	1/T ₅	$\ln(\beta/T_{10})$	1/T ₁₀	$\ln(\beta/T_{20})$	1/T ₂₀
0.05	-11.8485	0.002674	-10.875	0.001946	-9.79452	0.002361	-9.55943	0.001878
0.1	-12.4111	0.002018	-10.9174	0.001905	-10.2337	0.001896	-9.61499	0.001826
0.15	-12.4432	0.001986	-10.9382	0.001885	-10.2843	0.001848	-9.6404	0.001803
0.2	-12.461	0.001969	-10.9532	0.001871	-10.3063	0.001828	-9.65657	0.001789
0.25	-12.4747	0.001955	-10.9644	0.00186	-10.3209	0.001815	-9.66905	0.001778
0.3	-12.4864	0.001944	-10.9737	0.001852	-10.3317	0.001805	-9.67969	0.001768
0.35	-12.498	0.001932	-10.9829	0.001843	-10.3425	0.001795	-9.69027	0.001759
0.4	-12.5153	0.001916	-10.994	0.001833	-10.3551	0.001784	-9.69905	0.001751
0.45	-12.5552	0.001878	-11.0068	0.001821	-10.3675	0.001773	-9.70953	0.001742
0.5	-12.6271	0.001812	-11.0231	0.001807	-10.3852	0.001757	-9.72342	0.00173

<u>Appendix Table C2</u> α -T data of copyrolysis of PVC and cattle manure mixture at the ratio of 1:1

α	$\ln(\beta/T_1)$	1/T ₁	$\ln(\beta/T_5)$	1/T ₅	$\ln(\beta/T_{10})$	1/T ₁₀	$\ln(\beta/T_{20})$	1/T ₂₀
0.05	-11.4504	0.003263	-9.84751	0.003252	-9.25581	0.003091	-8.57499	0.003072
0.1	-11.5921	0.00304	-9.98268	0.00304	-9.35531	0.002941	-8.78756	0.002762
0.15	-12.2798	0.002155	-10.6355	0.002193	-9.5486	0.00267	-9.53677	0.001899
0.2	-12.4212	0.002008	-10.8963	0.001925	-10.1877	0.00194	-9.60217	0.001838
0.25	-12.4471	0.001982	-10.9325	0.00189	-10.2526	0.001878	-9.62592	0.001817
0.3	-12.4649	0.001965	-10.9514	0.001873	-10.2787	0.001854	-9.6422	0.001802
0.35	-12.4806	0.001949	-10.9663	0.001859	-10.2953	0.001838	-9.65657	0.001789
0.4	-12.5	0.001931	-10.9811	0.001845	-10.31	0.001825	-9.66905	0.001778
0.45	-12.5306	0.001901	-10.9995	0.001828	-10.3245	0.001812	-9.67969	0.001768
0.5	-12.5905	0.001845	-11.0321	0.001799	-10.339	0.001799	-9.69203	0.001757

<u>Appendix Table C3</u> α -T data of copyrolysis of PVC and cattle manure mixture at the ratio of 1:3

α	$\ln(\beta/T_1)$	1/T ₁	$\ln(\beta/T_5)$	1/T ₅	$\ln(\beta/T_{10})$	1/T ₁₀	$\ln(\beta/T_{20})$	1/T ₂₀
0.05	-11.4472	0.003268	-9.90521	0.00316	-9.23093	0.00313	-8.56884	0.003082
0.1	-11.5304	0.003135	-9.98875	0.00303	-9.31069	0.003008	-8.72013	0.002857
0.15	-11.6986	0.002882	-10.1655	0.002774	-9.3845	0.002899	-9.03414	0.002442
0.2	-12.3455	0.002086	-10.8138	0.002006	-9.52982	0.002695	-9.54246	0.001894
0.25	-12.4212	0.002008	-10.9021	0.001919	-10.1226	0.002004	-9.60951	0.001832
0.3	-12.4452	0.001984	-10.9269	0.001896	-10.2507	0.00188	-9.63317	0.00181
0.35	-12.4669	0.001963	-10.9438	0.00188	-10.2916	0.001842	-9.6494	0.001795
0.4	-12.4844	0.001946	-10.9588	0.001866	-10.3154	0.00182	-9.66371	0.001783
0.45	-12.5115	0.001919	-10.9756	0.00185	-10.3443	0.001794	-9.67615	0.001771
0.5	-12.5589	0.001874	-10.994	0.001833	-10.3869	0.001756	-9.68851	0.001761

<u>Appendix Table C4</u> α -T data of copyrolysis of PVC and cattle manure mixture at the ratio of 1:5

Appendix D

Product yields, distillation products, and fraction of chlorinated hydrocarbon of copyrolyzed oil

Sample	Oil yield	Solid yield	Gas Yield	Synergistic of oil	Synergistic of solid	Synergistic of gas	
Without	68.14	3	28.86	-	-	-	
With	43 76	33.8	22 44	-16 90	23 24	13 15	
manure	12.70	22.0		10.90		15.15	

<u>Appendix Table D1</u> The product yields of pyrolyzed oils from pyrolysis of PVCcontaining plastic mixture with and without cattle manure.

<u>Appendix Table D2</u> The distillation products of pyrolyzed oils from pyrolysis of PVC-containing plastic mixture with and without cattle manure.

Sample	Gasoline (%)	Kerosene (%)	Diesel (%)	Residue (%)
Without	53 53	12 30	22.78	11 39
manure				11.07
With	57.60	6 73	22.12	13.46
manure	57.09	0.75	22.12	15.40

<u>Appendix Table D3</u> The peak areas of NMR and fractions of chlorinated hydrocarbon of pyrolyzed oils from pyrolysis of PVC-containing plastic mixture with and without cattle manure.

Sample	Total peak area	Peak area of chlorinated hydrocarbon	Fraction of chlorinated hydrocarbon
Without manure	9.237	0.309	0.033
With manure	8.098	0.149	0.018

Appendix E

The experimental results from upgrading the copyrolyzed oil

	silica alumina:	Feed rate		Yield	
Type of catalyst	metal oxide	(ml/h)	1	2	3
Silica alumina	-	10	34.5	35.01	-
Silica alumina	-	30	73.21	69.49	-
Silica alumina	-	50	74.91	71.91	-
Silica alumina + ZnO	1:1	10	48.78	40.07	-
Silica alumina + ZnO	1:1	30	59.71	67.92	53.34
Silica alumina + ZnO	1:1	50	76.89	68.16	-
Silica alumina + ZnO	1:2	10	44.5	49.55	-
Silica alumina + ZnO	1:2	30	54.51	57.8	-
Silica alumina + ZnO	1:2	50	62.03	60.57	-
Silica alumina + Fe ₂ O ₃	1:1	30	30.92	38.23	-
Silica alumina + Fe ₂ O ₃	1:1	50	44.96	47.81	-

<u>Appendix Table E1</u> The product yields from upgrading the copyrolyzed oil

Appendix Table E2 The distillation product yields from upgrading the copyrolyzed oil

	silica		Gasoline	Kerosene	Diesel	Residue
Type of catalyst	alumina	Feed rate	(%)	(%)	(%)	(%)
i ype of eatalyst	:metal	(ml/h)				
	oxide					
Silica alumina	-	10	48.49	15.15	18.18	18.18
Silica alumina	-	30	49.46	10.75	29.03	10.75
Silica alumina	-	50	51.06	11.70	30.85	6.38
Silica alumina + ZnO	1:1	10	53.57	9.82	26.79	9.82
Silica alumina + ZnO	1:1	30	52.74	19.32	24.45	3.48
Silica alumina + ZnO	1:1	50	51.83	9.96	25.39	12.82
Silica alumina + ZnO	1:2	10	38.46	21.15	21.15	19.23
Silica alumina + ZnO	1:2	30	50	14	18	18
Silica alumina + ZnO	1:2	50	46.82	13.38	31.77	8.03
Silica alumina + Fe ₂ O ₃	1:1	30	64.82	17.59	8.33	9.26
Silica alumina + Fe ₂ O ₃	1:1	50	55.17	17.93	11.72	15.17

Type of catalyst	silica alumina:metal	Feed rate	Fraction of chlorinated hydrocarbon		
	oxide	(ml/h)	1	2	3
Silica alumina	-	10	0.0115	0.0148	-
Silica alumina	-	30	0.0118	0.0138	-
Silica alumina	-	50	0.018	0.015	-
Silica alumina + ZnO	1:1	10	0.015	0.013	-
Silica alumina + ZnO	1:1	30	0.006	0.011	0.01
Silica alumina + ZnO	1:1	50	0.016	0.013	-
Silica alumina + ZnO	1:2	10	0.015	0.013	-
Silica alumina + ZnO	1:2	30	0.017	0.014	-
Silica alumina + ZnO	1:2	50	0.015	0.015	-
Silica alumina + Fe ₂ O ₃	1:1	30	0.009	0.01	-
Silica alumina + Fe ₂ O ₃	1:1	50	0.015	0.012	-

<u>Appendix Table E3</u> The peak areas from NMR analysis and fractions of chlorinated hydrocarbon in the upgraded oil

Appendix F

The standard curve of benzene, toluene, and xylene from gas chromatograph

Appendix Figure F1 Standard curve of benzene

Appendix Figure F2 Standard curve of toluene

Appendix Figure F3 Standard curve of xylene

Appendix G

Nuclear Magnetic Resonance (NMR) pattern of copyrolyzed oil and gasoline fraction

Appendix Figure G1 NMR pattern of the pyrolyzed oil from pyrolysis of PVC-containing plastic mixture (without manure)

Appendix Figure G2 NMR pattern of the copyrolyzed oil from copyrolysis of PVC-containing plastic mixture and manure

<u>Appendix Figure G3</u> NMR pattern of the oil from upgrading by silica alumina at feed rate of 10 ml/h.

<u>Appendix Figure G4</u> NMR pattern of the oil from upgrading by silica alumina at feed rate of 30 ml/h.

<u>Appendix Figure G5</u> NMR pattern of the oil from upgrading by silica alumina at feed rate of 50 ml/h.

Appendix Figure G6 NMR pattern of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:1 and feed rate of 10 ml/h.

Appendix Figure G7 NMR pattern of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:1 and feed rate of 30 ml/h.

Appendix Figure G8 NMR pattern of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:1 and feed rate of 50 ml/h.

Appendix Figure G9 NMR pattern of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:2 and feed rate of 10 ml/h.

Appendix Figure G10 NMR pattern of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:2 and feed rate of 30 ml/h.

Appendix Figure G11 NMR pattern of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:2 and feed rate of 50 ml/h.

<u>Appendix Figure G12</u> NMR pattern of the oil from upgrading by silica alumina- Fe_2O_3 catalyst at the ratio of 1:1 and feed rate of 30 ml/h.

Appendix Figure G13 NMR pattern of the oil from upgrading by silica alumina-Fe₂O₃ catalyst at the ratio of 1:1 and feed rate of 50 ml/h.

<u>Appendix Figure G14</u> NMR pattern of gasoline fraction of pyrolyzed oil from pyrolysis of PVC-containing plastic mixture (without manure)

Appendix Figure G15 NMR pattern of gasoline fraction of copyrolyzed oil from copyrolysis of PVC-containing plastic mixture and manure

Appendix Figure G16 NMR pattern of gasoline fraction of the oil from upgrading by silica alumina at feed rate of 10 ml/h.

Appendix Figure G17 NMR pattern of gasoline fraction of the oil from upgrading by silica alumina at feed rate of 30 ml/h.

Appendix Figure G18 NMR pattern of gasoline fraction of the oil from upgrading by silica alumina at feed rate of 50 ml/h.

<u>Appendix Figure G19</u> NMR pattern of gasoline fraction of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:1 and feed rate of 10 ml/h.

<u>Appendix Figure G20</u> NMR pattern of gasoline fraction of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:1 and feed rate of 30 ml/h.

Appendix Figure G21 NMR pattern of gasoline fraction of the oil from upgrading by silica alumina-ZnO at the ratio of 1:1 and feed rate of 50 ml/h.

<u>Appendix Figure G22</u> NMR pattern of gasoline fraction of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:2 and feed rate of 10 ml/h.

<u>Appendix Figure G23</u> NMR pattern of gasoline fraction of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:2 and feed rate of 30 ml/h.

<u>Appendix Figure G24</u> NMR pattern of gasoline fraction of the oil from upgrading by silica alumina-ZnO catalyst at the ratio of 1:2 and feed rate of 50 ml/h.

<u>Appendix Figure G25</u> NMR pattern of gasoline fraction of the oil from upgrading by silica alumina-Fe₂O₃ catalyst at the ratio of 1:1 and feed rate of 30 ml/h.

<u>Appendix Figure G26</u> NMR pattern of gasoline fraction of the oil from upgrading by silica alumina- Fe_2O_3 catalyst at the ratio of 1:1 and feed rate of 50 ml/h.

Appendix H

Economic Analysis

The economic analysis was studied at the optimum conditions. Gasoline and diesel oil fractions were products of interest. This analysis calculated the operation cost and compared with gasoline and diesel oil prices at present (August, 2006).

Operating cost for 1 month

- Electric power of the heating furnace was 2 kW operated 7 hours a batch. 2 x 7 = 14 kW.h
- Electric power of the compressor was 1.2 kWatt operated 7 hours a batch.
 1.2 x 7 = 8.4 kW.h

Total electricity unit is (14+8.4) = 22.4 unit / batch. In this calculation, we operated 30 batches a month and used electricity 672 units/month.

Electricity unit	Electricity rate (THB/unit)
First 150 units	1.8047
151- 400 units	2.7781
More than 400 units	2.978

Appendix Table H1 Electricity rate of Provincial Electricity Authority Thailand

Electricity rate for small company of Provincial Electricity Authority Thailand is shown in Appendix Table 10. The calculation of electricity cost is shown below.

First 150 units	1.8047 x 150 = 270.705 THB
151 – 400 units	2.7781 x 250 = 694.525 THB
More than 400 units	2.978 x 272 = 810.016 THB

Total electricity cost	1775.246	THB
Utility cost (gasket, gas etc)	100	THB
Total cost	1875.246	THB /month

From experimental results, gasoline obtained was 30 ml/batch and diesel oil was 11.5 ml/ batch, therefore, we obtained gasoline 900 ml/month (900ml/month x 30.19 THB/1000ml = 27.17 THB/month) and diesel oil 345ml/month (345 ml/month x 27.54 THB/1000 ml = 9.50 THB/month), however, the total operating cost was 1875.246 THB /month. When this total operating cost was compared with the oil prices, it showed a large difference in the expense and product values. However, in the industrial scale, electricity was not used but the gas products and waste materials were used for heating reaction. Therefore, the operating cost can be reduced.

Appendix I

Data analysis of the difference of mean

The data of oil yields and fractions of chlorinated hydrocarbon were analyzed using analysis of variance (ANOVA) and least square difference (LSD) to check the difference of means and rank them.

The analysis of variance was applied at level of significance 90% which $\alpha = 0.1$. The hypothesis of ANOVA is shown below:

H₀: $\mu_1 = \mu_2 = \mu_3 = ... = \mu_n$ H₁: The μ are not all equal.

If H_0 is rejected, the means will be different. In case the means show differences, the means are ranked by LSD method.

Append	ix Ta	able I1	Analys	is of	variance

Source	DF	SS	MS	F	Р	
treatment	a-1	SSt	SS _t /a-1	$MS_{t}\!/MS_{E}$	-	
Error	N-a	SS_E	SS _E /N-a			
Total	N-1	SS_T				

N = number of experiment

a = number of treatment

$$SS_{T} = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \overline{y})^{2}$$
$$SS_{E} = n \sum_{i=1}^{a} (\overline{y}_{i.} - \overline{y})^{2}$$
$$SS_{t} = SS_{T} - SS_{E}$$

Example Oil yields obtained from upgrading by silica alumina-Fe₂O₃

<u>Appendix Table I2</u> Experimental results of oil yields obtained from upgrading by silica alumina-Fe₂O₃

Feed rate		Sample size	1	C	Tatal	Average	
(r	nl/h)	(n)	1	Z	Total y _i	Y_i	
	30	2	30.92	38.23	69.15	34.58	
	50	2	44.96	47.81	92.77	46.39	
		N = 4			161.92	40.49	
$\mathbf{S}\mathbf{S}_{\mathrm{T}}$	= (30.9	$(2)^{2} + (38.23)^{2} + (38.23)^{2}$	$(44.96)^2 + (4)^2$	$(47.81)^2 - (10)^2$	$(61.92)^2/4$		
	= 170.3	3					
SS_t	= 1/2 (6	$(59.15)^2 + 1/2 (92.)^2$	$(161)^2 - (161)^2$.92) ² /4			
	= 139.5	5					
\mathbf{SS}_{E}	= 170.3	8 – 139.5					
	= 30.8						
MS_t	= 139.5	5/(2-1)					
	= 139.5						
$MS_{\rm E}$	= 30.8 / (4 - 2)						
	= 15.4						
F_0	= 139.5	5 / 15.4					
	= 9.06						
-						-1	

From statistical table $F_{0.1,1,2} = 8.53$, $F_0 > F_{0.1,1,2}$, H_0 was rejected. The average mean of oil yields was different.

After checking the difference of mean, the means of oil yields were ranked by LSD method as shown below:

$$LSD = t_{\alpha/2} \sqrt{MS_E \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

At level of significance of 90%, $\alpha = 0.1$ t_{0.05} = 2.92 (degree of freedom = 4 - 2 = 2)

LSD $(n_i=2, n_j=2) = 44.68$

Feed rate (ml/h)	30	50
Sample mean of oil yield	34.58	46.39

The difference of mean of oil yield between 30ml/h and 50ml/h is less than LSD, therefore, this calculation can conclude that the oil yield decreased in the order: feed rate of 50 ml/h > 30 ml/h.

1. <u>Oil yields obtained from upgrading by silica alumina at feed rates of 30 and 50ml/h</u>

Feed rate (ml/h)	Sample size (n)	Oil yield (%)
30	2	73.21, 69.49
50	2	74.91, 71.91

Analysis of variance

Source	DF	SS	MS	F	Р
Factor	1	4.24	4.24	0.74	0.479
Error	2	11.42	5.71		
Total	3	15.66			

P > 0.1, this analysis accepts H_0 . The average means were not different.

2. <u>Oil yields obtained from upgrading by silica alumina-ZnO at feed rates of 30</u> and 50 ml/h

Fe	ed ra	te (ml/h)		Sa	ample siz	e (n)	Oil yield (%)
	3	30			3		59.71, 67.92, 53.34
	5	50			2		76.89, 68.16
Analysis	s of v	ariance					
Source	DF	SS	MS	F	Р		
Factor	1	178.7	178.7	3.70	0.150		
Error	3	145.0	48.3				

P > 0.1, this analysis accepts H_0 . The average means were not different.

3. <u>Oil yields obtained from upgrading by silica alumina at feed rates of 10, 30</u> and 50 ml/h

Feed rate (ml/h)	Sample size (n)	Oil yield (%)
10	2	34.0, 35.01
30	2	73.21, 69.49
50	2	74.91, 71.91

Analysis of variance

Total

4 323.6

Source	D	F SS	MS	F	Р
Factor	2	1916.93	958.47	241.04	0.000
Error	3	11.93	3.98		
Total	5	1928.86			

P<0.1, this analysis rejects $H_0.$ The average means were different in significantly. LSD $(n_i=2,\,n_j=2)=9.36$ Oil yields: at 50 ml/h > at 30 ml/h ≥ at 10ml/h

4. <u>Oil yields obtained from upgrading by silica alumina-ZnO at the ratio of 1:1</u> and feed rates of 10, 30 and 50 ml/h

Feed rate (ml/h)	Sample size (n)	Oil yield (%)
10	2	48.78, 40.07
30	3	59.71, 67.92, 53.34
50	2	76.89, 68.16

Analysis of variance

Source	DF	SS	MS	F	Р
Factor	2	795.5	397.7	8.70	0.035
Error	4	182.9	45.7		
Total	6	978.4			

P < 0.1, this analysis rejects H_0 . The average means were different in significantly. LSD $(n_i=2,\,n_j=2)=97.43$ LSD $(n_i=2,\,n_j=2)=88.94$ Oil yields: at 50 ml/h \geq at 30 ml/h \geq at 10ml/h

5. <u>Oil yields obtained from upgrading by silica alumina-ZnO at the ratio of 1:2</u> and feed rates of 10, 30 and 50 ml/h

Feed rate (ml/h)	Sample size (n)	Oil yield (%)
10	2	44.5, 49.55
30	2	54.51, 57.80
50	2	62.03, 60.57

Analysis of variance

Source	DI	F SS	MS	F	Р
Factor	2	209.07	104.53	16.31	0.024
Error	3	19.23	6.41		
Total	5	228.30			

P < 0.1, this analysis rejects H_0 . The average means were different in significantly. LSD $(n_i=2, n_j=2) = 15.08$ Oil yields: at 50 ml/h \ge at 30 ml/h \ge at 10ml/h

6. <u>Oil yields obtained from upgrading by various ratios of composite catalyst at</u> <u>feed rate of 10 ml/h</u>

Sample size (n)	Oil yield (%)
2	34.0, 35.01
2	48.78, 40.07
2	44.5, 49.55
	Sample size (n) 2 2 2

Analysis of variance

Source	DF	SS	MS	F	Р
Factor	2	174.6	87.3	5.12	0.108
Error	3	51.2	17.1		
Total	5	225.8			

P > 0.1, this analysis accepts H_0 . The average means were not different.

7. <u>Oil yields obtained from upgrading by various ratios of composite catalyst at</u> <u>feed rate of 30 ml/h</u>

Silica alumina:ZnO	Sample size (n)	Oil yield (%)
1:0	2	73.21, 69.49
1:1	3	59.71, 67.92, 53.34
1:2	2	54.51, 57.80

Analysis of variance

Source DF SS MS F Р Factor 2 251.0 125.5 4.21 0.104 Error 4 119.2 29.8 Total 6 370.2

P > 0.1, this analysis accepts H_0 . The average means were not different.

8. <u>Oil yields obtained from upgrading by various ratios of composite catalyst at</u> <u>feed rate of 50 ml/h</u>

Silica alumina:ZnO	Sample size (n)	Oil yield (%)
1:0	2	74.91, 71.91
1:1	2	76.89, 68.16
1:2	2	62.03, 60.57

Analysis of variance

Source	DF	SS	MS	F	Р
Factor	2	182.3	91.1	6.26	0.085
Error	3	43.7	14.6		
Total	5	226.0			

P < 0.1, this analysis rejects $H_0.$ The average means were different in significantly. LSD (n_i=2, n_j=2) = 15.08

Oil yields: at silica alumina \geq at 1:1 \geq at 1:2

9. <u>Fraction of chlorinated hydrocarbon in upgraded oil using silica alumina at</u> <u>feed rates of 30 and 50 ml/h</u>

Fee	Feed rate (ml/h)		Sampl	e size (n)	Cl-hydrocarbon
	3	0		2		0.0118, 0.0138
	5	0		2		0.018, 0.015
Analysis	s of va	ariance				
Source	DF	SS	MS	F	Р	
Factor	1	0.0000137	0.0000137	4.21	0.177	
Error	2	0.0000065	0.0000032			
Total	3	0.0000202				

P > 0.1, this analysis accepts H_0 . The average means were not different.

10. Fraction of chlorinated hydrocarbon in upgraded oil using silica alumina-ZnO at feed rates of 30 and 50 ml/h

Feed rate (ml/h)	Sample size (n)	Cl-hydrocarbon
30	3	0.006, 0.011, 0.010
50	2	0.016, 0.013

Analysis of variance

Source	DF	SS	MS	F	Р
Factor	1	0.0000363	0.0000363	5.89	0.094
Error	3	0.0000185	0.0000062		
Total	4	0.0000548			

P < 0.1, this analysis rejects H_0 . The average means were different in significantly. LSD $(n_i=2, n_i=3) = 0.0000132$

Fraction of chlorinated hydrocarbon: at 50 ml/h > at 30 ml/h

11. Fraction of chlorinated hydrocarbon in upgraded oil using silica alumina-Fe₂O₃ at feed rates of 30 and 50 ml/h

Feed rate (ml/h)			Sample size (n)			Cl-hydrocarbon
30				2		0.009, 0.010
	50 2				0.015, 0.012	
Analysis	of va	ariance				
Source	DF	SS	MS	F	Р	
Factor	1	0.0000160	0.0000160	6.40	0.127	
Error	2	0.0000050	0.0000025			
Total	3	0.0000210				

P > 0.1, this analysis accepts H_0 . The average means were not different.

12. Fraction of chlorinated hydrocarbon in upgraded oil using silica alumina at feed rates of 10, 30 and 50 ml/h

Feed rate (ml/h)			Sample size (n)			Cl-hydrocarbon
10			2			0.0150, 0.0148
30					0.0118, 0.0138	
	5	0	2			0.018, 0.015
Analysis	of va	ariance				
Source	DF	SS	MS	F	Р	
Factor	2	0.0000138	0.0000069	3.17	0.182	
Error	3	0.0000065	0.0000022			
Total	5	0.0000203				

P > 0.1, this analysis accepts H_0 . The average means were not different.

13. Fraction of chlorinated hydrocarbon in upgraded oil using silica alumina-ZnO at the ratio of 1:1 and feed rates of 10, 30 and 50 ml/h

Feed rate (ml/h)		e (ml/h)	Sampl	e size (1	Cl-hydrocarbon	
10		0	2			0.015, 0.013
30			3			0.006, 0.011, 0.010
	50		2			0.016, 0.013
Analysis	s of va	ariance				
Source	DF	SS	MS	F	Р	
Factor	2	0.0000475	0.0000237	4.63	0.091	
Error	4	0.0000205	0.0000051			
Total	6	0.0000680				

P < 0.1, this analysis rejects H_0 . The average means were different in significantly. LSD $(n_i=2, n_j=3) = 0.00000997$ LSD $(n_i=2, n_j=2) = 0.0000109$ Fraction of chlorinated hydrocarbon: at 50 ml/h > at 10 ml/h > at 30 ml/h

14. Fraction of chlorinated hydrocarbon in upgraded oil using silica alumina-ZnO at the ratio of 1:2 and feed rates of 10, 30 and 50 ml/h

Feed rate (ml/h)	Sample size (n)	Cl-hydrocarbon
10	2	0.015, 0.013
30	2	0.017, 0.014
50	2	0.015, 0.015

Analysis of variance

Source	DF	SS	MS	F	Р
Factor	2	0.0000023	0.0000012	0.54	0.631
Error	3	0.0000065	0.0000022		
Total	5	0.0000088			

P > 0.1, this analysis accepts H_0 . The average means were not different.

15. Fraction of chlorinated hydrocarbon in upgraded oil using various ratios of composite catalyst at feed rate of 10 ml/h

Silica alumina:ZnO	Sample size (n)	Cl-hydrocarbon
1:0	2	0.0150, 0.0148
1:1	2	0.015, 0.013
1:2	2	0.015, 0.013

Analysis of variance

Source	DF	SS	MS	F	Р
Factor	2	0.0000011	0.0000005	0.40	0.700
Error	3	0.0000040	0.0000013		
Total	5	0.0000051			

P > 0.1, this analysis accepts H_0 . The average means were not different.

16. <u>Fraction of chlorinated hydrocarbon in upgraded oil using various ratios of</u> <u>composite catalyst at feed rate of 30 ml/h</u>

Silica alumina:ZnO	Sample size (n)	Cl-hydrocarbon
1:0	2	0.0118, 0.0138
1:1	3	0.006, 0.011, 0.010
1:2	2	0.017, 0.014

		•
Analysis	ot.	variance
1 mary 515	01	variance

Source	DF	SS	MS	F	Р
Factor	2	0.0000528	0.0000264	5.15	0.078
Error	4	0.0000205	0.0000051		
Total	6	0.0000733			

P < 0.1, this analysis rejects H_0 . The average means were different in significantly. LSD $(n_i=2, n_j=3) = 0.00000997$ LSD $(n_i=2, n_j=2) = 0.0000109$ Fraction of chlorinated hydrocarbon: at 1:2 > at silica alumina > at 1:1

17. Fraction of chlorinated hydrocarbon in upgraded oil using various ratios of composite catalyst at feed rate of 50 ml/h

Silica alumina:ZnO	Sample size (n)	Cl-hydrocarbon
1:0	2	0.018, 0.015
1:1	2	0.016, 0.013
1:2	2	0.015, 0.015

Analysis of variance

Source	DF	SS	MS	F	Р
Factor	2	0.0000043	0.0000022	0.72	0.555
Error	3	0.0000090	0.0000030		
Total	5	0.0000133			

P > 0.1, this analysis accepts H_0 . The average means were not different.

Appendix J

Determination of conversion at maximum reaction rate

Example Determination of the conversion at maximum reaction rate of PVC and cattle manure mixture, PVC:cattle manure (1:1), and heating rate of 10°C/min.

<u>Appendix Figure J1</u> Thermal gravimetry profile and differential of thermal gravimetry of PVC and cattle manure mixture, PVC:cattle manure (1:1), heating rate of 10°C/min.

Appendix Figure 38 shows the maximum rate at the temperature of 279.90° C where the conversion at this temperature was 0.28. Therefore, the conversion at maximum reaction rate of PVC:cattle manure (1:1) and heating rate of 10° C/min was 0.28.