TABLE OF CONTENTS

	_	
TABLE OF CONTENTS	i	
LIST OF TABLES		
LIST OF FIGURES		
LIST OF ABBREVATIONS		
INTRODUCTION		
LITERATURE REVIEWS		
Chlorophyll mutation	3	
Plant characterization from chlorophyll	4	
Plant characterization from chlorophyll fluorescence	4	
Seed growth and development	7	
Seed desiccation	9	
DNA markers	10	
DNA markers based on hybridization	11	
DNA markers based on PCR	11	
Bulk segregant analysis for mapping or tagging gene	14	
Linkage map	15	
MATERIALS AND METHODS	16	
Plant materials	16	
Determination of chlorophyll content	16	
Determination of chlorophyll fluorescence	17	
Seed weight and seed moisture content	18	
Data analysis	18	
Seed cell morphology	19	
DNA extraction	19	
SSR analysis	20	
ISSR analysis	20	
AFLP analysis	21	
Gel electrophoresis and detection	22	
Analysis of genetic distance	23	

TABLE OF CONTENTS (Continued)

RESULTS 24		
Determination of chlorophyll content	24	
Determination of chlorophyll fluorescence	26	
Seed growth and development	28	
Seed cell morphology	35	
Inheritance of opaque leaf and linkage test	41	
Molecular markers linked to opaque leaf	43	
DISCUSSION		
Determination of chlorophyll content	46	
Determination of chlorophyll fluorescence	47	
Seed growth and development	48	
Seed cell morphology	49	
Inheritance of opaque leaf and linkage test	50	
Molecular markers linked to opaque leaf	51	
CONCLUSION		
LIERATURE CITED 54		
APPENDIX		

ii

TABLE OF CONTENTS

Table		Page
1	Chlorophyll fluorescence in F_v/F_m and F'_v/F'_m values of normal leaf	
	and mutant leaf genotypes.	27
2	Chlorophyll fluorescence in NPQ value of normal leaf and mutant	
	leaf genotypes.	27
3	Number of F_2 plants segregating for opaque leaf, petiole color,	
	and growth habit.	42
4	Linkage test between two traits in F_2 plants.	43

Appendix Table

1	Chlorophyll a, b, total (a+b) contents (g/m ²) and a/b ratio.	71
2	Pod fresh weight (g/pod) of normal and opaque mungbean.	72
3	Pod wall fresh weight (g/pod) of normal and opaque mungbean.	72
4	Seeds fresh weight (g/pod) of normal and opaque mungbean.	73
5	Seed coats fresh weight (g/pod) of normal and opaque mungbean.	73
6	Cotyledons fresh weight (g/pod) of normal and opaque mungbean.	74
7	Pod dry weight (g/pod) of normal and opaque mungbean.	74
8	Pod wall dry weight (g/pod) of normal and opaque mungbean.	75
9	Seed dry weight (g/pod) of normal and opaque mungbean.	75
10	Seed coat dry weight (g/pod) of normal and opaque mungbean.	76
11	Cotyledon dry weight (g/pod) of normal and opaque mungbean.	76
12	SSR primers used for parent screening.	77
13	ISSR primers used for parent screening.	80
14	Nucleotide sequences of adapter and primers used for	
	AFLP analysis.	81
15	AFLP combination primers used for PCRI and PCRII reactions.	82
16	Ninety-six AFLP combination primers (EcoRI/MseI) obtained	
	from parental screening.	83

FIGURE OF CONTENTS

Figure		Page
	2	
1	Chlorophyll a, b, total $(a+b)$ contents (g/m^2) , and a/b ratio in opaque	
	leaf, Opaque, OP531, and OP541, and normal leaf plant genotypes,	
	Berken, N531, and N541.	25
2	Accumulation of pod fresh weight (a) and dry weight (b) of opaque	
	vs. normal leaf plants at 3 to 18 days after flowering.	30
3	Accumulation of pod wall fresh weight (a) and dry weight (b) of	
	opaque vs. normal leaf plants at 3 to 18 days after flowering.	31
4	Accumulation of seed fresh weight per pod (a) and dry weight per pod (b)	
	of opaque vs. normal leaf plants at 3 to 18 days after flowering.	32
5	Accumulation of seed coat fresh weight per pod (a) and dry weight per	
	pod (b) of opaque vs. normal leaf plants at 3 to 18 days after flowering.	33
6	Accumulation of cotyledons fresh weight per pod (a) and dry weight per	
	pod (b) of opaque vs. normal leaf plants at 3 to 18 days after flowering.	34
7	Seed water content per pod of opaque vs. normal leaf plants at 3 to 18	
	days after flowering.	35
8	Photographs from light microscope of pod and seed cross section from	
	opaque leaf plant at 3, 6, 9, 12, 13, and 14 days after flowering.	37
9	Photographs from light microscopes of pod and seed cross sections from	
	normal leaf plant at 3, 6, 9, 12, 15, and 17 days after flowering.	38
10	Photographs from light microscopes of cotyledonary transfer cells from	
	opaque and normal leaf plant.	39
11	Photographs from light microscopes of cotyledon cross sections from	
	opaque and normal leaf plant.	40
12	Photograph of plants with opaque leaf (O) vs. normal leaf (N) at seedling	
	growth stage.	42
13	A partial linkage map between AFLP markers and op gene.	45

LIST OF ABBREVATIONS

cM	=	centi-Morgan
NPQ	=	non-photochemical quenching
F_v/F_m	=	maximum quantum efficiency of PSII photochemistry
F'_v/F'_m	=	PSII maximum efficiency
RFLP	=	restriction fragment length polymorphism
PCR	=	polymerase chain reaction
RAPD	=	random amplified polymorphic DNA
ISSR	=	inter simple sequence repeat
SSRs	=	microsatellite or simple sequence repeats
AFLP	=	amplified fragment length polymorphism