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The goal of the research is the demonstrating the cause of the diarylaniline 

derivative drugs resistance using the CoMFA and quantum chemical calculations. 

Over all obtained results can be used to guide the new designed potent anti HIV-1 

Reverse Transcriptase inhibitors for enzyme. In this study, the relationship between 

structural properties of 25 diarylaniline derivatives and their 50% effective 

concentrations (EC50) to HIV-1 Reverse Transcriptase (RT) using a comparative 

molecular field analysis (CoMFA) were constructed. The best predictive CoMFA 

model gives a very good statistical result with    
  = 0.823,    

  = 0.924, Spress = 0.422, 

SE = 0.241, F = 65.055, steric contribution = 28.1% and electrostatic contribution = 

71.9%. Consequently, the obtained CoMFA contour maps merging with the wild type 

HIV-1 RT binding site can give the informative details for understanding the 

structural requirements of inhibitors and can guide the new design of diarylanilline 

inhibitors. Deeply in molecular details, an understanding of particular interaction 

energy between antiHIV-1 inhibitors and surrounding residues in the binding pocket 

was performed by using B3LYP, M062X and MP2/6-31G(d,p) calculations. These 

calculations technical demonstrated the rationality of our hypothesis about main 

interaction between diarylaniline derivative and HIV-1 Reverse Transcriptase. The 

obtained results clearly demonstrate that compound 24 have more interaction and 

more efficiency than compound 1.  

 

 

 

 

 

 

 

     /  /  

Student’s signature  Thesis Advisor’s signature   

 



ACKNOWLEDGEMENT 

 

I sincerely thank my advisor, Dr. Songwut Suramitr for his advice, suggestion, 

tremendous support and meticulous attention throughout the duration of my graduate 

study and research. I am particularly grateful to my advisory committee Associate 

Professor Dr. Supa Hannongbua, the representative of Graduate School, for their 

worthy suggestion and constructive criticism.  

 

I owe my most sincere gratitude to Dr. Patchareenart Saparpakornfor her 

detailed, valuable advice, kind help and constructive comments, and for her important 

collaboration throughout this work. 

 

I am deeply grateful to Dr. Phornphimon Maitarad, who gave me a great an 

opportunity to work and her suggestion and for her important collaboration 

throughout this work. 

 

Financial supports were from the Thailand Research Fund (TRF), Ministry of 

Education through the “National Research University Project of Thailand (NRU)” and 

the “National Center of Excellence for Petroleum, Petrochemical and Advanced 

Materials (NCE-PPAM). My colleagues at Laboratory for Computational and Applied 

Chemistry (LCAC) are sincere thanked for their providing helpful assistance and 

sharing useful ideas and I would also like to thank all of staffs at Department of 

Chemistry, Faculty of Science, Kasetsart University for research facilities.  

 

Finally, I am especially appreciated my parents, friends and colleagues at 

LCAC for their encouragement, sincere care and support throughout my entire study.  

 

 

 

 

Nuttapong Ithiapa 

    March, 2012 



i 

 

TABLE OF CONTENTS 

 

 Page 

  

TABLE OF CONTENTS i 

LIST OF TABLES ii 

LIST OF FIGURES iii 

LIST OF ABBREVIATIONS v 

INTRODUCTION 1 

OBJECTIVES 12 

LITERATURE REVIEW 13 

METHODS OF CALCULATIONS 18 

RESULTS AND DISCUSSION 33 

CONCLUSION 46 

LITERATURE CITED 48  

APPENDICES 57 

Appendix A Supporting information 58 

Appendix B Presentation and proceeding 69 

CURRICULUM VITAE 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

LIST OF TABLES 

 

Table  Page 

   

1 Data set used for CoMFA analysis with EC50 (µM) values in the 

Wild-type HIV-1 RT. 19 

2 PLS statistical results of CoMFA models for wild type HIV-1 RT 33 

3 Actual (Act) and predicted (Pred) pEC50 values and the residuals 

(Δ) of the training set without outlier molecules for wild type HIV-

1 RT 34 

4 Particular interaction energy (kcal/mol) of compound 1 and 24 

with individual residues, calculated by B3LYP/6-31G(d,p), 

M062X/6-31G(d,p) and MP2/6-31G(d,p) methods 
40 

5 Particular interaction energy (kcal/mol) of compound 1 and 24 

with individual residues, calculated by B3LYP/6-31G(d,p), 

M062X/6-31G(d,p) and MP2/6-31G(d,p) with BSSE-CP 41 

Appendix Figure  

A1 PLS analysis derives vectors u and t from Y block (or y vector; 

BAi = logarithms of relative affinities or other biological 

activities) and the X block (Sij = steric field variable of molecule I 

in the grid point j; Eij = electrostatic field variable of nolecule I in 

the grid point j) that are related to principal components. These 

‘latent variable’ are skewed within their confidence hyperboxes to 

achieve a maximum intercorrelation (diagram). SMAPLE is a PLS 

modification which first derives the covariance matrix of the X 

block and then the PLSresults from this covariance matrix. 

Especially in cross-varidation (see below), SAMPLE analysis is 

much faster than ordinary PLS analysis. 68 

 

 

 



iii 

 

LIST OF FIGURES 

 

Figure  Page 

   

1 Anatomy of the AIDS Virus. 2 

2 HIV Life Cycle 3 

3 NRTIs and NNRTIs binding sites of HIV-1 RT structure. 5 

4 This ribbon representation of the RT active domain illustrates its 

hand-like structure, showing finger (blue), palm (pink) and thumb 

(green). The active site (red atom), where DNA is elongated, is in 

the palm region. Also shown is an RT-inhibitor drug (yellow) in 

the pocket where it binds. 6 

5 Chemical structures of HIV-1 NNRTI agents. 8 

6 Template structure of Diarylaniline derivatives. 18 

7 Cocrystal structures of (A) HIV-1 RT with WT-TMC125, (B) 

K103N-TMC125 Shown in blue mesh and contoured at 1.0σ is 

The composite omit map drawn around the inhibitor. The omit 

map for the K103(N) side chain is shown in red mesh. 21 

8 General structure of Diarylaniline derivatives, stars indicate the 

atom selected as the template for alignment rule 24 

9 Cross-validation procedure 28 

10 Compounds 24 in interaction with HIV-1 RT    30 

11 The 2D scheme of the adopted model system of Diarylaniline 

inhibitor bound to the wild type HIV-1 binding site 31 

12 Plot of the predicted and actual pEC50 values of the test set 

molecules with CoMFA model I-IV 35 

13 CoMFA (stdev.*coeff.) sterically favored areas are represented by 

green regions. Sterically unfavored areas are represented by 

yellow regions (level of steric contour contribution = 80%) and 

compound 37 is represented by ball and stick. 37 



iv 

 

 LIST OF FIGURES (Continued) 

 

Figure  Page 

   

14 CoMFA (stdev.*coeff.) negative charge favored area is 

represented by the red region. Positive charge favored area is 

represented by the blue region (level of electrostatic contour 

contribution = 80%) and compound 24 is represented by ball-and-

stick model. 

 

 

 

 

38 

15 Interaction energies with CP correction of diarylaniline and 

individual amino acids surrounding the binding pocket of wild 

type at B3LYP, M062X, MP2 methods with 6-31G(d,p) basis set; 

(A) compound 1 and (B) compound 24..    42 

16 Bond distances between inhibitor and residues in the binding 

pocket; (A) compound 1 and (B) compound 24 (in Å). 

 

44 

17 

 

The electrostatic potential is shown on the solvent accessible 

surface as red for negative and blue for positive values for 

compound 1  interacted with (A) Tyr181 and Tyr188 in R3 

substituent (B) and Lys101 in R4 substituent. 

 

45 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

LIST OF ABBREVIATION 

 

2D = Two-dimension 

3D-QSAR = Three-dimensional quantitative structure-activity relationship 

Ala (A)     = Alanine                               

Asn (N) = Asparagine                         

Arg (R) = Arginine                          

Asp (D) = Aspatic acid                                                   

B3LYP = Beck's three parameter hybrid functional using the LYP 

correlation functional 

BSSE-CP = Basis set superposition error based on the counterpoise scheme 

CoMFA = Comparative molecular field analysis 

Comp = Compounds 

Csp3 (+1) = Carbon sp3-hybridization with plus 1 charge probe atom 

Cys (C) = Cysteine                                 

Cyc = Cycloguanil 

DNA = Deoxyribonucleic acid 

DHF = Dihydrofolate 

DHFR = Dihydrofolate reductase 

dTMP = Deoxythymidylate 

Gly (G)  = Glycine                    

H (+1) = Hydrogen plus 1 charge probe atom 

HF = Hartree-fock theory                                                  

HIV-1 = Human immunodeficiency virus type 1 

HQ = High level of quantum chemical calculations 

Ile (I) = Isoleucine            

Ki = Inhibition constant 

Leu (L) = Leucine                

LOO = Leave-one-out 

LQ = Low level of quantum chemical calculations 

Lys (K) = Lysine 



vi 

 

LIST OF ABBREVIATION (Continued) 

 

MD = Molecular dynamics 

Met (M)     = Methionine                                 

MLR = Multiple linear regression                                           

MM = Molecular mechanics 

MP2      = Second order MÖller-plesset                                          

NAD = Nicotinamide adenine dinucleophide  

Noc = Number of component 

ONIOM = Our own n-layer intergrated molecular orbital molecular 

mechanics 

Osp3 (-1) = Oxygen sp3-hybridization with minus 1 charge probe atom 

PDB = Protein data bank 

Pf = Plasmodium falciparum 

PfDHFR = Plasmodium falciparum dihydrofolate reductase 

Phe (F)     = Phenylalanine                    

pKi = Negative logarithm of inhibition constant 

PLS = Partial least square 

PM3 = Modified neglect of diatomic overlap, parametric method 

number 3      

PME = Particle mesh ewald 

PRESS = Prediction error sum of squares 

Pro (P)     = Proline amino acid                                                   

Pyr = Pyrimethamine 

QM = Quantum mechanics 

QM/MM = Quantum mechanical/molecular mechanical method 

QSAR = Quantitative structure-activity relationship 

r
2

cv = Predictive ability of cross-validation 

r
2

nv = Predictive ability of no-validation 

RMS = Root mean square                                                     

RMSD = Root mean square deviation                                                     



vii 

 

  

LIST OF ABBREVIATION (Continued) 

 

Ser (S) = Serine  

SHMT = Serine hydroxymethyltransferase 

Spress = Uncertainty of the prediction 

SSY = Variance of the data around the mean value 

THF = Tetrahydrofolate 

Thr (T)     = Threonine                      

Trp (W)     = Tryptophan                            

TS = Thymidylate synthase 

Tyr (Y) = Tyrosine                    

Val (V) = Valine                          

UFF = universal force field 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

COMPARATIVE MOLECULAR FIELD ANALYSIS AND 

QUANTUM CALCULATION STUDY ON ANTI HIV-1 RT 

DIARYLANILINE DERIVATIVES 

 

INTRODUCTION 

 

Human immunodeficiency virus 

 

The human immunodeficiency virus type-1 (HIV-1) is a retrovirus that infects 

cells of the human immune system causing the globally disseminated disease named 

acquired immunodeficiency syndrome (AIDS) for over 20 years. During this time an 

unprecedented success has been achieved in discovering anti-HIV drugs as reflected 

by the fact that there are now more drugs approved for the treatment of HIV than for 

all other viral infections taken together. The currently Food and Drug Administration 

(FDA) approved anti-HIV drugs can be divided into seven groups: nucleoside reverse 

transcriptase inhibitors (NRTIs), nucleotide reverse transcriptase inhibitors (NtRTIs), 

non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), 

fusion inhibitors (FIs), co-receptor inhibitors (CRIs), and integrase inhibitors (INIs). 

This arsenal of drugs, which is used in combinations, has moved the prognosis of HIV 

patients from that of high morbidity and mortality to, for many at least, a chronic, 

manageable but still complex disease (Kitchen et al., 2001, Valenti 2001, King, 

2003).  However, the use of these drugs has been relatively limited by their toxicity 

(Carr 2003), drug resistance development (Martinez-Picado et al., 2000), and more 

worryingly, the fact that some newly HIV-infected patients carry viruses that are 

already resistant to the currently approved AIDS treatments (Little et al., 2002).  
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Figure 1 Anatomy of the AIDS Virus (source: http://health.howstuffworks.com) 

 

HIV Life Cycle and Anti-HIV Drug Design 

 

 The HIV life cycle encompasses several crucial steps, starting from the 

attachment of the virus to the host cell membrane and finishing with the release of 

progeny virions from the cell, as summarized in Figure 2. The HIV life cycle 

commences by a specific interaction between the virion glycoprotein gp120 on the 

outer membrane and the CD4 receptor on the host cell surface. This reaction results in 

a conformational change allowing the interaction of gp120 with the chemokine 

coreceptor CXCR4 or CCR5. This is then followed by further conformational changes 

that expose a fusogenic peptide, which anchors into the host cell membrane. Once the 

viral envelope and cell membrane have fused, the virion is decapsidated releasing the 

viral RNA into the host cell‟s cytoplasm. Through the reverse transcription, the viral 

RNA is transcribed to viral double-stranded DNA. This process is catalyzed by a 

RNA-dependent DNA polymerase, also known as reverse transcriptase, which is 

(A) 
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encoded by the viral genome. The viral DNA is then integrated into the host 

chromosome, and after transcription (facilitated by regulatory proteins Tat and Rev, 

which are themselves viral gene products) and translation into viral proteins using the 

cells‟ machinery, the assembly of the Gag and Gag-Pol poly-proteins occurs near the 

cell membrane (De Clercq 2002, Meadows et al., 2006). During viral assembly, two 

copies of single-stranded viral RNA are incorporated into the virion, which then buds 

off from the cell, taking with it part of the host cell membrane. Soon after budding, 

viral protease cleaves the Gag-Pol poly-protein to generate a mature, functional virion 

(Meadows et al., 2006). 

 

 

 

Figure 2 HIV Life Cycle (source: http://www.biomems.co.za) 

 

From HIV life cycle, it can be divided into four parts for drug design: (i) 

nucleoside reverse transcriptase (ii) non-nucleoside reverse transcriptase (iii) integrase 

enzyme and (iiii) protease enzyme. In this research interests in the part of non-

nucleoside reverse transcriptase. 

(A) 
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The HIV-1 RT enzyme 

 

Reverse transcriptase (RT) is an enzyme that can convert the single-stranded 

viral genomic RNA into a linear double-stranded DNA, integrated into the host 

chromosomes.  It is an essential step in the HIV life cycle, for replication. The 

enzyme has two activities, (i) a DNA polymerase that can use either RNA or DNA as 

a template and (ii) a ribonuclease H (RNase H) that selectively degrades the RNA 

strand of an RNA-DNA heteroduplex. HIV-1 RT is a symmetric heterodimer 

composed of 66 kDa (p66) and 51 kDa (p51) subunits. Both subunits consist of four 

polymerase subdomains: the thumb, palm, fingers, and connection in common. 

Differentially, the C-terminus of p66 contains an additional 120 amino acids that form 

the bulk of the RNase H domain. Therefore, the p66 subunit contains two vital 

domains termed DNA polymerase and RNase H, related to the RT function and 

mechanisms (Himmel et al., 2006). 

 

Several crystal structures of free, unliganded HIV-1 RT have been solved 

(Esnouf, et al., 1995). The three-dimensional structure of the p66 subunit is often 

compared to a right hand (Figure 4), with a fingers (amino acids 1-85 and 118-155), a 

palm (amino acids 86-117 and 156-237) and a thumb (amino acids 238-318) domain 

(Kohlstaedt et al., 1992). The palm domain contains the polymerase active site with 

its three aspartic acids (110, 185 and 186) and the YMDD characteristic motif. Co-

crystals of RT with a modified oligonucleotide and a dNTP (Huang et al., 1998) or 

double-stranded DNA (Jacobo-Molina et al., 1993) have revealed that the nucleic acid 

passes in the cleft behind the fingers and in front of the thumb domain. The catalytic 

pocket is formed by the fingers folding down into the palm domain, as observed in the 

RT-dNTP complex (Huang et al., 1998). In this structure, the nucleic acid is located 

in front of both the fingers and the thumb. Next to the catalytic domain, the p66 

subunit also contains the RNaseH domain (amino acids 427-560), linked to the former 

by the connection domain (amino acids 319-426). The connection domain is also 

involved in interactions with the nucleic acid and the p51 subunit. Despite their 

sequence homology, the p66 subunit assumes a flexible and open structure, whereas 
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the p51 subunit is rather compact, and seems to play a structural role, devoid of 

catalytic activity, with the three aspartic acids buried inside (Kohlstaedt et al., 1992). 

 

 

 

Figure 3 NRTIs and NNRTIs binding sites of HIV-1 RT structure 
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Figure 4 This ribbon representation of the RT active domain illustrates its hand-

like structure, showing finger (blue), palm (pink) and thumb (green). 

The active site (red atom), where DNA is elongated, is in the palm 

region. Also shown is an RT-inhibitor drug (yellow) in the pocket 

where it binds. (source: Marie-Pierre de Béthune(2010)). 

 

Non- Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 

 

 The second type of drug to be developed to fight HIV is non-nucleoside 

reverse transcriptase inhibitors, abbreviated to NNRTI, and approved in 1996. Like 

nucleoside RT inhibitors, NNRTIs stop the conversion of RNA to DNA previous to 

integration into the host cell DNA. These drugs work by changing the shape of the 

reverse transcriptase so they will not fit the RNA. As a result, the RNA has never 

converted into DNA and integrated into the host cell DNA. The first report on the 

ability of non-substrate analogues to inhibit the HIV reverse transcriptase appeared in 

1989/1990 (Baba et al., 1989, Merluzzi et al., 1990, Pauwels et al., 1990). These 

agents inhibit the HIV-reverse transcriptase by binding noncompetitively to an 

allosteric site located at a short distance (∼15 Å) from the catalytic site (De Clercq et 

al., 2004, Pauwels, R, 2004).  

p51 
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The first drug generation, there are three different NNRTIs i.e. (i) Nevirapine 

(cp.1), is a dipyridodiazepinone inhibitor of HIV-1, discovered by researchers at 

Boehringer  Ingelheim (Merluzzi V.J., et al., 1990). At the time Nevirapine was 

developed, the concept of HAART or Highly Active Anti-Retroviral Therapy was not 

yet established, and the drug was often studied in combination with a single NRTI, 

mostly AZT, a regimen that could not prevent the emergence of resistance (Havlir et 

al., 1995). Nevirapine, in combination with two NRTIs is the recommended NNRTIs 

for first line therapy in resource limited countries. (ii) Delavirdine (cp.2) belongs to 

the family of bis(hetero-aryl)piperazine compounds discovered by researchers at 

Upjohn Laboratories (Dueweke et al., 1993). It is bulkier than the other NNRTIs, and 

crystal structure of delavirdine with HIV- RT have shown that it protrudes outside the 

NNRTI binding pocket, which explains its particular resistance profile (Esnouf et al., 

1997). Like nevirapine, delavirdine was originally assessed in suboptimal regiments, 

where emergence of resistance could not be prevented (Davey Jr. et al., 1996). 

Nowadays, delavirdine is rarely used. (iii) Efavirenz (cp.3) is a benzoxazinone 

discovered by the researchers at Merck (Young et al., 1995), and developed jointly by 

DuPont and Merck. Unlike Nevirapine and delavirdine, efavirenz could be studied in 

Phase III trials as part of appropriate HAART regiments, and showed sustained 

efficiency (Staszewski et al., 1999). The most frequently selected mutation efavirenz 

failure is K103N. Efavirenz is the most used naive patients, in combination with two 

NRTIs. 

 

For the second drug generation, there are drugs in the group of etravirine 

(TMC125) belonging to the family of di-aryl-pyrimidine (DAPY) compounds, and are 

the results of a long lead optimization campaign conducted by researchers at the 

Janssen Research Foundation and Tibotec, aiming at identifying new NNRTIs with a 

better resistance profile and an increased genetic barrier to the development of 

resistance (Ludovici et al., 2001). The screening process included the profiling of 

compounds against wild type and selected single and double mutant NNRTI resistant 

HIV-1 strains, as well as the assessment of their metabolic stability (Andries et al., 

2004). The resistance profile of etravirine was further confirmed by testing the 

compounds against thousands of NNRTI resistant HIV-1 clinical isolates, 
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representing the diversity of mutations patterns encountered in the clinic (De Béthune 

et al., 2000). In vitro, etravirine shows a higher genetic barrier to the development of 

resistance as compared to nevirapine and efavirenz (Vingerhoets et al., 2005). Co-

crystals of etravirine with the K103N mutant RT helped to study the binding mode of 

this inhibitor to the enzyme. It is hypothesized that the inhibitor can adopt different 

conformations in the NNRTI binding pocket, because of its flexibility, and can 

thereby accommodate the mutations better than first generation NNRTIs, which are 

more rigid molecules (Das et al., 2004, Das et al., 2005). 

 

 

 

Figure 5 Chemical structures of HIV-1 NNRTIs agents 

 

Three-dimensional Quantitative Structure-Activity Relationship and Its 

Applications 

  

Classical QSAR correlates biological activities of drugs with physicochemical 

properties or indicator variables which encode certain structural features (Ramsden, 

1990; Kubinyi, 1993; Kubinyi, 1995; Hansch and Leo, 1995; Waterbeemd, 1996). In 

(A) 
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addition to lipophilicity, polarizability, and electronic properties, steric parameters are 

also frequently used to describe the different size of substituents. In some cases, 

indicator variables have been attributed to differentiate racemates and active 

enantiomers (Kubinyi, 1995). However, in general, QSAR analyses consider neither 

the 3D structures of drugs nor their chirality.  

 

In 1979, Cramer and Milne made a first attempt to compare molecules by 

aligning them in space and by mapping their molecular fields to a 3D grid (Cramer 

and Milne, 1979). In the following years, this approach was further developed as the 

DYLOMMS (dynamic lattice-oriented molecular modelling system) method 

(Kubinyi, 1993) but was not very well accepted by the scientific community. Several 

important facts had to work together to allow a broader application of this approach. 

  

In 1986, Svante Wold proposed the use of partial least squares (PLS) analysis, 

instead of principal component analysis, to correlate the field values with the 

biological activities. 

 

Especially, in 1988, a key publication appeared in the Journal of the American 

Chemical Society (Cramer et al., 1988) and the method was called comparative 

molecular field analysis (CoMFA). 

 

Finally, appropriate software became commercially available SYBYL/QSAR, 

Molecular Modelling Software, Tripos Inc., 1699 S, Hanley Road, St. Louis, MO 

63944, USA. 

 

Since 1988, many publications, several reviews and books have appeared on 

CoMFA subject. This analysis is a useful tool for deriving 3D-QSAR models which 

related between biological activity and the molecular fields of steric and electrostatic 

using the Lennerd-Jone and Coulomb potentials, respectively. 

 The three-dimensional Quantitative structure-activity relationship (3D-QSAR) 

models are constructed by correlating the 3D fields to the corresponding experimental 

activities of ligands with respect to a common target receptor. As 3D molecular 
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modeling becomes widely available to workers in structural biology, properties 

calculated from atomic coordinates are used increasingly to explain and predict 

biological activity (Brown and Martin, 1997). Molecular modeling can produce any 

desired number of explanatory descriptors for each structure-far more than the 

number of activity data to be explained. There are many techniques for 3D-QSAR, for 

example, Comparative Molecular Field Analysis (CoMFA) bases its predictions upon 

field values calculated at each point of a 3D grid around the molecular structures. The 

field values are highly correlated, having been derived from the molecular descriptors 

such as atomic charges and positions (Cramer et al., 1988). In the model, the linear 

regression by partial least squares (PLS) is used for producing a formula which fits 

the training data (Clark and Cramer, 1993, Bush and Nachbar, 1993). The advantage 

of PLS method is reducing the explanatory data to a small number of components. 

Within the molecular modeling package SYBYL, Partial Least Square (PLS) is the 

recommended regression method for analysis of CoMFA fields. The advantages of 

CoMFA are the ability to predict the biological activities of the molecules and to 

represent the relationships between steric/electrostatic properties, calculated according 

to Lennard-Jones and Coulomb potentials, respectively, and also the biological 

activity in the form of contour maps to provide the key features of both the ligand-

receptor interaction and the topology of the receptor. The CoMFA results can be used 

for guiding the new design potent compounds, based on the same template 

constructions. 
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Quantum Chemical Calculations 

  

 As theoretical/computational chemistry has gained a major role in studies of 

chemical problems in the last few decades, it became a challenge for theoreticians to 

accurately treat large molecular systems such as ligand-enzyme in biochemistry. The 

quantum computational chemistry calculations can be used to investigate inhibitor-

enzyme interactions at the molecular level. The obtained strong repulsive energy of 

some amino acids that was quantified implies that this is the cause of the HIV-1 RT 

resistance. On the other hand, the strong interactions between some amino acids and 

the inhibitor should be investigated to discover further new designs. Therefore, an 

understanding of the particular interaction energy of individual amino acids with the 

HIV-1 RT inhibitors at molecular level is required to support the identification of 

these new structural modifications. 
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OBJECTIVES 

 

In the present work, ligand-based drug design approaches using CoMFA has 

been applied to the class of diarylaniline derivatives with the aims of: 

 

1. To construct the relationship between HIV-1 biological activities and 

structural properties using both QSAR and 3D-QSAR. 

 

2. To investigate the different particular interaction of poor and potent 

inhibitors which align into same binding pocket of HIV-1 Reverse Transcriptase. 
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LITERATURE REVIEW 

 

AIDS, or acquired immunodeficiency syndrome is caused by the human 

immunodeficiency virus type 1 (HIV-1). HIV-1 genome encodes for three major 

enzymes protease, reverse transcriptase and integrase for HIV-1 replication. Reverse 

transcriptase is a key enzyme in the HIV replication cycle and is one of the main 

targets in the development of drugs for treating HIV-infection and AIDS. HIV-1 

reverse transcriptase (HIV-1 RT), which is virally encoded, catalyses the conversion 

of viral RNA into double stranded DNA, which is then integrated in the host genome. 

Two types of drugs that inhibit HIV-1 polymerase activity are nucleoside and non-

nucleoside inhibitors. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are 

important components of the first line highly active antiretroviral therapy regiments.  

 

Specifically, we focused on NNRTIs that interact with the allosteric binding 

site, a highly hydrophobic cavity, in a non-compatitive manner to cause distortion of 

the three-dimensional structure of the enzyme and thus inhibit RT catalytic function. 

NNRTIs currently approved for AIDS therapy include nevirapine, delavirdine, 

efavirenz and etravirine (TMC125). Etravirine is the most recently approved NNRTI 

and is active against many drug-resistant HIV-1 strains. TMC125 (Andries, 2004), a 

prior clinical candidate, belong to the diarylpyrimidine (DAPY) family and is very 

potent against wild-type and many drug-resistant HIV-1 strains with nanomolar EC50 

values. They have excellent pharmacological profiles, which has encouraged more 

research to explore next-generaion NNRTI agents (Tucker et. al., 2008; Romines et. 

al., 2006; Himmel et. al., 2005).  

 

In 2001, Donald W. Ludovici and co-worker shown synthesis and anti-HIV-1 

activity of a series of DAPYs are described. Several members of this novel class of 

NNRTIs are extremely potent against both wild-type and a panel of clinically 

significant single- and double-mutant strains of HIV-1. In 2004, Yven Van Herrewege 

and co-worker study A new DAPY Series of diaryltriazines and diarylpyrimidines are 

highly potent nonnucleoside reverse transcriptase inhibitors, compared to the 

reference compounds UC-781 and PMPA, with possible applications as microbicides. 
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In 2007, Céline Mordant and co-worker,novel DAPY, which represent next 

generation of NNRTIs, were synthesized and their activities against HIV-1 assessed. 

Modulations at positions 2 and 6 of the left phenyl ring generated interesting 

derivatives of TMC278 displaying high potency against wild-type and mutant viruses. 

In 2009, Xiao-Qing Feng and co-worker, a novel series of DAPYs featuring a 

naphthyl moiety at the C4 position were designed, with all compounds exhibiting 

strong activity against wild-type HIV-1. Yong-Hong Liang and co-worker, a series of 

38 2-naphthyl-substituted diarylpyrimidine (DAPY) analogues, characterized by 

various substitution patterns on the pyrimidine and naphthalene rings. Most of the 

compounds displayed strong activity against wild-type HIV-1. The most active 

compound, with a cyano group at position C6 on the naphthalene ring, exhibited 

activity against wild-type HIV-1 with an EC50 value of 0.002 μm and against the 

double mutant strain with an EC50 value of 0.24 μm; The structure–activity 

relationship (SAR) of the newly synthesized DAPYs is presented herein. In 2011, Dr. 

Xiao-Dong Ma and co-worker, Synthesis and Anti-HIV Activity of Aryl-2-[(4-

cyanophenyl)amino]-4-pyrimidinone hydrazones as Potent Non-nucleoside Reverse 

Transcriptase Inhibitors. also the similarities in chemical structures lead to the 

emergence of crossresistance among members of the same class, where a real medical 

need to develop new generation of NNRTIs which do not give rise to cross-resistance 

and are effective against clinically relevant mutant strains (Guillemont et. al., 2005). 

 

QSAR and CoMFA method has been applied as an important tool in drug 

discovery and environmental risk assessment. It provides useful references for 

understanding the relationship between the chemical structure and biological activity 

of compounds, and ultimately leads to statistically robust models that can be used to 

make accurate and reliable predictions of the biological activity of new compounds. 

For many therapeutic targets of interest, structure-based approaches are not yet 

applicable because the structure of the target macromolecule is unknown. So, in these 

cases, QSAR techniques provide the best approach to rational drug design. Traditional 

(two-dimensional) QSAR methods attempt to correlate biological activity with local 

features of atoms, whole molecular properties (e.g. charge) and substituent effects 

(e.g. fragment hydrophobicity indices). The developments in traditional QSAR 
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continue to appear in the literatures. Most interest in this field focuses on three-

dimensional QSAR which called 3D-QSAR. 

 

Classical QSAR correlates biological activities of drugs with physicochemical 

properties or indicator variables which encode certain structural features (Ramsden, 

1990; Kubinyi, 1993; Kubinyi, 1995; Hansch and Leo, 1995; Waterbeemd, 1996). In 

addition to lipophilicity, polarizability, and electronic properties, steric parameters are 

also frequently used to describe the different size of substituents. In some cases, 

indicator variables have been attributed to differentiate racemates and active 

enantiomers (Kubinyi, 1995). However, in general, QSAR analyses consider neither 

the 3D structures of drugs nor their chirality.  Since 1988, many publications, several 

reviews and books have appeared on CoMFA subject. This analysis is a useful tool 

for deriving 3D-QSAR models which related between biological activity and the 

molecular fields of steric and electrostatic using the Lennerd-Jone and Coulomb 

potentials, respectively. 

 

There are now a few practical applications of CoMFA for DAPY series in 

diarylpyrimidine derivatives. For example, recently, Joseph Rebehmed and co-worker 

(Rebehmed et al., 2008) applied 2D and 3D QSAR methods to find the structure 

activity relationship of some diarylpyrimidine derivatives having good activity against 

resistant strain of HIV-1 reverse transcriptase (RT). 2D QSAR was performed using 

the heuristic method in CODESSA which had led to a linear model (R
2
 = 0.928 and s

2
 

= 0.015) between the inhibitory activity and five descriptors. CoMFA and CoMSIA 

models were established using SYBYL package of programs. The better predictive 

ability of the CoMSIA model (q
2
 = 0.730) over the CoMFA model (q

2
 = 0.597) was 

assigned to the large contribution of hydrogen-bonding interactions to the inhibitory 

activity. Based on their q
2
, it can be implied that the model should be re-derived to be 

the good model for both training set and also test set compounds. For Abhilash 

Thakur and co-worker (Thakur et al., 2008), this work describes QSAR and SAR 

studies on the inhibition of reverse transcriptase by 31 novel DAPY 

(diarylpyrimidine) derivatives. The application of a multiple linear regression analysis 
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indicated that a combination of topological and physicochemical descriptors and the 

indicator parameters yielded a statistically significant model for the prediction of the 

activity, log 1/C (50% of effective concentration of DAPY derivatives for RTs). The 

modelling of some new potential DAPY compounds and their maximum active 

comformers for the inhibition of reverse transcriptase are made by quantum molecular 

modelling. However, DAPY series have been study are ongoing DAPY series for the 

QSAR techniques, such as, Hao Zhang and co-worker used revealing the drug-

resistant mechanism for diarylpyrimidine analogue inhibitors of HIV-1 Reverse 

Transcriptase. (Zhang et al., 2011) In prevoius literatures, diarylaniline derivative as 

part of DAPY series there are no CoMFA models of diarylaniline derivatives which 

active against wild type of HIV-1 Reverse Transcriptase. Therefore, this research we 

have plan to establish the CoMFA models for diarylaniline derivatives. The obtained 

CoMFA results have been published as open sources for guiding to develop new and 

effective anti HIV-1 against in HIV-1 Reverse Transcriptase. 

 

Generally, no single theoretical method is able to provide both the accuracy 

and acceptable computational cost that are required for the investigation of such 

chemical processes. To understand the orientation and interaction of the inhibitor in 

the binding pocket is important and understanding attractive interaction and repulsive 

interaction of weak interactions. There are a few applications of particular interaction 

which applied to the ligand-enzyme biological systems. Many research groups applied 

this method to study particular interaction on HIV1-RT enzymes which complexed 

with many type of ligands. The obtained results clearly demonstrated the different of 

binding energy between the potent and the poor ligands for wild type and mutant type 

of HIV1-RT (Kuno et al., 2003, 2006; Nunrium et al., 2005; Saen-oon, 2005). In 

addition to, the quantum chemical calculation approach was also successful to 

describe interactions of efavirenz with HIV-1 RT in comparison between the wild-

type and mutant types. And the quantum computational chemistry calculations 

capable of investigating inhibitor-enzyme interactions at the molecular level are 

employed (Srivab, 2008). 
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The goal of our study is constructed the relationship between HIV-1 biological 

activities and structural properties using both QSAR and 3D-QSAR and investigated 

the particular interaction of each inhibitors in binding pocket of HIV-1 Reverse 

Transcriptase. Gaining insight into the particular interaction energy terms will also 

give us a better understanding and more detailed information on the interaction 

between the HIV-1 RT inhibitor and the binding pocket of the wild type HIV-1 RT. 

Detailed knowledge of the interactions between drug and the binding site of an 

enzyme can provide a structural explanation for the structure-based drug design of 

HIV-1 RT inhibitors and a better understanding of the action of these. 
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METHODS OF CALCULATIONS 

 

CoMFA Study 

 

Biological data 

 

 Diarylaniline 

  

       Twenty-five Diarylaniline derivatives used for the CoMFA study were 

selected from Bingjie Qin et. al. as shown in Table 1. There are four substitute 

positions, R1, R2, R3 and R4 as shown in Figure 6. The twenty-one compounds served 

as the training set. In addition, four compounds (compound number 5, 8, 14, 20) that 

were eliminated from the training set which removed these so-called outlier. For set of 

biological data, the activity, EC50 ( M) for inhibiting wild-type HIV-1 RT, was 

measured in vitro under the same experimental conditions. Consequently, in vitro 

HIV-1 RT inhibitor activities were converted into the corresponding pEC50 (-logEC50) 

values. These values were used as dependent variables in the CoMFA study.  

 

 

 

Figure 6 Template structure of Diarylaniline derivatives 

(A) 
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Table 1 Data set used for CoMFA analysis with EC50 ( M) and pEC50 values in the Wild-type HIV-1 RT. 

 

Name R1 R2 R3. R4 EC50 pEC50 

Compound 1 OCH3 NO2 H NO2 3.840 5.4157 

Compound 2 OCH3 NO2 CH3 NO2 2.990 5.5243 

Compound 3 OCH3 NO2 Br NO2 3.630 5.4410 

Compound 4 CH3 NO2 Br NO2 4.310 5.3655 

*Compound 5 NO2 NO2 Br NO2 > 49.7 - 

Compound 6 C N NO2 Br NO2 0.172 4.3036 

Compound 7 C N NO2 H NO2 0.545 6.2636 

*Compound 8 C N NO2 C N NO2 4.190 - 

Compound 9 C N NO2 CH3 NO2 0.280 6.5528 

Compound 10 C N NO2 CHO NO2 1.530 5.8153 

Compound 11 C N H Br NO2 0.317 6.4989 

Compound 12 C N H H NO2 3.147 5.5021 

Compound 13 C N H CN NO2 0.208 6.6819 

*Compound 14 

Compound 15 

C N 

C N 

H 

H 

Me 

CHO 

NO2 

NO2 

0.067 

2.190 

- 

5.6596 

Compound 16 C N H Br NH2 0.047 7.3279 

Compound 17 C N H Br NH2 0.070 7.1549 

Compound 18 C N H Br NH2 0.073 7.1366 
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Table 1 Data set used for CoMFA analysis with EC50 ( M) and pEC50 values in the Wild-type HIV-1 RT. 

 

Name R1 R2 R3. R4 EC50 pEC50 

Compound 19 

*Compound 20 

C N 

C N 

NH2 

NH2 

Br 

H 

NH2 

NH2 

0.161 

3.226 

6.7932 

- 

Compound 21 C N NH2 C N NH2 0.030 7.5229 

Compound 22 C N NH2 CH3 NH2 0.070 7.1549 

Compound 23 C N NO2 Br NH2 0.016 7.7959 

Compound 24 C N NO2 C N NH2 0.003 8.5229 

Compound 25 C N NO2 CH3 NH2 0.062 7.2076 

*  outlier compounds  
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Structural Construction 

  

 Three-dimensional structure building was constructed using the Sybyl 8.0 

program package on a Silicon Graphics Octane2 workstation at the National 

Electronics and Computer Technology Center of Thailand (NECTEC). The structures 

of diarylaniline derivatives were built using the SKETCH module in Sybyl. The 

skeleton and conformation of diarylaniline was extracted from the crystal structure of 

a TMC125 complex with wild-type HIV-1 RT with PDB code 3MEC (Eric B. 

Lansdon, et al., 2010). The other molecules were built taking compound of TMC125 

as a template and changing their substituents.  

 

 

 

 

 

 

Figure 7 Cocrystal structures of (A) HIV-1 RT with WT-TMC125,                                    

(B) K103N-TMC125 Shown in blue mesh and contoured at 1.0σ 

is The composite omit map drawn around the inhibitor. The omit 

map for the K103(N) side chain is shown in red mesh. 

 

 

 

 

 

 

(A) 
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Quatitative Structure-Activity Relationships Analysis 

  

 All derivative structural geometries were initially construction and modified 

by using SYBYL 7.00 (SYBYL Molecular Modelling Softwares, Version 7.00, 

Tripos Associates, Inc., St. Louis, MO, 63144, USA, 2003.).  

 

 Finding an accurate method for estimating the affinity of protein ligands 

activity is one of the most challenging tasks in computer-aided molecular design. 

Quantitative structure-activity relationship (QSAR) is a mathematical relationship 

between a biological activity of a molecule and its geometric and chemical 

characteristics has been proven to be the principle method used for activity prediction 

in drug design. 

 

 Activity should be a function of the geometric and chemical characteristics of 

the compounds. QSAR attempts to find consistent relationship so that can be used to 

evaluate activity of new compounds. 

 

Three Dimentional Quantitative Structure-Activity Relationships Analysis (3D-

QSAR) 

 

 3D-QSAR techniques are routinely used in analog-based drug design. The 

ability to produce quantitative correlation between three-dimensional properties of 

molecules and the biological activity of these compounds is of inestimable value in 

deciding upon the choice of further synthetic chemistry. 

 

 Comparative Molecular Field Analysis (CoMFA) is a 3D-QSAR method that 

search for relationship between the biological activity of a set of compounds (with 

specified alignment) and their three-dimensional electronic and steric properties (so 

called molecular fields).  

 

 In the present study, we have developed 3D-QSAR CoMFA model for the 

series of Diarylaniline derivatives and the contour maps derived revealed the 
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significance of steric and electrostatic. The structural variations in the molecular fields 

at particular regions in the space were studies and 3D-QSAR models generated gives 

an insight on the design of potent Diarylaniline inhibitor against wild type HIV-1 

Reverse Transcriptase. 

 

1. Comparative Molecular Field Analysis (CoMFA) 

 

Comparative Molecular Field Analysis (CoMFA) was developed by Cramer et 

al. in 

1988. CoMFA is a powerful 3D-QSAR technique providing further insight into the 

relationships between the structure and function of these Diarylaniline analogues. 

This methodolody is based on assumption that non-covalent forces dominate receptor-

drud interactions and that these forces can be descripbed in term of steric and 

electrostatic fields. The changes in the biological activities of binding affinities of 

sample compounds correlate with changes in the steric and electrostatic fields around 

these molecules. For such an approach, partial least-squares statistics was used to 

derive the correlation between the steric and electrostatic properties and HIV-1 RT 

inhibitory activity. 

 

1.1   CoMFA Set Up 

 

 1.1.1  Alignment Rule 

 

 One of the prime requirements in CoMFA study is the alignment of all 

compounds relative to one another, so that they have a comparable conformation and 

orientation in space. Since the relative interaction energies depend strongly on relative 

molecular position. Partial atomic charges required for calculations of electrostatic 

interaction were computed. The highest inhibitory activity compound in this 

analogues, compound 24 for wild type of HIV-1 RT was used as templates for rms-fit 

molecular alignments. All the structures of Diarylaniline derivatives were aligned in a 

3D lattice by fitting them with the common structures that shown in Figure 8, which 

performed using SYBYL 8.1 molecular modeling software. 
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Figure 8 General structure of Diarylaniline derivatives, stars indicate 

the atom selected as the template for alignment rule. 

 

 

 1.1.2  Calculation of Interaction Energy 

 

 CoMFA cubic lattice generated around these molecules based on the 

molecular volume of the structure. In this investigation, three different atom, sp
3
 

carbon atom with +1 charge (default probe atom in SYBYL), sp
3
 oxygen atom with -1 

charge and sp
2
 nitrogen with -1 charge, served as probe atoms. The probe atom was 

placed at each lattice point and their interactions of the steric and electrostatic fields 

with each atom molecule were all calculated with CoMFA standard scaling and then 

put in a CoMFA QSAR table. In order to speed up analysis and reduce the amount fo 

noise, the minimum sigma value was set to 2.0 kcal/mol, which omitted the analysis 

lattice points whose the energy variance is less than 2.0 kcal/mol, and energy cutoff 

values 30 kcal/mol were selected for both electrostatic and steric fields. 

(A) 
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 1.1.2.1 Steric Field 

 

All atoms exhibit a short range interaction. This is generally referred to as the van der 

Waals interaction. The best known van der Waals potential function is the Lenard-

Jones 12-6 potential function, which can be described in the following form:  

 

 
(1) 

 

Where Aij = is the coefficient depicting repulsive heteroatomic interaction with  

                   hydrogen ((AiAj)
1/2

) 

           Bij = is the coefficient depicting attractive heteroatomic interaction with  

                   hydrogen ((BiBj)
1/2

) 

           rij  = is the distance between atom i of drug molecule and probe atom  j (Å) 

 

 

1.1.2.2 Electrostatic Field 

 

Electrostatic interactions are usually calculation from Coulomb potential using a 

charge probe atom. Electrostatic properties of molecules are typically described by 

point charges at the center of atoms. In SYBYL, the electrostatic energies are usually 

calculated with H
+
 probe atom Coulombic interaction. The general form of 

electrostatic interaction between two molecules is given by 

 

 
(2) 

 

Where qi, qj = are the atomic net charges of atom i of drug molecule and of probe  

                      atom j, respectively 

             rij  = is the distance between atom i of drug molecule and probe atom  j (Å) 
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1.2  Interpretation of CoMFA Results 

 

The results of CoMFA are an equation showing the contribution of energy field at 

each lattice point. In order to facilitate their interpretation of the results, they are also 

displayed as coefficient (or standard deviation time coefficient or stdev*coeff) 

contour plot showing the regions in space where specific molecular properties 

increase or decrease the potency. The results of CoMFA analyses are displayed as 

color-coded contours around molecules, allowing visual identification of regions 

responsible for favorable or unfavorable interactions with the receptor. 

 

Steric contour plots : 

 Green contours indicate regions where an increase in steric bulk will enhance 

activity. 

 Yellow contours indicate regions where an increase in steric bulk will reduce 

activity. 

 

Electrostatic contour plots : 

 Blue contours correspond to region where an increase a positive charge will 

enhance activity. 

 Red contours correspond to region where an increase a negative charge will 

enhance activity. 

 

2. Partial Least Squares Analysis (PLS) and Validation 

 

Partial least squares (PLS) methodology was used for all 3D-QSAR analyses. 

The CoMFA descriptors were used as independent variables and log (1/EC50) values 

were used as dependent variables in partial least squares regression analyses to 

derived 3D-QSAR models using the standard implementation in the SYBYL 8.10 

package. PLS analysis was carried out using the leave-one-out option to obtain the 

optimal number of components to be used subsequently in the final analysis as show 

the procedure in Figure 9. Column filtering was set to 2.0 kcal/mol to omit from the 

analysis lattice points whose energy variance is less than 2.0 kcal/mol. This value can 
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speed up the analysis and reduce the noise. The cross-validated coefficient q
2
 or    

  

was calculated using equation 3: 

 

 
(3) 

 

Where Ypredicted, Yobserved and Ymean are predicted, actual and mean values of the target 

property (log (1/EC50)), respectively. ∑           ∑           
 
 is the predictive 

sum of squares (PRESS). To maintain the optimum number of PLS components and 

minimize the tendency to over fit the data, the number of components corresponding 

to the lowest PRESS value was used for deriving the final PLS regression models. In 

addition to the q
2
 or    

  and number of components, the conventional correlation 

coefficient r
2
 and its standard errors (SEE) were also computed. 
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Figure 9 Cross-validation procedure Source : Kubinui (1993) 
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3. CoMFA Predictive Ability 

  

 The predictive ability of the model that was derived from the training set is 

expressed by the cross-validation predictive (r
2

cv) value. The r
2

cv value is defined as  

 

 
(4) 

 

where, SSY is the variance of the biological activities around the mean value, and 

PRESS is the prediction error sum of squares derived from the LOO. 

       

 (5) 

    

 (6) 

   

The uncertainty of the prediction is defined as  

     

 
(7) 

 

where k is the number of variables in the model and n is the number of compounds 

used in the study (Golbraikh, et al., 2002, Nilsson, et al., 1997, Hannongbua, et al., 

2001). 
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Quantum Chemical Calculations Study 

 

1. Model Set-up 

 

 Diarylaniline  

  

In order to investigate specific interaction of different potency of Diarylaniline 

derivatives in wild-type HIV-1 RT, particular interaction was determined by quantum 

chemical calculations. According to comparison between good and poor inhibitor 

binding with wild-type complex of TMC125 (3MEC) (Eric B. Lansdon, et al., 2010) 

as shown in Figure 10.  

 

 

 

Figure 10 Compounds 24 in interaction with HIV-1 RT (source: Bingjie 

Qin et. al., 2010)    

 

In this study, we proposed good and poor diarylaniline derivative with wild-

type complex, based on atom superposition. Considering the graphical backbone 

superimpostion, it can be implied that good and poor inhibitor oriented in the same 

binding position, therefore, inhibitor can be adapted into the K103N mutant type HIV-
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1 RT to find the estimated particular interaction energy. Based on inhibitor 

comparison, the selected inhibitors were compounds 1 (diarylaniline drug) and 24 

according to their good and poor inhibitor, which maximum and minimum pEC50 

values (see in Table 1). Compound 1 represented a resistance to wild-type HIV-1 RT 

while compound 24, C≡N substituent at R1 and R3 NO2 substituent at R2 and NH2 

substituent at R4, gave a good pEC50 for this enzyme. The model systems contained 

compounds 1 or 24 and surrounding residues in the binding pocket with at least one 

atom interacting with any atoms of inhibitor within the interatomic distance 

approximately 4 Å that covered van der Waal interactions. The 22 selected residues 

were Pro95, Lys100, Lys101, Lys102, Lys103, Lys104, Ser105, Val106, Val179, 

Ile180, Tyr181, Tyr188, Val189, Gly190, Phe227, Leu228, Trp229, Leu234, His235, 

Pro236, Tyr318 and Glu138(b). The one mutation Lys103Asn was also included in 

the system setup. The 2D scheme of the adopted model system of the inhibitor bound 

to the wild-type HIV-1 RT binding site is shown in Figure 11. which were retained 

from the backbone geometries of the nearby residues. Thus, the hydrogen atoms were 

added to the starting system using Sybyl8.0. Partial optimizations were performed by 

using the semiempirical PM3 method, implemented in the Gaussian 03 program 

(Frisch, et al., 2003) based on the „heavy atoms fixing‟ approximation. Therefore, 

only H atoms of amino acids and all atoms of the inhibitor were optimized. 

 

 
 
 

Figure 11 The 2D scheme of the adopted model system of Diarylaniline inhibitor bound 

to the wild type HIV-1 binding site. 
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2. Interaction Energy Calculations 

  

 The antiHIV-1 RT resulting geometries were used to provide different model 

systems of the antiHIV-1 RT inhibitor and the residues for high level of  

B3LYP,M06-2X and MP2 for basis set 6-31G(d,p) calculations, which then provided 

informations on the particular interaction energy between the inhibitor and each 

residue surrounding the binding site as shown in the interaction energy formula: 

  

  
BAABINT EEEE )aminoacid()ligand()aminoacidligand()aminoacidligand(                  (8) 

  

where A and B are the number of basis sets of ligands and amino acids, respectively, 

ABE )aminoacidligand(   is the energy of the ligand-amino acid complex with the basis set of  A 

plus B. 
AE )ligand(  and 

BE )(aminoacid  are the energies of the ligand and the amino acid with 

its number of basis sets.  

 

 Furthermore, the basis set superposition error based on the counterpoise 

scheme (BSSE-CP) of Boys-Bernardi (Boys, et al., 1970) was also computed to 

define the interaction energy with BSSE as shown in equation 6:  

  

  
ABABABINT EEEE )aminoacid()ligand()aminoacidligand()aminoacidligand(             (9) 

  

where 
AB

ligandE )(  and 
ABE )(aminoacid  are the energies of the ligand and the amino acid, 

respectively, with the number of basis sets of A plus B (Saen-oon, et al., 2005, Kuno, 

et al., 2003 and 2006). 
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RESULTS AND DISCUSSION 

 

1. CoMFA analysis 

 

 1.1 Statistical Analysis 

  

The relationship between structural properties of twenty-five diarylaniline 

derivatives of HIV-1 RT is presented by using the CoMFA models. There are three 

models that varied the type of probe atoms, i.e. Csp3 (+1), Osp3 (-1) and Nsp2 (-1). The 

statistical results are shown in Table 2. All models reveal the good prediction of 

pEC50 values for training set compounds, with the deviations lower than 0.4; these 

results are summarized in Table 3. Evaluation of the model prediction is assessed by 

abandon outlier compounds which all showed acceptable pEC50 prediction values, 

except compound 5, 8, 14 and 20.  

 

Table 2 PLS statistical results of CoMFA models for wild type HIV-1 RT 

 

Parameters 

Probe Atoms 

 Model I 

Csp3 (+1) 

Model II  

Osp3 (-1) 

Model III 

Nsp2 (-1) 

Model IV 

Csp3 (+1)Osp3 (-1) Nsp2 (-1) 

no of molecules without outlier 21 21 21 21 

r
2
cv 0.823 0.802 0.799 0.812 

Spress 0.422 0.433 0.440 0.436 

no of components 4 3 4 4 

r
2
nv 0.946 0.934 0.942 0.940 

s 0.241 0.250 0.241 0.245 

F value 65.055 80.530 65.499 63.068 

Steric  field contributions 0.281 0.265 0.202 0.274 

Electrostatic field contributions 0.719 0.735 0.738 0.726 
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Table 3 Actual (Act) and predicted (Pred) pEC50 values and the residuals () of 

the training set without outlier molecules for wild type HIV-1 RT 

 

  

Compound 
Act Model I Model II Model III Model IV 

     

 pEC50 Pred 

pEC50 

 Pred 

pEC50 

 Pred 

pEC50 

 Pred 

pEC50 

 

1 5.41 5.23 0.18 5.19 0.22 5.19 0.22 5.18 0.23 

2 5.52 5.42 0.11 5.49 0.03 5.44 0.08 5.45 0.08 

3 5.44 5.52 -0.08 5.66 -0.22 5.53 -0.09 5.55 
-

0.11 

4 5.36 5.42 -0.06 5.45 -0.09 5.38 -0.02 5.40 
-

0.04 

6 4.30 4.28 0.02 4.23 0.07 4.31 -0.01 4.28 0.02 

7 6.26 6.35 -0.08 6.29 -0.03 6.36 -0.10 6.33 
-

0.07 

9 6.55 6.62 -0.07 6.57 -0.02 6.58 -0.03 6.62 
-

0.06 

10 5.81 5.97 -0.15 6.06 -0.25 5.97 -0.15 6.04 
-

0.22 

11 6.50 6.20 0.30 6.14 0.36 6.26 0.24 6.20 0.30 

12 5.50 5.87 -0.37 5.76 -0.26 5.88 -0.38 5.83 
-

0.33 

13 6.68 6.68 -0.00 6.70 -0.02 6.65 0.03 6.65 0.03 

15 5.66 5.53 0.13 5.46 0.20 5.50 0.16 5.52 0.14 

16 7.33 7.08 0.25 7.07 0.25 7.15 0.18 7.10 0.23 

17 7.15 7.53 -0.38 7.60 -0.44 7.53 -0.37 7.53 
-

0.37 

18 7.14 7.04 0.09 7.01 0.12 7.10 0.04 7.07 0.07 

19 6.79 6.99 -0.20 7.05 -0.25 7.02 -0.23 7.02 
-

0.23 

21 7.52 7.44 0.08 7.56 -0.03 7.40 0.12 7.44 0.08 

22 7.15 6.96 0.20 6.99 0.17 6.97 0.18 6.98 0.17 

23 7.80 7.70 0.09 7.61 0.18 7.71 0.09 7.69 0.11 

24 8.52 8.18 0.34 8.17 0.35 8.11 0.41 8.14 0.38 

25 7.20 7.62 -0.41 7.55 -0.34 7.60 -0.39 7.62 
-

0.41 

** compound 5, 8, 14 and 20 is outlier 

 

 

By considering the statistical results in Table 2, model I-III with r
2

cv values 

higher than 0.6 (0.823, 0.802 and 0.790, respectively) can be accepted and the 



35 

 

conventional r
2
 or no-validated r

2
 (r

2
nv) values are found to be 0.946, 0.934 and 0.942, 

respectively. These mean that the four tested probe atoms (Csp3, Osp3, H and combine 

probe atom) give qualitatively very similar models. The results suggest that all four 

types of probe atoms form similarly important in the enzyme-ligand interactions. The 

best model of probe atom is model I, resulting in model I with r
2

cv = 0.823 and r
2

nv = 

0.946. The carbon probe atoms in model I is superior for all model and high statistical 

result. Especially, the statistical error (s) of the represented model is 0.245 which is 

reasonably acceptable for biological activity predictions of the test set. The graphical 

plot between actual and predicted pEC50 of the set of compound is shown in Figure 

12. The CoMFA field contributions of the steric interaction contribution approximate 

27% and electrostatic interactions contributed approximately 73%. The results 

indicate that electrostatic contributions are higher effective than steric contribution 

affected the biological activity of wild type HIV-1 RT 

 

 

 

Figure 12 Plot of the predicted and actual pEC50 values of the test set molecules 

with CoMFA model I-IV 
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 1.2  CoMFA Contour Analyses 

  

 The CoMFA analysis with hundreds or thousands terms, is usually 

represented as the scalar product of the associated coefficient and the standard 

deviation of all values in the corresponding column of the data table 

(STDEV*COEFF) contour plots. Moreover, the contour maps can be shown by 

merging with the binding pocket of a drug target. In this study, the CoMFA contour 

maps are merged with 4 Å of binding pocket of crystal structure of wild type HIV-1 

RT which is available in the Protein Data Bank with PDB code 3MEC (Lansdon, 

E.B., et al., 2010). The template compound 37 is displayed as the inhibitor in the 

CoMFA contour maps.  

 

Figure 13 shows the steric contour maps of CoMFA model I. The steric 

contour map indicates areas in which molecular steric bulk might have a favourable 

(green) or unfavourable (yellow) effect on the activity of an analogue. A sterically 

favoured green region is found near R2 substituent of the aromatic ring. The location 

near R2 substituent shows only a small region of favorable steric map. Therefore, 

based on an unclear CoMFA contour maps at R2 and R3, particular interactions 

between the partial substituent of R2 and R3 and the amino acids surrounding the site 

substitutions are needed to investigate for more understanding in the molecular 

interactions using the quantum chemical calculations.  
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Figure 13 CoMFA (stdev.*coeff.) sterically favored areas are represented by 

green regions. Sterically unfavored areas are represented by yellow 

regions (level of steric contour contribution = 80%) and compound 

37 is represented by ball and stick. 

  

Figure 14 depicts electrostatic contour maps of CoMFA. The electrostatic 

contour map reveals that blue contours refer to positive charge favoured areas and red 

contours indicate negative charge favoured areas. The red and blue areas are found in 

the R1 substitution. This is further supported by comparing R1 substituent with CN 

and Me when these compounds have the same R2, R3 and R4 substituents. In addition, 

the distribution of electrostatic contour appears around the R1 substituent; this 

evidence would explain why compound 37, used as the template, is a better wild type 

HIV-1 RT inhibitor. An unfavorable electrostatic contour region is found at R4 

substitution which can explain the fact that compound 6, 8, 11 and 13,  for all 

(A) 



38 

 

compound R4 substituent are electron with drawing groups,  show lower pEC50 when 

compare with unfavorable electrostatic structure of compounds  16, 23 and 24 ,  for 

all compound R4 substituent are electron with donating groups, respectively.  It can be 

suggested R1 that high positive charges or low electron density in this area is 

preferable. For R4 substituent, donating substituents will increase the activity of the 

inhibitors, for example, NR2, O
-
 etc. 

 

 

 

Figure 14 CoMFA (stdev.*coeff.) negative charge favored area is represented 

by the red region. Positive charge favored area is represented by the 

blue region (level of electrostatic contour contribution = 80%) and 

compound 24 is represented by ball-and-stick model. 
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2.  Quantum Chemical Calculation 

 

 Particular interaction energy 

 

In order to find the particular interaction energy between compound 1 or 24 

and the amino acids surrounding the pocket of wild type were performed by B3LYP, 

M062X and MP2 methods with the 6-31G(d,p) basis set. In addition, the basis set 

superposition error (BSSE) using the counterpoise (CP) correction method was 

applied to calculate the interaction energy. The interaction energies are shown in 

Table 4. The difference between the interaction energies with no CP correction and 

those with CP correction are about 1-5 kcal/mol.  

Figure 15 shows the interaction energies with CP correction of diarylaniline 

and individual amino acids surrounding the binding pocket of wild type from B3LYP, 

M062X, MP2 calculations with 6-31G(d,p) basis set. The main interactions are 

considered. His235 shows the strongest interaction energy to compound 1 and 24 with 

-24.37 and -16.60 kcal/mol (B3LYP), -19.70 and -13.97 kcal/mol (M062X) and -

12.64 and -8.33 kcal/mol (MP2), respectively. In addition, Lys101 also reveals the 

strong attractive interaction to compound 1 and 24, -7.01 and -3.01 kcal/mol 

(B3LYP), -2.46 and -4.51 kcal/mol (M062X) and -3.42 and -5.84 kcal/mol (MP2), 

respectively. Lys103 shows the hydrogen bond interaction energy to compound 1 and 

24 with -4.65 and -0.38 kcal/mol (B3LYP), -2.16 and -1.87 kcal/mol (M062X) and -

3.57 and -1.80 kcal/mol (MP2), respectively. Glu138(b) shows the hydrogen bond 

interaction energy to compound 1 and 24 with -0.16 and -1.23 kcal/mol (B3LYP), -

5.69 and -7.32 kcal/mol (M062X) and -3.67 and -2.94 kcal/mol (MP2), respectively. 

In the case of Tyr181, have a hydrogen bond and pi-pi interaction energy to 

compound 24 with -1.56 kcal/mol (B3LYP), -4.36 kcal/mol (M062X) and -2.64 

(MP2), respectively. From the results indicated that the hybrid functional theory, 

B3LYP and M062X calculations, are similar with MP2 calculations. It is show that 

the B3LYP and M062X methods can use for this system.  
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Table 4 Particular interaction energy (kcal/mol) of compound 1 and 24 with 

individual residues, calculated by B3LYP/6-31G(d,p), M062X/6-31G(d,p) 

and MP2/6-31G(d,p) methods 

 

Residue 

Interaction energies non-BSSE-CP (kcal/mol) 

Compound 1 Compound 24 

B3LYP M062X MP2 B3LYP M062X MP2 

Pro95 -0.63 -1.79 -0.16 -0.34 -0.93 0.36 

Leu100 0.74 0.86 2.36 1.59 -1.34 2.54 

Lys101 -11.57 -6.50 -5.76 -3.11 -5.42 -7.39 

Lys102 -0.19 -0.81 -0.29 -2.91 -3.12 -1.40 

Lys103 -5.84 -4.30 -3.95 -1.93 -3.39 -3.00 

Lys104 -0.42 -0.53 -0.61 2.37 1.77 0.12 

Ser105 0.07 0.09 0.09 -0.25 -0.59 -0.75 

val106 0.82 0.65 2.06 0.50 -0.69 0.29 

Val179 -0.86 -1.41 -0.23 -0.97 -1.50 -2.22 

Ile180 1.32 0.75 2.23 1.09 -1.23 0.45 

Tyr181 -0.12 -5.54 1.17 -0.59 -6.67 -3.82 

Tyr188 3.00 -2.04 4.80 -3.06 -2.36 -0.91 

Val189 -0.47 -0.58 -0.57 0.54 0.08 0.19 

Gly190 0.08 -0.06 0.06 0.095 -0.07 0.04 

Phe227 -0.55 -1.34 -0.20 -5.52 -2.19 -0.60 

Leu228 0.12 0.04 0.12 0.02 -0.08 -0.0003 

Trp229 -0.87 -4.43 -0.70 -1.53 -6.68 -1.22 

Leu234 -0.82 -1.91 0.26 1.19 -2.30 0.70 

His235 -26.03 -20.90 -13.83 -19.30 -15.32 -10.42 

Pro236 -0.76 -1.20 -0.26 -0.63 -5.46 -4.03 

Tyr318 -0.77 -1.13 -0.13 -1.17 -3.89 -0.62 

Glu138(CHAIN B) -6.77 -10.65 -4.13 -6.08 -11.39 -3.94 
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Table 5 Particular interaction energy (kcal/mol) of compound 1 and 24 with 

individual residues, calculated by B3LYP/6-31G(d,p), M062X/6-31G(d,p) 

and MP2/6-31G(d,p) with BSSE-CP 

 

Residue 

Interaction energies BSSE-CP (kcal/mol) 

Compound 1 Compound 24 

B3LYP M062X MP2 B3LYP M062X MP2 

Pro95 0.10 -1.20 0.25 0.12 -0.72 0.51 

Leu100 3.21 3.06 3.06 3.52 0.87 3.35 

Lys101 -7.01 -2.46 -3.42 -3.01 -4.51 -5.84 

Lys102 0.05 -0.56 -0.10 -2.56 -2.93 -1.13 

Lys103 -4.65 -2.16 -3.57 -0.38 -1.87 -1.80 

Lys104 -0.42 -0.53 -0.61 2.36 1.75 0.12 

Ser105 0.06 0.09 0.09 -0.26 -0.60 -0.75 

val106 1.90 1.52 2.80 1.58 -0.33 1.22 

Val179 0.54 0.12 -0.23 0.24 -1.06 -1.39 

Ile180 2.05 1.19 2.80 1.46 0.01 1.54 

Tyr181 2.49 -3.06 1.18 -1.56 -4.36 -2.64 

Tyr188 5.26 -0.97 4.87 0.74 -0.62 0.87 

Val189 -0.40 -0.54 -0.49 0.60 0.13 0.23 

Gly190 0.09 -0.05 0.07 0.12 -0.07 0.05 

Phe227 0.68 0.22 -0.19 -2.52 -1.36 -0.16 

Leu228 0.12 0.05 0.12 0.01 -0.07 0.01 

Trp229 0.09 -3.06 -0.35 -0.71 -4.86 -0.70 

Leu234 1.49 0.20 2.00 3.80 -1.22 1.74 

His235 -24.37 -19.70 -12.64 -16.59 -13.97 -8.33 

Pro236 0.56 -0.30 -0.30 1.28 -3.23 -2.11 

Tyr318 0.70 0.54 1.02 0.28 -2.56 0.71 

Glu138(CHAIN B) -0.16 -5.69 -3.67 -1.23 -7.32 -2.94 
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(A) 

 

(B) 

 

Figure 15 Interaction energies with CP correction of diarylaniline and individual 

amino acids surrounding the binding pocket of wild type at B3LYP, 

M062X, MP2 methods with 6-31G(d,p) basis set; (A) compound 1 and 

(B) compound 24. 
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Significant H-bond interactions between the inhibitors and amino acids are 

displayed in Figure 16 and explained as follows. In molecular-level investigation, 

His235 forms  hydrogen-bonding interaction with OMe of compound 1 and CN of 

compound 24 which are R1 substituent in ring A. In Compound 1, Lys103 forms 

hydrogen-bonding interaction with NO2 group of R4 substitution and pi-pi interaction 

with ring A. Lys103 forms hydrogen-bonding interaction with NO2 group of R4 

substitution and formed pi-pi interaction with ring A. Glu138(b) forms hydrogen-

bonding interaction with NO2 of R2 substitution. For Compound 24, Lys103 forms 

hydrogen-bonding interaction with NH2 group of R4 substitution and pi-pi interaction 

with ring A. Glu138(b) forms weak hydrogen-bonding with hydrogen of C15 in ring 

B. Tyr181 forms hydrogen-bonding interaction with NO2 of R2 substitution and O2 of 

compound 24. Pi-pi interaction between phenyl ring of Tyr181 and ring C is also 

found. Trp229 forms pi-sigma with hydrogen of C4.  

 

Compound 1 and compound 24 have a nitro group as the R2 substituent on the 

ring B. These nitro group provides H-bond with Glu138(b) formed hydrogen-bonding 

interaction between hydrogen of carbon back bone with NO2 and  NO2 of Glu138(b) 

with hydrogen of C15 of R2 substitution of compound 1. Glu138(b) formed hydrogen-

bonding between NO2 of Glu138(b) with hydrogen of C15 in ring B of compound 24. 

For Bingjie Qin and co-worker (Bingjie Qin et. al.(2010)) study about R2 substituent, 

the nitro group of R2 substituent provides a small electrostatic interaction with 

positive charge Lys172 but R2 replace by an amino group NH2 , the corresponding 

ligand-protein electrostatic interaction decrease. For R3 substituent, the most active 

compound 24 also has a CN group as the R3 substituent on the ring. This group has a 

provide H-bond between NO2 of R2 substitution and O2 of compound 24. For pi-pi 

interaction, have pi pi interaction between benzene ring of Tyr181 with ring C of 

compound 24 and pi-sigma between ring of Trp229 with hydrogen of C4 Typ229. 

Compound 1 has a repulsive interaction energy with ring C of compound 1. This 

group has a repulsive interaction energy for Tyr181 is 1.18 kcal/mol and Tyr188 is 

4.87 kcal/mol. But the M062X is in contrast to the results of  MP2 as this may be due 

to that calculated by our system, a single point may not match the results. Because our 

structure does not move and may be associated with the amino acid to another. If you 

(A) (A) 
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need to know exactly what the system is more complicate than the calculate with 

ONIOM method. For R4 substitution, compound 24 has a NH2 group as the R4 

substituent, a hydrogen bond between the NH linker and the peptidic carbonyl oxygen 

of Lys101, like the DAPY compounds. However, the neighboring amino group (R4) 

present in compound 24 provide two more hydrogen bonds with Lys101: one is 

between the peptidic carbonyl oxygen of the protein residue and hydrogen of N13 of 

compound 24 and the second one involves the NH atoms of Lys101 and targets the 

nitrogen atom of the ligand NH2 group for R4 substitution of compound 24. For 

compound 1, has a NO2 group as the R4 substituent, have a hydrogen bond between a 

carbonyl oxygen of the protein residue and the NH linker. Bingjie Qin and co-worker 

(Bingjie Qin et. al.(2010)) study about R4 be effective electrostatic repulsion occurs 

between nitro group and NH group of amino acid Lys101. The electrostatic repulsive 

of R3 and R4 substitutent are displayed in Figure 17. 

 

 

(A) 

 

(B) 

 

Figure 16 Bond distances between inhibitor and residues in the binding pocket; 

(A) compound 1 and (B) compound 24 (in Å). 

 

 

(A) 
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(A) 

 

(B) 

 

Figure 17 The electrostatic potential is shown on the solvent accessible surface as 

red for negative and blue for positive values for compound 1  interacted 

with (A) Tyr181 and Tyr188 in R3 substituent (B) and Lys101 in R4 

substituent.  
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CONCLUSION 

 

Particular Interaction between Diarylaniline Derivatives and Wild Type of HIV-

1 Reverse Transcriptase: CoMFA and Quantum Chemical Calculations Studies 

 

The CoMFA analysis is a very powerful method for ligand-based drug design. 

Therefore, in this study, the CoMFA method was selected to build a linear equation of 

the quantitative structure activity relationship of the diarylaniline derivatives that are 

active against quadruple wild type HIV-1 RT. The Csp3 (+1) probe atoms model was 

selected to represent the CoMFA moelcular fields for accounting the different types of 

interactions between wild type HIV-1 RT binding site and diarylaniline derivatives. 

An application of the CoMFA technique was performed on diarylaniline derivatives 

of the wild type HIV-1 RT. Satisfactory CoMFA models of wild type was obtained 

with LOO cross-validation r
2

cv values of 0.823.  According to the CoMFA contour 

map, the electrostatic property plays an important role around three substitutions, R1, 

R3 and R4 which can be concluded that (i) R1 is favored the negative charge group or 

electron withdrawing group. R1 subtitution is near His235 and have a strong hydrogen 

bond with His235, (ii) R3 has both negative and positive regions together which 

means that this site can be substituted by both withdrawing and donating groups. For 

quantum calculation, R3 substitution, the most active compound 24 also has a CN 

group as the R3 substituent on the ring. This group has a provides H-bond with 

Tyr181, pi-pi interaction with Tyr181 and Tyr188 and pi-sigma with Typ229 but 

compound 1 also has a hydrogen as the R3 substituent on the ring. This group has a 

repulsive interaction energy for Tyr181 and Tyr188., (iii) R4 is favored the electron 

donating group more than electron withdrawing group. For quantum calculation, For 

R4 substitution, compound 24 has a NH2 group as the R4 substituent provide two more 

hydrogen bonds with Lys101 but compound 1 has a NO2 group a hydrogen bond 

between a carbonyl oxygen of the protein residue and the NH linker. whereas, the R2 

shows only a small region of favorable steric map. Therefore, the characteristics of 

new design inhibitors are the bulky group on the R2 substitution, the electron 
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withdrawing group on the R1 substitution and the electron donating group on the R4 

substitution. 

 

 Moreover, we also performed MP2/6-31G(d,p) quantum chemical calculations 

with BSSE-CP energy correction to investigate the particular interaction energy of 

compounds 1 (R1: OMe, R2: NO2 R3: H and R4: NO2) and 24 (R1: CN, R2: NO2 R3: 

CN and R4: NH2). The obtained results clearly show that for R1, R2, R3 and R4 

substitution caused result of Particular interaction show main interaction between wild 

type binding pocket with compound 1 and 24. The CoMFA and particular interaction 

energy analyses will be useful for identifying the structural features of potent 

diarylaniline derivatives active against wild type HIV-1 RT which is an important 

target of AIDs.        
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Theoretical Background in Quantum Chemistry 

 

Molecular Orbital Theory 

 

Molecular orbital calculation is the important method in quantum chemistry 

for approximate structures and dynamics of molecular system. This approach provides 

a great promise in calculating electronic structures and predicting properties of drug 

molecules. Until now, molecular orbital investigations have been introduced into drug 

research to study mechanisms of action and to guide the design of more potent agents. 

 

The quantum chemical methods are based on finding solutions to the time 

independent Schrödinger wave equation on molecular orbital theory 

 

 (10) 

 

Where H is the Hamiltonian operator which gives the kinetic and potential 

energies of the system 

 

 
(11) 

 

Then, rewrite equation (11) is; 

 

 
(12) 

 

Where 

 

 
(13) 
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h is Plank‟s constant divided by 2π.   is the wave function which 

characterizes the particle‟s proterties. E is the energy of the particle. 

 

 

1. The LCAO-MO Approximation 

 

For a molecular system, the approximate molecular orbitals     are 

customarily expanded as a linear combination of atomic orbital functions (LCAO) as  

 

 
(14) 

 

Where     are the coefficients and    are real atomic functions. The 

requirement that the orbitals are orthonormal is 

 

                                

 
(15) 

         

 

Where     is the Kronecker delta and    is overlap integral for atomic 

functions    and    

 

 
(16) 

 

2. Solving for the Molecular Orbital : LCAO-MO-SCF 

 

Introduction Eq. (5) and (6) into Eq. (1), the equation takes the final form 

generally known as the Roothaan equations as 
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(17) 

 

The elements of the matrix representation of the Hartree-Fock Hamiltonian 

operator F are 

                     

 
(18) 

 

and density matrix defind as  

 

                                                

 
(19) 

 

 
(20) 

 

and one-electron orbital energy is 

                                 

 

(21) 

 where  

  

  Coulomb integral,   

 
(22) 

  and Exchange integral,  

 
(23) 
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the total electronic energy     is 

                                       

 
(24) 

 

Therefore, Eq. (8) can be written in matrix form as 

                                             

 (25) 

 

where E is the diagonal matrix of the    and the elements of a matrix C are the 

coefficients in the expansion LCAO. 

 

Hartree-Fock or self-consistent field method introduces some elegant 

approximations to solve a one electron eigenvalue problem, and must be solved 

iteratively. Solving the Eq. (20) for the coefficient C describing the LCAO expansion 

of the orbital     and orbital energies    which require a matrix diagonalized. Note 

that F depends on the coefficient C. 

 

They may be usefully transformed by defining new matrices 

 

                                         F
τ
 = S

1/2
FS

-1/2
                                                        (26) 

 

                                            C
τ
 = S

1/2
C                                                           (27) 

 

Then obtain 

 

                                           F
τ
C

τ
 = C

τ
E                                                           (28) 

 

Matrix equation (19) can be solved using standard methods. The basis function 

coefficients can be obtained from C
τ
 using C = S

1/2
C

τ
. The matrix elements of the 

Hartree-Fock Hamiltonian operator are dependent on the orbitals through the elements 
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Pµν and the Roothaan equations are solved by first assumting an initial set of linear 

expansion coefficients. The whole process is then repeated until the coefficients no 

longer change within a given tolerance on repeated iteration. The solution is then said 

to be self-consistent and the method is then referred to as the SCF method. The 

mathematical steps required for the solution of the Roothaan-Hall equations are 

outlined in Figure A1. 

 

Statistical Analysis for QSAR Analysis 

  

 Many statistical methods have been employed to generate QSAR models from 

descriptive variables. The most commonly used techniques are Multiple Linear 

Regression (MLR) and Partial Least Squares (PLS). both methods have their 

advantages and disadvantages. Conventional QSARs most often use MLR where the 

ratio of the data points to the number of descriptors should not exceed five. While 

PLS analyses are particularly suited to situations where the number of descriptor 

variables exceeds the number of observations it is often the case that the principal 

components extracted from the descriptor variables has unclear physical meaning. It 

should be noted that the CoMFA technique allows physical interpretation of PLS 

extracted QSAR model components in terms of 3D contour maps. 

 

1. Multiple Linear Regressions 

 

Multiple Linear Regression (MLR) expresses a single dependent variable (y) 

as a linear combination of multiple independent variable (x): 

y = ax1 + bx2 … + k                                                 (29) 

 where a, b are the coefficients of the regression, and k is a constant, the 

regression model can be built in a stepwise manner. 

 

 A number of statistical parameters are used to evaluate regression models. The 

overall fit of the model is given by r
2
: 
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 (30) 

 

 

The r
2
 coefficient can vary from 0 (none of the variance associated with y is 

explained by the model) to 1 (all the experimental variance is explained by the 

model). The statistical significance of the model is measured by the F value: 

 

 

(31) 

 

 

 

The larger the F value, the greater the significance of the model. In particular 

F must be larger than tabulated F value with p and (n-p-1) degree of freedom at a 

chosen confidence level (for instance 95%) 

 

Good statistical is a necessary condition but not sufficient for a meaningful 

regression model. Especially when increasing the number of variables, the number of 

possible models becomes larger and the risk of a chance correlation increases as well. 

Chance effects have been investigated on sets of random numbers and it has been 

shown that the higher the ratio of variables to the number of objects, the greater the 

risk of chance correlation. For example, given a data set of ten objects, the 

combination of five variables can correlate with random “activities” producing r
s
 

superior to 0.5. For medium-size data sets (n less or equal to 30), having at least 5-6 

objects for each variable has been suggested to avoid chance correlation. Finally, 

MLR is based on a number of assumptions about the dependent variable y (the errors 

on y are randomly distributed and roughly of the same size) as well as on x (predictor 
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variables are independent and error-free). In particular, the above conditions are 

generally not satisfied for data sets where the number of variables largely exceeds the 

number of objects, making MLR in appropriate.  

 

2. Principal Component Regression and Partial Least Squares 

 

Unlike MLR, Principal Component Regression (PCR) and Partial Least 

Squares (PLS) can be applied to data sets characterized by large numbers of 

descriptors and low numbers of objects. Both rely on the assumption that all the 

descriptors can be seen as a combination of a small number of intrinsic variables 

(called principal components in PCR and latent variables in PLS) plus some errors, 

and both are aimed at extracting this relevant information from the original descriptor 

matrix X and correlating it to the biological activity Y. 

 

The PCR method accomplished this task step-wise by: 

 

2.1  executing a Principle Component Analysis (PCA) on the X matrix and 

saving the scores, 

2.2  selecting the optimal number p of components (based on explained 

variance), and 

2.3  using the first p PCA scores of X to build a regression model with Y. 

 

Because the PCA scores and the regression coefficients are calculated 

independently, variables important for explaining the biological response may have 

already been removed at the regression stage. 

 

The two steps (PCA and regression analysis) can be effectively combined by 

using the PLS method. PLS is aimed at finding linear combinations of the descriptors 

(latent variables) that not only approximate the original matrix X, but also 

simultaneously correlate with the biological activity Y. latent variables (LVs) retain 

the same properties of PCs in the sense that they are linear combinations of the 
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original variables and they are an orthogonal set, but they differ because LVs are built 

maximizing the covariance between X and Y. 

 

As with PCA plots of the scores and coefficients of the linear combinations 

can be generated, and the help for the interpretaion of the model and the identification 

of outliers, as well as non-linear relationships. 

 

Regression coefficients in term of original variables can also be computed, so 

that the PLS solution can be still reported in the traditional form (Eq.29). unlike MLR 

PLS can simultaneously handle more activity. 

 

The optimal number of LVs of a PLS model is usually estimated by cross-

varidation (CV). CV means that the objects are divided in n groups, a model is 

derived with n-1 groups and sue to predicting the excluded group of objects. This is 

repeated until all groups have been excluded once at a time. The r
2

cv value is 

calculated from the predictions as follows: 

 

 

 

(32) 

 

 

 The above formula is analogous to r
2
 (Eq.30) where calculated y values are 

replaced by predicted values. Other statistical parameters commonly calculated are 

the SDEP and the SPRESS 
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 Where a is the number of LVs. The optimal number of LVs corresponds to the 

highest q
2
 or to the lowest SDEP. However, as the number of LVs increase, PLS 

suffers the same limitations as MLR; hence the number of latent variables should be 

kept as small as possible. As a rule of thumb, a new LV is added only of it leading to 

an increment of at least 5% in the q
2
. Alternatively the SPRESS can be used, because it 

does take into account the number of LVs and penalizes high-dimensional models. 

 

 Finally PLS, when used in predictions, provides a rapid evaluation of how test 

set molecules are similar to those in the training set, and hence of how reliable the 

predictions may be. The PLS model cam\n be easily understood by a geometrically 

interpretation as shown in figure A1. 
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Figure A1 PLS analysis derives vectors u and t from Y block (or y vector; BAi = 

logarithms of relative affinities or other biological activities) and the X 

block (Sij = steric field variable of molecule I in the grid point j; Eij = 

electrostatic field variable of nolecule I in the grid point j) that are 

related to principal components. These „latent variable‟ are skewed 

within their confidence hyperboxes to achieve a maximum 

intercorrelation (diagram). SMAPLE is a PLS modification which first 

derives the covariance matrix of the X block and then the PLSresults 

from this covariance matrix. Especially in cross-varidation (see below), 

SAMPLE analysis is much faster than ordinary PLS analysis. 
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Abstract  

In the present study, we aim to construct a model of the relationship between structural properties of 
25 diarylaniline derivatives and their 50% effective concentrations (EC50) to HIV-1 Reverse Transcriptase (RT) 
using a comparative molecular field analysis (CoMFA). The best predictive CoMFA model gives a very good 
statistical result with    

  = 0.823,    
  = 0.924, Spress = 0.422, SE = 0.241, F = 65.055, steric contribution = 

28.1% and electrostatic contribution = 71.9%. Consequently, the obtained CoMFA contour maps merging with 
the wild type HIV-1 RT binding site can give the informative details for understanding the structural 
requirements of inhibitors and can guide the new design of diarylanilline inhibitors. 

Keywords: CoMFA, 3D-QSAR, HIV-1 Reverse Transcriptase, diarylanilline inhibitors  

Introduction 

AIDS, or acquired immunodeficiency syndrome is caused by the human immunodeficiency virus type 
1 (HIV-1). According to UNAIDS statistics, more than 60 million people worldwide have been infected by the 
human immunodeficiency virus type 1 (HIV-1) and about 25 million patients have died of AIDS. HIV-1 
genome encodes for three major enzymes protease, reverse transcriptase and integrase for HIV-1 replication 
[6-7]. Reverse transcriptase is a key enzyme in the HIV replication cycle and is one of the main targets in the 
development of drugs for treating HIV-infection and AIDS. HIV-1 reverse transcriptase (HIV-1 RT), which is 
virally encoded, catalyses the conversion of viral RNA into double stranded DNA, which is then integrated in 
the host genome [1-3]. Two types of drugs that inhibit HIV-1 polymerase activity are nucleoside and non-
nucleoside inhibitors. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are important components of 
the first line highly active antiretroviral therapy regiments. NNRTIs bind to an allosteric hydrophobic pocket  

mailto:pmaitarad@gmail.com
mailto:fscisph@ku.ac.th
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and prevent the progression of DNA synthesis from the viral RNA template, located at about 10 Å from the 
polymerase active site. The hydrophobic pocket is formed by the key residues like Tyr181, Tyr183, Tyr188  
and Trp229 [10-13]. The newly diarylaniline analogues of NNRTIs have been reported due to a real medical 
need to develop a new generation of NNRTIs which do not give rise to cross-validation and are effective 
against clinically relevant mutant strains. 
Aims 

Herein, we have reported the analogues based drug design of three-dimensional quantitative 
structure-activity relationships (3D-QSAR) studies using Comparative Molecular Field Analysis (CoMFA) 
technique on diarylaniline derivatives. CoMFA is one of the powerful techniques for constructing the 
relationship between steric and electrostatic properties and the biological activities of the inhibitor series with 
resulting of CoMFA contour maps leading to guide the new design of the inhibitors before synthesizing and 
testing activities. 

Materials and methods 

Data Set 

A set of 25 diarylaniline derivatives [11] were reported with their EC50 values for inhibiting of the wild 
type HIV-1 RT as listed in Table 1. A dependent variable in CoMFA was defined as pEC50 (-logEC50), where 
EC50 values were measured in vitro under the same experimental conditions. All derivatives were built based 
on the skeleton template of TMC125 obtaining from the X-ray structure of the PDB code 3MEC which consist 
of the complex structure of HIV-1 RT and TMC125 [16]. All processes of molecular buildings, Tripos force 
field optimizations, and Gasteiger-Hückel charge calculations were performed by the Sybyl 8.0 program 
package [15]. 

CoMFA Methodology   

In the part of CoMFA study, the process of alignment is very important, therefore, all 25 compounds 
were aligned into the same template structure as shown in an insert figure of Table 1 using the “Fitting 
Atomic Based Alignment”. Then, CoMFA lattices with 2.0 Å grid spacing were generated around the aligned 
compounds based on the molecular volume of the structures. The lattices were defined automatically, and 
were extended by 4.0 Å in all directions. Steric and electrostatic fields were calculated by three types of 
probe atoms, representing for the enzyme environment,  were placed at each lattice point, namely sp3 carbon 
atom with +1 charge, sp2 oxygen atom with -1 charge, and sp3 nitrogen atom with -1 charge. An energy cut-
off of 30 kcal mol-1 was applied to avoid infinite energy values inside the molecule. 

The regression analysis was carried out using the partial least-square (PLS) to derive a CoMFA 
model expressing the correlation between the steric and electrostatic properties and the biological activities.  
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CoMFA columns with a variance of less than 2.0 kcal mol-1 were filtered by using column filtering to improve 
the signal-to-noise ratio. Leave-one-out (LOO) cross-validation method was used to check the predictive  
ability of the derived model and to identify the number of component (NOC) at which the difference in the 
   
  value compared with the next one was less than 0.05. 

The predictive ability of the model derived from the training set is expressed as the cross-validation 
predictive (   

 ) value. The    
  value is defined as  

 

Table 1 Structures of diarylaniline derivatives for CoMFA analysis.  

 

Name R1 R2 R3. R4 EC50 Pred pEC50 

Compound 1 OCH3 NO2 H NO2 3.840 5.2347 

Compound 2 OCH3 NO2 CH3 NO2 2.990 5.4173 

Compound 3 OCH3 NO2 Br NO2 3.630 5.517 

Compound 4 CH3 NO2 Br NO2 4.310 5.4225 

*Compound 5 NO2 NO2 Br NO2 > 49.7 - 

Compound 6 C N NO2 Br NO2 0.172 4.2796 

Compound 7 C N NO2 H NO2 0.545 6.3486 

*Compound 8 C N NO2 C N NO2 4.190 - 

Compound 9 C N NO2 CH3 NO2 0.280 6.6208 

Compound 10 C N NO2 CHO NO2 1.530 5.9673 

Compound 11 C N H Br NO2 0.317 6.1969 

Compound 12 C N H H NO2 3.147 5.8731 

Compound 13 C N H CN NO2 0.208 6.6849 

*Compound 14 C N H Me NO2 0.067 - 

  Compound 15 C N H CHO NO2 2.190 5.5296 

Compound 16 C N H Br NH2 0.047 7.0809 

Compound 17 C N H Br NH2 0.070 7.5349 
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Compound 18 C N H Br NH2 0.073 7.0446 

Compound 19 C N NH2 Br NH2 0.161 6.9912 

*Compound 20 C N NH2 H NH2 3.226 - 

 

Compound 21 C N NH2 C N NH2 0.030 7.4439 

Compound 22 C N NH2 CH3 NH2 0.070 6.9579 

Compound 23 C N NO2 Br NH2 0.016 7.6989 

Compound 24 C N NO2 C N NH2 0.003 8.1759 

Compound 25 C N NO2 CH3 NH2 0.062 7.6196 

* outlier compounds  

   

   
      

     

   
,                                                                (1) 

Where SSY is the variance of the biological activities around the mean value, and PRESS is the prediction 
error sum of squares derived from LOO. 

      ∑                
 ,                                   (2)    

    ∑                
 ,                                         (3)  

The uncertainty of the prediction is defined as 

         √
     

     
,                                                              (4) 

where  k is the number of variables in the model and n is the number of compounds used in the study [8,14-
15]. 

Results  

There are four CoMFA models varying the types of the probe atom at the grid spacing as 
representative of mainly atom types of amino acids for in silico receptor as summarized in Table 2. The 
Csp3(+1) is generally represented as sterically probe atom, Osp2(-1) and Nsp3(-1) for electrostatic interactions. 
The representative CoMFA model based on the best statistical results of both cross-validated    

  and non-
validated     

 , the CoMFA model 1 is selected for further contour map discussion and new inhibitor 
prediction. The graphical plots between the experimental and the predicted pEC50 of the diarylanilines based 
on CoMFA model 1 is shown in Figure 1 (a).  
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Discussion and Conclusion 

The obtained CoMFA model 1 shows the major contribution from the electrostatic property of 71.9% 
and the rest of 28.1% of steric contribution. The CoMFA contour map of both 2 types of structural properties 
merging with the HIV-1 RT binding site is displayed in Figure 1 (b).  The positive and negative steric CoMFA 
regions are represented in green and yellow contours, respectively, while the positive and negative  
electrostatic CoMFA regions are displayed in blue and red contours, respectively. According to the CoMFA 
contour map, the electrostatic property plays an important role around three substitutions, R1, R3 and R4 
which can be concluded that (i) R1 is favored the negative charge group or electron withdrawing group, (ii) R3 
has both negative and positive regions together which means that this site can be substituted by both 
withdrawing and donating groups, (iii) R4 is favored the electron donating group more than electron 
withdrawing group, whereas, the R2 shows only a small region of favorable steric map. Therefore, based on 
an unclear CoMFA contour maps at R2 and R3, particular interactions between the partial substituent of R2 
and R3 and the amino acids surrounding the site substitutions are needed to investigate for more 
understanding in the molecular interactions using the quantum chemical calculations.   
 
 
Table 2 PLS statistical results of CoMFA models of diarylaniline derivatives against wild type HIV-1 RT 

Statistical terms Model 1 Model 2 Model 3 Model 4 

Probe atom Csp3 (+1) Osp2 (-1) Nsp3 (-1) Csp3 (+1)Osp2 (-1)Nsp3 (-1) 

r
2
cv 0.823 0.802 0.799 0.812 

NOC 4 3 4 4 

Spress 0.422 0.433 0.440 0.436 

r
2
nv 0.946 0.934 0.942 0.940 

SE 0.241 0.250 0.241 0.245 

Fvalues 65.055 80.530 65.499 63.068 

%Steric 0.281 0.265 0.202 0.274 

%Electrostatic 0.719 0.735 0.738 0.726 
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Figure 1 (a) Plots of the predicted versus experimental biological activities (pEC50) and       
(b) steric and electrostatic contour maps of CoMFA model I. 
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