

THESIS APPROVAL

GRADUATE SCHOOL, KASETSART UNIVERSITY

Doctor of Philosophy (Horticulture) DEGREE

Horticulture	Horticulture
FIELD	DEPARTMENT

TITLE:Characterization of MYB Transcription Factors and AnthocyaninBiosynthesis Genes of Mangosteen Fruit during Red Colouration

NAME: Mr. Yossapol Palapol

THIS THESIS HAS BEEN ACCEPTED BY

		THESIS ADVISOR
(Professor Saichol Ketsa, Ph.D.	_)
		COMMITTEE MEMBER
(Assistant Professor Lop Phavaphutanon, Ph.D.)
		COMMITTEE MEMBER
(Mrs. Parichart Burns, Ph.D.	_)
		COMMITTEE MEMBER
(Professor Ian B. Ferguson, Ph.D.)
		DEPARTMENT HEAD
(Associate Professor Poonpipop Kasemsap, Ph.D.)
APPR	OVED BY THE GRADUATE SCHOOL ON	
		DEAN
	(Associate Professor Gunjana Theeragool, D).Agr)

THESIS

CHARACTERIZATION OF MYB TRANSCRIPTION FACTORS AND ANTHOCYANIN BIOSYNTHESIS GENES OF MANGOSTEEN FRUIT DURING RED COLOURATION

YOSSAPOL PALAPOL

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy (Horticulture) Graduate School, Kasetsart University 2009 Yossapol Palapol 2009: Characterization of MYB Transcription Factors and Anthocyanin Biosynthesis Genes of Mangosteen Fruit during Red Colouration. Doctor of Philosophy (Horticulture), Major Field: Horticulture, Department of Horticulture. Thesis Advisor: Professor Saichol Ketsa, Ph.D. 240 pages.

The colour of mangosteen (Garcinia mangostana L.) fruit changes from green to purple black after harvest as the fruit ripening advances. The relationships between anthocyanin composition and content during colour development and fruit maturity and postharvest quality were determined. Fruit at different stages of maturity (light greenishyellow with 5% scattered pink spots to purple black) were harvested and kept at 25° C (85-90% RH). Fruit from each maturity stage all developed to the final purple black stage. During the postharvest period, hue values and pericarp firmness decreased significantly, while soluble solids content increased concomitant with a decrease in titratable acidity (stage 4-6). Anthocyanin content in the outer pericarp was higher than in the inner pericarp and increased to a maximum at the final stage. Sensory evaluation and fruit quality (hue values, soluble solids and titratable acidity) of fruit harvested at the different stages did not differ once the fruit had finally developed to the purple black stage. Anthocyanins in the outer pericarp mainly consisted of five compounds, identified by HPLC/MS as cyanidin-sophoroside, cyanidin-glucoside, cyanidin-glucosidepentoside, cyanidin-glucoside-X, cyanidin-X₂ and cyanidin-X, where X denotes an unidentified residue of m/z 190, a mass which did not correspond to any common sugar residue. Cyanidin-3-sophoroside and cyanidin-3-glucoside were the major compounds that increased with fruit colour development. In all plant species previously studied, the anthocyanin pathway is co-ordinatively regulated by transcription factors of the MYBsuper family. Three full-length mangosteen MYB transcription factors (GmMYB1, GmMYB7 and GmMYB10) and all the anthocyanin biosynthesis genes (GmPal to GmUFGT) were characterized. Sequence analysis at the protein level of the R2R3-MYB transcription factor family showed GmMYB10 had a high degree of similarity with production of anthocyanin pigment1 (PAP1) in Arabidopsis and as well as sequences from other plant species related to the elevation of anthocyanin pigmentation. In transient transactivation assays, GmMYB10, co-expressed with AtbHLH2, strongly activated the GmDFR and AtDFR promoters. Transcript levels of GmMYB10 and *GmUFGT* were highly abundant with onset of pigmentation and subsequently during red colouration. Our results suggest that *GmMYB10* plays an important role in regulating anthocyanin biosynthesis both on the tree and after harvest, while *GmUFGT* may be a key biosynthetic gene in mangosteen pigmentation. The expression patterns of *GmMYB10* and *GmUFGT* correlated with ethylene production that increased linearly until stage 5 (dark purple) and decreased thereafter. 1-Methycyclopropene (1-MCP) and low temperature storage (15°C) clearly delayed red colouration with resulting downregulation of GmMYB10. These results suggest that the effect of ethylene on anthocyanin biosynthesis may be via the regulation of *GmMYB10* expression.

/ /

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my supervisor, Professor Dr. Saichol Ketsa for valuable advice and supervision, critically reviewing the manuscript and his encouragement throughout the course of my Ph.D. studies. I also wish to express my sincere appreciation to Professor Dr. Ian B. Ferguson, Dr. Andrew C. Allan, Assistant Professor Dr. Lop Phavaphutanon and Dr. Parichart Burns for their kindly suggestions, comments and assistance which were essential for the completion of this thesis. I greatly appreciate their advice, insight and perspectives.

I also express my gratitude to Kui Lin-Wang and all members in the Gene Discovery and Function team and everyone in the Fruit Genomic Group, particularly Sarah Johnston for her experience in real-time PCR, David Stevenson and Janine Cooney for anthocyanin analysis, and the staff of Plant & Food Research, New Zealand for friendship and kind assistance and support throughout the year.

I would like to thank the staff of Postharvest Technology Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand for their hospitality and facilitating the instruments and materials during the research.

I am indebted to the Thailand Research Fund grant number PHD/00210/2547 and Commission on Higher Education, Ministry of Education for awarding me a scholarship to undertake this study and for the financial support by Postharvest Technology Innovation Center, which is part of a collaborative programme with Plant & Food Research, Mt Albert Research Centre, Auckland, New Zealand.

Finally, I express my special appreciation to my family, particularly my parents and my grandparent whose constant encouragement and support contributed enormously throughout my study.

Yossapol Palapol May 2009

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xviii
INTRODUCTION	1
OBJECTIVES	4
LITERATURE REVIEW	5
MATERIALS AND METHODS	31
THE EXPERIMENTAL TIME AND PLACES	55
RESULTS	56
DISCUSSION	128
CONCLUSION	138
LITERATURE CITED	139
APPENDIX	162

LIST OF TABLES

Table

1	Anthocyanin/flavonoid pigmentation biosynthetic and	
	regulatory genes characterized in different plant species	20
2	Degenerate primers for fragment amplification of MYB	
	transcription factors and anthocyanin biosynthesis genes	40
3	PCR conditions for fragment amplification of MYB	
	transcription factors and anthocyanin biosynthesis genes	40
4	Specific primers for 5' and 3' RACE and real-time PCR	42
5	PCR reactions for primary condition of 5' and 3' RACE	42
6	PCR conditions for primary condition of 5' and 3' RACE	43
7	PCR reactions for secondary reaction of 5' and 3' RACE	43
8	PCR conditions for secondary reaction of 5' and 3' RACE	44
9	Specific primers for full-length amplification of MYB	
	transcription factor genes	44
10	PCR conditions for full-length amplification of MYB	
	transcription factor genes	45
11	PCR conditions for primary reaction of genome walking	48
12	PCR conditions for secondary reaction of genome walking	49
13	Antibiotics for Agrobacterium culture	51
14	Time, quality and sensory evaluation of mangosteen fruit	59
15	Anthocyanin contents (mg kg ⁻¹) in outer pericarp of mangosteen	
	during colour development after harvest (stage 1 to 6)	66
16	Anthocyanin contents (mg kg ⁻¹) in inner pericarp of mangosteen	
	during colour development after harvest (stage 1 to 6)	67

Appendix Table

1	Colour development (L*, a*, b* and hue value) of mangosteen fruit harvested at stage 1 compared to stage 0	163
2	Fruit colour (L*, a*, b* and hue value) of mangosteen at stage 6 developed from 6 different maturity stages	164
3	Ethylene production (mg kg ⁻¹ s ⁻¹) of mangosteen fruit at stage 6 developed from 6 different maturity stages	165
4	Total anthocyanin content (mg kg ⁻¹) of mangosteen pericarp at stage 6 developed from 6 different maturity stages	166
5	Fruit colour (hue value) of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M)	167
6	Colour index (score) of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ L L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M)	168
7	Pericarp firmness (N) of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ L L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M)	169
8	Total anthocyanin content (mg kg ⁻¹) of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for	
	12 h (E+M)	170

Appendix Table

9	Fruit colour (hue value) of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C	171
10	Colour index (score) of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C	172
11	Pericarp firmness (N) of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C	173
12	Total anthocyanin content (mg kg ⁻¹) of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C	174
13	<i>Cis</i> -acting element in <i>GmDFR</i> 5' flanking region using PLACE database	175
14	<i>Cis</i> -acting element in <i>GmLDOX</i> 5' flanking region using PLACE database	185
15	<i>Cis</i> -acting element in <i>GmUFGT</i> 5' flanking region using PLACE database	188
16	<i>Cis</i> -acting element in <i>GmDFR</i> 5' flanking region using PlantCARE database	195
17	<i>Cis</i> -acting element in <i>GmLDOX</i> 5' flanking region using PlantCARE database	205
18	<i>Cis</i> -acting element in <i>GmUFGT</i> 5' flanking region using PlantCARE database	208
19	The relative expression of mangosteen anthocyanin biosynthesis and MYB transcription factor genes during colour development in fruit harvested from the tree	215
20	The relative expression of mangosteen anthocyanin biosynthesis and MYB transcription factor genes during colour development in fruit after harvest	216

Appendix Table

Appendix Table

27	The relative expression of <i>LDOX</i> of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ L L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M)	223
28	The relative expression of <i>UFGT</i> of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M)	224
29	The relative expression of <i>MYB1</i> of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M)	225
30	The relative expression of <i>MYB7</i> of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M)	226
31	The relative expression of <i>MYB10</i> of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M)	227
32	The relative expression of <i>PAL</i> of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C	228
33	The relative expression of <i>CHS</i> of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C	228
34	The relative expression of <i>CHI</i> of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C	229

Appendix Table

35	The relative expression of $F3H$ of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C	229
36	The relative expression of $F3'H$ of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C	230
37	The relative expression of <i>DFR</i> of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C	230
38	The relative expression of <i>LDOX</i> of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C	231
39	The relative expression of $UFGT$ of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C	231
40	The relative expression of <i>MYB1</i> of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C	232
41	The relative expression of <i>MYB7</i> of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C	232
42	The relative expression of <i>MYB10</i> of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C	233

LIST OF FIGURES

Figure

1	Basic structure of anthocyanin pigments in which R_x could be H (A), OH (B) or OCH ₃ (C) depending on the pigment considered. The most commonly accepted nomenclature numbering carbons is indicated inside the structure. The most important naturally- occuring anthocyanidins in are underlined	9
2	Anthocyanin biosynthesis pathway. (A) General phenylpropanoid metabolism. Enzymes involved: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumaroyl:CoA ligase. (B) Specific steps of anthocyanin biosynthesis. Enzymes involved: CHS, chalcone synthase; CHI, chalcone isomerase; F3H, F3'H, F3'5'H, flavanol hydroxylase; DFR, dihydroflavonol-4- reductase; ANS, anthocyanidin synthase; 3GT, UFGT, UDP glucose-flavonoid 3- <i>o</i> -glucosyl transferase	15
3	Bioluminescent reaction catalyzed by firefy and Renilla luciferases	30
4	Colour development of mangosteen fruit	33
5	Pericarp separation of mangosteen fruit	33
6	Functional testing using dual -luciferase assays	52
7	Colour development (L*, a*, b* and hue value) of mangosteen fruit harvested at stage 1 compared to stage 0. Data are means \pm SE of three replications	57
8	Fruit colour (L*, a*, b* and hue value) of mangosteen at stage 6 developed from 6 different maturity stages. Data are means \pm SE of three replications	58
9	Ethylene production of mangosteen fruit harvested at stage 1. The numbers of 1 to 6 in the graph represent maturity stages of mangosteen fruit at stages 1 to 6. Data are means of 10 fruit \pm SE	61
10	Total anthocyanin content and hue value of mangosteen fruit harvested at stage 1 compared to stage 0. Data are means \pm SE of	(2)
	three replications	63

Figure

11	Total anthocyanin content of mangosteen pericarp at stage 6 developed from 6 different maturity stages. Data are means \pm SE of three replications	64
12	Anthocyanin profiles in outer pericarp of mangosteen fruit during colour development after harvest and compared to stage 0. Peak identity was as follow: 1) cyanidin-sophoroside, 2) cyanidin-glucoside-pentoside, 3) cyanidin-glucoside and cyanidin-glucoside-X (overlapping peak), 4) cyanidin- X_2 , and 5) cyanidin-X. X denotes a residue of m/z 190 which is unified atomic mass units	65
13	Light microscopy of outer pericarp (skin) of mangosteen fruit. The bar in the outer pericarp section shows 0.1 mm. Numbers refer the maturity stage of the fruit	68
14	Mangosteen fruit at day 7 treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M)	70
15	Change in fruit colour (hue value) and colour index (score) of fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ L L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M). Data are means <u>+</u> SE of three replications	71
16	Change in pericarp firmness treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ L L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M). Data are means <u>+</u> SE of three	
	replications	72

ix

Figure

17	Change in ethylene production of fruit and total anthocyanin content of mangosteen pericarp (TAC) treated with ethylene and	
	the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L ⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M). Data are means <u>+</u> SE of five replications for ethylene production and three replications for total anthocyanin content	73
18	Mangosteen fruit at day 7 stored at 25° C (control) and 15° C for 7 days then transferred to 25° C	75
19	Change in fruit colour (hue value) and colour index (score) of fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25° C (arrows). Data are means <u>+</u> SE of three replications	76
20	Change in pericarp firmness of fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C (arrow). Data are means <u>+</u> SE of three replications	77
21	Change in ethylene production of fruit and total anthocyanin content of mangosteen pericarp (TAC) stored at 25° C (control) and 15° C for 7 days then transferred to 25° C (arrows). Data are means <u>+</u> SE of three replications	78
22	Nucleotide sequence of the gene encoding MYB1 from mangosteen with its deduced amino acid sequence. The bold letters indicate the translation start site (ATG)	81

Figure

23	Protein sequence alignment of GmMYBs with anthocyanin MYB regulators from other plants. Arrows indicate the specific residues that contribute to a motif implicated in bHLH co-factor interaction in <i>Arabidopsis</i> (Zimmermann <i>et al.</i> , 2004). Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in GenBank database are as follows; AmROSEA1, ABB83826; GhMYB10, CAD87010; LeANT1, AAQ55181; MdMYB10, DQ267896; AtPAP1, CAB09230; AtPAP2, NP176813; PhAN2, AAF66727; VvMYBA1, AB242302; ZmC1, P10290; FaMYB1, AF401220; GmMYB1, FJ197135; GmMYB7, FJ197136; GmMYB10, FJ197137	82
24	Phylogenetic relationship of <i>Arabidopsis</i> MYB transcription factors and anthocyanin-related MYBs from other plants with mangosteen MYBs. The amino acid sequence of <i>GmMYBs</i> marked with the red dot were clustered and showed the subgroup member as the label. Subgroup numbers are those described by Stracke <i>et al.</i> (2001) and are shown as a suffix after most MYB descriptors. Sequences were aligned using AlignX (opening=15, extension=0.3) in Vector NTI 10.0. The tree was constructed using MEGA 3.1 with minimum evolution phylogeny test and 1,000 bootstrap replicates	83
25	Nucleotide sequence of the gene encoding MYB7 from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG)	84
26	Nucleotide sequence of the gene encoding MYB10 from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG)	85
27	Nucleotide sequence of the gene encoding PAL from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG)	90

Figure

28	 Protein sequence alignment of mangosteen PAL with other PAL proteins. The active site consensus sequence is underlined. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; <i>Arabidopsis</i>, AAP59438; carrot, BAG31930; grape, ABM67591; pear, ABB70117; sweet cherry, AAF40224; mangosteen, ACM62741 	92
29	Nucleotide sequence of the gene encoding CHS from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG)	94
30	Protein sequence alignment of mangosteen CHS with other CHS proteins. The active site consensus sequence is underlined. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; <i>Arabidopsis</i> , NP_196897; apple, BAB92996; grape, BAB84112; petunia (chsA), CAA32731; petunia (chsD), CAA32733; petunia, (chsJ), CAA32737; strawberry, AAX99413; mangosteen, ACM62742	95
31	Nucleotide sequence of the gene encoding CHI from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG)	97
32	Protein sequence alignment of mangosteen CHI with other CHI proteins. The active site consensus sequences are indicated by arrows. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; <i>Arabidopsis</i> , NP_568154; grape, CAA53577; pear, ABQ08639; petunia (chiA), AAF60296; petunia (chiB), CAA32730; Populus, NP_00222502(cmemorate accession access	0.0
	Ar_002525920; mangosteen, ACM62/43	- 98

Figure

33	Nucleotide sequence of the gene encoding F3H from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG)	99
34	Protein sequence alignment of mangosteen F3H with other F3H proteins. Five motifs conserved in flavanone 3-hydroxylases are underlined. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; Arabidopsis, AAC49176; apple, BAB92997; black raspberry, ABY84868; citrus, BAA36553; grape, ABM67589; kiwifruit, ACL54955; petunia, AAC49929; strawberry, AAU04792; mangosteen, ACM62745	100
35	Nucleotide sequence of the gene encoding F3'H from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG)	101
36	Protein sequence alignment of mangosteen F3'H with other F3'H proteins. The proline-rich region, oxygen-binding pocket and heme-binding region are underlined. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; <i>Arabidopsis</i> , AAG16746; antirrhinum, ABB53383; grape, CAI54278; pelargonium AAG49315; petunia AAD56282; mangosteen, ACM62746	103
37	Nucleotide sequence of the gene encoding DFR from mangosteen with its deduced amino acid sequence. The underlined letters	
	indicate the translation start site (ATG)	104

Figure

38	Protein sequence alignment of mangosteen DFR with other DFR proteins. The putative NADP-binding domain and substrate specificity domain are underlined. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; <i>Arabidopsis</i> , AAA32783; apple, AAD26204; citrus, AAS00611; grape, CAA53578; pear, AAO39819; petunia, CAA56160; strawberry, AAC25960; mangosteen, ACM62744	105
39	Nucleotide sequence of the gene encoding LDOX from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG)	106
40	Protein sequence alignment of mangosteen LDOX with other LDOX proteins. Arrows indicate conserved His and Asp residues as required for ferrous-iron coordination, and Arg residue of putative binding site of 2-oxoglutarate. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; <i>Arabidopsis</i> , CAD91994; apple, BAB92998; citrus, AAT02642; grape, BAC07545; peach, ABX89943; strawberry, AAU12368 ; mangosteen, ACM62747	107
41	Nucleotide sequence of the gene encoding UFGT from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG)	108
42	Protein sequence alignment of mangosteen UFGT with other UFGT proteins. The underline indicates the common motif found in glycosyltransferases. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; <i>Arabidopsis</i> , NP_197207; apple, AAD26203; citrus, AAS00612; grape, BAB41021; petunia BAA89008;	110
	strawberry, AAU09442; mangosteen, AUNI62/48	110

xiv

Figure

43	Nucleotide sequence of <i>GmDFR</i> 5' flanking region. The underline letters indicate ethylene responsive elements (E4, AWTTCAAA and ATTTNAAA), and bold letters indicate the translation start site (ATG)	113
44	Nucleotide sequence of <i>GmLDOX</i> 5' flanking region. The underline letters indicate an ethylene responsive element (ATTTNAAA) and bold letters indicate the translation start site (ATG)	115
45	Nucleotide sequence of <i>GmUFGT</i> 5' flanking region. The underline letters indicate an ethylene responsive element (ATTTNAAA) and bold letters indicate the translation start site (ATG)	116
46	Transient activation of the mangosteen and <i>Arabidopsis</i> DFR promoter by <i>GmMYBs</i> , <i>AtPAP1</i> , and <i>AtbHLH2</i> transcription factors. All TFs were co-infiltrated with DFR-Luc promoter in transient tobacco transformation assays. The dual luciferase assay shows promoter activity expressed as a ratio of DFR promoter luciferase (LUC) to 35S Renilla (REN), where an increase in activity equates to an increase in LUC relative to REN. Data are mean \pm SE of four replicate reactions. The bars with the same letters are not significantly different (<i>P</i> > 0.05) using DMRT	118
47	Expression profiling of mangosteen anthocyanin biosynthetic and MYB transcription factor genes during colour development. Real- time PCR was used to analyze <i>GmPAL</i> (a), <i>GmCHS</i> (b), <i>GmCHI</i> (c), <i>GmF3H</i> (d), <i>GmF3'H</i> (e) , <i>GmDFR</i> (f), <i>GmLDOX</i> (g), <i>GmUFGT</i> (h), <i>GmMYB1</i> (i), <i>GmMYB7</i> (j) and <i>GmMYB10</i> (k) expression patterns. Each column height indicates relative mRNA abundance of mature green fruit (stage 0) which was set to 1. All real time-PCR reactions were normalized using the Cp value corresponding to a mangosteen ELF gene. Data are mean + SE of	
	three replicate reactions	120

Figure

48	Semi-quantitative RT-PCR of MYB10 transcription factor genes during colour development	121
49	Expression analysis of anthocyanin biosynthetic genes in mangosteen fruit. Fruit were treated with air (control), 200 μ L L ⁻¹ ethylene for 24 h (ethylene), 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M). The sample of air (control) at harvest time (day 0) was set at 1. Data are mean <u>+</u> SE from three replications	122
50	Expression analysis of MYB transcription factor genes in mangosteen fruit. Fruit were treated with air (control), 200 μ L L ⁻¹ ethylene for 24 h (ethylene), 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1-MCP for 12 h (E+M). The sample of air (control) at harvest time (day 0) was set at 1. Data are mean <u>+</u> SE from three replications	123
51	Semi-quantitative RT-PCR of MYB10 transcription factor genes during colour development. Fruit were treated with air (control), 200 μ L L ⁻¹ ethylene for 24 h (ethylene), 1 μ g L ⁻¹ 1-MCP for 12 h (1-MCP treatment) and 200 μ l L ⁻¹ ethylene for 24 h +1 μ g L ⁻¹ 1- MCP for 12 h (E+M)	124
52	Expression analysis of anthocyanin biosynthetic genes in mangosteen fruit. Fruit were stored at 25°C (control) and 15°C for 7 days then transferred to 25°C (arrows). The sample of 25°C at harvest time (day 0) was set at 1. Data are means \pm SE of three replications	125
53	Expression analysis of MYBs transcription factor genes in mangosteen fruit. Fruit were stored at 25° C (control) and 15° C for 7 days then transferred to 25° C (arrows). The sample of 25° C at harvest time (day 0) was set at 1. Data are means <u>+</u> SE of three replications	126
	1 op nou no no	120

Figure Page 54 Semi-quantitative RT-PCR of MYB10 transcription factor genes during colour development. Fruit were stored at 25°C (control) and 15°C for 7 days then transferred to 25°C. Data are means \pm SE of three replications 127 55 Model of anthocyanin biosynthesis in mangosteen fruit 137 **Appendix Figure** 1 GeneRacer protocol (Invitrogen, USA) 234 2 pGEM-T Easy vector (Promega) 235 3 Genome Walker protocol (Clontech, USA) 236 4 T-DNA region of the transient expression vector pGreenII 0800-LUC 237 5 T-DNA region of the transient expression vector pGreenII 62 SK 237 6 LC-MS of anthocyanin in outer pericarp at stage 6 of mangosteen fruit 238

xvii

LIST OF ABBREVIATIONS

1-MCP	=	1-Methylcyclopropene
ANS	=	Anthocyanidin synthase
bHLH	=	Basic helix-loop-helix
BLAST	=	Basic local alignment search tool
bp	=	Base pairs
CaMV	=	Cauliflower mosaic virus
cDNA	=	Complementary DNA
cds	=	Coding sequence
CHI	=	Chalcone isomerase
CHS	=	Chalcone synthase
Ср	=	Crossing point
Ct	=	Cycle threshold
DEPC	=	Diethyl pyrocarbonate
DFR	=	Dihydroflavonol-4-reductase
DNA	=	Deoxyribonucleic acid
DNase	=	Deoxyribonuclease
dNTPs	=	Deoxynucleotide triphosphate (s)
EDTA	=	Ethylene diamine tetraacetic acid
ELF	=	Elongation factor 1 alpha
F3H	=	Flavanone-3-hydrogenase
F3'H	=	Flavonoid 3'-hydroxylase
GT/UFGT	=	UDP glucose-flavonoid 3-o-glucosyl transferase.
HPLC	=	High-performance liquid chromatography
LB medium	=	Luria-Bertani medium
LC-MS	=	Liquid chromatography-mass spectrometry
LDOX	=	Leucoanthocyanidin dioxygenase
NCBI	=	National Center for Biotechnological Information
PAL	=	Phenylalanine ammonia lyase
PCR	=	Polymerase chain reaction
PERE	=	Primary ethylene response element

LIST OF ABBREVIATIONS (Continued)

PVPP	=	Polyvinyl polypyrolidone
RACE	=	Rapid amplification of cDNA ends
RH	=	Relative humidity
RNA	=	Ribonucleic acid
RT-PCR	=	Reverse transcriptase polymerase chain reaction
SDS	=	Sodium dodecyl sulfate
TF	=	Transcription factor
UTR	=	Untranslated Region
X-Gal	=	5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside

CHARACTERIZATION OF MYB TRANSCRIPTION FACTORS AND ANTHOCYANIN BIOSYNTHESIS GENES OF MANGOSTEEN FRUIT DURING RED COLOURATION

INTRODUCTION

Mangosteen (*Garcinia mangostana* L.) is well known as the 'Queen of Fruit' due to its quality in terms of colour, shape and pleasant flavor. It is an important economic fruit and grown widely in the east and south of Thailand. In 2008, the amount of export was 44,271 tons with value of 744 million baht (Office of Agriculture Economics, 2009). However, the export of mangosteen fruit is limited as a result of many problems associated with low yield and low fruit quality, including internal disorders, flesh translucence, gamboges, wrinkled stylar end and pericarp hardening.

For mangosteen, fruit colour is a primary attribute used for harvesting as well as marketing. It strongly influences consumer acceptance and sale. Fruit colour is also a major criterion for fruit maturity (Paull and Ketsa, 2004; Palapol *et al.*, 2009a). The fruit have a light greenish-yellow skin with scattered pinkish spots which develop to dark purple but do not ripen to full flavor if harvested. It is generally accepted that the earliest harvest stage for high quality fruit is when the skin has distinct irregular, pink-red spots over the whole of the fruit surface. Fruit are at the edible ripe stage, when the skin has darkened to reddish-purple, when no latex remains in the skin and when the flesh segments separate easily from the skin (Tongdee and Suwanagul, 1989). In contrast, Noichinda (1992) reported ripe fruit having a pale yellow to reddish purple colour, as the best eating quality fruit, while a light green colour implied inferior flavor. In addition, Tongdee and Suwanagul (1989) suggested that fruit at stage 2 to 4 (light pinkish yellow with distinct irregular pink-red spots covering the entire fruit to red to reddish brown) are suitable for export. However, fruit at these stages rapidly turn to black and are considered unattractive and undesirable. In order to fulfill consumer demand, these problems should be solved.

The development of pericarp colour of mangosteen fruit is involved in anthocyanin pigmentation (Du and Francis, 1977). Anthocyanins are water-soluble flavonoid pigments that are found in higher plants and are responsible for red, blue and purple colours of many fruit, vegetables, flowers and seeds. Anthocyanin biosynthesis involves a common branch of the flavonoid pathway and has been intensively investigated in many plants including Arabidopsis, petunia, maize and grape. The regulation of anthocyanin biosynthesis is mainly at the level of transcriptional regulation of the structural genes and transcription factors (TFs) (Winkel-Shirley, 2001). The MYB transcription factor and anthocyanin biosynthetic genes have been characterized from many fruit. In grape, VvMYBA1 and VvMYBA2 regulate the expression of the UFGT gene (Kobayashi et al., 2002, 2004; Walker et al., 2007). In a red fleshed apple variety, Espley et al. (2007) found that MdMYB10 controlled apple anthocyanin production in fruit and leaves. Analysis of transcript levels in apple fruit, indicated that most of the genes in the biosynthetic pathway (CHS, F3H, DFR, ANS and UFGT) are co-ordinately expressed during anthocyanin accumulation in apple skin (Honda et al., 2002). The expression pattern in apple differs from that in grape (Vitis vinifera and V. labruscana), in which UFGT induction during anthocyanin accumulation is a key regulatory step in colouration (Boss et al., 1996; Kobayashi et al., 2001). Anthocyanin accumulation can be influenced by many factors such as light, temperature and ethylene (Saure, 1990). Ratanamarno et al. (2005) studied the effects of light and temperature on anthocyanin content in mangosteen fruit. They found that sunlight had no significant effect on phenylalanine ammonia lyase (PAL) activity and anthocyanin content in all stages whereas the PAL activity was affected by temperature. Ethylene is a plant hormone that regulates many mechanisms in fruit ripening (Abeles et al., 1992). Studies in grapes and apple suggested that the ethylene induces colour development through accelerating anthocyanin biosynthesis (Boss et al., 1996; Kim et al., 2000; El-Kereamy et al., 2003; Jeong et al., 2004). However, there is little information

regarding the colour development after harvest and anthocyanin biosynthesis in mangosteen.

Most reports on the molecular control of fruit colour have focused on fruit crops that develop red colour on the tree. Mangosteen fruit can develop full pigmentation both on the tree and after harvest (off-tree) within seven days. The fruit is a typical climacteric fruit in that ethylene affects fruit ripening (Palapol *et al.* 2009a). Therefore this fruit provides a system for investigating the control of anthocyanin synthesis in relation to ethylene. The ethylene action inhibitor, 1methycyclopropene (1-MCP), and low temperature storage were used to control anthocyanin biosynthesis during colour development of mangosteen fruit. This thesis focuses on fruit quality and anthocyanin pigmentation. It examines anthocyaninrelated genes, both those associated with the biochemical pathway and R2R3 MYB transcription factors during fruit colour development.

OBJECTIVES

1. To study colour development, quality and postharvest changes of mangosteen fruit harvested at different maturity stages.

2. To study factors controlling colour development in mangosteen fruit.

3. To study anthocyanin biosynthesis of mangosteen pericarp.

4. To clone and characterize the controlling MYB transcription factors and anthocyanin biosynthesis genes of mangosteen fruit during red colouration.

LITERATURE REVIEW

1. Mangosteen

Mangosteen (Garcinia mangostana Linn.) is one of the most admired tropical fruits and has been known as 'Queen of Fruits' (Popenoe, 1974) due to its beautiful purple colour and delicious flavor. The edible aril of mangosteen fruit is white, soft and juicy with a sweet, slightly acid taste and pleasant aroma (Martin, 1980). Apart from the aril being consumed as a dessert fruit, the dried fruit rind, which contains tannin and xanthones, is used as a native anti-inflammatory and anti-diarrhea medicine and for treatment of dysentery (Yapwattanaphun et al., 2002). Mangosteen is an important economic fruit in Thailand and its production and export tend to increase every year, although this is very limited due to slow growth and internal disorder. In addition, Yapwattanaphun et al.(2002) reported that several Garcinia species in Thailand such as Garcinia schomburgkiana (Madan), Garcinia dulcis (Maphuut), Garcinia cowa (Chamuang), Garcinia atroviridis (Som Khaek), Garcinia hanburyi (Rong), Garcinia bancana (Chamuang paa), Garcinia xanthochymus (Mada Luang), Garcinia thorelii (Mada Kheenon), Garcinia hombroniana (Waa), Garcinia speciosa (Phawaa).have potential to be improved as horticultural crops for commercial use as timber, gum, and various other natural products

Mangosteen fruit is at the edible or ripe stage when the pericarp has darkened to reddish-purple and when no latex remains in the pericarp and the aril segments separate easily from the pericarp. The globe-shaped and smooth berry is 4 to 7 cm (1.6 to 2.8 inches) across, with a persistent calyx. The pericarp is 6 to 10 mm (0.24 to 0.4 inches) thick and turns purple during ripening. It contains a bitter, yellowish latex and purple-staining juice. The edible white aril has 4 to 8 segments with 1 or 2 larger segments containing apomictic seeds. There is no true seed. Fruit development takes 100-120 days from anthesis and up to 180 days in cooler areas or at high elevations (Nakasone and Paull, 1998; Paull and Ketsa, 2004).

Skin colour is the major criterion for fruit maturity. A fully mature fruit is identified by the occurrence of red lines appearing on the outer pericarp. The number of lines, so called 'bloodlines', increase as the fruit becomes mature. Alternatively, the maturity can be gauged by the way in which the fruit separates from the peduncle stalk. Fully mature fruit, when picked, will detach easily and clearly from the point of stalk attachment. After picking, metabolic changes continue within the fruit. (Kanchanapoom and Kanchanapoom, 1998).

At present, there is no universal maturity index. Malaysia, Thailand and Australia, all have developed their own indices for harvesting. In Thailand, the changes in skin colour are divided into seven stages (Tongdee and Suwanagul, 1989) as follows:

Stage 0: Pericarp uniformly yellowish white or yellowish white with light green tinge or grayish spotting. Yellowish latex in pericarp very severe. Pericarp and aril not separable.

Stage 1: Pericarp light greenish yellow with scattered pinkish spots. Latex in pericarp severe. Pericarp and aril not separable.

Stage 2: Pericarp light pinkish yellow with distinct irregular pink-red spots covering the entire fruit. Latex in pericarp moderate. Pericarp and aril separation difficult to moderate.

Stage 3: Pericarp background uniformly pinkish, spottings not as distinct as in stage 2. Latex in pericarp slight to very slight. Pericarp and aril separation moderate.

Stage 4: Pericarp red to reddish brown, some with purple tinge. Latex in pericarp very slight to none. Pericarp and aril separate readily.

Stage 5: Pericarp darkened to reddish purple. No latex remain in pericarp. Complete and easy separation of pericarp and aril. Stage 6: Pericarp purple, dark purple or black, with or without purple colouration remain. No latex in pericarp. Complete and easy separation of pericarp and aril.

2. Anthocyanins

Most of the bright-red and blue colours found in higher plants are anthocyanins. Anthocyanins (from the Greek anthos, a flower, and kyanos, dark blue) are flavonoids commonly found in nature. Their structure is based on a C15 skeleton comprised of two phenyl rings (called the A- and B-ring) connected by a threecarbon bridge that usually forms a third ring (called C-ring) (Figure 1A). The basic chemical 'backbones' that make up the anthocyanins are called anthocyanidins or aglycones, because they have no sugars attached to aromatic rings (Boss and Davies, 2001). Anthocyanins are highly diverse in nature and produced by the chemical combination of the basic C6-C3-C6 anthocyanin structure with sugars and/or acyl groups. The most abundant anthocyanin group has 17 carbons. Their differences are in the number and position of the hydroxyl and/or methyl ether groups. In nature, the most common anthocyanidins are pelargonidin, cyanidin, peonidin, delphinidin, malvidin and petunidin (Figure 1B and 1C). These aglycones differ in the number of hydroxyl and methoxyl groups in the B-ring of the flavylium cation (Delgado-Vargas and Paredes-lopez, 2002; Davies, 2004).

The stability of anthocyanins is increased considerably by the addition of a glycoside. Anthocyanins with a β -glucosidic linkage are mostly formed in fruit. Each anthocyanidin can vary in the number and type of sugar substitution. In monoglycosides, glycosylation generally occurs at the 3 position on the C-ring, and the most common substitutes are glucose, arabinose or galactose. In diglycosides, either disaccharide can attach at position 3 e.g. 3-glucoside, or two monosaccharides can be linked to different hydroxyls e.g. 3, 5-diglucosides. Triglycosides are rare in fruit. Anthocyanins can be acylated with either organic or phenolic acids, which often contribute to their stability (Macheix *et al.*, 1990).

Anthocyanins are water-soluble pigments and accumulate in the vacuoles of plant cells. Their structures produce a great range of colours from scarlet to blue that are clearly represented in fruit, flowers, leaves and storage organs. The main anthocyanins in fruit are glycosides of six anthocyanidins. Cyanidin is the most common anthocyanidin (Macheix *et al.*, 1990). The composition of flavonoids in different fruit species varies greatly. In berries, the anthocyanin concentration correlates well with the darkness of the berry colour and hue (Rein, 2005). Du and Francis (1977) reported that mangosteen pericarp contains a substantial amount of red pigment. The major pigment is identified as cyanidin-3-sophoroside, while a minor pigment is identified as cyanidin-3-glucoside. Total anthocyanin content in the pericarp at stage 6 ranged from 84 to 105 mg/100 g fresh weight (Ratanamarno, 1999). Anthocyanin content increased accordingly and had the highest content at stage 6 (Ratanamarno *et al.*, 2005).

$ \begin{array}{c} A \end{array} \qquad \begin{array}{c} Flavylium \ cation \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & $				
В	4 3 4			
Name	Hydroxyl group in	Colour		
Apigeninidin	5, 7, 4	Orange		
Aurantinidin	3, 5, 6, 7, 4	Orange		
<u>Cyanidin</u>	3, 5, 7, 3', 4'	Magenta and crimson		
<u>Delphynidin</u>	3, 5, 7, 3', 4', 5'	Purple, mauve and blue		
8-Hydroxycyanidin	3, 5, 6, 7, 3', 4'	Red		
Luteolinidin	5, 7, 3', 4'	Orange		
<u>Pelargonidin</u>	3, 5, 7, 4	Orange, salmon		
Triacetidin	5, 7, 3', 4', 5'	Red		
C				
Name	Hydroxyl group in	Colour		
Capensinidin	5, 3', 5'	Bluish red		
Europenidin	5, 3'	Bluish red		
Hirsutidin	7, 3', 5'	Bluish red		
<u>Malvidin</u>	3, 5'	Purple		
5-Methylcyanidin	5	Orange-red		
<u>Peonidin</u>	3'	Magenta		
<u>Petunidin</u>	3'	Purple		
Pulchellidin	5	Bluish red		

Figure 1 Basic structure of anthocyanin pigments in which R_x could be H (A), OH (B) or OCH₃ (C) depending on the pigment considered. The most commonly accepted nomenclature numbering carbons is indicated inside the structure. The most important naturally-occurring anthocyanidins are underlined.

Ređ

7

Risinidin

Source: Delgado-Vargas and Paredes-lopez (2002)

3. Anthocyanin biosynthesis

The anthocyanin branch of the flavonoid biosynthetic pathway has been extensively studied in horticultural and cultivated plant species. The precursors of anthocyanins are produced by the glycolytic pathway (phosphoenolpyruvate) and the pentose-phosphate pathway/Calvin cycle. Two main parts constitute the anthocyanin biosynthesis pathway: (1) precursors of general phenylpropanoid metabolism (Figure 2A and 2B) and (2) specific steps toward flavonoid biosynthesis (Figure 2B). Phenylalanine is converted to *p*-coumaryl-CoA in a process involving three enzymes: phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumaryl-CoA-ligase (4CL). *p*-Coumaryl-CoA is the main precursor of flavonoid, lignin and other phenylpropanoids (Figure 2A). p-Coumaric acid is used to construct the C-6-C-3 (B aromatic rings and carbons corresponding to the C-ring) portion of the basic flavonoid structure (Figure 2B). PAL activity increases concomitantly with accumulation of anthocyanin in many plants, including apple (Lister et al., 1996, Macheix et al., 1990). However, the activity of PAL increases despite the absence of anthocyanin. It has been concluded that PAL is not a regulatory enzyme of anthocyanin formation (Ju et al., 1995, Wang et al., 2000). Sparvoli et al. (1994) isolated a partial cDNA encoding PAL from grapevine using an Antirrhinum PAL clone as a probe. Kumar and Ellis (2001) found two PAL genes in raspberry and RiPAL1 was associated with early fruit ripening events, whereas expression of RiPAL2 was correlated in later stages of flower and fruit development. The second part of the pathway flavonoids is involved in generating (Figure 2B).

3.1 Chalcone synthase (CHS)

Chalcone synthase is considered to be the key enzyme in flavonoid biosynthesis and catalyzes the condensation of three molecules of malonyl-CoA with 4-coumaryl-CoA to form the C_{15} compound; 2', 4', 6', 4 tetrahydroxychalcone (naringenin chalcone). Chalcones are the first flavonoids and direct precursors for other flavonoids. As can be deduced, acetyl-CoA provides ring A and the oxygen of the central pyran ring throughout malonyl-CoA (Heller and Forkmann, 1994; Holton and Cornish, 1995). The first CHS gene was isolated from parsley (Kreuzaler *et al.*, 1983). Sparvoli *et al.* (1994) isolated a *CHS* homologue from grape seedling and it is a small gene family. Goto-Yamamoto *et al.* (2002) found 3 genomic clones of chalcone synthase in grape (*CHS1, CHS2* and *CHS3*) which are expressed in different tissues and fruit development. Tsuda *et al.* (2004) examined the gene expression of six genes in the anthocyanin biosynthesis pathway of white and red peaches and a deep-red nectarine. The results suggest that *CHS* and *DFR* are the key regulatory genes in mature red peach and nectarine.

3.2 Chalcone isomerase (CHI)

After formation of the chalcone, many plants do not accumulate chalcones. Naringenin chalcone is rapidly isomerized by chalcone isomerase (CHI) to form the flavanone naringenin. Even in the absence of CHI, naringenin chalcone may spontaneously isomerise to form naringenin (Holton and Cornish, 1995). CHI mutants of aster and carnation cause their petals to be yellow in colour. For *Arabidopsis*, the CHI mutant causes change in seed coat colour (Forkmann and Heller, 1999), and also the fruit peel of tomato accumulates the yellow-coloured naringenin chalcone (Muir *et al.*, 2001). Almieda *et al.* (2007) reported that the *CHI* transcript level of 'Queen Elisa' strawberry during fruit development was highest in the turning stage and decreased at the red stage.

3.3 Flavonoid hydroxylation (F3H/F3'H/F3'5'H)

The subsequent hydroxylation in position C-3 of flavanones to dihydroflavonols has been demonstrated for a wide variety of plant species including *Petunia*, snapdragon, tomato and maize. The reaction is carried out by flavanone-3hydroxylase (F3H), a member of the 2-oxoglutarate-dependent dioxygenase family which is highly conserved among widely divergent plant species as shown by sequence comparison (Britsch *et al.*, 1993). F3H and F3'5'H belong to the cytochrome P450 super family and catalyze hydroxylation at the 3' and 3'5' positions of the B-ring of the flavonoid, respectively. The products are precursors for cyanidinbased anthocyanins (red) and delphinidin-based anthocyanins (blue to purple). cDNA clones of the F3'H and F3'5'H genes were first isolated from petunia. A mutation of F3H causes loss of activity and prevents the progression along the anthocyanin pathway. The mutants of *Petunia* and *Antirrhinum* have white flowers (Martin *et al.*, 1991; Britsch *et al.*, 1992). Using the snapdragon F3H clone to isolate grape homologues, Sparvoli *et al.* (1994) found the *F3'H* gene and the *F3'5'H* gene. In flowers, stems, tendrils and seeds of grape, they accumulated at a higher level of mRNA for *F3'H* than *F3'5'H*. The berry skin at the harvest stage accumulated a high transcript level of *F3'5'H* and a high level of delphinidin-based anthocyanins but small leaf accumulated prodelphinidin (Jeong *et al.*, 2006).

3.4 Dihydroflavonol 4-reductase (DFR)

Dihydroflavonol-4-reductase catalyzes the conversion of dihydrokaempferol, dihydroquercetin and dihydromyricetin into leucoanthocyanidins using NADPH as a co-factor (Kristiansen and Rohde, 1991; Delgado-Vargas and Paredes-lopez, 2002). These leucoanthocyanidins are the immediate precursors for anthocyanin synthesis. DFR genes have been isolated from many plants such as grape (Sparvoli *et al.*, 1994; Gollop *et al.*, 2002) and apple (Honda *et al.*, 2002). For strawberry, the DFR gene is a mainly involved in anthocyanin biosynthesis during colour development at the late stages of fruit ripening (Moyano *et al.*, 1998; Almieda *et al.*, 2007). Tsuda *et al.* (2004) reported that *DFR* is the key regulatory gene of anthocyanin biosynthesis in mature red peach and nectarine.

3.5 Anthocyanin synthase (ANS)/ Leucoanthocyanidin dioxygenase (LDOX)

The leucoanthocyanidins are converted to anthocyanidins by anthocyanidin synthase, which is also called 'leucoanthocyanidin dioxygenase', another member of the 2-oxoglutarate-dependent dioxygenase family. ANS shows large homology to F3H and FLS (Martin *et al.*, 1991; Tanaka *et al.*, 1998). Genomic or cDNA sequences encoding ANS have been obtained from several plant species including *Arabidopsis, Antirrhinum, Petunia, Vitis vinifera* and maize. ANS mutants, as well as mutations in regulatory genes affecting ANS gene expression, have been studied in these plants (Martin *et al.*, 1991; Jackson *et al.*, 1992; Pelletier *et al.*, 1999; Bradley *et al.*, 1998). Almieda *et al.* (2007) found that the transcript levels in 'Queen Elisa' strawberry of *ANS* increased during fruit development and were highest at the red stage.

3.6 Flavonoid 3-O-glucosyltransferase (UFGT, 3GT, UFGluT)

In general, flavonoids and anthocyanidins with a free hydroxyl group at the 3 position of the heterocyclic ring are unstable under physiological conditions and are not found in nature (Forkmann and Heller, 1999). The enzyme UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT, 3GT) is responsible for the transfer of the glucose from UDP-glucose to the hydroxyl group in position 3 of the C-ring. Since this is an essential final step required to stabilize anthocyanidins so that they can accumulate as water soluble pigments in the vacuoles, 3GT is regarded as an indispensable enzyme of the main biosynthetic pathway to anthocyanins, rather than simply as a modifying enzyme. It is interesting to note that mutants with decreased DFR and ANS activity also show decreased 3GT activity, suggesting that the late genes of the anthocyanin pathway are co-regulated or may exist as a functional complex (Hrazdina and Wagner, 1985; Hrazdina and Jensen, 1992). Depending on the B-ring hydroxylation pattern, three major types of anthocyanins can finally be distinguished. Each type has a characteristic colour, since the visible absorption maximum becomes longer as the number of hydroxyl groups in the B-ring increases: pelargonidin-derived pigments are responsible for orange, pink or red colours; cyanidin-derived pigments are responsible for red or magenta and delphinidinderived pigments are responsible for purple or blue (Zuker et al., 2002). Boss et al. (1996) reported the expression of the UFGT gene as the key regulatory gene to control red colour skin in grape. This activity is also strongly correlated to anthocyanin accumulation in apple. Kobayashi et al. (2001) found that there are no differences in either coding or promoter sequences of UFGluT between white and red skin grape cultivars. They concluded that the mutation of the regulatory gene controlling UFGluT gene expression causes the change from white to red skin.
Castellarin and Gaspero (2007) reported that the transcript abundance of *UFGT* peaked at the 50% veraison red and decreased thereafter. The transcript level showed strong correlation ($R^2 = 0.80$) with the final anthocyanin content and the transcript level of structure genes explained *per se* the final phenotype for anthocyanin content, anthocyanin composition, colour intensity and colour hue of grapes at berry maturity. In 'Queen Elisa' strawberry, Almieda *et al.* (2007) found that the transcript level of *UFGT* was expressed increasingly during fruit development. Griesser *et al.* (2008) also reports the function of *UFGT* in strawberry fruit in down-regulating an anthocyanidin-3-*O*-glycosyltransferase gene by RNA interference. The average *FaGT1* transcript levels of transgenic fruit were about 15% of the levels in control fruit and the pelargonidin 3-*O* glucoside content in the fruit was reduced to 7.5% of control levels.

Further flavonoid modification by acylation, additional glycosylation to flavonoid disaccharides or trisaccharides, methylation or hydroxylation, may occur within each flavonoid class. However, modifications like phenylation, sulfation and C-glycosylation are restricted to particular flavonoid groups. Most modifications are performed by the end products including anthocyanin-3-glucosides, flavonols, flavones and (iso)flavones, while intermediates of the pathway can be used as substrates (Heller and Forkmann, 1994).

Figure 2 Anthocyanin biosynthesis pathway. (A) General phenylpropanoid metabolism. Enzymes involved: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumaroyl:CoA ligase. (B) Specific steps of anthocyanin biosynthesis. Enzymes involved: CHS, chalcone synthase; CHI, chalcone isomerase; F3H, F3'H, F3'5'H, flavanol hydroxylase; DFR, dihydroflavonol-4-reductase; ANS, anthocyanidin synthase; 3GT, UFGT, UDP glucose-flavonoid 3-*o*-glucosyl transferase.

Source: Delgado-Vargas and Paredes-lopez (2002)

4. Regulators controlling anthocyanin biosynthesis

Regulation of gene expression at the transcriptional level controls many crucial biological processes including anthocyanin biosynthesis (Table 1). A number of different factors are required for the process of transcription. These include factors required for chromatin remodelling and DNA unwinding, as well as proteins of the pre-initiation complex and the RNA polymerase II complex. In addition to this general inventory, other factors control promoter strength. These factors are referred to as 'transcription factors', a term usually used to describe proteins that recognize DNA in a sequence-specific manner and that regulate the frequency of initiation of transcription upon binding to specific sites in the promoter of target genes. Transcription factors (TFs) can be activators, repressors or both (Pabo and Suaer, 1992). The regulation of the pathway is largely at the transcription level of the regulators and of the corresponding biosynthetic genes. Regulatory genes controlling expression of the biosynthetic genes have been identified in many plants. These genes influence the intensity and pattern of anthocyanin biosynthesis and generally control expression of many different structural genes. Evidence for this regulation can be obtained by either enzyme assays or mRNA assays of structural gene activity (Holton and Cornish, 1995). Advanced methods are being used to understand the regulation of flavonoid biosynthesis, particularly molecular genetic approaches such as transposon tagging and positional cloning. This has led to the identification of a number of novel regulatory proteins that are beginning to fill the void between signals that induce the pathway and well known flavonoid regulators such as the MYB domain and basic helix-loop-helix (bHLH) transcription factors (Winkel-Shirley, 2001).

The first identification of a MYB gene was the 'oncogene' *v-Myb* derived from the avian myeloblastosis virus (Klempnauer *et al.*, 1982). The sequence comparisons indicate that *v-Myb* may have originated from a vertebrate gene, which mutated once it became part of the virus. Many vertebrates contain three genes related to *v-Myb* that are *c-Myb*, *A-Myb* and *B-Myb* (Weston, 1998) and other similar genes have been identified in insects, plants, fungi and slime moulds (Lipsick, 1996). The so-called MYB domain consists of three imperfect repeats, each forming a helixturn-helix structure of about 53 amino acids. Three regularly spaced tryptophan residues, which form a tryptophan cluster in the three-dimensional helix-turn-helix structure, are characteristic of a MYB repeat (Ogata *et al.*, 1992; Konig *et al.*, 1998). The three repeats in c-Myb are referred to as R1, R2 and R3. The DNA binding domain encoded by most of the plant MYB genes including MYBs controlling anthocyanin biosynthesis, is formed by two repeats, which are most similar to repeats R2 and R3 of c-MYB proteins (Jackson *et al.*, 1991; Avila *et al.*, 1993; Quaedvlieg *et al.*, 1996; Martin and Paz-Ares, 1997; Stracke *et al.*, 2001; Allan *et al.*, 2008).

The bHLH proteins belong to a large family of transcriptional regulators present in both animals and plants. The bHLH was initially identified in the animal transcriptional regulators MyoD and Myc (Murre et al., 1989). The family of TFs is characterized by the signature bHLH domain comprising approximately 60 amino acids that encode two functionally distinctive regions, the basic region and the HLH region. The basic region is located at the N terminus of the bHLH domain and functions as a DNA-binding motif. It consists of approximately 15 amino acids, which typically include six basic residues. The basic region of the domain binds to DNA containing the canonical E-box (CANNTG) sequence. The HLH region is comprised of hydrophobic residues that form two α -helices separated by a loop region of variable sequence, length and functions via the homo- and heterodimerization (Atchley et al., 1999; Bailey et al. 2003; Heim et al., 2003; Toledo-Ortiz et al., 2003). The plant Myc-like bHLH TFs contain an N-terminal interaction domain as Myb-interacting region (MIR) that has been shown to interact with an R2R3-MYB domain protein and affect transcription of anthocyanin biosynthetic pathway genes (Goff et al., 1990, 1992; Grotewold et al., 2000; Hernandez et al., 2004). Another group of regulatory factors, WD40 repeat proteins, is also important for the transcription of genes for anthocyanin biosynthesis. WD40 repeat proteins comprise a family in the β -propeller protein group, which is characterized by the presence of a 40 residue core region delineated by a glycinehistidine (GH) dipeptide and a tryptophan-aspartate (WD) dipeptide (Smith, 1999). This motif is tandemly repeated four to 16 times in the same protein. The most

extensively studied WD40 repeat protein is the Gβ subunit of heterotrimeric G proteins involved in signal transduction, which forms a seven-bladed β-propeller structure containing seven WD40 repeats. In addition to signal transduction, these proteins are involved in many functions. A common function of WD40 repeat units is that they facilitate protein–protein interactions and have no intrinsic enzymatic function. Several WD40 repeat containing proteins affecting epidermal cell structure and anthocyanins have been identified from petunia (*anthocyanin11, AN11*) and *Arabidopsis* (*TRANSPARENT TESTA GLABRA1, TTG1*) (de Vatten *et al.*, 1997; Walker *et al.*, 1999; Carey *et al.*, 2004; Ramsey and Glover, 2005). The transcription complex composed of MYB, bHLH, and WD40 regulates the expression of multiple distinct target genes in a range of plant species generating plant epidermal cellular diversity including anthocyanin production (Broun, 2005; Koes *et al.*, 2005; Ramsey and Glover, 2005).

Recently, molecular approaches have proven to be very useful for isolating flavonoid regulatory genes for which no previous information existed concerning their gene sequence, function or final products. There are numerous reports of the regulation of genes in the anthocyanin pathway by transcription factors (TFs), controlling anthocyanin biosynthesis in all higher plants (Holton and Cornish, 1995). There are 126 R2R3 MYB genes in Arabidopsis (Stracke et al., 2001) and 108 in grape (Matus et al., 2008). On the basis of the R2R3 motif in Arabidopsis, the MYBs have been classified into 22 subgroups (Stracke et al., 2001). The Production of Anthocyanin Pigment 1 (AtPAP1 or AtMYB75) MYB of Arabidopsis falls into a subgroup that has been termed subgroup 10 (Allan et al., 2008). The protein sequence of AtPAP1 has a high degree of amino acid conservation with other known MYB regulators of anthocyanin production in other plant species (Allan *et al.*, 2008). Overexpression of AtPAP1 and AtPAP2 strongly induced anthocyanin accumulation in Arabidopsis as the result of the upregulation of all the genes in the anthocyanin biosynthesis pathway (Borevitz et al., 2000; Tohge et al., 2005). The partnerships between colour-related MYBs and bHLHs such as the maize ZmC1 MYB and ZmB bHLH, the petunia AN2 MYB and AN1 and JAF13 bHLHs, and the Antirrhinum Ros1, Ros2 and Ve MYBs and the Mut and Del bHLHs, have been reported (Goff et

al., 1992; Goodrich *et al.*, 1992; Mol *et al.*, 1998; Schwinn *et al.*, 2006). Overexpressing *Arabidopsis* lines of PAP1 has elevated transcript levels of the *TT8* that encodes a bHLH protein involved in regulating condensed tannin and anthocyanin biosynthesis (Nesi *et al.*, 2001; Tohge *et al.*, 2005).

In fruit, MYBs controlling anthocyanin biosynthesis have been characterized from apple, grape and strawberry. In grape, VvMYBA1 and VvMYBA2 regulate the expression of the UFGT gene (Kobayashi et al., 2002, 2004; Walker et al., 2007). In strawberry, FaMYB1 plays a key role in anthocyanin and flavonol biosynthesis. However, results indicate that *FaMYB1* represses transcription of anthocyanin-related genes late in fruit maturation (Aharoni et al., 2001). In apple, several MYBs have been isolated which control anthocyanin biosynthesis. MdMYBA was isolated from a pale skinned cultivar 'Tsugaru' and deep-red skinned 'Jonathan' fruit (Ban et al. 2007), whereas MdMYB1 was isolated from the red skinned apple 'Cripps Pink' (Takos et al., 2006). MdMYB1 and MdMYBA expression correlated with anthocyanin synthesis in the fruit skin. When the fruit were exposed to sunlight after bagging, MdMYB1 transcript levels increased over several days, correlating with skin anthocyanin accumulation (Takos et al., 2006). In a red fleshed apple variety, Espley et al. (2007) found that MdMYB10 controlled apple anthocyanin production in fruit and leaves. The apple MYB needs a bHLH (MdbHLH3 or MdbHLH33) partner to achieve full functionality (Allan et al., 2008).

Gene products	Gene name	Symbols
Maize		
CHS	colorless2	<i>c</i> 2
	white pollen	whp
CHI	chalcone isomerase1	chil
F3'H	red aleurone	pr1
DFR	anthocyaninless1	al
ANS	anthocyaninless2	<i>a</i> 2
UF3GT	bronze1	bz1
GST	bronze2	bz2
MYB	colorless1	cl
	purple plant	pl
	pericarp color	р
bHLH	red	r
	booster	b
	intensifier	in1
WD40	pale aleurone color1	pac1
Snapdragon		
CHS	nivea	niv
F3H	incolorata	inc
DFR	pallida	pal
ANS	candi	candi
MYB	rosea	ros
	venosa	ven
bHLH	dellila	del
Petunia		
CHS		chsA
		chsJ

 Table 1
 Anthocyanin/flavonoid pigmentation biosynthetic and regulatory genes

 characterized in different plant species.

 Table 1 (Continued).

Gene products	Gene name	Symbols
СНІ		ро
F3H	anthocyanin3	an3
F3'H		ht1
F3'5'Н		hf1, 2
DFR	anthocyanin6	anб
UF3GRT		rt
GST	anthocyanin9	an9
MYB	anthocyanin2	an2
bHLH	anthocyanin1	anl
		jaf13
WD40	anthocyanin11	an11
Arabidopsis		
CHS	TRANSPARENT TESTA4	TT4
CHI	TRANSPARENT TESTA5	TT5
F3H	TRANSPARENT TESTA6	TT6
F3'H	TRANSPARENT TESTA7	TT7
DFR	TRANSPARENT TESTA3	TT3
ANS	TRANSPARENT TESTA18	<i>TT18</i>
	TANNIN DEFICENT SEED4	TDS4
ANR	BANYULS	BAN
UF3GT	UGT78D2	
UF5GT	UGT75C1	
GST	TRANSPARENT TESTA19	<i>TT19</i>
MATE	TRANSPARENT TESTA12	<i>TT12</i>
MYB	TRANSPARENT TESTA2	TT2
	PRODUCTION OF ANTHOCYANIN	
	PIGMENT1	PAP1

 Table 1 (Continued).

Gene products	Gene name	Symbols
bHLH	TRANSPARENT TESTA8	TT8
	GLABRA3	GL3
	ENHANCER OF GLABRA3	EGL3
WD40	TRANSPARENT TESTA GLABRA1	TTG1
Morning Glory		
CHS	<i>R1</i> (N)	<i>R1</i>
	Anthocyanin (P)	A
CHI	Speckled or Cream (N)	Sp, Cr
F3'H	Magenta (N)	Mg
	Pink (P)	Р
	Fuchsia (T)	Fuchsia
DFR	<i>A3</i> (N)	A3
ANS	Pearly (T)	Pearly
UF3GT	<i>R3</i> (N)	R3
UF3GGT	Duskish (N)	Dk
	Dusky (N)	Dy
MYB	<i>C1</i> (N)	<i>C1</i>
	$W(\mathbf{P})$	W
bHLH	Ivory seed (P)	IVS
	Ivory seed (T)	IVS
WD40	Ca (N)	Ca

(N), (P), and (T) under Morning Glory indicate *I. nil*, *I. purpurea*, and *I. tricolor*, respectively.

Source: Adapted from Chopra et al. (2006)

5. Factors affecting fruit colouration

There are many factors affecting fruit colour as discussed below:

5.1 Light

The most important influence on anthocyanin biosynthesis is light. Many researchers have studied the effect of light on anthocyanin biosynthesis in fruit such as apple (Saure, 1990; Ju et al., 1995, 1998) and grape (Spayd et al., 2002; Jeong et al., 2004). In apple, the formation of anthocyanin is absolutely light dependent. Bagging affected anthocyanin formation and reduced red colour development but did not affect fruit maturity. When bagged fruit was exposed to light, they started to accumulate anthocyanin rapidly and reached a maximum after 3 days of light exposure. Chalcone synthase activity and flavonoid contents were relatively high and constant from the fruitlet to the maturation stage and suggested that CHS does not play a regulatory role in anthocyanin synthesis in apples exposed to light (Saure, 1990; Ju et al, 1995; Ju, 1998). The effect of light on anthocyanin biosynthesis is expressed in the activation of different enzymes (Gross, 1987). In contrast, Ratanamarno et al. (2005) reported that the sunlight had no effect to phenylalanine ammonia lyase (PAL) activity and anthocyanin content in every stage of mangosteen development. For grape, Jeong et al. (2004) found that shading suppressed anthocyanin accumulation and gene expression of anthocyanin biosynthesis. Takos et al. (2006) also reported that MdMYBB1 transcript levels increased over several days, when the bagged fruit were exposed to light, and correlated with anthocyanin content.

5.2 Temperature

Most anthocyanin-containing fruit develop higher colouration in cooler regions. High temperatures in autumn inhibit anthocyanin formation whereas low temperature promotes it. The optimal temperature regimes changed with maturity. High temperature (12°C day and night) had more effects on mature fruit (Gross, 1987). Sun light exposure affected total skin monomeric anthocyanins in grape clusters (Spayd, 2002). Ubi *et al.* (2006) found that UV-B and low temperature were important factors for anthocyanin accumulation in apple fruit skin by inducing the expression of the anthocyanin biosynthetic genes, especially CHS, ANS and UFGluT.

5.3 Plant growth regulators

Ethylene is a ripening hormone that increases the rate of anthocyanin accumulation as these pigments are associated with fruit maturation. Many researchers have reported effects of ethylene treatments on inducing anthocyanin accumulation (Gomez-Cordoves *et al.*, 1996; El-Kereamy *et al.*, 2003). For apple, chalcone synthase (CHS) and UDPGal:flavonoid-3-*O* -glycosyltransferase (UFGalT) activities correlated with anthocyanin accumulation during fruit maturation in both 'Delicious' and 'Ralls' apples. Ethephon treatment increased UFGalT activity and also promoted anthocyanin formation (Ju *et al.*, 1995). Ethylene induced internal ethylene, anthocyanin accumulation and gene expression of anthocyanin biosynthesis in grape (El-Kereamy *et al.*, 2003). 1-Methycyclopropene (1-MCP) is an ethylene action inhibitor and has been found to delay ripening of many climacteric fruit. 1-MCP delayed red colouration and anthocyanin content in grapes (Chervin *et al.*, 2004) and strawberries (Jiang *et al.*, 2001) and also delayed colour development in apples by inhibiting phenylalanine ammonia lyase activity (MacLean *et al.*, 2006).

However, other hormones can have an effect on anthocyanin biosynthesis. Awad and Jager (2002) treated apple with (S)-trans-2-amino-4-(2aminoethoxy)-3-butenoic acid hydrochloride (ABG-3168), gibberellins (GA4+7 and GA3), Alar, cycocel (CCC to inhibit gibberellins). ABG and GA3 applications significantly retarded anthocyanin accumulation but had no effect on flavonoid compounds or chlorogenic acid. ABG delayed the transition to rapid anthocyanin accumulation but none of the other chemicals had an influence on the formation of anthocyanin, total flavonoids and chlorogenic acid in fruit skin.

5.4 Storage conditions

Differing storage conditions can have effects on anthocyanin accumulation in many fruit. Holcroft *et al.* (1998) reported the effects of carbon dioxide on anthocyanin content in pomegranate and found that the aril of pomegranates stored in air at 10°C displayed a deeper red compared to the initial control and carbon dioxideenriched atmospheres. Mangosteen fruit at stage 1 stored at low temperatures (15°C) changed to stage 6 later than fruit stored at high temperatures (35°C) and fruit stored at room temperature (30°C) (Ratanamarno *et al.*, 2004).

6. Analysis of gene expression

In all organisms, gene expression can be divided into two main phases; transcription and translation. Quantitative determination of gene expression at the mRNA level is a powerful approach for comparative analysis. Several methods have been developed to study the expression of specific RNA levels or proteins (Dale and von Schantz, 2003).

6.1 Northern blotting

Analysis of gene expression patterns is essential for understanding and elucidating gene functions. Northern blotting, known as northern hybridization, is a technique used for detection and quantification of specific RNA levels. The steadystate level of RNA transcripts is one of the most convenient parameters used to monitor the activity of an endogenous or introduced gene in cell lines and tissues. Northern blotting involves several steps that include the isolation of RNA, transfer to a membrane, detection by nucleic acid hybridization and autoradiography. Transcription patterns of genes are often complex and multiple RNA species can be generated from the same gene. Northern analysis provides information on the relative number, size and abundance of RNAs derived from a gene. This technique generates a record of the RNA that is stored on the membrane that can be used many times. Therefore, the expression of several genes can be analyzed on the same RNA samples by using multiple probes to rehybridize the filter. The major limitations of northern blot analysis are RNA degradation and low sensitivity. The RNA amount must be high quality and not degraded, which can be difficult in some tissues or for inexperienced workers (Krumlauf, 1994; Streit *et al.*, 2009).

6.2 Reverse transcription polymerase chain reaction (RT-PCR)

The polymerase chain reaction (PCR) amplification is an extremely powerful technique for obtaining readily detectable, and manipulation of DNA or RNA. Reverse transcription polymerase chain reaction (RT-PCR) is a common, sensitive and powerful tool for RNA expression analysis. RT-PCR permits analysis of gene expression from very small amounts of RNA. It is possible to detect a specific mRNA in a single cell or to analyze gene expression in cells that are difficult to obtain in large amounts (Dale and von Schantz, 2003; Auta *et al.*, 2007). Furthermore, this method can be conducted on a large number of samples and/or many different genes in the same experiments (Freeman *et al.*, 1999). The relative RT-PCR method involves determination of the levels of both the target mRNA and an internal control mRNA (generally, a housekeeping gene). Comparison of housekeeping mRNA levels in different samples is used to standardize samples such that the each sample contains the same amount of the housekeeping genes. Based on the assumption that the level of housekeeping genes is constant, the relative levels of target mRNA in each sample can be determined (Giambernardi and Klebe, 2000).

6.3 Real-time PCR

In essence, real-time PCR refers to the ability to monitor DNA amplification at each cycle in the PCR reaction. Real-time qRT-PCR has advantages compared with conventionally performed 'semi-quantitative end point' RT-PCR or other methods, because of its high sensitivity, high specificity, good reproducibility and wide dynamic quantification range (Bustin, 2000; Gachon *et al.*, 2004). The duration of a whole real-time PCR allow rapid production of data. It ranges from 20 min to 2 h. Real-time PCR provides high sensitivity for the detection of DNA or RNA due to a combination of the amplification performed by the PCR step and the system of detection (Bustin, 2000). Basically, real-time quantitative PCR may be used for quantifying DNA or RNA abundance, leading to some applications such as detection and quantification of foreign DNA (e.g. micro-organisms contamination, transgenic plants and gene expression studies). Real-time qPCR has become a routine and robust approach for measuring the expression of genes of interest, validating microarray experiments, and monitoring biomarkers (VanGuilder *et al.*, 2008).

Real-time reactions are carried out in a thermocycler that permits measurement of a fluorescent detector molecule, which decreases post-processing steps and minimizes experimental error. The most commonly used systems involve use of fluorescence-based technologies to probe sequences that fluoresce upon hydrolysis (TaqMan; Applied Biosystems, Foster City, CA, USA) or hybridization (LightCycler; Roche, USA), fluorescent hairpins and intercalating dyes (SYBR Green). SYBR Green is an example of an intercalating dye binding to the product and emits a strong fluorescent signal that is easily detected. Intercalating dyes are not sequence-specific, and are inexpensive and simple to use compared to sequence probes and can be used for any reaction. However, because they do not discriminate between gene sequences, they cannot be used for multiplexed analyses (Zipper et al 2004; VanGuilder et al., 2008). Analysis of real-time qPCR data has also reached a mature stage of development. Analysis can be either of absolute levels (numbers of copies of a specific RNA per sample) or relative levels (e.g. sample 1 has twice as much mRNA of a specific gene as sample 2). The majority of analysis is relative quantification that is easier to measure and is of primary interest to researchers. The most common method for relative quantification is the $2^{-\Delta\Delta CT}$ method. This method relies on two assumptions. The first is that the reaction is occurring with 100% efficiency. In other words, the amount of product doubles with each cycle of PCR. The relative expression of a gene of interest in relation to another gene, mostly to an appropriate reference gene, can be calculated on the basis of 'delta crossing point' (ΔC_p) or 'delta delta cycle threshold' $(\Delta \Delta C_t)$ values (Livak and Schmittgen, 2001). Recently, various mathematical models have been established to calculate the relative expression ratio, based on the comparison of the distinct cycle differences. The

relative expression can be determined by various methods including efficiency corrected calculation (Pfaffl, 2001).

7. Gene function testing using dual-luciferase assays

Reporter assay systems are widely used for studying interactions between promoter and transcription factors, promoters, signal transduction, and other cellular activities, and are also applicable to target screening both *in vitro* and *vivo* (Bronstein et al., 1994; Wilson and Hastings, 1998). Luciferases are most frequently employed because the sensitivity and range of linear response are superior to those of other typical reporters including β -galactosidase, chloramphenicol acetyltransferase, β glucuronidase and green fluorescent protein. Therefore, luciferases are the most suitable reporter genes for the quantification of gene expression (Nalor, 1999; Nakajima et al., 2005). Luciferases are a general term for enzymes catalyzing visible light emission by living organisms (bioluminescence). Research on this subject led to the discovery of an enzyme-substrate system, the former called luciferase and the latter luciferin (from the Latin Lucifer, 'Light-bringer') (Marques and Esteves da Silva, 2009). Dual reporters are used to make relational or ratiometric measurements within an experimental system. Typically, one reporter is used as an internal control to which measurement of the other reporter is normalized. In measurements of gene expression, dual reporters are generally used in transient transfections of cultured cells, where one vector containing the experimental reporter gene is co-transfected with a second vector containing a distinct reporter gene serving as the control. Usually, the experimental reporter is coupled to a regulated promoter to study the structural or physiological basis of regulated gene expression. Relative changes in the expression of reporter activity correlate to changes in the transcriptional activity of the coupled regulated promoter. To provide an internal control for transcriptional activity, the second reporter gene is coupled to a constitutive promoter that is unperturbed by the various experimental conditions. By this method, it is possible to minimize experimental variability that can undermine experimental accuracy such as differences in the number and health of the cultured cells, and the efficiencies of cell transfection and lysis. Dual-reporter applications utilizing firefly luciferase in

combination with either chloramphenicol acetyltransferase (CAT), beta-galactosidase (β -Gal) or beta-glucuronidase (GUS) have become popular in recent years. However, these co-reporter combinations diminish the performance advantages of luciferase. The ideal dual-reporter method would allow the user to assay both reporters in a single sample with speed, sensitivity, and linearity. Promega's Dual-LuciferaseTM Reporter (DLR) Assay System meets these demanding criteria by combining the assays of two luciferase reporter systems, those of the firefly (*Photinus pyralis*) and the sea pansy (*Renilla reniformis*), in an integrated, single-tube assay format (Sherf *et al.*, 1996).

Firefly luciferase is a 61 kDa monomeric protein that does not require posttranslational processing for enzymatic activity (Wood et al., 1984; de Wet et al., 1985). Thus, it functions as a genetic reporter immediately upon translation. Photon emission occurs via oxidation of beetle luciferin in a reaction that requires ATP, Mg^{2+} and O_2 (Figure 3). Under conventional reaction conditions, the oxidation of luciferin occurs through a luciferyIAMP intermediate that turns over very slowly. As a result, this assay chemistry generates a 'flash' of light that rapidly decays after the substrate and enzyme are mixed. However, the coenzyme A (CoA) enhances reaction kinetics by promoting rapid enzyme turnover resulting in an extended 'glow' luminescence signal. The *Renilla* luciferase, a 36 kDa monomeric protein, is composed of 3% carbohydrate when purified from its natural source (Matthews et al., 1977; Lorenz et al., 1991). However, like firefly luciferase, post-translational modification is not required for activity and the enzyme may function as a genetic reporter immediately following translation. The luminescent reaction catalyzed by Renilla luciferase utilizes O2 and coelenterate luciferin (coelenterazine) (Figure 3). Quantification of the luminescent signal from the two luciferase reporter enzymes may be performed immediately following lysate preparation and completed in a short time. Hellens et al. (2005) use the dual luciferase method to characterize the enzymatic activity of plant genes cloned into these Agrabacterium vectors, and screened relative transcriptional activities of transcription factor genes.

Figure 3 Bioluminescent reaction catalyzed by firely and *Renilla* luceferases.

Source: Sherf *et al.* (1996).

MATERIALS AND METHODS

Mangosteen fruit were obtained from a commercial orchard in Chanthaburi province. Fruit were carefully harvested, packed into 10 kg per plastic boxes, and transported within 6 h by a refrigerated truck (15°C) to the Postharvest Research Unit, Central Laboratory and Greenhouse Complex, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom. Fruit were selected by their uniformity of color and size (75-90 g). The fruit were separated by skin colour into 7 stages, using a colour index slightly modified from that of Tongdee and Suwanagul (1989): yellowish white or yellowish white with light green (stage 0), light greenish yellow with 5-50% scattered pink spots (stage 1), light greenish yellow with 51-100% scattered pink spots (stage 2), spots not as distinct as in stage 2 or reddish pink (stage 3), red to reddish purple (stage 4), dark purple (stage 5) and purple black (stage 6) (Figure 4).

1. Study of colour development and fruit quality of mangosteen fruit harvested at different stages of maturity

In this experiment mangosteen fruit were separated into two groups. To study fruit colour development (A), fruit were harvested at stage 1 and analyzed immediately for quality and anthocyanin content. The remaining fruit were then kept at 25°C (85-90% RH). Quality and anthocyanin assessments were made at regular intervals until the fruit reached stage 6. To study fruit maturity relationships (B), fruit were harvested at stages 1-6 and stored at 25°C (85-90% RH) and when fruit reached stage 6, the fruit were transferred to 15°C (85-90% RH) to preserve fruit quality. When all fruit reached stage 6, they were analyzed for quality and anthocyanin contents with three replicates of 7 fruit in each replicate.

1.1 Quality assessment and sensory evaluation

Fruit colouration was evaluated using a colour index. Colour development was based on a scale from 1 to 6; 1 = light greenish yellow with 5-50%

scattered pink spots; 2 = light greenish yellow with 51-100% scattered pink spots; 3 = spots not as distinct as in stage 2 or reddish pink; 4 = red to reddish purple; 5 = dark purple; 6 = purple black (Figure 4). Fruit colour was measured using a Minolta CR-300 chromameter (Minolta, Osaka, Japan) as L^* , a^* , b^* values (CIE L a b) and converted to hue angle by using the formula: h^o = arctan (b/a) (colour wheel, with red-purple at an angle of 0°, yellow at 90°, bluish-green at 180°). The colour reading was taken twice at the equatorial region of each fruit and averaged to give a value for each fruit. After fruit colour measurement, the fruit pericarp was separated into outer (0.1 mm thickness) and inner pericarps (Figure 5). The pericarp was cut, and immediately frozen in liquid nitrogen and kept at -80°C for anthocyanin and RNA analysis. Replicate pericarp tissue samples were pooled for RNA extraction.

Pericarp firmness was measured using a hand-held fruit firmness tester (Effegi, Alfonsine, Italy) equipped with a cylindrical plunger 0.5 cm in diameter. The plunger was inserted to a depth of 0.5 cm and the force recorded in newtons (multiply by 9.807).

To measure soluble solids content (SSC) and titratable acidity (TA) on the flesh juice, the white flesh of the arils, with seeds, was wrapped in cheesecloth, and squeezed by hand to separate juice from seeds. SSC was measured with a handheld refractometer (Atago, Tokyo, Japan) and calibrated with distilled water. TA was determined from a 5 mL aliquot by titration with 0.1 mol L⁻¹ NaOH with 1% phenolphthalein as an indicator and results are given as grams of citric acid per 100 mL. The SSC/TA ratio was calculated.

To study of effect of different stages of fruit maturity on fruit quality. Ten judges conducted a sensory panel evaluation of mangosteen flavor for all fruit from different harvest maturities (stages 1-6) that had reached stage 6. The stems and calyxes of the fruit were removed to reduce possible bias due to visible appearance. The judges rated the overall flavor and acceptability of mangosteen aril on a scale of 1-5, where 5 = excellent, 4 = very good, 3 = good, 2 = poor, and 1 = very poor.

Colour Index of Mangosteen

Figure 4 Colour development of mangosteen fruit.

Figure 5 Pericarp separation of mangosteen fruit.

1.2 Ethylene production

Ten fruit at stage 1 were individually weighed and placed into separate 0.8 L plastic containers at 25°C (85-90% RH). The air was flushed before closing the container. After 30 min, air samples were taken from the headspace using a syringe. Concentrations of ethylene within containers were measured by sampling through a sampling port with a syringe and measured with a gas chromatograph (Shimadzu GC 8A, Kyoto, Japan), equipped with a flame ionization detector and a 2.1 m x 2.4 mm stainless steel column filled with activated alumina of 177-149 μ m. The column temperature was 80°C. Injector and detector temperatures were 150°C. The data were the average values from 10 fruit.

1.3 Anthocyanin analysis

Total anthocyanins were extracted using methanol-HCl (Piccaglia *et al.*, 2002). One gram of outer pericarp or two grams of inner pericarp were homogenized with 20 mL of methanol:HCl (99:1 v/v), and the homogenates then shaken for 6 h at 4 °C. The aqueous phase was removed and the pellets were re-extracted 4 times within 24 h and then adjusted to a final volume of 100 mL with methanol:HCl. The combined aqueous extracts were centrifuged at 8,000 x *g* for 10 min (4°C) and anthocyanin contents then measured at an absorbance of 530 nm. The anthocyanin contents were calculated and expressed as cyanidin equivalents. The samples were kept at -80°C until the individual anthocyanins were analyzed.

Total anthocyanin (mg kg⁻¹) =
$$\underline{A \times MW \times DF \times 1000}$$

 $\epsilon L \times Wt$

A = Absorbance

 ε = Cyd-3-glu molar absorbance (34,300)

MW = anthocyanin molecular weight (287)

DF = dilution factor

Wt = sample weight (mg)

L = cell path length (usually 1cm)

Individual anthocyanin compounds were analyzed by HPLC and LC-MS as described by Stevenson *et al.* (2006). Aliquots of 500 μ L (A) were dried down in a Labconco Centrivap Concentrator (Labconco, Kansas City, MO, USA). Samples were resuspended in 20% methanol (250 μ L). Samples were then kindly analysed by David Stevenson and Janine Cooney (Plant & Food Research, Ruakura, New Zealand) using the following steps. Forty microlitres of the sample were analyzed using a Shimadzu analytical HPLC with a column oven, auto-sampler, vacuum solvent degas module and diode-array detector. (Shimadzu, Kyoto, Japan). Separations were achieved on a 250 mm × 4.6 mm column, Synergi[®], 4 μ m particle size, Polar-RP, 8 nm pore size (Phenomenex, Auckland, NZ), using (A) acetonitrile + 0.1% formic acid, and (B) acetonitrile/water/formic acid (5:92:3). Flow rate was 25 μ L s⁻¹ at a column temperature of 45°C. The content of solvent A was 0% at zero time and ramped linearly to 20% at 20 min, 30% at 26 min, 50% at 28.5 min, 50% at 28.5 min, 95% between 32-35 min and back to 0% between 36-42 min).

LC-MS analysis of the outer pericarp (purple black) sample was carried out to confirm compound identify. Identification was based on both mass (M+) of molecular ions and characteristic fragments, and comparison of retention times and fragmentation with authentic standards; cyanidin-3-*O*-sophoroside and cyanidin-3-*O*glucoside (Polyphenols, Norway). Quantification was achieved by reference to standards of anthocyanin compounds at 520 nm.

1.4 Light microscopy

Fruit pericarps at different stages of colour development were handsectioned using a razor blade and mounted with a drop of distilled water. The slides were examined in bright field using a light microscope (Carl Zeiss, Gottingen, Germany) equipped with a digital camera.

2. Study of the effects of ethylene on colour development of mangosteen fruit

Fruit at stage 1 were harvested and randomly separated into four groups for the following treatments: 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-methylcyclopropene (1-MCP) for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M). All treatments were fumigated at 25°C and kept at 25°C (85-90% RH). 1-MCP was generated by adding water to EthylBloc[®] (Floralife Inc., Walterboro, SC, USA) powder placed in a vial in a chamber (0.174 m³). Introducing water into the vial with Ethylbloc[®] powder resulted in a final concentration of 1 μ g L⁻¹ of 1-MCP gas in the chamber. Fans were used in the chambers to maintain air circulation. All fruit were treated at 25°C for 12 h and stored at 25°C (85-90% RH). After the treatments, 21 fruit per treatment were randomly assessed for fruit colour and pericarp firmness (same as study 1). After fruit colour measurement, the outer pericarp of the fruit (0.1 mm thickness) was cut, and immediately frozen in liquid nitrogen and kept at -80°C for total anthocyanin and RNA analysis. Replicate pericarp tissue samples were pooled for RNA extraction.

For ethylene production, five fruit from each treatment in the ethylene experiment were individually weighed and each fruit placed into separate 0.8 L plastic containers at 25°C (85-90% RH). The air was flushed before closing the container. After 30 min, 1 mL gas samples were taken from the headspace using a syringe. Concentrations of ethylene were measured using a gas chromatograph (Shimadzu GC 8A, Kyoto, Japan) as for ethylene production in study 1.

3. Study of the effects of storage temperature on colour development of mangosteen fruit

Fruit at stage 1 were harvested and stored at 25°C (85-90% RH) (control), and 15°C (85-90% RH) for seven days. After seven days, fruit stored at 15°C were transferred to 25°C (85-90% RH). After the treatments, 21 fruit per treatment were randomly assessed for fruit colour and fruit firmness (same as for study 1). After fruit colour measurement, the outer pericarp of the fruit (0.1 mm thickness) was cut, and

immediately frozen in liquid nitrogen and kept at -80°C for total anthocyanin and RNA analysis. Replicate pericarp tissue samples were pooled for RNA extraction.

For ethylene production, five fruit from each treatment in the experiment were individually weighed and each fruit placed into separate 0.8 L plastic containers at 25°C (85-90% RH). The air was flushed before closing the container. After 30 min, 1 mL gas samples were taken from the headspace using a syringe. Concentrations of ethylene were measured using a gas chromatograph (Shimadzu GC 8A, Kyoto, Japan) as for ethylene production in study 1.

4. Cloning and characterization of MYB transcription factor and anthocyanin biosynthesis genes of mangosteen fruit during red colouration

The mangosteen MYB transcription factor (*GmMYBs*) and anthocyanin biosynthesis genes were isolated using degenerate primers or 3' race. Complete fragments were obtained using RACE PCR strategy. Promoters of anthocyanin biosynthesis genes (DFR, LDOX and UFGT) were isolated using ligation-mediated PCR. The *cis*-element of DFR, LDOX and UFGT promoters were analyzed using database assisted bioinformatics. The transcriptional activities of GmMYBs were determined using dual luciferase. Gene expression was analyzed using real-time and end-point PCR.

4.1 Isolation and cloning of MYB transcription factors and anthocyanin biosynthesis genes of mangosteen fruit

4.1.1 Total RNA extraction

Approximately 10 g of frozen samples were ground using a Mixer Mill MM 301 (Retsch, Germany) under liquid N₂, kept in the RNAse-free Falcon tubes and then stored at -80°C until use (for 1-2 weeks). Total RNA was isolated from 2 g of outer pericarp tissue as modified from Lopez-Gomez and Gomez-Lim (1992) to make it suitable for extracting RNA from the pericarp of mangosteen fruit. Ground tissue was added to 15 mL of extraction buffer containing 150 mM Tris base (pH 7.5), 2% SDS, 2% β-mercaptoethanol, 50 mM EDTA and 0.5 g of polyvinylpolypyrrolidone (PVPP). The mixture was shaken vigorously for 1 min by vortexing and 1.5 mL of 5 M potassium acetate and 4.0 mL of absolute ethanol added thereafter. The mixture was shaken vigorously for 1 min by vortexing, then 15 mL of chloroform: isoamyl alcohol (24:1 v/v) was added, shaken vigorously for 5 min and centrifuging at 7,000 x g for 20 min. The supernatant was collected and extracted by phenol: chloroform: isoamyl alcohol (25:24:1). The mixture was shaken vigorously for 5 min by vortexing and centrifuged at 7,000 x g for 20 min. The supernatant was collected and re-extracted with 15 mL of chloroform: isoamyl alcohol. The supernatant was collected and precipitated with 8 M LiCl to get 3 M final concentration at 4°C overnight. After centrifugation at 10,000 x g for 20 min, the RNA pellet was washed in 5 mL of 3 M LiCl. The RNA pellet was re-suspended in 350 µL DEPC-water and transferred to microcentrifuge tube and then 35 mL of 3 M potassium acetate and 962.5 mL of absolute alcohol were added. The RNA was precipitated at -80°C for 1 h. The mixture was centrifuged in a microcentrifuge at 10,000 x g for 30 min and washed once with 500 mL of 70% ethanol and resuspended in 50 µL of chilled DEPC-water. RNA quantification was determined using a spectrophotometer at wavelengths of 230, 260, and 280 nm. The quality was confirmed by gel electrophoresis on 1% agarose gels. One absorbance unit at 260 nm corresponded to approximately 40 µg mL⁻¹ (Sambrook and Russel, 2001). The RNA concentration of each sample was estimate in $\mu g m L^{-1}$ by the following equation: RNA concentration = A260 x dilution factor x 40 μ g mL⁻¹. Quality of the purified total RNA was determined by calculating the A260/A280 ratio. A ratio of between 1.8-2.0 indicated good quality.

4.1.2 cDNA synthesis (Reverse Transcription Reaction)

The first strand cDNA was synthesized from 2 μ g of the RNA using Omniscript RT kit (Qiagen, Germany) for anthocyanin biosynthesis genes. In quantitative real-time PCR, RNA samples were DNase treated (DNA-free, Ambion) for eliminating DNA contamination. cDNA was synthesized from 4 μ g of the RNA following the protocol of SuperscriptIII kit (Invitrogen, USA). Fifty-fold diluted cDNA was used for quantitative real-time RT-PCR and semi-quantitative RT-PCR. The synthesized cDNA was used as a template to amplify the targeted genes by PCR. The first strand cDNA was further used as a template in PCR reaction or stored at -20°C until use.

4.1.3 PCR amplification of mangosteen cDNA fragments

Mangosteen MYB transcription factors (*GmMYBs*) and anthocyanin biosynthesis genes were isolated using degenerate primers and 3' race. Degenerate primers with designs based on two highly conserved amino acid sequences found in several plants, which are MYB transcription factors regulating anthocyanin biosynthesis and all enzymes in the anthocyanin biosynthesis pathway, were used as forward and reverse primers. The sequences of the primers are described in Table 2. The reaction mixture (50 μ L) consisted of 10x PCR buffer (5 μ L), 50 mM MgCl₂ (2 μ L), 10 mM dNTPs (1 μ L), 10 μ M of each primer (5 μ L), cDNA (1 μ L), Platinum Taq (0.2 μ L) and water (30.8 μ L) (Invitrogen, USA). The reaction conditions displayed in Table 3.

Gene name	Sequence	Annealing temperature (°C)	Expected size (bp)
<i>GmPAL</i> (FJ197127)	F- GYDATYTTYGCWGARGTBATG R- AGATTNGAHGGYAABCCRTTGTTG	48	467
<i>GmCHS</i> (FJ197128)	F-CAGCCCAARTCCAARATCAC R-ATCCAGAARAKBGARTTCCA	55	548
<i>GmCHI</i> (FJ197129)	F-AAGTTCACRGSSATMGGMGTRTAC TTGG and 3' race	55	700
<i>GmF3H</i> (FJ197131)	F-G TCCVAAGGTKGCYTAYAAYG R-CYTTGCTCATCTTCYTCYTGTAC	50	912
<i>GmF3'H</i> (FJ197132)	F-TAYAAYTAYCARGAYYTBGT R- CTDGATGWBGTRTCWGTYCC	48	570
<i>GmDFR</i> (FJ197130)	F-YTCWTGGCT SGTCATGAGRC R-SCAGWDATGAGGCTYGGHG	55	572
<i>GmLDOX</i> (FJ197133)	F-ARAARGAGAAGTATGCHAAYGASC R-CCAYGARATYCTMACCTTYTCC	54	578
<i>GmUFGT</i> (FJ197134)	F-CAGGARGAYATHGAGYTSTTCATG ARKGC and 3' race	59	1430
<i>GmMYB1</i> (FJ197135)	F- TGYATIRAIAWIYAHGGAGAR GGMAARTGG and 3' race	59	1240
<i>GmMYB7</i> (FJ197136)	F-AAAGTTGCAGRYTTAGRTGGT TGAATTATYTGARGCC and 3' race	59	1020
<i>GmMYB10</i> (FJ197137)	F- TGYATIRAIAWIYAHGGAGAR GGMAARTGG and 3' race	61	930

Table 2 Degenerate primers for fragment amplification of MYB transcription factors and anthocyanin biosynthesis genes.

Table 3 PCR conditions for fragment amplification of MYB transcription factors and anthocyanin biosynthesis genes.

Temperature (°C)	Time	No. of cycles
94	3 min	1
94	30 s	
55	30 s	35
72	1 min	
72	10 min	1

4.1.4 Rapid amplification of cDNA ends (RACE)

To amplify mangosteen *MYBs* and anthocyanin biosynthesis fulllength cDNAs, both 5' and 3' RACE were performed to generate full-length cDNAs following the protocol of GeneRacer (Invitrogen, USA) (Appendix Figure 1). The cDNA fragments of *GmCHI*, *GmUFGT* and *GmMYBs* were obtained using the degenerate primer and 3' RACE primer as 3' RACE strategy. The 5' and 3' cDNA fragments were isolated using gene specific primers (real-time primers and GeneRacer primer) (Table 4). All specific primers were designed with Tm 60±1°C using Vector NTI 10.0 (Invitrogen, USA) and GeneRacer primers were shown as below.

GeneRacer 5' primer 5'-CGACTGGAGCACGAGGACACTGA-3' GeneRacer 5' Nested primer 5'GGACACTGACATGGACTGAAGGAGTA-3' GeneRacer 5' primer 5'-GCTGTCAACGATACGCTACGTAACG-3' GeneRacer 5' Nested primer 5'-CGCTACGTAACGGCATGACAGTG-3'

Gene name	Sequence	Expected size (bp)
<i>GmPAL</i> (FJ197127)	F- ATGGCTCGGCCCACCTATTGA R- CTGGAAGTTGCCACCGTGTAATG	130
<i>GmCHS</i> (FJ197128)	F- GGCCTTCTGATACCCACTTGGACT R- GGATGGTTTGGGCCGCAGATA	141
<i>GmCHI</i> (FJ197129)	F- GAAGAGGAGGAAGAGGCGTTGGA R- GGCAGTGGGTGAAGTTACTGGGAA	108
<i>GmF3H</i> (FJ197131)	F- TTGTTGAGGCTTGTGAGGAATGG R- CGGACATATCGAATCGGAGCTTT	141
<i>GmF3'H</i> (FJ197132)	F-GCACATTCGAGAGGCAGAGTTGG R-TGAATACCCTCCTCCCCACCATT	140
<i>GmDFR</i> (FJ197130)	F- GCGTCTGCTGGTGCATTGGA R- GCTCTCTCCGCCTTTGTCTTGG	140
<i>GmLDOX</i> (FJ197133)	F- ACCAGCGAGTACGCAAGGCAA R- TGGAGGGCCAGTTCTTCAATGC	128
<i>GmUFGT</i> (FJ197134)	F-GCGAGTTTGTGATTTGCCTGAAGG R-ACCGCATCCGCTTTAGGTAACG	105
<i>GmMYB1</i> (FJ197135)	F- GCTGTGGCAAGAGTTGTAGGCTAAGA R- TCTCCCAGCAATCAATGACCACCTA	143
<i>GmMYB7</i> (FJ197136)	F- CTTGCCTGGAAGAACGGACAATG R- CGCAACGCATCGTGTCTGTGA	119
<i>GmMYB10</i> (FJ197137)	F-TGGAGAAATAACTCAAGGGACAACGG R-GCCATTTGTTCTGGGCTGAATAGACT	120

Table 4 Specific primers for 5' and 3' RACE and real-time PCR.

Table 5 PCR reactions for primary condition of 5' and 3' RACE.

Reagent	Volume (µL)	Volume (µL)
GeneRacer 5' or 3' primer	3	3
Degenerate primer	10	
Specific primer		1
cDNA (GeneRacer)	1	1
10x PCR Buffer	5	5
10 mM dNTPs	1	1
50 mM MgCl2	1.5	1.5
Platinum Taq	0.5	0.5
Water	28	37

Temperature (°C)	Time	No. of cycles
94	3 min	1
94	30 s	5
72	1.5 min	5
94	30 s	5
70	1.5 min	5
94	30 s	
57, 61	30 s	32
72	1.5 min	
72	10 min	1

Table 6 PCR conditions for primary condition of 5' and 3' RACE.

After the first PCR, the quality of PCR product was analyzed using gel electrophoresis on 1% agarose then a positive reaction was selected that had the expected band for secondary PCR (Nested PCR). The second amplification reactions were carried out in 50 μ L volumes (Table 7) and assessed using the reaction conditions displayed in Table 8.

 Table 7 PCR reactions for secondary reaction of 5' and 3' RACE.

Reagent	Volume (µL)	Volume (µL)
GeneRacer 5' or 3' nested primer	1	1
Degenerate primer	10	
Specific primer		1
Initial PCR product	1	1
10x PCR Buffer	5	5
10 mM dNTPs	1	1
50 mM MgCl2	1.5	1.5
Platinum Taq	0.5	0.5
Water	30	39

Temperature (°C)	Time	cycles
94	3 min	1
94	30 s	
55, 57, 59, 61, 63	30 s	30
68	1.5 min	
68	10 min	1

Table 8 PCR conditions for secondary reaction of 5' and 3' RACE.

The full-length cDNA clones of *GmMYBs* were obtained using the gene specific primers designed to the 5' and 3' UTR regions (Table 9). The reaction mixture (50 μ L) consisted of 10x PCR buffer (5 μ L), 50 mM MgCl₂ (2 μ L), 10 mM dNTPs (1 μ L), 10 μ M of each primer (1 μ L), cDNA (1 μ L), Platinum Taq (0.2 μ L) and water (38.8 μ L) (Invitrogen, USA). The reaction conditions displayed in Table 10.

 Table 9 Specific primers for full-length amplification of MYB transcription factor genes.

Gene name	Sequence	Expected size (bp)
<i>GmMYB1</i> (FJ197135)	F- GAAAATGAGGAGACCTTGTTGTG R- TTGTCTCATCTAAAGAGAAGTAACGTG	738
<i>GmMYB7</i> (FJ197136)	F- ATGGAATCCCAAATAACCTCTACTTT R- TTTATCCAAAGCCTCTCTATTTCTGA	815
<i>GmMYB10</i> (FJ197137)	F- GAAGCTAAATGGAGAGAAGTTCAGG R- GGATTCATCGAAAAACTACATTTGC	878

Temperature (°C)	Time	No. of cycles
94	3 min	1
94	30 s	
55	30 s	35
72	1 min	
72	10 min	1

 Table 10 PCR conditions for full-length amplification of MYB transcription factor genes.

4.1.5 PCR products cloning and DNA sequencing

After visualizing the PCR product by gel electrophoresis on 1% agarose, the amplified PCR fragments from each gene were purified using QIAquick Gel Extraction Kit (Qiagen, Germany) or PureLink PCR Purification Kit (Invitrogen, USA), and cloned into pGEM[®]-T Easy Vector (Promega, USA) (Appendix Figure 2). as described in the manufacturer's instructions.

1) Ligations using the pGEM[®]-T Easy vectors

The ligation reactions were set up using 5 μ L of 2x Rapid Ligation Buffer, 1 μ L of pGEM[®]-T Easy Vector (50 ng), 3 μ L of PCR product and 1 μ L of T4 DNA Ligase to a final volume of 10 μ L The reactions were mixed gently by pipetting and then incubated overnight at 4°C.

2) Transformations using the pGEM[®]-T Easy vector ligation

Reactions

DH5- α competent cells were used for the transformations. Two LB/ampicillin//X-Gal plates for each ligation reaction were prepared, and equilibrated at room temperature prior to plating. The 50 µL frozen DH5- α tube(s) were removed from -80°C and placed in an ice bath until just thawed (about 10 min). The ligation reaction (10 µL) was carefully put into each competent cell. The tubes

were gently flicked to mix and then placed on ice for 30 min. The cells were heatshocked for 40 s in a water bath or heat block at exactly 42° C without shaking and immediately returned to ice for 2 min. Then 450 µL SOC medium was added to the tubes and incubated for 1.5 h at 37°C with shaking (~150 rpm). Each transformation culture (50 and 100 mL) was plated onto duplicate LB/ampicillin//X-Gal plates and incubated overnight (16-24 h) at 37°C. White colonies would be selected for the next step.

3) Plasmid DNA Purification using Purelink Quick Plasmid Miniprep Kit (Invitrogen, USA)

Single white colonies containing the inserted genes were cultured in 4 mL LB medium overnight. Cells were centrifuged at 7,000 x *g* for 10 min and only the pellet cells collected. The pellet cells were re-suspended in 250 μ L of re-suspension buffer and transferred to a 1.5 mL microtube. Then, 250 μ L of lysis buffer was added and the tube gently inverted to mix. Three hundred and fifty μ L of neutralization buffer were added and the tube inverted immediately and then centrifuged at 12,000 x *g* for 10 min. The mixture was transferred to the spin column by pipetting. The tube was then centrifuged for 1 min and the flow-through discarded. The spin column was washed by adding 700 μ L of washing buffer and centrifuged for 1 min, the flow-through discarded, and centrifuged again to remove any residual. DNA was eluted by adding 50 μ L of elution buffer, incubated 1 min in the room temperature and centrifuged for 1 min. DNA was kept at -20°C until used for cutting with the *Eco*RI restriction enzyme (New England Biolabs, Inc., USA) and the insert size was analyzed by gel electrophoresis before sequencing.

4) DNA sequencing and analysis

The sequence analysis of the clone was conducted by automatic sequencing using the ABI PRISM[®] 3730 DNA sequencer (Applied Biosystems, USA). Comparison and analysis of the *GmMYB* transcription factors and anthocyanin biosynthesis sequences were performed with the advanced basic local alignment

search tool (BLAST) at the National Center for Biotechnological Information (NCBI) (http://www.ncbi.nlm.nih.gov/). The DNA and protein sequences were analyzed by the Vector NTI 10.0 program (Invitrogen, USA) and submitted to GenBank (NCBI). Full-length sequences were aligned using Vector NTI AlignX (opening = 15, extension = 0.3). Phylogenetic and molecular evolutionary analyses were conducted using MEGA version 3.1 (Kumar *et al.*, 2004) using a minimum evolution phylogeny test and 1,000 bootstrap replicates

4.2 Promoter isolation and analysis of *GmDFR*, *GmLDOX* and *GmUFGT* genes

The 5' flanking region of DFR, LDOX and UFGT were isolated using GenomeWalker Kit (Clontech, USA) (Appendix Figure 3). The genomic DNA (gDNA) was isolated from young mangosteen leaves using DNeasy Plant Mini Kit (QIAGEN) following the manufacturer's instructions. The libraries were prepared by separate digestion of 2.5 µg of genomic DNA with 80 units of *DraI*, *Eco*RV, *HpaI*, *MscI*, *ScaI*, *SspI* and *StuI* (New England Biolabs, Inc., USA). The DNA mixtures were incubated at 37°C overnight to create blunt-end fragments. All DNA sample were purified using QIAquick Gel Extraction Kit (Qiagen, Germany) following the manufacturer's instructions, then the DNA libraries were ligated with GonomeWalker adapter using Rapid DNA Ligation Kit (Roche, USA) and incubated overnight (16– 24 h) at 4°C. All ligated mixtures were purified using QIAquick Gel Extraction Kit (Qiagen, Germany). The 5' flanking region of DFR, LDOX and UFGT were amplified following the protocol of GenomeWalker Kit (Clontech, USA). The genespecific primers were designed in the 5' end of *GmDFR*, *GmLDOX* and *GmUFGT* and used for each genomic-walking PCR. The adaptor primers are shown as below.

> AP1 5'-GTAATACGACTCACTATAGGGC-3' (primary PCR) AP2 5'-ACTATAGGGCACGCGTGGT-3' (nested PCR).

The gene-specific primers 5'-ATCAGGATCACGGACAGTGGCTCTAACC -3' (primary PCR) and 5'-

AGCCATGACCCGATGAACCCTGATG -3' (nested PCR) were used for the mangosteen DFR promoter. The gene-specific primers 5'-GATGTTTCCTAAGTTGGTTAGCTCCTCTTGTGG -3' (primary PCR) and 5'-GGGCGGATGTACTCTTTTGGGATGCA -3' (nested PCR) were used for the mangosteen LDOX promoter. Finally, the gene-specific primers 5'-GGAAAGTGCGGCTAAGTGGTGTGTGTTATGG -3' (primary PCR) and 5'-AGGAGTGGGGCTGCATGTGTTCCA -3' (nested PCR) were used for the mangosteen UFGT promoter. The first amplification reactions were carried out in 50 µL volumes, with the same conditions as the full-length cDNA amplification, and the reaction conditions displayed in Table 11. After the first PCR, the second amplification reactions, same as under condition for the full-length cDNA amplification, were carried out in 50 µL volumes using the first PCR product as DNA template, and the second reaction conditions displayed in Table 12. PCR products were analyzed by gel electrophoresis on a 1% agarose gel, the longest of amplified PCR fragments from each gene were purified using QIAquick Gel Extraction Kit (Qiagen, Germany) or PureLink PCR Purification Kit (Invitrogen, USA), and cloned into pGEM[®]-T Easy Vector (Promega, USA) as described as above. Promoter fragments were analyzed for *cis*-elements using PLACE (http://www.dna.affrc.go.jp/PLACE/signalscan.html) and PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

Temperature (°C)	Time	No. of cycles
94	3 min	1
94	30 s	7
72	3 min	
94	30 s	32
67	3 min	
67	10 min	1

Table 11 PCR conditions for primary reaction of Genome walking.

Temperature (°C)	Time	No. of cycles
94	3 min	1
94	30 s	5
72	3 min	
94	30 s	30
67	3 min	
67	10 min	1

 Table 12 PCR conditions for secondary reaction of Genome walking.

4.3 Functional testing of GmMYBs using transient tobacco assays

The dual luciferase assay of transiently transformed *Nicotiana benthamiana* leaves were used to screen the activities of GmMYB transcription factors. A transient dual luciferase assay was used as previously reported (Hellens *et al.*, 2005; Espley *et al.*, 2007). The promoters of *AtDFR*-LUC fusion in pGreenII 0800-LUC (*TT3*, AT5g42800), *AtPAP1* in pGreen II 62-SK 0029 (*AtMYB75*, At5g56650) and *AtbHLH2* (*AtEGL3*) gene in pHEX2 were obtained from Dr. Roger P. Hellen (personal communication). The methods are described in more detail below and illustrated in Figure 6.

4.3.1 Preparation the construct

The mangosteen promoter of *GmDFR* (FJ197138) was amplified using the pimers (Forward 5'- ACCAGCCCATCCACATGGTCA-3' and Reverse 5'-TTTCATTTTGGGAACCCATGGAT-3' and cloned into pGEM[®]-T Easy Vector (Promega, USA) as described above. The DFR promoter was digested out of pGEM®-T easy using *NcoI* and *NotI* (New England Biolabs, Inc., USA), and ligated into *NcoI* and *NotI* digested pGreenII 0800-LUC (Appendix Figure 4). The modification of the 3' end of the sequence was introduced the *NcoI* site using reverse primer (bold letters), allowing the promoter to be cloned as a transcriptional fusion with the firefly luciferase gene (LUC). Thus, TFs that bind to the DFR promoter and increase the rate of transcription could be identified as an increase in luminescence
activity. In the same construct, a luciferase gene from *Renilla* (REN) under the control of a 35S promoter provided an estimate of the extent of transient expression. The LUC activity relative to REN was expressed as a ratio to show activation of the promoter by a transcription factor included in another plasmid.

The full-length cDNA clone of *GmMYBs* were digested out of pGEM®-T easy using double digestion (GmMYB1; *SacI* and *ApaI*, GmMYB6 and GmMYB10; *NotI* and *SpeI*) and ligated into the double digested pGreen II 62-SK 0029 binary vectors (Appendix Figure 5). All double digestions were digested following the manufacturer's instructions (New England Biolabs, Inc., USA). The constructs were transformed into *E. coli* (DH5- α), as described as above, with 50 µg mL⁻¹ kanamycin. The positive clones were confirmed by sequencing. (New England Biolabs, Inc., USA).

4.3.2 Agrobacterium Transformation

Agrobacterium cells (A. tumefaciens GV3101 (MP90)) were used for all transformations. The LB plates were prepared, and equilibrated at room temperature prior to plating. The 40 μ L frozen Agrobacterium tube(s) were removed from -80°C and placed in an ice bath until just thawed (about 10 min). One microliter of recombinant plasmid containing GmDFR promoter and GmMYBs were added to *Agrobacterium* cells. The mixture was added into a chilled cuvette then transformed immediately using electroporation (Bio-Rad) at 2.5 kV, 25 μ F, 400 Ω and time constant 8-9 ms. After pulsing, the cells were resuspended in 1 mL of SOC medium and incubated in a shaking incubator at 28°C for 60 min. The dilutions were plated out on LB agar containing antibiotics such as kanamycin, gentamycin rifampicin and spectinomycin (Table 13) incubated 48 h at 28°C then kept the Agrobacterium culture in 15% glycerol and stored in -80°C.

Insert	Vector	Antibiotics ($\mu g m L^{-1}$)
AtDFR-LUC	pGreenII 0800	Kan 50
GmDFR -LUC	pGreenII 0800	Kan 50
AtPAP1	pGreen II 0029 62-sk	Kan 50
GmMYB1	pGreen II 0029 62-sk	Kan 50
GmMYB7	pGreen II 0029 62-sk	Kan 50
GmMYB10	pGreen II 0029 62-sk	Kan 50
AtbHLH2	pHex2	Rif 25 / Gent 10 / Spec 50
Empty vector	pHex2	Rif 25 / Gent 10 / Spec 50

 Table 13 Antibiotics for Agrobacterium culture.

4.3.3 Agrobacterium Suspension Preparation

Before plant transformation (3 days), all *Agrobacterium* cultures were plated and prepared freshly. A 10 μ L loop of confluent bacterium was resuspended in 10 mL of infiltration buffer (10 mM MgCl₂, 0.5 μ M acetosyringone) to an OD₆₀₀ of 0.2, and incubated at room temperature without shaking for 2 h before infiltration. *Agrobacterium* mixtures were comprised 450 mL effector (35S-TFs) with or without 450 mL 35:AtbHLH2 (partner) plus 100 μ L DFR-LUC and adjusted to a final volume of 1 mL with infiltration buffer.

4.3.4 Agrobacterium-Mediated Transient Expression

Nicotiana benthamiana plants were grown under glasshouse conditions in full potting mix, under natural light with daylight extension to 16 h, until the plants had at least 6 leaves. Approximately 150 μ L of the *Agrobacterium* mixture were syringe-infiltrated at four points into a young leaf of *N. benthamiana*. Three days after inoculation, 3 mm leaf discs (4 technical replicates from each plant) were cut with a hole-puncher, placed into wells of a 96-well-plate containing 50 μ L of 1x PBS (phosphate buffered saline) in each well, and gently crushed with the holepuncher. Dual-luciferase assays were performed using Dual-GloTM Luciferase Assay (Promega, USA) according to the manufacturer's instructions. The analysis was carried out using Orion Microplate Luminometer (Berthold Detection System). The cycle was involved adding 50 μ L of firefly luciferase, shaking for 10 s, waiting for 10 min, reading the LUC signal, adding 50 μ L of renilla luciferase, shaking for 10 s, waiting for 10 min and reading the REN signal. The LUC/REN ratio was calculated.

Figure 6 Functional testing using dual -luciferase assays

Source: Adapted from Andrew P. Dare (personal communication).

4.4 Expression analysis of *GmMYB*s and anthocyanin biosynthesis genes during colour development of mangosteen fruit

Fifty-fold diluted cDNA samples were used for quantitative real-time RT-PCR. Gene-specific primers (Table 4) were tested for specificity using plasmid amplification and the product analyzed on a 1% agarose gel stained with ethidium bromide. qPCR was performed on the Light Cycler 480 system (384-well plates) and the Light Cycler[®] 480 SYBR Green I Master kit (Roche Diagnostics, Germany) following the manufacturer's instructions. All reactions were performed in triplicate (technical replication) using 3 μ L of the diluted template (50x), 1 μ L of each primer $(2.5 \,\mu\text{M})$, and 5 μ L of 2x Master mix to a final volume of 10 μ L. PCR was initiated by 5 min at 95°C, followed by 40 cycles of 95°C for 5 s, 60°C for 5 s, 72°C for 10 s and completed by a melting curve analysis program. The negative water control and melting curve were included in every run. The melting peak, dissociation curve and sequencing were analyzed to confirm that there was no primer dimer and an expected product. The data were analysed and normalized to mangosteen elongation factor 1 alpha (GmELF, EU274578) to minimize variation in cDNA template levels. The primers of GmELF primers were designed with Vector NTI 10.0 (Invitrogen, CA, USA) as described above (Forward 5'-GCCCAAAAGACCATCAGACAAGC-3' and Reverse 5'- CGGAAGGACCAAAAGTGACAACC-3'). The size of qPCR products ranged from 100-150 bp. GmELF was selected for normalization because of its consistent transcript level throughout the fruit samples with crossing point (Cp) values changing by < 2. The standard curve was generated for each gene by using a cDNA serial dilution (at least 5 dilutions), and the resultant PCR efficiency calculations (ranging between 1.893 and 1.999) were imported into relative expression data analysis.

The expression levels were shown as a ratio relative to the fruit at stage 0 for colour development studies and the fruit after harvest (day 0) for the ethylene and temperature experiment. The ratio of the calibrator was set to the nominal value of 1. The relative expression was analyzed as transcript abundance ratio of target gene to reference gene following equation as below (Roche, USA).

ratio =
$$\frac{(E_{\text{Ref}})^{C_{\text{P} \text{ sample}}}}{(E_{\text{target}})^{C_{\text{P} \text{ sample}}}} \div \frac{(E_{\text{Ref}})^{C_{\text{P} \text{ calibrator}}}}{(E_{\text{target}})^{C_{\text{P} \text{ calibrator}}}}$$

The E_{ref} and E_{target} are the efficiencies of the primers for the reference and target gene, respectively, and Cp_{ref} and Cp_{target} are the mean Cp value of reference and target genes, respectively.

The transcript level of *GmMYB10* was confirmed using semiquantitative RT-PCR. To find the suitable cycle, PCR reactions were tested using a number of cycles ranging from 24 to 32. The PCR mixture was amplified under the following conditions: 94°C for 30 s, 60°C for 30 s with 28 cycles (*GmMYB10*) and 26 cycles (*GmELF*), and 72°C for 30 s with a final extension at 72°C for 10 min. The amplification reactions were carried out in 50 μ L volumes, under the same conditions as for the full-length cDNA amplification. The PCR product was analyzed using gel electrophoresis on a 1% agarose gel.

5. Statistical analysis

Using a SAS package, variance analysis using *t*-tests and *F*-tests were performed to determine differences between means of the treatments, at $P \le 0.05$ and the significance of the differences between means was estimated by Duncan's new multiple range test (DMRT). Data were the mean \pm standard error (SE). All experiments were at least repeated once.

THE EXPERIMENTAL TIME AND PLACES

The experiments were carried out during June 2005-Dec 2008 and the research was conducted at the places as described below:

1. Postharvest Technology center, Kasetsart University, Kamphaeng Saen campus, Nakhon Pathom, Thailand.

2. Plant & Food Research, (Mt Albert Research Centre), Auckland, New Zealand (formerly Hortresearch)

RESULTS

1. Study of colour development and fruit quality of mangosteen harvested at different stages of maturity

1.1 Fruit colour development and quality

During ripening of fruit harvested at stage 1(group A), the L* and b* values decreased sharply during colour development. The a* value increased rapidly with colour development from stage 0 to 4 then decreased sharply to stage 6 (Figure 7b, Appendix Table 1). The hue value decreased significantly and correlated closely with red colouration from stage 0 to 6 ($P \le 0.001$) (Figure 7d, Appendix Table 1). The red colouration developed rapidly to the purple black (stage 6) within 9 days, with colour development from stage 5 to 6 being slower than between the other stages (Table 14).

Pericarp firmness decreased sharply from stage 0 to 6, whereas SSC and SSC/TA ratio increased slightly, and TA decreased slightly during colour development from stage 3 to 6 (Table 14, A columns).

When fruit at the six different stages of maturity (group B) were harvested and kept at 25°C, each stage completely developed to the purple black stage (Figure 8). No matter at what stage the fruit were harvested, they all ripened such that there were no significant differences in colour especially L*, b* and hue value (Figure 8, Appendix Table 2), fruit in sensory evaluation and fruit quality, including hue values, firmness, SSC and TA, when the fruit were assessed at stage 6 (P>0.05) (Table 14, B columns).

Figure 7 Colour development (L*, a*, b* and hue value) of mangosteen fruit harvested at stage 1 compared to stage 0. Data are means <u>+</u> SE of three replications.

Emit eto	L	ime	Firmes	s (N) <u>1</u>	% St	SC1	% T	<u>1</u> 1	SSC/	TA ¹	Sensory ¹
LIUL SIG	b D	(p)	А	В	A	в	A	В	A	В	В
•			898.3a		13.33c		0.68d		19.6bc	.	.
1		0	779.3b	44.8	15.2b	17.2	0.77bc	0.81	19.8bc	21.2b	4.2
2		1	201.3c	43.6	15.3b	17.3	0.78abc	0.81	19.6bc	21.3b	3.7
e S		5	136.0d	46.0	16.3a	17.5	0.84a	0.80	19.3c	21.9ab	3.8
4		3	98.4e	42.9	16.6a	17.9	0.80ab	0.78	20.8bc	23.0ab	4.0
ي ج		5	66.5f	45.0	17.1a	17.5	0.79abc	0.75	21.7ab	23.5a	3.7
کی و		6	46.5g	47.9	17.2a	17.4	0.73dc	0.74	23.7a	23.7a	4.1
F-te	est		**	us	* * *	us	* *	ns	*	×	ns

 Table 14
 Time, quality and sensory evaluation of mangosteen fruit harvested at different stage.

Table 14 (Continued).

Fruit were either harvested at stage 1 (A) and allowed to ripen at 25°C, or harvested at the 6 different maturity stages and measurements made when the fruit of each maturity had reached stage 6(B). The firmness in A column were log (In) transformed data and untransformed values were presented. ¹Means within any column followed by the same letter are not significantly different (P > 0.05). ns = non-significantly different, *= significantly different at $P \le 0.05$, ** = significantly different at $P \le 0.01$, *** = significantly different at $P \le 0.001$.

1.2 Ethylene production of mangosteen fruit harvested at stage 1

During ripening of fruit harvested at stage 1(group A), ethylene production of mangosteen fruit increased linearly until stage 5 (dark purple) by 5 days, then decreased slightly thereafter (Figure 9). Ethylene production decreased significantly with red colouration from stage 5 to 6 ($P \le 0.001$) (Appendix Table 3).

Figure 9 Ethylene production of mangosteen fruit harvested at stage 1 during storage at 25°C. The numbers of 1 to 6 in the graph represent maturity stages of mangosteen fruit at stages 1 to 6. Data are means of 10 fruit <u>+</u> SE.

1.3 Anthocyanins in mangosteen pericarp

During fruit colour development, the total anthocyanin contents in the outer and inner pericarp increased more than 70- and 18-fold from stage 1 to stage 6, respectively. The total anthocyanin contents were significantly different in outer and inner pericarps ($P \le 0.001$), and hue angle values decreased sharply (Figure 10). The total anthocyanin contents in the inner pericarp tissue increased following the same trend, although the contents at all stages were less than those in the outer pericarp (Figure 10). Hue angle value and total anthocyanin content were closely associated with fruit colour development.

When fruit at the six different stages of maturity (group B) were harvested and kept at 25°C, each stage completely developed to the purple black stage (Figure 8). The total anthocyanin contents in outer and inner pericarp were significant difference with $P \le 0.001$ and $P \le 0.05$, respectively (Figure 11, Appendix Table 4). However, no matter at what stage the fruit were harvested, they all ripened and developed to stage 6 (purple black) (Table 14, B columns).

The anthocyanins in the outer pericarp mainly consisted of 5 compounds (Table 15, Figure 12). These compounds were identified by HPLC/MS as cyanidinsophoroside (M+ 611, major fragment, m/z 287), cyanidin-glucoside (M+ 449, m/z 287), cyanidin-glucoside-pentoside (M+ 581, m/z 287), cyanidin-glucoside-X (M+ 639, m/z 287), cyanidin-X₂ (M+ 667, m/z 287) and cyanidin-X (M+ 477, m/z 287) (Appendix Figure 6). X denotes an unidentified residue of m/z 190, a mass which does not correspond to any common sugar residue. The two major compounds from HPLC and LC-MS analyses corresponded to those of authentic standards of cyanidin-3-sophoroside and cyanidin-3-glucoside. The concentration of these two compounds increased significantly during fruit colour development, approximately doubling between each stage (Table 15). In addition, cyanidin-glucoside-pentoside was found at low levels, with patterns similar to those of the two major anthocyanins (Table 15). The other anthocyanins had initial low concentrations and decreased further by stage 6. The inner pericarp contained essentially the same compounds, but

Figure 10 Total anthocyanin content and hue value of mangosteen fruit harvested at stage 1 compared to stage 0. Data are means \pm SE of three replications.

Figure 11 Total anthocyanin content of mangosteen at stage 6 developed from 6 different maturity stages. Data are means \pm SE of three replications.

Figure 12 Anthocyanin profiles in outer pericarp of mangosteen fruit during colour development after harvest and compared to stage 0. Peak identity was as follow: 1) cyanidin-sophoroside, 2) cyanidin-glucoside-pentoside, 3) cyanidin-glucoside and cyanidin-glucoside-X (overlapping peak), 4) cyanidin-X₂, and 5) cyanidin-X. X denotes a residue of *m*/*z* 190 which is unified atomic mass units.

Fruit	Unknown ¹	Unknown ¹	Unknown ¹	Cu angl	Cru alu a ant ¹	Cy-glu +	Unknown ¹	Unknown ¹	C_{2}	$C_{\rm ev}$ (100) ¹	$C_{\rm ev}$ (100) ²	Tatal ²
stage	1	2	3	Cy-sop	Cy-glu-pellt	$Cy\text{-}glu\text{-}X^{\underline{1}}$	4	5	Су	$Cy-(190)_2$	Cy-(190)	Total
0	0c	0c	0c	0e	0d	0e	0b	2b	21a	18a	94a	135e
1	0c	0c	0c	52de	0d	11e	0b	0b	11ab	11b	83a	167e
2	0c	0c	0c	143de	0d	36de	0b	0b	3b	10b	87a	278de
3	0c	0c	0c	359d	9d	81d	0b	0b	0b	2c	58b	509d
4	0c	6c	3c	823c	27c	191c	0b	0b	0b	6bc	56b	1111c
5	10b	20b	14b	1403b	62b	290b	0b	0b	0b	0c	26c	1824b
6	15a	44a	30a	3126a	125a	842a	9a	16a	0b	0c	27c	4235a
F-test	***	***	***	***	***	***	***	***	*	***	***	***

Table 15 Anthocyanin contents (mg kg⁻¹) in outer pericarp of mangosteen during colour development after harvest (stage 1 to 6).

Total values represent the sum of the individual compounds. Cy-sop: cyanidin-3-sophoroside, Cy-glu-pent: cyanidin-glucosidepentoside, Cy-glu: cyanidin-3-glucoside, Cy-gluc-X: cyaniding-glucosideX Cy-X: cyanidin-X (X denotes a residue of m/z 190 which has not been identified. The ¹values were x+1 transformed data and untransformed values were presented. ^{1, 2}Means within any column followed by the same letter are not significantly different (P > 0.05) using DMRT. ns = non-significantly different, * = significantly different at $P \le 0.05$, *** = significantly different at $P \le 0.001$

Fruit	Unknown ¹	Unknown ¹	Unknown ¹	Cu son ¹	Cru alu a ant ¹	Cy-glu +	Unknown ¹	Unknown ¹	C_{r}	$C_{\rm ev}$ (100) ²	$C_{\rm ev}$ (100) ²	Tatal ²
stage	1	2	3	Cy-sop-	Cy-giu-pent	Cy -glu- X^1	4	5	Су	Cy-(190) ₂	Cy-(190)	Total
0	0	0	0	0.0e	0b	0.0b	0	0.0b	7.0b	9.7	50.8	67.5e
1	0	0	0	24.2de	0b	5.7b	0	9.8a	6.0b	11.5	52.0	109.2de
2	0	0	0	41.7cde	0b	11.3b	0	3.3b	15.0a	10.3	49.6	131.3cde
3	0	0	0	68.2cd	0b	13.8b	0	1.0b	15.8a	10.0	52.5	161.3cd
4	0	6	0	89.2c	0b	17.8b	0	0.0b	7.2b	10.7	56.7	181.5c
5	0	1.2	0	223.3b	1.8b	66.0a	0	0.0b	0.0c	5.5	44.2	350.7b
6	0	1.2	0	345.2a	7.0a	72.2a	0	0.0b	1.2bc	6.2	41.2	474.0a
F-test	-	ns	-	***	***	***	-	*	***	ns	ns	***

Table 16 Anthocyanin contents (mg kg⁻¹) in inner pericarp of mangosteen during colour development after harvest (stage 1 to 6).

Total values represent the sum of the individual compounds. Cy-sop: cyanidin-3-sophoroside, Cy-glu-pent: cyanidin-glucoside-pentoside, Cy-glu: cyanidin-3-glucoside, Cy-glu-X: cyanidin-glucoside-X, Cy-X: cyanidin-X (X denotes a residue of m/z 190 which has not been identified. The ¹values were x+1 transformed data and untransformed values were presented. ^{1, 2}Means within any column followed by the same letter are not significantly different (P > 0.05) using DMRT. ns = non-significantly different, * = significantly different at $P \le 0.05$, *** = significantly different at $P \le 0.001$

1.4 Anatomy of mangosteen skin

The outer pericarp (fruit skin) anatomy from fruit at stages 1 to 6 was examined (Figure 13). The red pigment released from the sectioned outer pericarp was more intense in the purple black (stage 6) than other stages due to breakdown of cells while cutting. The density of red pigment was higher in cells of purple black outer pericarp (stage 6) than for other stages.

Figure 13 Light microscopy of outer pericarp (skin) of mangosteen fruit. The bar in the outer pericarp section shows 0.1 mm. Numbers refer the maturity stage of the fruit.

2. Study of the effects of ethylene on colour development of mangosteen fruit

Mangosteen fruit at stage 1 (light greenish yellow with 5% scattered pink spots) were treated with ethylene and the ethylene reception inhibitor (1-MCP) in the following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-methylcyclopropene (1-MCP) for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M). After treatment, the ethylene- and air-treated fruit developed their colour faster than the 1-MCP treated fruit (Figure 14). In air and ethylene treatments, fruit colour (hue value) decreased sharply, whereas the fruit colour of 1-MCP-treated fruit did not change greatly during fumigation. In air and ethylene treatment, the fruit colours were increased continuously and developed to stage 6 (purple black) within 7 and 9 days, respectively (Figure 15a). Both 1-MCP and E+M treatments, 1-MCP significantly delayed fruit colour (hue value and colour index) (Figure 14 and 15, Appendix Table 5 and 6). In 1-MCP treatment, the fruit colour did not change greatly during storage at 25°C (Figure 15).

Pericarp firmness decreased sharply during fumigation (Figure 16). In airand ethylene-treated fruit, pericarp firmness decreased faster than the 1-MCP- and E+M-treated fruit. 1-MCP significantly delayed pericarp firmness (Figure 16, Appendix Table 7).

After fruit were treated, the ethylene production increased continuously for 5 days and decreased thereafter with the pattern of an ethylene climacteric. The ethylene production of 1-MCP and E+M treatments peaked more slowly than for air and ethylene treatments (Figure 17a). The total anthocyanin content of both treatments was increased continuously (Figure 17b) and correlated closely with ethylene production (Figure 17a). The total anthocyanin content of ethylene-treated fruit increased to a higher level than other treatments (Figure 17b, Appendix Table 8). 1-MCP application significantly slowed down the increase of anthocyanin content in 1-MCP- and ethylene +1-MCP-treated fruit that correlated closely with ethylene production and fruit colour (Figure 17, Appendix Table 8).

Figure 14 Mangosteen fruit at day 7 treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μL L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μg L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μl L⁻¹ ethylene for 24 h +1 μg L⁻¹ 1-MCP for 12 h (E+M).

Figure 15 Change in fruit colour (hue value) and colour index (score) of fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M). Data are means ± SE of three replications.

Figure 16 Change in pericarp firmness treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M). Data are means <u>+</u> SE of three replications.

Figure 17 Change in ethylene production of fruit and total anthocyanin content of mangosteen pericarp (TAC) treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μL L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μg L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μl L⁻¹ ethylene for 24 h +1 μg L⁻¹ 1-MCP for 12 h (E+M). Data are means ± SE of five replications for ethylene production and three replications for total anthocyanin content.

3. Study of the effects of temperature storage on colour development of mangosteen fruit

Mangosteen fruit at stage 1 (light greenish yellow with 5% scattered pink spots) were stored at 25°C (control) and 15°C for 7 days then transferred to 25°C. The fruit stored at 25°C developed fruit colour faster than the fruit stored at 15°C (Figure 18, Appendix Table 9 and 10) and developed to purple black (stage 6) within 9 days, while the fruit stored at 15°C developed within 13 days (Figure 19). Hue value of fruit stored at 25°C decreased sharply (Figure 19a) and correlated closely with increase of colour index (Figure 19b). The colour of fruit stored at 15°C (Figure 19).

Pericarp firmness decreased sharply during strorage but the fruit stored at 25°C lost firmness more rapidly than those stored at 15°C (Figure 20, Appendix Table 11).

After storage, ethylene production increased continuously for 5 days and decreased thereafter with an ethylene climacteric pattern. The total anthocyanin content of both treatments increased continuously (Figure 21b) and correlated closely with ethylene production (Figure 21a). The total anthcyanin content of fruit stored at 25°C significantly increased more than for those stored at 15°C (Figure 21b, Appendix Table 12). The ethylene production and total anthocyanin content increased rapidly when fruit were transferred to 25°C (Figure 21). Fruit stored at 15°C had significantly delayed ethylene production and anthocyanin accumulation (Figure 21, Appendix Table 12).

Figure 18 Mangosteen fruit at day 7 stored at 25°C (control) and 15°C for 7 days then transferred to 25°C.

Figure 19 Change in fruit colour (hue value) and colour index (score) of fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C (arrows). Data are means \pm SE of three replications.

Figure 20 Change in pericarp firmness of fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C (arrow). Data are means <u>+</u> SE of three replications.

Figure 21 Change in ethylene production of fruit and total anthocyanin content of mangosteen pericarp (TAC) stored at 25°C (control) and 15°C for 7 days then transferred to 25°C (arrows). Data are means ± SE of three replications

4. Cloning and characterization of MYB transcription factors and anthocyanin biosynthesis genes of mangosteen fruit during red colouration

4.1 Isolation and cloning of MYB transcription factors and anthocyanin biosynthesis genes of mangosteen fruit

4.1.1 MYB transcription factor

In order to isolate and characterize the mangosteen MYB transcription factors that play a role in anthocyanin biosynthesis, two degenerate primers were designed in the R2R3 domain. Three putative R2R3 MYB genes were isolated by 3' race and full-length sequences obtained by 5' race. The sequences of GmMYBs were translated to deduce amino acid and alignment using Vector NTI 10.0 program (Invitrogen, USA). The first cloned full-length cDNA was termed GmMYB1 (FJ197135) and was a 1,433 bp transcript encoding a predicted protein of 242 amino acids which shared high homology to strawberry *FaMYB1* (Figure 22-24). The GmMYB1 sequence showed the longest 3' UTR (649 bp) compared to its predicted ORF (726 bp). In a circular phylogenic tree of amino acid sequences with Arabidopsis MYB transcription factors (generated using MEGA version 3.1), GmMYB1 clustered in the same group as FaMYB1 of strawberry (Figure 24). After alignment of amino acid with other plants, GmMYB1 shared 57-63% homology with MYB1 of Fragaria ananassa, C2 repressor of Vitis vinifera and MYB6 of Gossypium *hirsutum*, respectively. GmMYB1 consisted of a motif pdLNL^D/_ELxi^G/_S also present in FaMYB1(Aharoni et al., 2001).

A second full-length cDNA was termed *GmMYB7* (FJ197136) which was 1,367 bp in length and encoded a predicted protein of 284 amino acids (Figure 25). A bootstrapped circular phylogenic tree generated using MEGA version 3.1 shows that *GmMYB7* shared high homology with several *Arabidopsis* MYB sequences in subgroup 7 (Figure 24). After alignment of amino acid with other plants, *GmMYB7* shared 52-74% homology with MYB7 of *Malus domestica*, MYB2 of *Arabidopsis thaliana* and MYB108 of *Vitis vinifera*, respectively. In the R3 domain, *GmMYB7* shows residues that differ from the amino acid of bHLH interaction motif [DE]Lx₂[RK]x₃Lx₆Lx₃R (arrows shown on Figure 23) (Zimmermann *et al.*, 2004).

A third full-length cDNA called *GmMYB10* (FJ197137) encoded a 995 bp transcript with a predicted protein of 284 amino acids (Figure 26). This cDNA shared high homology with other plant MYB sequences in the anthocyaninregulating subgroup (Figure 23 and 24). *GmMYB10* is closely related to the *Arabidopsis* MYBs in subgroup 10, especially *AtPAP1* with 80% amino acid identity in the R2R3 DNA-binding domain and 66% identity over the whole protein. After alignment of amino acid with other plants, *GmMYB10* shared 45-66% homology with MYB10 of *Malus domestica*, MYBA1 of *Vitis vinifera*, ROSEA1 of *Antirrhinum majus* and MYB10 of *Prunus domestica*, respectively. A bootstrapped circular phylogenic tree generated using MEGA version 3.1 shows that *GmMYB10* clustered in subgroup 10 (Figure 24).

1	TACTACCTAAACCTTCTCTCTCTATTCTACATTCTATCATTTTGAAACAAAAAGAAA \underline{AT} M	60
61	\underline{G} AGGAGACCTTGTTGTGATAAACAAGGAAACAATAAAGGTGCATGGTCTAAGCAAGAAGA R R P C C D K Q G N N K G A W S K Q E D	120
121	CCAGAAACTAATTGACTATATTAGGGCTCATGGTGAAGGTTGTTGGCGTTCCTTACCCAA Q K L I D Y I R A H G E G C W R S L P K	180
181	GGCTGCAGGGTTGCACCGCTGTGGCAAGAGTTGTAGGCTAAGATGGATAAATTATCTAAG A A G L H R C G K S C R L R W I N Y L R	240
241	GCCGGACATTAAACGAGGTAACTTTGCTCAAGATGAAGAAGATCTCATAATCAAGCTTCA P D I K R G N F A Q D E E D L I I K L H	300
301	TGCGCTCCTCGGCAATAGGTGGTCTTTGATTGCCGGGAGGTTGCCAGGAAGAACTGACAA A L L G N R W S L I A G R L P G R T D N	360
361	TGAGGTGAAGAACTACTGGAATTCTCACATAAAAAAAAGTTGATAAACATGGGAATAGA E V K N Y W N S H I K K K L I N M G I D	420
421	CCCCAACAATCATAAGCTTAACCAAGTCCTCCAACGTCCCCAACTGGGCCACAATTCCCC P N N H K L N Q V L Q R P Q L G H N S P	480
481	CAATATTAATGCAACCACCAGCCCATCTTTAGAAGCTTCCTTGAACCATTCAACCAAACC N I N A T T S P S L E A S L N H S T K P	540
541	AAAGAAACCAAAGGTTGAGAATGGTGGAGTCTCAGATTCTGGAAGCTGTCTAGATGATGA K K P K V E N G G V S D S G S C L D D D	600
601	TGATGATGATGATGATGATGAATCCAATTCAGACTCATCTTATCTTAATCTTGACCTAAC D D D D D D E S N S D S S Y L N L D L T	660
661	TATTGGTGTTCCTTCTACTTCATTTAATAGTTCGGAAAATAAGCAAGTTGTGGAGATTGA I G V P S T S F N S S E N K Q V V E I D	720
721	CCAGCAGGTGATAACTAGTGGTCAACTTGGCAGTGAACCATTGCCCACGTTACTTCTCTT \mathbb{Q} \mathbb{Q} \mathbb{V} I T S G \mathbb{Q} L G S E P L P T L L L F	780
781	TAGATGAGACAAATTGTTAGCCATATGAACTTGTTCATTCA	840
841	GAGGAGGAATGAGAAAGGGTCAACTCAACATGCATGGGTTGATTAGATCTTTAATCGTAA	900
901	AGAGTTAGCTCCAATTCTATTATGAGATTTTAGACCTGGTCCACTATATAGAAAATGAAT	960
961	AGATGAACTCTGGGTTCCATAAATACTCAGTCAAAGAGTTTTGAGTCTAATCAGTAAGTC	1020
1021	CCAAAAATTGAAGTATAGCCCAAACTATTTTACTGGGCGTTTATAGTGCCCAAAGTTCAC	1080
1081	CGATTTGGATGGTTCATAATTTACATGGAAGAACACATGTATTATATATGTATG	1140
1141	CTAGAGTGGAAGATTAAGAAGTTTCATATTGCATTATGATTATGATATTGTTAGAAATGA	1200
1201	CTTTTGAGAGCTAACTCAAGTTCGTTAAAGGGTTCGGGTTGAACTTTACTTAC	1260
1261	AATTTGTAATATGATCGGGGAAGAGATCAATTCTTGTTGTTCTTTTCAGCTTGATATAAG	1320
1321	CTATAGTGTATTAGGGCAATTTGGTTTTATCCATGTGTAATCTCTTATTACTGGCTATAA	1380
1381	ττατgattatattaaagaaaattctagatggctctttaaaaaaaa	

Figure 22 Nucleotide sequence of the gene encoding MYB1 from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG).

81

		R2
AmROSEA1 GhMYB10 LeANT1 MdMYB10 PAP1 AtMYB70 PhAP2 AtMYB70 VVMYBA1 ZmC1 FaMYB1 GmMYB1 GmMYB7 GmMYB10	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
AmROSEA1	(64)	GRESROEVOLIVRIHKLIGNKOSI IAGRIPGRTANOVKNEONTHVGKNIGEDGERCRKNVMNTKTIKLINIVRER
GhMYB10 LeANT1 MdMYB10 PAP1 ALMYB75 PAP2 ALMYB75 PAP2 ALMYB75 VVMYBA1 ZmC1 FaMYB1 GmMYB1 GmMYB10	(65) (67) (66) (64) (64) (67) (62) (67) (67) (67) (81) (63)	GD GE DE IDITIR LIHKLIGNEWSLIAGR IPGRTANDVKNØWNTHIR SRHQQQKVHQEDELSQDTTVAIK O GD GE DE IDITIR LIHKLIGNEWSLIAGR IPGRTANDVKNYWNTNULRGLNTTKIV PREKINNKGEISTKIEIT (FQ GD KEDE VDITIR LIHRLIGNEWSLIAGR IPGRTANDVKNYWNTNULRGLNTTKVK VER
AmROSEA1	(139)	ARTFTGLHVTWPREVGKTDEFSNVRLTTDEIPDCEKQTQFYNDVASPQDEVEDCIQWWSKLLETTEDGELG
GHMYB10 LEANT1 MdMYB10 PAP1 ALMYB70 PhAP2 ALMYB70 PhAN2 VVMYBA1 ZmC1 FaMYB1 GmMYB1 GmMYB10	(138) (144) (136) (143) (144) (142) (134) (124) (124) (134) (154) (140)	ERT SKTLMWFGNRQSVKDHVDINIIKSSSASDTNNISAPPELIASPKILDDAINECRQKLFDDDE REKYFSSTMKNVTNNVILDEEHCKEIISEKQTPDASMDNVDFWWINLLENCNDDIEDEFVINVEKTLTSLIHDEIS PQK=NRSSYLSSKEP-ILDHIQSAEDLSTPPQTSSSTK
AmROSEA1	(210)	
LeANT1	(204)	PPLNIGEGNSMQQGQISHENWGEFSLNLPPMQQGVQNDDFSAEIDLWNLLD
MdMYB10	(199)	LEEELFTSFWFDDR-LSPRSCANFPEGHSRSEFSFSTDLWNHSKEE
PAP1 AtMYB75	(218)	PEATTTEKGDTLAF-DVDQLWSLFDGETVKFD
PhAN2 ACMIB90	(219)	SYNSPTLLHEETAP-SVNVESSLTQEGGSGLSDFSVDIDDIWDLLG
VvMYBA1	(198)	GEMLIASLRTEETA-TQKKGPMDGMIEQIQGGEGDFPFDVGFWDTPNTQVNHLI
ZmC1	(218)	DDCSSAASVSLRVG-SHDEPCFSGDGDGDWMDDVRALASFLESDEDWLRCQTAGQLA
FaMYB1 GmMYB1	(169)	LDLTLS IKTSTGMA-DPQVA
GmMYB7	(223)	SNTTSNDEGYYNGMONG SGOCPGIDE SGCWDGLLLDGLDQLSE I ERLWINDENNWPSRY I FG
GmMYB10	(217)	GWCEODDOFLTSFF-NGEITOGTTVEGSTKNDESGHWPDIGFDEAAWSLFSPEOMANMSPSNTMFDMOM

Figure 23 Protein sequence alignment of GmMYBs with anthocyanin MYB regulators from other plants. Arrows indicate the specific residues that contribute to a motif implicated in bHLH co-factor interaction in *Arabidopsis* (Zimmermann *et al.*, 2004). Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; AmROSEA1, ABB83826; GhMYB10, CAD87010; LeANT1, AAQ55181; MdMYB10, DQ267896; AtPAP1, CAB09230; AtPAP2, NP176813; PhAN2, AAF66727; VvMYBA1, AB242302; ZmC1, P10290; FaMYB1, AF401220; GmMYB1, FJ197135; GmMYB7, FJ197136; GmMYB10, FJ19713.

Figure 24 Phylogenetic relationship of *Arabidopsis* MYB transcription factors and anthocyanin-related MYBs from other plants with mangosteen MYBs. The amino acid sequence of *GmMYBs* marked with the red dot were clustered and showed the subgroup member as the label. Subgroup numbers are those described by Stracke *et al.* (2001) and are shown as a suffix after most MYB descriptors. Sequences were aligned using AlignX (opening=15, extension=0.3) in Vector NTI 10.0. The tree was constructed using MEGA 3.1 with minimum evolution phylogeny test and 1,000 bootstrap replicates.

1	CAAAATAAAAGATGAAGTAAACAAAGGAATAAACAATAACTCCTGCGGAAACTTTATATA	60
61	CTTTGACTCTAAATGTTCTTGAAGTGGCTCTTAACAGTCACCCTTTGTAGCTTTAACCCA	120
121	CTATATATAAGTACCTCCCCTTCTGACTTGTCTACGAATAACCAAACAATCTTCTCCACC	180
181	TTCTCCCTCTATATAGATACTACCCTTTTTGTTTCTTTCT	240
241	$\frac{TG}{G}GAATCCCAAATAACCTCTACTTTTAGCTACCCTTATGGAGGGTATCAAACTGATGAAGM E S Q I T S T F S Y P Y G G Y Q T D E$	300
301	ATAATATGGACATAAGGAAGGGCCCATGGACTGAGGAAGAAGACTCCTTACTCACTGAGT D N M D I R K G P W T E E E D S L L T E	360
361	ACATATCCATCCATGGTGAAGGTCGTTGGAATACGGCTGCTCGTTTTGCAGGATTGAAGC Y I S I H G E G R W N T A A R F A G L K	420
421	GGACTGGTAAAAGCTGCAGGCTAAGATGGTTGAATTATTTGAGGCCAGATGTTCGAAGAG R T G K S C R L R W L N Y L R P D V R R	480
481	GGAACATTTCCCTCCAAGAACAACTCTTAATTCTTCAACTCCATTCTCGCTGGGGTAACA G N I S L Q E Q L L I L Q L H S R W G N	540
541	GGTGGTCAAAAATAGCGCGATTCTTGCCTGGAAGAACGGACAATGAGATTAAGAATTACT R W S K I A R F L P G R T D N E I K N Y	600
601	GGAGGACACGTGTTCAGAAGCTGGCAAAGCAGATGAAATGTGACGTCGGTAGCAAACAAT W R T R V Q K L A K Q M K C D V G S K Q	660
661	TCACAGACACGATGCGTTGCGTCTGGATACCCCAATTAATT	720
721	CTTATTCTTCTTCTTGTCCGAAACCTCGTCGGGTCAACCCGCCACCACCATCCACACTA S Y S S S L S E T S S G Q P A T T I H T	780
781	ATGATCCTACCAACAAAGTACTCAACTTGCTCCTCAAAACAATTGGGAGTCAATTTCTA N D P T N K S T Q L A P Q N N W E S I S	840
841	AATGGGCCAACCCGGTGGGCTTTATCCCGGGCCCATCACCAGACTCTTTTAACGGTCAAG K W A N P V G F I P G P S P D S F N G Q	900
901	TATCCTCCAACACTACATCAAATGACGAAGGCTATTACAATGGCATGCAAAATGGGTCGG V S S N T T S N D E G Y Y N G M Q N G S	960
961	GTCAATGCCCGGGAATTGACGAATCGGGTTGTTGGGATGGACTATTATTGGATGGTTTGG G Q C P G I D E S G C W D G L L L D G L	1020
1021	ATCAGTTATCAGAAATAGAGAGGGCTTTGGATAAATGATGAGAATAATTGGCCCTCTAGAT D Q L S E I E R L W I N D E N N W P S R	1080
1081	ACATTTTTGGCTAATAATAATATTTTACGTGTTGGCTTTGTTAAGTTAGAATTTTAATCC Y I F G	1140
1141	GTTACGCATTGAATCATTTGAGATTCTGTCGTGTGATGTGATTAGAATTTTGAATTTTG	1200
1201	TTGTGGCTAATTCTTTCTGACTTTTATGTACCTTATTTACACTTACGGGATGTATAAAGG	1260
1261	TAGAACATGAATTTAATAAATTGAAGATAACATATTGTTTTGAATATCATAGTTATTTGG	1320
1321	CTTAAATGAGAAGTTTAATGCGCTGATGGTTGCTAAAAAAAA	

Figure 25 Nucleotide sequence of the gene encoding MYB7 from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG).

1	GA.	AGC	TAA	ATG	GAG	AGA	AGT	TCA	GGA	ATT	AGG.	ААА	GGA	ACA	TGG	ACC	GTA	GAG	GAA	GACA	60
				М	Е	R	S	S	G	I	R	K	G	Т	W	Т	V	Е	Е	D	
61	AA	CTT	CTG	AGA	ATG	TGC	GTT	GAG	ААА	TAT	GGA	GAA	GGA	ААА	TGG	CAC	CAA	ATT	CCT	АААА	120
	K	L	L	R	М	С	V	Ε	K	Y	G	Ε	G	K	W	Н	Q	I	Ρ	К	
121	AA	GCT	GGG	CTA	AAT	AGG	TGT	CGA	AAA	AGC	TGT.	AGA	TTG	AGG	TGG	TTG	AAT	TAT	CTT	AAAC	180
	K	A	G	L	Ν	R	С	R	K	S	С	R	L	R	W	L	Ν	Y	L	K	
181	CA	AAT.	ATC	AAG	AGG	GGA	GAC	TTT	CTT	GCA	GAT	GAA	GTG	GAT	TTA	ATG	CTC	AAG	TTA	CACA	240
	Ρ	Ν	I	K	R	G	D	F	L	A	D	Е	V	D	L	М	L	К	L	Н	
241	AG	CTG	CTT	GGT	AAC	AGA	TGG	TCA	TTA	ATC	GCT	GGT	AGA	CTG	CCG	GGG	AGA	ACA	GCC.	AACG	300
	Κ	L	L	G	Ν	R	W	S	L	I	A	G	R	L	Ρ	G	R	т	A	Ν	
301	AC	GTG	ААА	AAC	TTT	TGG	ААТ	ACC	CAC	CTG	AAG	AAG	AGG	ACA	GTA	AGT	CCT	CCA	GAG	GATG	360
	D	v	K	N	F	W	N	т	Н	L	K	K	R	т	v	S	P	P	Е	D	
361	AA	GAA	AAT	TTA	AAA	TCT	CCA	ACT	CCA	CAG	AAA.	ATT	GTG	ACA	AGA	GGC	AAT	ATA	TTC.	AAGC	420
	Е	Е	Ν	L	K	S	Ρ	Т	Ρ	Q	K	Ι	V	Т	R	G	Ν	Ι	F	K	
421	СТ	CGA	ССТ	CGG	AAA	TTC	TCC	AAT	TGT	TCA	TGT	CCC	TTC	GAT	GCA	AGC	CGG	ААА	AAA'	TCAG	480
	Ρ	R	Ρ	R	K	F	S	Ν	С	S	С	Ρ	F	D	A	S	R	K	K	S	
481	AT.	ATT	GGT	АТА	AAC	TCA	CTC	CAG	TCC	ТАТ	CAA	ста	TCA	ААТ	ААТ	TCA	ААА	TCA	GTT	атта	540
101	D	I	G	I	N	S	L	Q	S	Y	Q	L	S	Ν	Ν	S	K	S	V	I	510
541	GC	ста	САА	AAC	CAC	CCA	TTG	GTC	ССТ	ССТ	ATC	тст	ACA	GAA	GAA	ААТ	CCA	GCA	TGG	TGGG	600
	S	L	Q	Ν	Н	Р	L	V	P	P	I	S	Т	Е	Е	Ν	Р	A	W	W	
601	AG.	ACC.	ATG	TTA	TTC	GAA	GAA	AAC	TTA	GAA	GAA.	AAT	AAA	TTG	GAC.	ACT	AAA	GCC.	AAT(GGCT	660
	Ľ	T	Ivi	Ц	F	Ľ	Ľ	IN	Ц	Ľ	Ľ	IN	ĸ	Ц	D	T	ĸ.	A	IN	G	
661	GG	TGT	GAG	CAA	GAT	GAT	CAA	TTT	СТС	ACA	AGC	TTT	TTC	ААТ	GGA	GAA	ATA	ACT	CAA	GGGA	720
	W	С	Е	Q	D	D	Q	F	L	Т	S	F	F	Ν	G	Е	I	Т	Q	G	
721	CA	ACG	GTA	GAG	GGC	тсс	аса	ΔΔΔ	аат	GAT	GAG	AGT	GGT	САТ	TGG	CCT	GAC	СТТ	GGT	TTTG	780
	Т	Т	v	E	G	S	Т	ĸ	N	D	E	S	G	Н	W	P	D	L	G	F	,
781	۸C	CAC	്രസ	CCA	TCC	አርጥ	ርጥአ	ጥጥጦ	NGC	007	CAA	<u> </u>	አጥር	CCA	አአጥ	አጥሮ	ጥሮ እ	007	TOO	አአጥአ	840
/01	D	E E	A	A JO	W I G G.	S	С1А Т.	F	S	P	E		M	A JO	N	M	S	P	S	N	010
	2	-				U	-	-	D	-		×			1,		D	-	D		
841	CG.	ATG	TTT	GAT	ATG	CAA	ATG	TAG	TTT	TTC	GAT	GAA	TCC	TAG	CAG	TAT	TGG	TGT	TTT	TTAC	900
	Т	М	F	D	М	Q	М														
901	AA	TAA	TAT	TGA	TTA	TGG	ACA	CAA	TAT	GTT	TCA	ATG	TAA	CGA	AGT	TGA	TAA	AAT	AAT.	AAAT	960
961	AA	AGT.	ATA	ATT	ATC	TTT	TTA	TGT	TTA	ААА	AAA	ААА	. 9	95							

Figure 26 Nucleotide sequence of the gene encoding MYB10 from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG).
4.1.1 Anthocyanin biosynthesis genes

All mangosteen anthocyanin biosynthesis genes were isolated and characterized using two degenerate primers or 3' race primers. The full-length cDNA sequences obtained by 5' and 3' race. All genes showed high homology to other plant anthocyanin biosynthetic genes (GenBank accessions FJ197127-34).

1) Phenylalanine ammonia lyase (PAL)

The sequence of mangosteen PAL was translated to deduced amino acid using Vector NTI 10.0 program (Invitrogen, USA). The full-length cDNA was termed *GmPAL* (FJ197127) and was a 2,449 bp transcript encoding a predicted protein of 718 amino acids (Figure 27). After alignment of amino acids with other plants, *GmPAL* was found to share 82-84% homology with PAL2 of *Prunus avium*, *Rubus idaeus*, *Vitis vinifera*, *Daucus carota*, *Pyrus communis* and *Arabidopsis thaliana*, respectively. In addition, the putative amino acid sequence had all the PAL protein conserved motifs, particularly the active site consensus sequence: G-[STG]-[LIVM]-[STG]-[AC]-S-G-[DH]-L-x-P-L-[SA]-x(2)-[SAV] (underlined in Figure 28) (Mahesh *et al.*, 2006).

2) Chalcone synthase (CHS)

The sequence of mangosteen CHS was translated to deduced amino acid using Vector NTI 10.0 program (Invitrogen, USA). The full-length cDNA was termed *GmCHS* (FJ197128) and was a 1,373 bp transcript encoding a predicted protein of 394 amino acids (Figure 29). After alignment of amino acids with other plants, *GmCHS* was found to share 87-89% homology with *Vitis vinifera*, *Petunia hybrida*, *Fragaria ananassa*, and *Malus domestica*, respectively. The putative amino acid sequence had all the CHS protein conserved motifs, particularly the active site consensus sequence: GY[FY][GA]GGTX(2)R (underlined in Figure 30) (Liew *et al.*, 1998).

3) Chalcone isomerase (CHI)

The sequence of mangosteen CHI was translated to deduced amino acid using Vector NTI 10.0 program (Invitrogen, USA). The full-length cDNA was termed *GmCHI* (FJ197129) and was a 826 bp transcript encoding a predicted protein of 209 amino acids (Figure 31). After alignment of amino acids with other plants, *GmCHI* was found to share 31-82% homology with *Petunia hybrida*, *Pyrus communis*, *Arabidopsis thaliana* and *Populus trichocarpa*, respectively. The putative amino acid sequence had the CHI protein conserved motifs, particularly the active site consensus sequence (arrows in Figure 32) (Ralston *et al.*, 2005).

4) Flavonone 3-hydroxylase (F3H)

The sequence of mangosteen F3H was translated to deduced amino acid using Vector NTI 10.0 program (Invitrogen, USA). The full-length cDNA was termed *GmF3H* (FJ197131) and was a 1,318 bp transcript encoding a predicted protein of 365 amino acids (Figure 33). After alignment of amino acids with other plants, *GmF3H* was found to share 81-85% homology with *Arabidopsis thaliana*, *Actinidia chinensis*, *Rubus coreanus*, *Citrus sinensis*, *Fragaria ananassa* and *Vitis vinifera*, respectively. The putative amino acid sequence had five motifs with high overall similarity (underlined in Figure 34) (Britsch *et al.*, 1993).

5) Flavonone 3'-hydroxylase (F3'H)

The sequence of mangosteen F3'H was translated to deduced amino acid using Vector NTI 10.0 program (Invitrogen, USA). The full-length cDNA was termed GmF3'H (FJ197132) and was a 1,711 bp transcript encoding a predicted protein of 507 amino acids (Figure 35). The most highly conserved region was the heme-binding domain centered around a cysteine (C) residue that binds heme in the active site. The characteristic proline-rich region (PPxP), which forms a hinge between the membrane-anchored N-terminal helix and other parts of the protein, as well as the (A/G)Gx(D/E)T(T/S) consensus, which is involved in oxygen activation and the transfer of protons to the active site (underlined in Figure 36) (Mori *et al.*, 2004). After alignment of amino acids with other plants, *GmF3'H* was found to share 66-75% homology with *Arabidopsis thaliana*, *Antirrhinum majus*, *Pelargonium hortorum*, *Petunia hybrida* and *Vitis vinifera*, respectively.

6) Dihydroflavonol 4-reductase (DFR)

The sequence of mangosteen DFR was translated to deduced amino acid using Vector NTI 10.0 program (Invitrogen, USA). The full-length cDNA was termed *GmDFR* (FJ197130) and was a 1,229 bp transcript encoding a predicted protein of 334 amino acids (Figure 37). A putative NADP-binding region at the Nterminal, which is likely part of the co-factor binding site, was conserved in mangosteen DFR (Lacombe *et al.*, 1997). The putative amino acid sequence had the substrate specificity domain (underlined in Figure 38) (Johnson *et al.*, 2001). After alignment of amino acids with other plants, *GmDFR* was found to share 69-76% homology with *Petunia hybrida*, *Arabidopsis thaliana*, *Fragaria ananassa*, *Pyrus communis*, *Vitis vinifera* and *Malus domestica*, respectively.

7) Leucoanthocyanidin dioxygenase (LDOX)

The sequence of mangosteen DFR was translated to deduced amino acid using Vector NTI 10.0 program (Invitrogen, USA). The full-length cDNA was termed *GmLDOX* (FJ197133) and was a 1,285 bp transcript encoding a predicted protein of 354 amino acids (Figure 39). The His and Asp residues as required for ferrous-iron coordination, and Arg residue of putative binding site of 2-oxoglutarate were found in mangosteen LDOX (arrows in Figure 40) (Saito *et al.*, 1999). After alignment of amino acids with other plants, *GmLDOX* was found to share 77-83% homology with *Arabidopsis thaliana*, *Malus domestica*, *Citrus sinensis*, *Fragaria ananassa*, *Prunus persica* and *Vitis vinifera*, respectively.

6) UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT)

The sequence of mangosteen UFGT was translated to deduced amino acid using Vector NTI 10.0 program (Invitrogen, USA). The full-length cDNA was termed *GmDFR* (FJ197134) and was a 1,680 bp transcript encoding a predicted protein of 457 amino acids (Figure 41). The two domains of C-terminal region were conserved among all the glucosyltransferases, which are the common motifs found in the family of UDP-glucose-dependent glucosyltransferases (underlined in Figure 42) (Yamazaki *et al.*, 2002). After alignment of amino acids with other plants, *GmDFR* was found to share 48-59% homology with *Petunia hybrida*, *Malus domestica*, *Citrus sinensis*, *Arabidopsis thaliana*, *Fragaria ananassa* and *Vitis vinifera*, respectively.

1	TCTACCACTCACCCTTTAAGCTTTCCTCTAAGCTTTTTTCTCCACACCTTCTCTCATCAG	60
61	AAGCCTCTTAGCTCACCAATAGTATTCTTTGTGAAGGAA <u>ATG</u> GAAACAACAATCACACAG M E T T I T Q	120
121	AACGGCCACCACATGAATGGCTTGTGCATGAACGGCTCGGCTCACGTGAATAGTGACCCA N G H H M N G L C M N G S A H V N S D P	180
181	TTGAACTGGGGATACTTAGCTGAGTCGTTGAAGGGGAGCCATTTGGAGGAAGTGAAGAGG L N W G Y L A E S L K G S H L E E V K R	240
241	ATGGTGGAGGAGTACAGGAAGCCTCTAGTGAAGTTGGGTGGG	300
301	CAAGTGGCAGCTGTGGCTGGCGGCTTCGAAGCTGGGGTCAAAGTGGAGCTGGCTG	360
361	GCTAGAGCCGGCGTTAAGGCTAGTAGCGATTGGGTCATGGATAGTATGAACAATGGAACCARGGAACCARAGGCGGCGTTAAGGCTAGTAGCGATTGGGTCATGGATAGTATGAACAATGGAACCARGGAACCAARGGAACCARGGAACCARGGAACCARGGAAGGAA	420
421	GATAGTTACGGGGTTACTACTGGTTTTGGTGCTACTTCTCATAGGAGAACCAAACAGGGC D S Y G V T T G F G A T S H R R T K Q G	480
481	GCTGCCCTTCAAAAAGAGCTCATCAGATTCTTGAACGCTGGTATTTTCGGCAACGGGACA A A L Q K E L I R F L N A G I F G N G T	540
541	GAGACAAGCCACACGCTGCCTCATTCTGCAACCAGAGCAGCCATGCTAGTGAGGATAAAC E T S H T L P H S A T R A A M L V R I N	600
601	ACACTACTCCAAGGCTACTCCGGCATTAGATTTGAGATCTTGGAAGCCCTCACCAAGTTT T L L Q G Y S G I R F E I L E A L T K F	660
661	CTCAACTACAACATTACTCCTTGCCTGCCTCTTCGCGGCACCATTACAGCTTCCGGTGAT L N Y N I T P C L P L R G T I T A S G D	720
721	TTAGTCCCTCTTTCCTACATTGCTGGTTTATTGACAGGCAGG	780
781	GGTCCCAATGGCCAAACCTTGAATGCCGAGGAAGCGTTTTCGCTGGCTG	840
841	CAATTTTTTGAGTTGCAGCCTAAGGAAGGGCTTGCTCTTGTGAATGGAACCGCGGTGGGG Q F F E L Q P K E G L A L V N G T A V G	900
901	TCTGGCTTGGCTTCTATGGTCCTTTTCGAGGCCAACATTCTTGGTGTTTTAGCAGAACTC S G L A S M V L F E A N I L G V L A E L	960
961	TTGTCTGCAATTTTTGCAGAAGTTATGAATGGTAAAGCAGAGTTCACTGACCACTTGACT L S A I F A E V M N G K A E F T D H L T	1020
1021	CACAAATTGAAGCACCATCCAGGCCAGATTGAGGCTGCAGCTATAATGGAGCACATTCTT H K L K H H P G Q I E A A A I M E H I L	1080
1081	GATGGAAGCTCTTATATGAAAGAAGCCAAGAGATTGCATGAGATGGATCCCTTGCAGAAG D G S S Y M K E A K R L H E M D P L Q K	1140
1141	CCTAAACAAGATCGATACGCTCTCAGGACTTCACCTCAATGGCTCGGCCCACCTATTGAA PKQDRYALRTSPQWLGPPIE	1200
1201	GTCATCCGTTTCGCTACAAAAATGATTGAAAGGGAGATTAACTCTGTGAATGACAATCCT V I R F A T K M I E R E I N S V N D N P	1260

Figure 27 Nucleotide sequence of the gene encoding PAL from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG)

1261	TTGATTGATGTTTCCAGGAATAAGGCATTACACGGTGGCAACTTCCAGGGAACCCCCAATT	1320
	L I D V S R N K A L H G G N F Q G T P I	
1321	GGAATGTCAATGGACAATGCAAGATTGGCTATTGCTGCTATTGGAAAACTCATGTTTGCT G M S M D N A R L A I A A I G K L M F A	1380
1381	CAATTCAGTGAGCTTGTTAATGACTACTACAATAATGGGTTGCCATCAAATCTCACAGCC Q F S E L V N D Y Y N N G L P S N L T A	1440
1441	AGCAGGAATCCCAGTCTAGACTATGGCTTCAAGGGAGCTGAAATTGCAATGGCTTCTTAT S R N P S L D Y G F K G A E I A M A S Y	1500
1501	TGTTCCGAGCTGCAGTACCTTGCAAGCCCCGTCACTACCCACGTGCAAAGCGCAGAGCAG C S E L Q Y L A S P V T T H V Q S A E Q	1560
1561	CATAACCAAGATGTGAACTCTTTGGGACTCATCTCTTCAAGAAAGA	1620
1621	GACATTCTGAAGCTCATGTCCTCAACTTTCTTGGTGGCAATCTGCCAGGCTGTTGACTTG D I L K L M S S T F L V A I C Q A V D L	1680
1681	AGGCATTTGGAGGAGAACCTGAAGAGCACTGTCAAGAACACAGTGAGTCAAGTTGCCAAG R H L E E N L K S T V K N T V S Q V A K	1740
1741	AGGGTCTTAACCACAGGAGCCAATGGAGAGCTTCATCCATC	1800
1801	TTGCTCAAAGTGGTTGATCGCGAGTATGTTTTCGCCTACGCTGATGATCCTTGCAGCGCA L L K V V D R E Y V F A Y A D D P C S A	1860
1861	ACGTATCCACTGATGCAAAAGCTGAGGCAAGTTCTGGTGGATCACGCGCTGGCTAATGGT T Y P L M Q K L R Q V L V D H A L A N G	1920
1921	GAAGGTGAGAGGAATCCAAACACATCAGTCTTCCAAAAGATTGCAGCATTTGAGGAGGAA E G E R N P N T S V F Q K I A A F E E E	1980
1981	TTGAAGGACCTTTTGCCAAAGGAAATTGAGGGTGTGAGACTTGCTTATGAGAGTGGAAAC L K D L L P K E I E G V R L A Y E S G N	2040
2041	ACAGCAATTCCTAACAGGATTAAGGAGTGCAGATCTTACCCTCTTTATAAGTTTGTTAGG T A I P N R I K E C R S Y P L Y K F V R	2100
2101	GAGGTAGCAGGCACTTCGTTGCTTACAGGGGAAAAGGTCACTTCTCCAGGGGAGGAGCACTT E V A G T S L L T G E K V T S P G E E L	2160
2161	GACAAGGTTTTTACTGCAATTGCCAAGGCAAAATCATTGATCCCATCCTGGATTGCCTT D K V F T A I C Q G K I I D P I L D C L	2220
2221	GAGGAATGGGATGGAACCCCACTTCCTATCTGTTAGAGAATCAACAACCCTTTTTCTTTC	2280
2281	CTTCTTTTTTTTTTCTGTTTGTTCAGTGCTTCAATTAGTATGGTTTCTTTTGTGTTAT	2340
2341	ACCCAACGAAATGTACGGACGTCCCTTGTTTCTTTTATTATTTGTCAACTTGTTCAATGA	2400
2401	аддааатаатаасттссааатсаасааттаааааааааа	

Arabidopsis Carrot Grape Pear Raspberry Sweet cherry Mangosteen	<pre>(1) (1) (1) (1) (1) (1) (1) (1)</pre>	MEINGAHKSNGGGVDAMLCGGDIKTKNMVINAEDPLNMGARAEQMKGSHLDEVKRMVAEFR DPLSWGVAAEALTGSHLEEVKRMVAEYR DPLSWGVAAEALTGSHLEEVKRMVAEYR MDATNCHGSNKVESFCVSDPLNWGMAAETLKGSHLDEVKRMVAEYR MEAETITQNGKNGHHQNGAVESPLCIKKDPLNWGLAADSLKGSHLDEVKRWVAEYR MESITQNGHHHQNGIQNGSLDDGCIKTESIKTGYSVSDPLNWGAAESMTGSHLDEVKRWVAEYR MATNSIKQNGHKNGSVELFELCIKKDPLNWGVAAETLKGSHLDEVKRWVAEYR
Arabidopsis Carrot Grape Pear Raspberry Sweet cherry Mangosteen	(62) (50) (47) (57) (67) (54) (54)	KPVVNLGGETLTIGQVAAISTIGNS-VKVELSETARAGVNASSDWVMESMNKGTDSYGVTTGFGATSHRR KPVVKLGGETLTISQVAAISARDDSGVKVELSEAARAGVKASSDWVMESMNKGTDSYGVTTGFGATSHRR KPVVRLGGETLTISQVAAIAGREGD-VGVELSETARAGVNASSEWVMESMSKGTDSYGVTTGFGATSHRR KPVVKLGGESLTISQVAAIATHDTG-VKVELSESARAGVKASSDWVMDSMGKGTDSYGVTTGFGATSHRR KPVVKLGGETLTISQVAAIATHDTG-VKVELSESARAGVKASSDWVMDSMKGTDSYGVTTGFGATSHRR KPVVKLGGESLTISQVAAIATHDSG-VKVELSESARAGVKASSDWVMDSMKGTDSYGVTTGFGATSHRR KPVVKLGGESLTISQVAAIATHDSG-VKVELSESARAGVKASSDWVMDSMKGTDSYGVTTGFGATSHRR KPVVKLGGESLTISQVAAIATHDSG-VKVELSESARAGVKASSDWVMDSMNKGTDSYGVTTGFGATSHRR KPVVKLGGESLTISQVAAIATHDSG-VKVELSESARAGVKASSDWVMDSMNKGTDSYGVTTGFGATSHRR KPVVKLGGESLTISQVAAIATHDSG-VKVELSESARAGVKASSDWVMDSMNNGTDSYGVTTGFGATSHRR
Arabidopsis Carrot Grape Pear Raspberry Sweet cherry Mangosteen	(131) (120) (116) (126) (126) (123) (123) (124)	TKN GWALQKELIRFLNAGIFGSTKET-SHTLPHSATRAAMLVRINTLLQGFSGIRFEILEAITSFLNNNI TKQGGALQKELIRFLNAGIFGSGAEAGNNTLPHSATRAAMLVRINTLLQGISGIRFEILEAITKFLNHNI TKQGGALQKELIRFLNAGIFGNGTES-CHTLPHSATRAAMLVRINTLLQGISGIRFEILEAITKFLNHNI TNKGAALQKELIRFLNAGVFGSATES-GHTLPHQATRAAMLVRINTLLQGISGIRFEILEAITKFLNNNV TKQGAALQKELIRFLNAGVFGSATES-GHTLPHQATRAAMLVRINTLLQGISGIRFEILEAITKFLNNNV TKQGAALQKELIRFLNAGVFGSTKES-GHTLPHQATRAAMLVRINTLLQGISGIRFEILEAITKFLNNNV TKQGAALQKELIRFLNAGVFGSTKES-GHTLPHQATRAAMLVRINTLLQGISGIRFEILEAITKFLNNNV TKQGAALQKELIRFLNAGVFGSTKES-GHTLPHQATRAAMLVRINTLLQGISGIRFEILEAITKFLNNNV
Arabidopsis Carrot Grape Pear Raspberry Sweet cherry Mangosteen	(200) (190) (185) (195) (205) (192) (193)	TP <mark>SLPLRGTITASGDLVPLSYIAGLLTGRPNSKAT</mark> GPNGEAL TAEEAFKLAGISSGFFDLQPKEGLALVN TPCLPLRGTITASGDLVPLSYIAGLLTGRPNSKAVGPTGVTLSPEEAFKLAGVEGGFFHLQPKEGLALVN TPCLPLRGTVTASGDLVPLSYIAGLLTGRPNSKAVGPSGEVVNAEEAFKDAGIESGFFHLQPKEGLALVN TPCLPLRGTTTASGDLVPLSYIAGLLTGRPNSKAVGPNGQTINASEAFELVGINCGFFHLQPKEGLALVN TPCLPLRGTITASGDLVPLSYIAGLLTGRPNSKAVGPKGETLNAAEAFAQVGISSGFFHLQPKEGLALVN TPCLPLRGTITASGDLVPLSYIAGLLTGRPNSKAVGPKGETLNAAEAFAQVGISSGFFHLQPKEGLALVN TPCLPLRGTITASGDLVPLSYIAGLLTGRPNSKAVGPNGQTLSAEAFAQVGISSGFFHLQPKEGLALVN TPCLPLRGTITASGDLVPLSYIAGLLTGRPNSKAVGPNGQTLSAEAFAQVGISSGFFHLQPKEGLALVN
Arabidopsis Carrot Grape Pear Raspberry Sweet cherry Mangosteen	(270) (260) (255) (265) (275) (262) (263)	GTAVGSGNASMVLFETNVLSVLAEIL SAVFAEVMSGKPEFTDHLTHRLKHHPGQIEAAAIMEHILDGSSY GTAVGSGNASMVLFEANILAVLAEVMSAIFAEVMGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSY GTAVGSGLASMVLFETNVLAVLSEVISAIFAEVMGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSY GTAVGSGLASTVLFETNILAULAEILSAIFAEVMGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSY GTAVGSGLASTVLFETNILAULSEILSAIFAEVMGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSY GTAVGSGLASTVLFETNILAULSEILSAIFAEVMGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSY GTAVGSGLASTVLFETNILAULSEILSAIFAEVMGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSY GTAVGSGLASTVLFETNILAULSEILSAIFAEVMGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSY GTAVGSGLASTVLFETNILAULSEILSAIFAEVMGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSY
Arabidopsis Carrot Grape Pear Raspberry Sweet cherry Mangosteen	(340) (330) (325) (335) (345) (345) (332) (333)	MKLACKI HEMD PLQKPKQDR YALRTS PQMLGPQ I EV IR VATKSI ERE IN SVNDNPLI DVSRNKALHGGNF VKAACKI HEMD PLQKPKQDR YALRTS PQMLGPQ I EV IR STKN I ERE IN SVNDNPLI DVSRNKALHGGNF VKEAKKI HEMD PLQKPKQDR YALRTS PQMLGPO I EV IR STKSI ERE IN SVNDNPLI DVSRNKALHGGNF VKAARKI HEOD PLQKPKQDR YALRTS PQMLGPO I EV IR YSTKSI ERE IN SVNDNPLI DVSRNKALHGGNF VKAA KKI HEOD PLQKPKQDR YALRTS PQMLGPO I EV IR YSTKSI ERE IN SVNDNPLI DVSRNKALHGGNF VKAARKI HEOD PLQKPKQDR YALRTS PQMLGPO I EV IR YSTKSIERE IN SVNDNPLI DVSRNKALHGGNF VKAARKI HEOD PLQKPKQDR YALRTS PQMLGPO I EV IR YSTKSIERE IN SVNDNPLI DVSRNKALHGGNF VKAARKI HEOD PLQKPKQDR YALRTS PQMLGPO I EV IR YSTKSIERE I DSVNDNPLI DVSRNKALHGGNF

Figure 28 Protein sequence alignment of mangosteen PAL with other PAL proteins. The active site consensus sequence is underlined. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; *Arabidopsis*, AAP59438; carrot,
BAG31930; grape, ABM67591; pear, ABB70117; sweet cherry, AAF40224; mangosteen, ACM62741.

Arabidopsis	(410)	QGTP IGVSMDNTRLA IAA IGKLMFAQFSELVNDFYNNGLPSNL <mark>TAS</mark> RNPSLDYGFKGAEIAMASYCSELQ
Carrot	(400)	QGTP IGVSMDNTRLA IAA IGKLMFAQFSELVND F YNNGLPSNLSGGRNPSLD YGFKGAE IAMASYCSELQ
Grape	(395)	QGTP IGVSMDNTRLA IAA IGKLMFAQFSELVND FYNNGLPSNLSG <mark>S</mark> RNPSLDYGFKGAE IAMASYCSELQ
Pear	(405)	QGTP IG V SMDN TRLA IA <mark>S</mark> IG KLMFA QF SEL <mark>A</mark> ND F YN NGLP SNLS GGRNP SLD YGF KGA E IAMA SYC SEL Q
Raspberry	(415)	QGTP IGVSMDNTRLA IA <mark>S</mark> IGKLMFAQFSELVND F VNNGLPSNLSGGR <mark>D</mark> PSLD YGFKGAE IAMASYCSELQ
Sweet cherry	(402)	QGTP IGVSMDNTRLA IA <mark>S</mark> IGKLMFAQFSELVND FYNNGLPSNLSGGRNPSLDYGFKGAE IAMASYCSELQ
Mangosteen	(403)	QGTP IG <mark>M</mark> SMDN <mark>A</mark> RLA IAA IGKLMFAQFSEL VND <mark>W</mark> YNNGLPSNL <mark>TAS</mark> RNPSLDYGFKGAE IAMASYCSEL Q
Arabidopsis	(480)	YLANPYTSHYQSAEQHNQDYNSLGLISSRKTSEAYD ILKLMSTTFLYAICQAYDLRHLEENLRQTYKNTY
Carrot	(470)	FLANPVTNHVOSAEQHNQDVNSLGLISSRKTSEAVEILKLMSTTFLVGLCQAIDLRHLEENMKSTVKNTV
Grape	(465)	FLANPVTNHV <mark>E</mark> SAEQHNQDVNSLGLISSRKTAEAVD ILKLMS <mark>TTV</mark> LVALCQAIDLRHLEENLKSTVK <mark>K</mark> TV
Pear	(475)	FLANPVTNHVQSAEQHNQDVNSLGLISSRKTAEAVDILKLMSSTFLVALCQ <mark>SV</mark> DLRHLEENL <mark>RN</mark> TVKNTV
Raspberry	(485)	FLANPVTNHVQSAEQHNQDVNSLGLISSRKTAEAVD ILKLMSSTFLVALCQAIDLRHLEENLKSTVKNTV
Sweet cherry	(472)	FLAMPVTNHVQSAEQHNQDVNSLGLISSRKTAEAVDILKLMSSTFLVALCQAIDLRHLEENL <mark>RN</mark> TVKNTV
Mangosteen	(473)	YLASPYT <mark>T</mark> HYQSAEQHNQDYNSLGLISSRKT <mark>C</mark> EAIDILKLMSSTFLYAICQAVDLRHLEENLKSTYKNTV
	15501	
Arabidopsis	(530)	SOVARKVILTTGVNGELHPSRFCEKDLLKVVDREOVITTADDPCSATIFE IOKLROVIVDHADINGESEKN
Carrot	(540)	SOVAKRVLTNGVNGELHPSRFCEKDLERVVDREY 1FAYIDDPCSATYPLMOKLRETOVEHALANNGDRERN
Grape	(030)	SHVARK THITGANGELHPSRFCEKDLLK WUREHVFATIDDFCSATIPLMON VRUVLVEHADNNGENEKN
Pear	(545)	SOVAKRTIGTTGVNGELHPSRFCEKDLLKVWDREYVFAYIDDPCSATYPLMOKLROVLVEHALTNGESEKN
Raspberry	(555)	SOLAKRVLTTGVNGELHPSRFCEKDLLMVVEREYLFAYIDDPCSATYPLMORLROVLVEHALTNGENEKN
Sweet cherry	(542)	SOVAKRTETTGVNGELHPSRFCEKDLKVWDREYVFAY IDDPCSATYPLMOKLROVLVEHALTNGENEKN
Mangosteen	(343)	SQVAKRYLTTGANGELHPSRFCEKULLKVYDREIYFATADDPCSATTPLMQKLRQYLVDHALANGEGERN
Arabidopsis	(620)	AVTSIEHKIGAFEEELKAVI PKEVEAARAA YDNGTSAIPNEIKECESYPLYRFVEELGTEL TGEKYTS
Carrot	(610)	LSTS IF OKTAAFEDELKALLPKEVES ARAAVES G MAIP NRIKECRS WPL VK FVREEL GTEVLTGEKVTS
Grape	(605)	GSTS IF OKI GAFEEELKAVLPKEVES ARDGVES G MPSIPNRIKECRS VPLYKFVREEL GTGLLTGEKVRS
Pear	(615)	ASTS IF OKI GAFEE ELKTLLPKEVES ARSA IES GNAAVPNR IAECRS VPL YKFVREEL GGEVLTGEKVRS
Raspberry	(625)	ASTS IF OKITAFEEELKTILPKEVESARAAYESGNAAIPNRIVECRSYPLYKFVREELGGEELTGEKVRS
Sweet cherry	(612)	ASTS IF QKIVAFEE ELKVLLPKEVDS ARAALDS GSAGVPNR ITECRS VPL YKFVREEL GAE VLTGEKVRS
Manqosteen	(613)	PNTSVFQKIAAFEEELKDLLPKEIEGVRLAVESGNTAIPNRIKECRSYPLYKFVREVAGTSLLTGEKVTS
-		
Arabidopsis	(690)	PGEEFDKVFTAICEGKIIDPMMECLNEWNGAPIPIC
Carrot	(680)	PGEEFDKVFTAMTKGEIIDPLLECLQSWNGAPLPIC
Grape	(675)	PGEDFDKVFTAMCEGKIIDPHLDCLSAWNGAPLPIC
Pear	(685)	PGEECDRVFQAICQGKIIDPILGCLECWNGAPLPIC
Raspberry	(695)	PGEECDKVFTAMCQGNIIDPILDCLSCWNGEPLPIC
Sweet cherry	(682)	PGEECDKVFTAICEGKIIDPILDCLECWNGAPLPIC
Mangosteen	(683)	PGEELDKVFTAICQGKIIDPILDCLEEMDGTPLPIC

Figure 28 (Continued).

1	GACTCTTAAGTGTAGACATCAAAAAAGAAACAATCGAA <u>ATG</u> GCACCAACGGTTGAGGAGG M A P T V E E	60
61	TTAGGAATGCACAGAGAGCACAAGGGCCAGCCACGGTGCTAGCCATTGGCACTGCTACTC $V\ R\ N\ A\ Q\ R\ A\ Q\ G\ P\ A\ T\ V\ L\ A\ I\ G\ T\ A\ T$	120
121	CATCGAACTGTGTGCTCCAGGCTGAGTATCCTGACTACTATTTCCGTATCACTAATAGCG P S N C V L Q A E Y P D Y Y F R I T N S	180
181	AACACAAGACCGAGCTCAAGGAGAAATTCAGGCGCATGTGCGGAAAAATCAATGATCAAGA E H K T E L K E K F R R M C E K S M I K	240
241	AGCGTTACATGCACCTAACCGAGGAAATCCTCAAGGAAAATCCAAAGATGTGTGACTATT K R Y M H L T E E I L K E N P K M C D Y	300
301	GGTCACCATCCCTAGACGCCCGCCAAGACATAGTGGTAGTGGAAATTCCAAAGCTCGGGA W S P S L D A R Q D I V V V E I P K L G	360
361	AAGAAGCCGCAGTCAAAGCCATCAAAGAGTGGGGTCAACCCAAGTCCAAGATCACCCACC	420
421	TCGTTTTTTGCACCACTTCAGGCGTTGACATGCCCGGAGCTGACTACCAGCTCACTAAGC L V F C T T S G V D M F G A D Y Q L T K	480
481	TTCTCGGTCTCCGCCCCCACGTCAAACGTTTGATGATGATGATCAACAGGGTTGCTTTGCGG L L G L R P H V K R L M M Y Q Q G C F A	540
541	GTGGCACCGTTCTCCGCCTAGCAAAAGACTTGGCGGAGAACAACAAAGGTGCTCGTGTGC G G T V L R L A K D L A E N N K G A R V	600
601	TTGTGATTTGCTCCGAAATTACTGCTGTTACCTTCCGTGGGCCTTCTGATACCCACTTGG L V I C S E I T A V T F R G P S D T H L	660
661	ACTCTCTAGTGGGCCAGGCCCTTTTCGGTGATGGGGCCGCTGCTATTATTGTTGGGTCCG D S L V G Q A L F G D G A A A I I V G S	720
721	ACCCTGATCCAGCTATTGAGCGCCCATTATTCCAAATTGTATCTGCGGCCCAAACCATCC D P D P A I E R P L F Q I V S A A Q T I	780
781	TTCCTGACTCGGATGGGGCCATTGATGGACACTTGCGTGAAGTGGGCCTCACTTTCCATT L P D S D G A I D G H L R E V G L T F H	840
841	TGTTAAAGGACGTTCCTGGGCTTATCTCCAAGAATATTGAGAAAAGCCTTGTTGAGGCTT L $\rm L_l$ K D V P G L I S K N I E K S L V E A	900
901	TTACACCTATTGGTATTAGTGATTGGAACTCTCTTTTTCTGGATTGCTCACCCTGGTGGGC F T P I G I S D W N S L F W I A H P G G	960
961	CTGCTATCTTGGACCAAGTTGAGGTTAAGTTGGGCCCTTAAAGAAGAAGAAGTTGAGAGGCTA P A I L D Q V E V K L G L K E E K L R A	1020
1021	CTAGGCATGTGTTAAGTGAGTTTGGGAATATGTCCAGTGCATGTGTGCTGTTTATTTTGG T \mathbb{R} \mathbb{H} \mathbb{V} \mathbb{L} \mathbb{S} \mathbb{E} \mathbb{F} \mathbb{G} \mathbb{N} \mathbb{M} \mathbb{S} \mathbb{S} \mathbb{A} \mathbb{C} \mathbb{V} \mathbb{L} \mathbb{F} \mathbb{I} \mathbb{L}	1080
1081	ATGAGATGAGGAAAAAGGCCTTGGAAGAAGGAAAGCCCACTACTGGAGAAGGCCTTGACT D E M R K K A L E E G K P T T G E G L D	1140
1141	GGGGAGTCCTCTTTGGATTTGGGCCTGGTCTAACCGTTGAGACTGTTGTTTTGCACAGTG W G V L F G F G P G L T V E T V V L H S	1200
1201	TCCCAACGGAAACGAGAGCATAGGCCCCAACTAAATAAAT	1260
1261	AAATTGGAATGTGGGATAAAACCTCGTATCGATTTCACAGTTACTTTGCTGCATTGAAAT	1320
1321	TTGTAATAAAACGTGATTTCTTATATGGTATTCCTTTTCTTCTTTAAAAAAAA	

Figure 29 Nucleotide sequence of the gene encoding CHS from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG).

Arabidopsis	(1)	MVMAGAS SLDEIROA ORADGPAG ID A IGTANPENHVLOA EYPDYYFR ITN SEHMUDLKEKFKRMCDKSTI
Apple	(1)	MVTVEEVRKAQRAEGPATVMAIGTATPSNCVDQATYPDYYFRITNSEHKVELKEKFCRMCDKSMI
Grape	(1)	MVSVGEIRKSQRAEGPATVLAIGTATPANCVYQADYPFRITNSEHMTELKEKFKRMCEKSMI
Petunia_ChsA	(1)	MVTVEEYRKAQRAEGPATVMAIGTATPTNCVDQSTVPDVYFRITMSEHKTDLKEKFKRMCEKSMI
Petunia_ChsD	(1)	^m wv tveev r <mark>na qraegpa tvla</mark> igta tpsncvdq <mark>s</mark> typdyyfrit <mark>d</mark> sehktel kekf kr <mark>i</mark> cd ksmi
Petunia_ChsJ	(1)	^m wv tvee <mark>i rra qra egpa t im</mark> a igta tps n cvdqs typ dyyfr itn sehktel kekf <mark>c</mark> rmc d ksm i
Strawberry	(1)	MV TV EE V RKA QRA EGPA TVLA IGTA TP <mark>P</mark> NC <mark>I</mark> DQS TYPDYYFR ITNSEHK <mark>A</mark> EL KEKF <mark>C</mark> RMCD KSM I
Mangosteen	(1)	MAP TVEEVR <mark>N</mark> A QRA <mark>q</mark> GPA TVLA IGTA TPSN CVL qA EYPDYYPR I TN SEHKTEL KEKFRRMCEKSM I
Arabidopsis	(71)	RKRHMHLTE EFLKENPHMC <mark>A</mark> YMAPSLD <mark>T</mark> ROD IV VVE VPKLGKEAAV KAIKEWG OPKSKITHVVFCTTSGV
Apple	(66)	KKRYM <mark>Y</mark> LTEEILKENPSVCEYMAPSIDARQDMVVVEVPKLGKEAAIKAIKEWGQPKSKITHLVFCTTSGV
Grape	(66)	NKRYMHLTEEILKENPNVC <mark>A</mark> YMAPSLDARQDMVVVEVPKLGKEAAVKAIKEWGQPKSKITHLVFCTTSGV
Petunia_ChsA	(66)	KKRYMHLTEEILKENPSMCEYMAPSLDARQDIVVVEVPKLGKEAAQKAIKEWGQPKSKITHLFFCTTSGV
Petunia ChsD	(66)	K KRYMHLTE <mark>KILKENPNICESMAPSLDARTNIYA</mark> VEVPKLGKEAA <mark>EKAIEEWNOPKSRITHLVFCTTTG</mark> V
Petunia ChsJ	(66)	KKRYMHLTEEILKENP <mark>NI</mark> CEYMAPSLDAR <u>ODIVVVEVPKLGKEAA<mark>O</mark>KAIKEWGOPKSKITHLVFCTTSG</u> V
Strawberry	(66)	KKRYMYLTE E I LKENP <mark>S</mark> MCE YMAPS LDARODMV VVE <mark>I</mark> PKLGKEAAVKA I KEWGOPKSK I THLVSCTTSGV
Mangosteen	(67)	KKRYMHLTEEILKENP <mark>K</mark> MCDYWSPSLDARQDIVVVE <mark>I</mark> PKLGKEAAVKAIKEWGQPKSKITHLVFCTTSGV
Arabidopsis	(141)	DMP GAD YOL TKLLGL RP SVKRLMMY OOG CF A GG TVL RIAKD LAE NN <mark>R</mark> GARVLVYC SE I TAV TF RGP SD TH
Apple	(136)	DMPGADYQLTKLLGLRPSVKRLMMYQQGCFAGGTVLRLAKDLAENNKGARVLVVCSEITAVTFRGPSDTH
Grape	(136)	DMP GAD YOLTKLLGLKP SVKRLMMYQ OGCFAGGTVLRLAKDLAE NNAGARVLVVC SE I TAV TFRGPSDTH
Petunia ChsA	(136)	DMP GCD YOLTKLLGL RF SVKRLMMYQ OGCF AGGTVL RLAKDLAE NN KGARVLVVC SE I TAV TF RGPND TH
Petunia ChsD	(136)	SMPGADFOLTKLLGLGSSVKREMMNOLGCFAGGTVLRLAKDLAENNKGARVLVVCSEITWVTFRGPNDTH
Petunia ChsJ	(136)	DMPGADYOLTKLLGLRSSVKRIMMYOOGCFAGGTVLRLAKDLAENNKGARVLVVCSEITAVTFRGPMDTH
Strawberrv	(136)	DMP GAD YOL TKLLGL RP SYKRLMMYOOGCF AGG TYLRLAKDLAE NNRGARYLYYC SE I TAY TF RGP SD TH
Mangosteen	(137)	DMP GAD YOL TKLLGL RPHYKRLMMYOOGCF AGGT VLRLAKDLAE NNKGARVLY ICSE I TAV TF RGP SD TH
-		
•	/2111	
Arabidopsis	(211)	LDSLVGQALFSDGAAAN IVGSDPDTSVGEKPIFENVSA QTILPDSDGAIDGHLREVGLTFHLLKDVPGL
Appie ~	(206)	LDSLVGQALFGDGAAAVIIGADPVPEV-EXPIPELVSAAQIILPDSDGAIDGHLREVGLTFHLLKDVPGL
Grape	(206)	LDSLVGQALFGDGAAAIIIGADPDTKI-ERPIFELVSAAQTILFDSEGAIDGHLREVGLTFHLLKDVPGL
Petunia_ChsA	(206)	LDSLVGQALFGDGAGAIIIIGSDFIFGV-ERPIFELVSAAQTLLPDSHGAIDGHLREVGLTFHLLKDVFGL
Petunia_ChsD	(206)	PDSLVGQALFGDGAAAVIIGSDPIPNV-ERPIFELVSAAQFLLPDSKNSICGELREIGLTFHLLKDVAEL
Petunia_ChsJ	(206)	LDSLVGQALFEDGAAAIIIIGSDPLPGV-ERPIPELVSASQTELPDSEGAIDGHLREVGLTPHLLKDVPGL
Strawberry	(206)	LDSLVGQALFGDGAAATIVGSDPLPEV-ERPIPEIVSTAQTILPDSDGATDGHLREVGLTPHLLKDVPGL
Mangosteen	(207)	IIDSLVGQALFGDGAAAAI IVGSDEDPAT-BREIFQTVSAAQTIIJEDSDGATDGHIREVGLTFHIJKDVPGL
Arabidopsis	(281)	ISKN IVKSLDEAFKPLGISDWNSLFWIAHPGGPAILDOVEIKLGLKEEKMRATRHVLSEYGNMSSACVLF
Apple	(275)	ISKN IEKSLNEAFKPIGISDWNSLFWIAHPGGPAILDOVE <mark>A</mark> KLALKPEKLEATR <mark>O</mark> VLSDYGNMSSACVLF
Grape	(275)	ISKNIEKSLVEAFKPIGISDWNSIFWIAHPGGPAILDQVE <mark>L</mark> KLGLK <mark>E</mark> EKLRATRHVLSEYGNMSSACVLF
Petunia_ChsA	(275)	ISKNIEKSL <mark>EEAFKPLGISDWNSIFWIAHPGGPAILDOVE</mark> IKLGLKPEKL <mark>K</mark> ATR <mark>NVLSDYGNMSSACVLF</mark>
Petunia_ChsD	(275)	ISNNIEKSLVEVFOPLGISAMNSIFMVAHPGGPAILNOVELKLGLNPEKLGATRHVLSEYGNMSSASILF
Petunia_ChsJ	(275)	ISKN I <mark>o</mark> kslveaf <mark>o</mark> plg Isdwns <mark>I</mark> fwiahpggpaildove <mark>n klglkpeklratrhvlseygnmssacvlf</mark>
Strawberry	(275)	ISKNIEKSL <mark>NEAFKPLNI</mark> TDWNSLFWIAHPGGPAILDOVE <mark>AKLA</mark> LKPEKL <mark>EATRHI</mark> LSEYGNMSSACVLF
Mangosteen	(276)	ISKNIEKSLVEAF <mark>T</mark> PIGISDWNSLFWIAHPGGPAILDQVE <mark>W</mark> KLGLK <mark>E</mark> EKLRATRHVLSEFGNMSSACVLF

Figure 30 Protein sequence alignment of mangosteen CHS with other CHS proteins. The active site consensus sequence is underlined. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; *Arabidopsis*, NP_196897; apple, BAB92996; grape, BAB84112; petunia (chsA), CAA32731; petunia (chsD), CAA32733; petunia, (chsJ), CAA32737; strawberry, AAX99413; mangosteen, ACM62742.

Arabidopsis	(281)	ISKN IVKSL <mark>D</mark> EAFKPLG ISDWNSLFWIAHPGGPAILDQVEIKLGLKE <mark>EKURATRHVLSEYGNMSSACVL</mark> F
Apple	(275)	ISKN IEKSLNEAFKP IG ISDWNSLFWIAHPGGPAILDOVEAKLALKPEKLEATROVLSDYGNMSSACVLF
Grape	(275)	ISKNIEKSLVEAFKPIGISDWNSLFWIAHPGGPAILDQVE <mark>B</mark> KLGLK <mark>E</mark> EKLRATRHVLSEYGNMSSACVLF
Petunia_ChsA	(275)	ISKNIEKSLEEAFKPLGISDWNSLFWIAHPGGPAILDQVE <mark>H</mark> KLGLKPEKL <mark>K</mark> ATR <mark>N</mark> VLSDYGNMSSACVLF
Petunia_ChsD	(275)	IS <mark>NNIEKSLVEVFO</mark> PLGIS <mark>A</mark> WNSIFWUAHPGGPAIL <mark>N</mark> OVE <mark>B</mark> KLGLNPEKL <mark>G</mark> ATRHVLSEYGNMSSA <mark>SI</mark> LF
Petunia_ChsJ	(275)	ISKN I <mark>Q</mark> KSLVEAF <mark>O</mark> PLG ISDWNS <mark>I</mark> FWIAHPGGPAILDQVE <mark>B</mark> KLGLKPEKLRATRHVLSEYGNMSSACVLF
Strawberry	(275)	ISKN IEKSL <mark>NEAFKPLNITDWNSLFWIAHPGGPAILDOVEAKLALKPEKLE</mark> ATRH <mark>I</mark> LSEYGNMSSACVLF
Mangosteen	(276)	ISKNIEKSLVEAFTPIGISDWNSLFWIAHPGGPAILDQVE <mark>V</mark> KLGLK <mark>E</mark> EKLRATRHVLSEFGNMSSACVLF
Arabidopsis	(351)	ILDEMRRKSAKD GVATTGEGLEWGVLFGFGPGLTVETVVLHSVPL
Apple	(345)	ILDEVRRKSAEKGIKTTGEGLEWGVLFGFGPGITVETVVLHSVGLTA
Grape	(345)	ILDEMRKKSIEECKGTTGEGLEWGVLFGFGPGLTVETVVLHSLATQSTH
Petunia_ChsA	(345)	ILDEMRKASAKEGLGTTGEGLEWGVLEGFGPGLTVETVVLHSVAT
Petunia_ChsD	(345)	VLDEMRKSSTQKGPDTTGEGLKWGVLIGFGEGITFETIVLHSVSTQGSFGIRDWDYNFGIEFKIIFIPYL
Petunia_ChsJ	(345)	ILDEMRKASSKE CLGTTGEGLEWGVLFGFGPGLTVETVVLHSVSI
Strawberry	(345)	ILDEVRRKSAANCHKTTGEGLEWGVLFGFGPGLTVETVVLHSVSA
Mangosteen	(346)	ILDEMR KKALEECKPTTGEGLDWGVLEGFGEGITVETVVLHSWPETRA
	10051	
Arabidopsis	(396)	
Appie	(392)	
Grape	(394)	
Petunia_ChsA	(390)	
Petunia_ChsD	(415)	APG12
retunia_ChsJ	(390)	
Managataan	(390)	
Mangosteen	(292)	

1	ATATTTTATCCTTTGGTTATCTCCAGCAACGTGCAGGGAAAC <u>ATG</u> GCTACTGAAGTGGTG	60
	MATEVV	
61	ATGGTGGATGAAGTGTCATTCCCACCCCAGATTACTACCACCAAGCCTTTATCTCTCCTT	120
01	MVDEVSFPPQITTTKPLSLL	100
121	GGCCATGGAATGACGGACATCGAGATACACTTTCTCCAGATTAAGCTCACAGCAATAGGA	180
	G H G M T D I E I H F L Q I K L T A I G	
181	GTGTACTTGGAGCCCGAAGTGCTGAGCCATTTGCAGAAATGGAAGGGCAAACCCGGAAAT	240
	VYLEPEVLSHLQKWKGKPGN	
241	GAACTTGCTGAGAATGACGAATTCTTTGATGCTCTCATTGCAGCTCCTGTTGAGAAGTTC	300
	E L A E N D E F F D A L I A A P V E K F	
301	CTGAGGGTTGTGATTATAAAGGAGATAAAAGGTTCACAATATGGGGTGCAGCTAGAGAGC	360
	L R V V I I K E I K G S Q Y G V Q L E S	
361	TCCGTGAGGGATAGACTCGCAGAAGAGGAGAAGAGTACGAGGAAGAGGAGGAAGAGGCGTTG	420
	S V R D R L A E E D K Y E E E E E A L	
421	GAGAAAATTGTCGAGTTCTTCCAATCCAAGTACTTAAAGAAACACTCTGTCATCACCTTC	480
	E K I V E F F Q S K Y L K K H S V I T F	
481	CATTTCCCAGTAACTTCACCCACTGCCGAGATTGTGGTTTCCACAGAAGGGAAAGAGGAT	540
	H F P V T S P T A E I V V S T E G K E D	
541	AGCAAGATTTTGGTGGAGAATGCAAATGTGGTGGAGATGATCAAGAGGTGGTATTTAGGT	600
	S K I L V E N A N V V E M I K R W Y L G	
601	GGAACCAGGGGGGTGTCCCCTTCAACCATTTCTTGCCTGGCTAATGCACTCTCTGCTGAG	660
	G T R G V S P S T I S C L A N A L S A E	
661	TTGGCCAAATGAACGCTATCAGGGTGTTCTTGGGTTGTTTGCTGCTGATTTATGTACGAT L A K	720
721	GATGGCAGTTTGATTTTAGTCATTATTAGAGACTTGGTTTTGTTGCTTGGGTTCTCTCTT	780
781	GCTACTATGGATATGAATTACTCTTGAGTGTTTTTAAAAAAAA	

Figure 31 Nucleotide sequence of the gene encoding CHI from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG).

Figure 32 Protein sequence alignment of mangosteen CHI with other CHI proteins. The active site consensus sequences are indicated by arrows. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; *Arabidopsis*, NP_568154; grape, CAA53577; pear, ABQ08639; petunia (chiA), AAF60296; petunia (chiB), CAA32730; Populus, XP_002325926; mangosteen, ACM62743.

1	CCATAAGAGAGATAACCAAACTAT <u>ATG</u> GCTCCTACCCCAACAACACTTACCGCTCTTGAA	60
	MAPTPTTLTALE	
61	GGAGAGACAATCCTTCGAGCCAGCTTTGTAAGGGATGAAGATGAACGTCCCAAAGTGGCA	120
	G E T I L R A S F V R D E D E R P K V A	
121	TATAACCAATTTAGCAATGACGTTCCTGTGATTTCACTTGAAGGGATTGATGAAGGTGGC	180
	Y N Q F S N D V P V I S L E G I D E G G	
181	CAAAAAAGGGCTGAGATTTGTAAGAAAATTGTTGAGGCTTGTGAGGAATGGGGGGATTTTC	240
	Q K R A E I C K K I V E A C E E W G I F	
241	CAAGTGGTTGACCATGGTGTTGATACTAAGCTTGTTTCTGAAATGACACGTTTGGCTAGG	300
	Q V V D H G V D T K L V S E M T R L A R	
301	GCATTCTTTGCCTTGCCACCAGAGGAAAAGCTCCGATTCGATATGTCCGGTGGTAAAAAG	360
	AFFALPPEEKLKFDMSGGKK	
361	GGTGGTTTCATTGCCAGTCATTTGCAGGGAGAGGCAGTGCAAGATTGGCGTGAGATA	420
	G G F I V S S H L Q G E A V Q D W K E I	
421	GTGACATATTTCTCATACCCAACGAGGACCCCGTGACTACTCAAGGTGGCCCCGATAAACCC	480
	VIIISIEIKIKDISKWEDKE	
481	GATGGCTGGGTGGACGTCACCAAGGACTATGGTGACCAGCTCATGGGCCTGGCCTGCAAA	540
541	CTCCTGGAGGTCCTATCTGAGGCCATGGGATTGGAAAAGGAGGCCTTGACTAAGGCCTGT L L E V L S E A M G L E K E A L T K A C	600
601	GTGGACATGGACCAGAAGATTGTGGTCAATTATTATCCCAAGTGTCCACAACCAGACCTC V D M D O K I V V N Y Y P K C P O P D L	660
	~ ~ ~ ~	
661	T L G L K R H T D P G T I T L L L Q D Q	720
701		700
121	V G G L Q A T R D N G E T W I T V Q P I	/80
701	ᢙᢌᢌᢙᡎᢙᡎᡎᡎᡎᡊᡎᡎᢙᡎᡆᢌᡵᡎᡊᡎᡎᡊᢙᡎᢙᡵᡎᢙᡘᡇᢙᡘᡎᡎᡎᢙᡘᡎ᠇ᢋᠺᢙᠶᢌᡎᢙᡘᢌᢌᢙᡎᡎᡎ	940
/01	E G A F V V N L G D H G H F L S N G R F	040
841	<u>እ ርአ አ አሞረርሞር አ ርር አሞር አ አርር አርሞርር ምር አ አርሞር አ አ</u> ምርሞአ ርርርር አሞምርሞርር አሞል ርር አ አር አ	900
041	R N A D H Q A V V N S N C S R L S I A T	500
901	ТТССАСААСССАССССАСАТССААТТСТТАТССАСТАААСАТААСССААССАСАСАСАА	960
201	F Q N P A P D A I V Y P L K I R E G E K	500
961	TCAATTCTTGAGGAGCCAATCACATTCTCTGAGATGTACAGGAGGAAAATGGCCAAGGAC	1020
	S I L E E P I T F S E M Y R R K M A K D	
1021	TTGGAATTAGCCAGGCTTAAGAAGCTTGCTAAGGAGCAGCAATTGACGGACG	1080
	L E L A R L K K L A K E Q Q L T D V E K	
1081	GCTAAGTTGGAGGCCAAGCCCATCGAAAAGATCCTTGCTTAAATGCTATAAAACTACAAC	1140
	AKLEAKPIEKILA	
1141	ATTTTATAGTGTATCTACTTGGATCCTATATTTGCACGCTTCACTGTAATTTTTCATGTT	1200
1201	<u>გ ሞፕሬሞ გ გ ፕሬርጥሞሞፕ ርሬርሞ გ გርር გ გ გ ፕሬርሬ ሞሞፕ ርር ማር</u> ማር ማርማር ማርማር ማር ማር ማር ላ ር አ ላ ላ ላ ማር ላ ር ላ	1260
TZOT	ATTGEARTGCTTTTCGGTAAGGAAAATGCGTTTCCGTGTGCTGGGGAAAAATGAGA	TZOU
1261	TATGGGAACCGTTTTTCTAAATAAAAGAATTTTATTCGTTACCTTAAAAAAAA	10

Figure 33 Nucleotide sequence of the gene encoding F3H from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG).

Arabidopsis Apple Black raspberry	(1) (1) (1)	MAPGTLTELAGESKLINSK PVR DE DER PKVAYN VFSDE I PVISLAGID DVD CKRGE I CROIVEACEN MG MAPPATTLTSIAHEKTLOOK PVR DE DER PKVAYNEFSNE I PILSLAGID EVEGRAEICKKLVEACED MG MAPPTTLTALAGEKTLOOS PVR DE DER PKVAYN OF SNE I PILSLAGID EVEGRAEICK KLVEACED MG
Citrus Grape Kiwifruit Petunia Strawberry Mangosteen	(1) (1) (1) (1) (1) (1)	MAPSTLTLALAGEKTLMPSFVRPODERPKVAXMEFSMEIPVISLAGID DVGCKRAEICKKIVEACED MG MAPTTLTLALAGEKTLCSFVRDEDERPKVAXMDFSEIPVISLAGID EVGCRRDEICKKIVEACED MG - MAPTTLTLALAGEKTLCSFVRDEDERPKVAXMVFSSEIPVISLAGID EVDCRRSEICRKIVEACED MG MAPSTLTLALAGEKTLCSFVRDEDERPKVAXMOFSNEIPIISLEGID DETCKRAEICDKIVEACED MG MAPTTTLTALAGEKTLCSFVRDEDERPKVAXMOFSNDIPIISLEGID DETCKRAEICDKIVEACED MG MAPTTTLTALAGEKTLCSFVRDEDERPKVAXMOFSNDIPIISLEGID DETCKRAEICDKIVEACED MG MAPTTTLTALAGEKTLCSFVRDEDERPKVAXMOFSNDIPIISLEGID EGGOKRAEICKKIVEACED MG
Arabidopsis Apple Black raspberry Citrus Grape Kiwifruit Petunia Strawberry Mangosteen	(69) (71) (69) (69) (70) (69) (71) (71)	IFQVVDHGVDTNLVADMTRLARDFFALFEDKLEFDMSGGKKGGFIVSSHLQGEAVODMREIVTYFSYPV IFQIVDHGVDAELISEMTGLAKEFFDLFSEEKLEFDMSGGKKGGFIVSSHLQGEAVODMREIVTYFSYPV IFQIVDHGVDAKLISEMTRLARDFFALFEEKLEFDMSGGKKGGFIVSSHLQGEAVODMREIVTYFSPV IFQVVDHGVDAKLISEMTRLAREFFALFEEKLEFDMSGGKKGGFIVSSHLQGEAVODMREIVTYFSFPK IFQVVNHGVDSNLISEMTRLAREFFALFEEKLEFDMSGGKKGGFIVSSHLQGEAVODMREIVTYFSYPI IFQVVNHGVDAKLIGEMTRLARDFFALFEEKLEFDMSGGKKGGFIVSSHLQGEAVODMREIVTYFSYPI IFQVVDHGVDALGELSOMTRLARDFFALFEEKLEFDMSGGKKGGFIVSSHLQGEAVODMREIVTYFSYPI VFQVVDHGVDALGESMTRLARDFFALFFEEKLEFDMSGGKKGGFIVSSHLQGEAVODMREIVTYFSYPI VFQVVDHGVDALGSMTRLARFFALFFEFELFFEEKLEFDMSGGKKGGFIVSSHLQGEAVODMREIVTYFSYPI VFQVVDHGVDALLSOMTRLARBFFALFFEEFLFPEEKLEFDMSGGKKGGFIVSSHLQGEAVODMREIVTYFSYPI
Arabidopsis Apple Black raspberry Citrus Grape Kiwifruit Petunia Strawberry Mangosten	(139) (141) (141) (139) (139) (140) (139) (141) (141)	R NR D YS RWP NY P EGMVKVT E EYS ERIMS AC KLLEVIS EAMGLE KESITNAC VDMDOK IVVN YY KCP OP RHR D YS RWP D KP EAM REVTKKYS DE IMGLAC KLLEVIS EAMGLD TE ALT KAC VDMDOK VVN FY KCP OP RHR D YS RWP D KP EGMANTOOYS DE IMGLAC KLLEVIS EAMGLE KEALT KAC VDMDOK VVN FY FY KCP OP SR D YS RWP D KP EGMANTOOYS DE IMGLAC KLLEVIS EAMGLE KEALT KAC VDMDOK VVN FY FY KCP OP RTR D YS RWP D KP EGMANTOOYS DE IMIGLAC KLLEVIS EAMGLD KDALTMAC VDMDOK VVN FY FY CCP OP RARD YS RWP D KP EGMANTOOYS BIND SLAC KLLEVIS EAMGLD KDALTMAC VDMDOK VVN FY FY CCP OP RARD YS RWP D KP EGM RAVTOAYS ENIMSIAC KLLEVIS EAMGLE KEALT KAC VDMDOK VVN FY FY CCP OP RARD YS RWP D KP EGMIAVTOAYS ENIMSIAC KLLEVIS EAMGLE KEALT KAC VDMDOK VVN FY FY CCP OP RARD YS RWP D KP EGMIAVTOAYS ENIMSIAC KLLEVIS EAMGLE KEALT KAC VDMDOK VVN FY FY CCP OP RARD YS RWP D KP EGMIAVTOAYS ENIMSIAC KLLEVIS EAMGLE KEALT KAC VDMDOK VVN FY FY CCP OP RARD YS RWP D KP EGMIAVTOYS DE IMGLAC KLLEVIS EAMGLE KEALT KAC VDMDOK VVN FY FY CCP EP RTRD YS RWP D KPD GWDVTY CYS DE IMGLAC KLLEVIS EAMGLE KEALT KAC VDMDOK VVN FY FY CCP OP RTRD YS RWP D KPD GWVDVTY CYS DE IMGLAC KLLEVIS EAMGLE KEALT KAC VDMDOK VVN FY FY CCP OP RTRD YS RWP D KPD GWVDVTY CYS DE IMGLAC KLLEVIS EAMGLE KEALT KAC VDMDOK VVN FY FY CCP OP
Arabidopsis Apple Black raspberry Citrus Grape Kiwifruit Petunia Strawberry Mangosten	(209) (211) (211) (209) (209) (210) (209) (211) (211)	DLTLGLKRHTDPGTITLLLQDQVGGLQATRDNGKTWITVQPVBGAFVVNLGDHGHRLSNGRPKNADHQAV DLTLGLKRHTDPGTITLLLQDQVGGLQATRDDGKTWITVQPVBGAFVVNLGDHGHRLSNGRPKNADHQAV DLTLGLKRHTDPGTITLLLQDQVGGLQATRDGKTWITVQPVBGAFVVNLGDHGHLSNGRPKNADHQAV DLTLGLKRHTDPGTITLLLQDQVGGLQATRDGKTWITVQPVBGAFVVNLGDHGHLSNGRPKNADHQAV DLTLGLKRHTDPGTITLLLQDQVGGLQATRDGKTWITVQPVBGAFVVNLGHHYLSNGRPKNADHQAV DLTLGLKRHTDPGTITLLLQDQVGGLQATRDGKTWITVQPVBGAFVVNLGDHGHYLSNGRPKNADHQAV DLTLGLKRHTDPGTITLLLQDQVGGLQATRDGKTWITVQPVBGAFVVNLGDHGHYLSNGRPKNADHQAV DLTLGLKRHTDPGTITLLLQDQVGGLQATRDGKTWITVQPVBGAFVVNLGDHGHYLSNGRPKNADHQAV DLTLGLKRHTDPGTITLLLQDQVGGLQATRDGKTWITVQPVBGAFVVNLGDHGHFLSNGRPKNADHQAV DLTLGLKRHTDPGTITLLLQDQVGGLQATRDGKTWITVQPVBGAFVVNLGDHGHHVLSNGRPKNADHQAV
Arabidopsis Apple Black raspberry Citrus Grape Kiwifruit Petunia Strawberry Mangosten	(279) (281) (281) (279) (279) (280) (280) (279) (281) (281)	VNSNSSRLSIATFONPAPDATVYPLKVREGEKAILEEPITFAEMYKRKMGRDLELARLKKIAKERDHKE VNSNSSRLSIATFONPAODAIVYPLSVREGEKPILEEPITYTEMYKKMSKDLELARLKKIAKEOOPDDS VNSNSSRLSIATFONPAODAIVYPLKVREGEKPILEEPITYTEMYKKMSKDLELARLKKIAKEOOPDDS VNSNSSRLSIATFONPAPEATVYPLKIREGEKPILEEPITYTEMYKKMSKDLELARLKKIAKEOOPDDS VNSNSSRLSIATFONPAPEATVYPLKIREGEKPILEEPITTAEMYRKMSKDLELARLKKIAKEOOPDV VNSNSSRLSIATFONPAPEATVYPLKIREGEKAILEEPITTAEMYRKMSKDLELARLKKIAKEOOPDV VNSNSSRLSIATFONPAPEATVYPLKIREGEKAILEEPITTAEMYRKMSKDLELARLKKIAKEOOPDV VNSNSSRLSIATFONPAPEATVYPLKIREGEKSIMDEPITFAEMYRKMSKDLELARLKKIAKEOOPDV VNSNSSRLSIATFONPAPEATVYPLKIREGEKSIMDEPITFAEMYRKMSKDLELARLKKIAKEOODDV VNSNSSRLSIATFONPAPEAIVYPLKIREGEKSIMDEPITFAEMYRKMSKDLELARLKKIAKEOODDV VNSNSSRLSIATFONPAPEAIVYPLKIREGEKSIMDEPITFAEMYRKMSKDLELARLKKIAKEOODDV
Arabidopsis Apple Black raspberry Citrus Grape Kiwifruit Petunia Strawberry	(349) (351) (351) (349) (349) (349) (350) (351)	$\begin{array}{c}$

Figure 34 Protein sequence alignment of mangosteen F3H with other F3H proteins. Five motifs conserved in flavanone 3-hydroxylases are underlined. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; Arabidopsis, AAC49176; apple, BAB92997; black raspberry, ABY84868; citrus, BAA36553; grape, ABM67589; kiwifruit, ACL54955; petunia, AAC49929; strawberry, AAU04792; mangosteen, ACM62745.

1	ATCCTGTGCTTCTCCTTCAAAAGTCTCTATCCTGTACTTCTCCTTCAATATAAAATCAAA	60
61	AATAGGAAGTTTACTAAACAAAAGGAGGAAACACA <u>ATG</u> TCTCCCTTTTATTCTCTACTCCA M S P F I L Y S	120
121	TTCTAATAGCAATACTCGTCTACGTTCTCATAAAGTTGGGTTCTCTCAGTAGTGGTCGTC I L I A I L V Y V L I K L G S L S S G R	180
181	GCCTACCACCAGGCCCAAGACCCTTACCTCTTGTGGGGAACTTACCGCACTTGGGCTCAA R L P P G P R P L P L V G N L P H L G S	240
241	TGCCTCACCAGTCCATTGCCTCATTAGTCAAGAAATATGGGCCTCTAATGTACCTCAGGC M P H Q S I A S L V K K Y G P L M Y L R	300
301	TAGGCTATGTGGACGTTGTAGTGGCGGCCGGCCCAAATTTTAAAA L G Y V D V V V A A S A S V A A Q I F K	360
361	ACCATGACGCCAATTTTTCCAGCCGCCCCCCAATTCCGGTGCCAAATACGTAGCGTACA N H D A N F S S R P P N S G A K Y V A Y	420
421	ATTACCATGACCTTGTTTTTGCACCGTACGGGCCAAGGTGGCGCATGCTTAGGAAGATCA N Y H D L V F A P Y G P R W R M L R K I	480
481	GTTCCGTCCACCTCTTCTCCAACAAGGCATTGGATGACTTTAGGCACATTCGAGAGGCAG S S V H L F S N K A L D D F R H I R E A	540
541	AGTTGGCAGTGCTGACAACAACACTAGCAAGTGCGGGCAAAGCACCTGTAAACTTGGGGC E L A V L T Q T L A S A G K A P V N L G	600
601	AACTACTAAATGTGTGCACCACCAACGCCCTAGGCCGGGTAATGGTGGGGGGGG	660
661	TCAACGACGGCGTTGATCCAAAGGCAAGTGATTTCAAGGACATGACATTGGAGCTAATGC F N D G V D P K A S D F K D M T L E L M	720
721	AATTGGCGGGTGTGTTTAACATTGGTGATTTGTTCCTGCATTGGAGTGGCTGGACTTAC Q L A G V F N I G D F V P A L E W L D L	780
781	AAGGAGTGGCATCTAAAATGAAAAGGCTACACAAGAGGTTTGATGATTTTTTGACTACCA Q G V A S K M K R L H K R F D D F L T T	840
841	TCGTGGAAGAGCACAGGAACGGGGGTCAAGAAAAGCATGTGGACTTGTTGAGCACGTTGA I V E E H R N G G Q E K H V D L L S T L	900
901	TTTCGTTAAAAGATAATGCTGATGGTGGACGGTGGAAAGCTCACAGACACCGAAATTAAAG I S L K D N A D G D G G K L T D T E I K	960
961	CATTGCTTTTGAATTTTTTTACTGCTGGGACCGACACATCATCAAGCACAGTGGAATGGG A L L N F F T A G T D T S S S T V E W	1020
1021	CTATTGCAGAACTTCTTAGGCATCCAAAAATCTTGACCCAGGTCCAAAGAGAGCTGGATT A I A E L L R H P K I L T Q V Q R E L D	1080
1081	CTGTTGTGGGCCGAGATCGTCTCGTTAGCGACTTGGACCTACCCCAACTCACTTACCTTA S V V G R D R L V S D L D L P Q L T Y L	1140
1141	GTGCTGTTATTAAAGAGACATTTCGGCTCCACCCATCGACGCCCCTATCACTGCCTCGAA S A V I K E T F R L H P S T P L S L P R	1200

Figure 35 Nucleotide sequence of the gene encoding F3'H from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG).

101

1201	TG	GCGC	GCTC	GAG	AGTT	rgco	GAAA	ATCO	GACO	GCI	TATC	CATA	ATTO	CCGI	AAA	GGT	GCAA	ACCO	CTT	TTGG	1260
	М	A	A	Ε	S	С	Е	Ι	D	G	Y	Η	Ι	P	K	G	A	Т	L	L	
1261	TT	AAT	GTA	TGG	GCC.	ATA	GCA	CGT	GAC	CCA	GAT	GTG	TGG	GCC	GAG	ССТ	TTG	GTG	TTC	ATGC	1320
	V	Ν	V	W	A	Ι	A	R	D	Ρ	D	V	W	A	Ε	Ρ	L	V	F	М	
1321	CC	GAA	AGG	TTT	CTA	ССТ	GGT	GGA	GAA	AAG	GCC.	AAA	GTT	GAT	GTG	AGG	GGC	AAT	GAC	TTTG	1380
	Ρ	Е	R	F	L	Ρ	G	G	Е	K	A	K	V	D	V	R	G	Ν	D	F	
1381	AG	CTT.	ATT	CCA	TTC	GGT	GGT	GGT	AGG.	AGA.	ATT	TGT	GCC	GGT	TTG	AGT	TAC	GGA	TTG	CGTG	1440
	Е	L	Ι	Ρ	F	G	G	G	R	R	Ι	С	A	G	L	S	Y	G	L	R	
1441	ΤA	GTT	TAT	TTA	ATG	GCT	GCC	ACG	TTA	CTC	CAT	GCA	TTT	GAT	TGG	GAA	CTG	GCC	AAT	GGAT	1500
	V	V	Y	L	М	A	A	Т	L	L	Η	A	F	D	W	Ε	L	A	Ν	G	
1501	ΤG	ATT	ССТ	GAA	AAG	TTA	AAC	ATG	GAT	GAA	GCC	TAT	GGA	TTG	ACC	CTT	CAG	CGA	GCT	GCTC	1560
	L	I	Ρ	Е	K	L	Ν	М	D	Е	A	Y	G	L	Т	L	Q	R	A	A	
1561	CC	TTA	ATG	GTG	CAC	CCT	AAG	CCA	AGG	TTA.	AGC	CCT	CAG	GCT	TAC	AAA	GCA	AAA	AAT	TGAA	1620
	Ρ	L	М	V	Н	Ρ	K	Ρ	R	L	S	Ρ	Q	A	Y	K	A	K	Ν		
1621	GA	AAT.	ACA	TGT	GAT	AAG	CAT	TGT	CTT'	TAT'	TTA.	AGC	TTA	TGA	ATT	ACG	TTA	ATT	AAT	АААТ	1680
1681	GΤ	CTT	TTA	TTT	CAA	AAA	AAA	AAA	AAA	AAA.	AA	17	11								

Figure 35 (Continued).

Arabidopsis Antirrhinum	(1) (1)	MATLFLTILLATVDFLILRISHRNRSHNMRLPFGPNPMPIIGULFMGTKFHRTL MOHQYYSLITMDDISITSLLVFCTFILGFLLYSFINRKVKPLPFGPKFMPIVGNLFHLGPKFHQSM
Grape	(1)	RSVRLPPGLKPMPIALIFCTALFCVLLYHFLTRRSVRLPPGLKPMPIVGNLPHLGPVPHHSI
Pelargonium	(1)	RRLPPGPKAMPIVGNLFSFSKSRRRLPPGPKAMPIVGNLPHMCSMPHONL
Petunia	(1)	MEILSLILYTVIFSFLLQFILRSFFRKRYPLPLPPGPKPMPIIGNLWHLGPKPHQST
Mangosteen	(1)	
Arabidopsis	(58)	Profine-fich region SAMVTTYGPILHLRLGFVDVVVAASKSVAEOFIKIHDANFASRPPNSGAKHWAYNYODIVFAPYGHRWRL
Antirrhinum	(68)	AALARVHGPLIHLKMGFVHVVVASSASVA <mark>EK</mark> FLK <mark>V</mark> HDANFSSRPPNSGAKHVAYNYQDLVFAPYGPRWRM
Grape	(53)	aalaktygplmhl rmgfvd vvvaasasvaaqflkthdanfs <mark>n</mark> rppnsgakh IAvnyqdlvfapygfrwrm
Pelargonium	(58)	AAMARTYGPLVYLRLGFVDVVVALSASMASOFLKTHDSNFSSRPPMAGAKHIAYNYHDLVFAPYGPRWRL
Petunia Mergesterr	(58)	AAMAQTY GPL MYLKMGFY DYYYAA SA SYAAQFLK THDAN F55 RPP N5 GAE HMAYNY ODLYFA FY GP RWRM A CTYWWYC DI MYL DI CWYDIGYAA SA SYAA O TRWWD A WR CCD DDIG CA MWY YNY DD YDA DYCD DUDW
Mangosceen	(55)	YOUY KALOPHOTOLOGIYOYYYXXJA YXXQII KAHDANI SAKPENG YAXIYYINI DUYFAFIYK KWAG
Arabidopsis	(128)	LRKISSVHLFSAKALEDFKHVROEEVGTUTREUVRVGTKPVNLGQLVNMCVVNALGREMIGRRLFGADA-
Antirrhinum	(138)	LRKICALHLFSAKALNDFTHVRODEVGILTRVDADAGETPLKLGOMMNTCATNAIARVMLGRRVVGHADS
Grape	(123)	IRKICSVHUFSGKALDDFRHIRQEEVAVU TRAMARAGOTPVNU GOLLNVCTTNALGRVMIGRVFGDGSG
Pelargonium	(128)	FRAITSIHLF SGRALDDIRHV ROLEV GVLAS NHARAV STIVNLGOLLNIGATNALGRAV IGKAV FROGTD
Mangosteen	(125)	LRKICSVILFSIKALDDERITERAELAVLTOTLASAGKEVILGOLLUVCTIMALGEVINGERVER 55
nangobocch	(120)	
Arabidopsis	(197)	DHKADERRSMMTEMMATAGVENTGDEVESTIDMT DI OGVAGKMKRTHKREDAELSSTI KEHEMNGOD
Antirrhinum	(208)	KAEEFKAMVVELMVLAGVFNEGDFIPPLEKLDLOGVIAKMKKLHERFDSFLSKILEDHKINSSDET
Grape	(193)	GEDPKADEFKEMVVELMVLAGVFNIGDFVPALEMLDLOGVAAKMKKLHARFDAFLGATVEEHKISGSAGS
Pelargonium	(198)	DVDPKADEFKSMVVELMVLAGVFNIGDFIPPLDCLDLQGVASKMKNLHKRFDAFLSAILQEHNINSAAS-
Petunia	(198)	DVDPQAAEFKSMVVEMMVVAGVFNIGDFIPQLNMLDIQGVAAKMKKLHARFDAFLTDILEEHKGKIFG
Mangosteen	(194)	DEKASDEKDOTTEINOOUNKAVENNIGDEVEANINONOOVAKSKOKRAHKREDDENTTIVEDHRRGGOE
Arabidopsis	(263)	QKHTDMLSTLISLKGTDLDGDGGSLTDTEIKALLLNMFTAGTDTSASTVDWAIAELIRHEDIMVKAQEEL
Antirrhinum	(274)	KGHSDLLNMLISLKDA-DDAEGGRLTDVEIKALLLNLFAAGTDTTSSTVEWCIAELWRHPEILAOVOKEL
Grape	(263)	ERHVDLLSTLISVRDN-ADGEGGKLTDVEIKALLLNLFTAGTDTSSSTVEWAIAELIRHPEMMA OAO <mark>C</mark> EL
Pelargonium	(267)	- A TP SMETTE ISE KOSVEDSEGGKETD TE IKALLE MMETAGTO TT SSTVEWALABE INOPE ILI PA QKET - RMKDII SUTISI MADA DAD DE CATUDURI KALLI AT MA CUDUS SSUMMATARI ID MUNITA O A QCET
Mangosteen	(260)	- KHVDILSTLISLKNUD DAD MUGGKLID TEIKALLLMEPTAGID ISSIYEMATAED IKMEKILAGOODI - KHVDILSTLISLKNU-ADGDGGKETD TEIKALLLMEPTAGID ISSIYEMATAED IKMEKILAGOODI
nangobocch	(200)	Overan-binding nocket
Arabidonsis	(333)	OXYGED REWERSDIA OF PUT, OAV TKEMERTHEPTEDSTERTASESCEINGVETEKGSTENTIMATARD
Antirrhinum	(343)	DS VV GKNRVVKE ADLAGLPFL OAV VKENFRLHPSTPLSLPRIAHESCEVNGYLIPK GSTLLVNVWA IARD
Grape	(332)	DAVVGR <mark>SRLVTDLDLPOLTVVOAIIKETFRLHPSTPLSLPRMAAESCEINGYHIPKNATLLVNVWAIARD</mark>
Pelargonium	(336)	dsvvgrd rlvtel dlsklpyl oa ivketfrlhsstplslpria <mark>to</mark> sce ingyh ipkgatllvnvwa iard
Petunia	(335)	dkvvgrd rlvgeldla oltylea ivke tfrlhpstplslpria se sce ing yf ipk cstlldnvwa iard
Mangosteen	(328)	DSVVGRDRIVSDIDIPOLTYISAVIKETERIHESTELSIERMAAESCE IDGYHIEKGATILVNVWAIARD
Arabidopsis	(403)	PDQMSDPLAFKPERFLPGGEKSGVDVKGSDFELIPFGAGRRICAGLSLGLRTIQFLTATLVQGPDMELAG
Antirrhinum	(413)	ENVWDEPLEFRPERFLKGGEKPNVDVRGNDFELIPFGAGRRICAGMSLGHRMVQLLTATLIHAFDFDLAD
Grape	(402)	PEVWEEPLEFRPNRFLPGGERPNADVRGNDFEVIPFGAGRRICAGMSLGLRMVHLLTATLVHAFNWELPE
Pelargonium	(406)	PDVWADPDSFRPERFDPGSEKENVDVKGNDFELTPFGAGRRICAGMSLGLRMVQLLTATTLHAFNMDDPQ
Petunia Mongostere	(405)	EN AMEDELE DE RESERVES FOR EN FLATENDER EN DE EN LEFEGAGEREI CAGONI CIROVOLMIATLI HAF NODEVS
mangosteen	(298)	
Arabidanai-	(4735	Heme-binding region
Antirrhinum	(493)	COLPRENINGED VOT. TLOD DDT. UVH PRPRIA PHVMOT
Grane	(472)	GOVAE KINIMDEA VGI TIORAA PINWHPIP PISPOVFGK
Pelargonium	(476)	GQIPQELMMDEAYGLTLQRASPLHWRPRPRLPSHLY
Petunia	(475)	GOLPENLNMEEAYGLTLQRADPLVVHPRPRLEAQAYIG
Mangosteen	(468)	ELTPEKT MYDEAYELTLORAAPT MYHP KPRISPOAYKAKN-

Figure 36 Protein sequence alignment of mangosteen F3'H with other F3'H proteins. The proline-rich region, oxygen-binding pocket and hemebinding region are underlined. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; *Arabidopsis*, AAG16746; antirrhinum, ABB53383; grape, CAI54278; pelargonium AAG49315; petunia AAD56282; mangosteen, ACM62746.

1	GCTCTCTGCCTAGCTGTATTTCTTGTTGACCATATTTTGTCACCCAATTATTCATCTTTA	60
61	AAAATTC <u>ATG</u> GGTTCCCAAAATGAAATTGTATGTGTCACCGGGGCATCAGGGTTCATCGG M G S Q N E I V C V T G A S G F I G	120
121	GTCATGGCTCGTCATGAGACTTCTTGAAAGGGGGTATACGGTTAGAGCCACTGTCCGTGA S W L V M R L L E R G Y T V R A T V R D	180
181	TCCTGATAACGCAAAGAAGGTGCAACATTTGTTGGAGTTACCTAAAGCCAAGACGCACTT P D N A K K V Q H L L E L P K A K T H L	240
241	GACACTGTGGAAAGCTGAACTTGGAATTGAAGGAAGCTTTGATGAAGCGATTCAAGGGTG T L W K A E L G I E G S F D E A I Q G C	300
301	CTCCGGTGTGTTCCATGTTGCCACCCCTATGGACTTTGAGTCCAAGGACCCGGAGAATGA S G V F H V A T P M D F E S K D P E N E	360
361	AGTGATAAAGCCAACTATTGATGGGATGATTGACATATTGAAATCATGTGCCAAAGCCAA V I K P T I D G M I D I L K S C A K A K	420
421	GGTGCGTAGGATAGTGTTCACTGCGTCTGCTGGTGCATTGGACGTGGAAGAGCATCGGAG V R R I V F T A S A G A L D V E E H R R	480
481	GCCTGTCTATGATGAGAATTGTTGGAGTGACTTGGAATTTATCAACTCCGTCAAAATGAC P V Y D E N C W S D L E F I N S V K M T	540
541	AGGATGGATGTATTTCGTCTCCAAGACAAAGGCGGAGAGAGCAGCATGGAAGTTTGCCAA G W M Y F V S K T K A E R A A W K F A K	600
601	AGAGAACAACCTTGATTTCATTAGTATAATCCCATCTTTGTTGTTGGTCCTTTCATCAT E N N L D F I S I I P S L V V G P F I M	660
661	GCAATCAATGCCACCTAGCCTTATCAGTGCCCTCGCTCTAATTACTGGAAATGAAGGTCA Q S M P P S L I S A L A L I T G N E G H	720
721	CTACACAATTCTGAAGCAAGGCCACTACGTGCACTTGGATGACCTAGTCGAGTCACATAT Y T I L K Q G H Y V H L D D L V E S H I	780
781	TTACCTGTACGAGAATCCAAAGGCAGAGGGAAGGTACATTTGCTCTAATTACGACGTCAA Y L Y E N P K A E G R Y I C S N Y D V N	840
841	CATTTTTGAACTTGCCAATATGCTCAACAAGAAGTATCCAGAGTACAACATCCCCACCAC I F E L A N M L N K K Y P E Y N I P T T	900
901	GTTCAAGGGGATTGAGGAGAACTTGCCAAGTGTGATTTTCTCTTCCAAGAAATTGTTGGA F K G I E E N L P S V I F S S K K L L D	960
961	CCATGGATTTGAATTCAAGTACACCCTGGATGACATGTTTCAGGGAGCCGTTGAAACCTG H G F E F K Y T L D D M F Q G A V E T C	1020
1021	TCGGAAAAAGGGATTGATTCCACTTTCTCATTTTAATAATGATGCAAAATAAAT	1080
1081	AGTACAAAACATCGCAAGCATAAATATTTGTTTCGATGTTTTATCCTTGGAGGATGTGAC	1140
1141	CAGTGAGACAGTCAGTAATAAGTAACATTGTTTATGCCAGATTTTATAAAATAAAAATGT	1200
1201	CCACGGTACTTCCTTGGATGAAAAAAAA 1229	

Figure 37 Nucleotide sequence of the gene encoding DFR from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG).

Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen	<pre>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</pre>	MUS OKE TVCVTGAS GFIGSMLVMRLLERGYEVRATVRDEGNLKKVOHLLDLFMAKTOLTL MGSESESVCVTGAS GFIGSMLVMRLLEHGYTVRATVRDEDNKKKVKHLLDLFKAETHLTL MGSIAETVCVTGAS GFIGSMLVMRLLERGYAVRATVRDEDNKKKVKHLLBLFKASTHLTL MGSESESVCVTGAS GFIGSMLVMRLLERGTVRATVRDETNVKKVKHLLDLFKAETHLTL MASEAVHAPSPPVAVETVCVTGAS GFIGSMLVMRLLERGTVRATVRDETNVKKVKHLLDLFKAETHLTL MASEAVHAPSPPVAVETVCVTGAS GFIGSMLVMRLLERGTVRATVRDETNVKKVKHLLEFFKATNLTL MGSESESSVCVTGAS GFUGSMLVMRLLERGTVRATVRDENKKVKHLLELFKATNLTL MGSESESSVCVTGAS GFIGSMLVMRLLERGTVRATVRDENKKVKHLLELFKATNLTL MGSESESSVCVTGAS GFIGSMLVMRLLERGTVRATVRDENKKVKHLLELFKATNLTL
		NADPH-binding region
Arabidopsis	(61)	WKADLSEEGS MDDAINGCDGVFHVATPMDFES KDPENEVIKPTVNGMLGIMKACVKAKTVRRFVFTSSAG
Apple	(61)	WKADLADEGSFDEATQGCSGVFHVATPMDFESKDPENEVIKPTINGLLDILKACQKAKTVRKLVFTSSAG
Citrus	(61)	WKADLAEEG <mark>NFDEAIR</mark> GCTGVFHLATPMDFESKDPENEVI <mark>R</mark> PTINGMVSIMRACKNAKTVRRLVFTSSAG
Grape	(61)	WKADLADEGSFDEAIKGCTGVFHVATPMDFESKDPENEVIKPTIEGMLGIMKSCAAAKTVRRLVFTSSAG
Pear	(61)	WKADLADEGSFDEAIQGC <mark>S</mark> GVFHVATPMDFESKDPENEVIKPTING <mark>D</mark> LDILKACOKAKTVRKLVFTSSAG
Petunia	(71)	WKADLTVEGSFDEAIQGC <mark>Q</mark> GVFHVATPMDFESKDPENEVIKPTVR <mark>GMLSIIESCAKANTVKRLVFT</mark> SSAG
Strawberry	(63)	WKADLDVEGSFDEAIKGCTGVFHVATPMDFESEDPENEVIKPTINGMLDIMKACLKAKTVRRIVFTSSAG
Mangosteen	(61)	wkaelig i egs f deal ogc sgvph vat pødpes kopenev i ket i dgø i d til kscakak – vrr i vetasag —
		-
Arabidancia	(121)	
Arabidopsis Annle	(131)	TY MY BENOKNY TO ENDOWS DIBLET MAKKAT GOM TEY A SAMARKA MODER BEKANDET AT FIDTY OFFITT
Citrus	(131)	TY NY BENCKEY TO BEST MUSDY BECKSY KATGMATPYSKTIKECKAWKIKKENNI DETAITETDYNGEENME TY DUR BHRKDUUD RTSMSDID RUKYTGMAUFYSKTIL & FOA MMKFARRANNI DETAITEST I DST. UUGDRUTS
Grane	(131)	TVNTOBHOTPVVDESCMSDMEPCBAKKMTAMMYPVSKTTAFOAAMKVAKENNTDPTTTTPTT,VVGPPTMS
Pear	(131)	TV NVE BHOKP VYD ESNMSDWEFCRSV KMTGMMYFVSK TLAEOAAMKVA KENNIDFINIIPTLYTGPFTMF
Petunia	(141)	TL DVOEOOKL FYD OT SWSDLDFI YAKKMT GWMYFASK IL AEKAAMEEA KKKNIDFI SI I PPL VY GPFI TP
Strawberry	(133)	AVAIEEHPKEVYSENNWSDVVFCRKVKMTGWMYFVSKTLAEQAAWKFAKENNIDFITIIPTLVIGPFLAP
Mangosteen	(130)	ALDVEEHRRPVYDENCWSDLEFINSVKMTGWMYFVSKTKAERAAWKFAKENNLDFISIIPSLVVGPFIMQ
		Substrate specificity domain
1		
Arabidopsis	(201)	SMPPELTTAL SPITRNEAHYSIIRQGQYYHLDDLCNAHIFLYE <mark>QAAAKGRYICS</mark> SHDATILTISKFLEPK
Arabidopsis Apple	(201) (201)	SMPPSLITALSPITRNEAHYSIIRQGQYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGLSPILRNESHYGIIKQGQYVHLDDLCLSHIYLYEHPKAEGRYICSSHDATIHELYKMLREK
Arabidopsis Apple Citrus	(201) (201) (201)	SMPPSLITALSPITRNEA HYSIIRQGQYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGLSPILRNESHYGIIKQGQYVHLDDLCLSHIYLYEHPKAEGRYICSSHDATIHELYKMLREK SMPPSLITALSPITRNEAHYPIIKQGQFVHLDDLCSAHTEDFEHPMAKGRYICSSHPATILELAKFLREK
Arabidopsis Apple Citrus Grape	(201) (201) (201) (201)	SMPPSLITALSPITRNEAHYSIIRQGQYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGLSPILRNESHYGIIKQGQYVHLDDLCLSHIYLYEHPKAEGRYICSSHDATIHELYKMLREK SMPPSLITALSPITRNEAHYPIIKQGGFVHLDDLCSAHTFDFEHPNAKGRYICSSHPATILELAKFLREK SMPPSLITALSPITGNEAHYSIIRQGGFVHLDDLCNAHIYDFENPKAEGRYICSSHCILDLAKMLREK
Arabidopsis Apple Citrus Grape Pear	(201) (201) (201) (201) (201) (211)	SMPPSLITALSPITRNEA HYSIIRQGQYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGLSPILRNESHYGIIKQGQYVHLDDLCLSHIYLYEHPKAEGRYICSSHDATIHELYKMLREK SMPPSLITALSPITRNEAHYPIIKQGOFVHLDDLCSAHIFUFEHPNAKGRYICSSHPATILELAKFLREK SMPPSLITALSPITGNEAHYSIIRQGOFVHLDDLCNAHIYUFENPKAEGRYICSSHDCIILDLAKMLREK SMPPSLITALSPITGNEAHYSIIRQGOFVHLDDLCNAHIYUFENPKAEGRYICSSHDCIILDLAKMLREK SMPPSLITALSPITGNEAHYSIIRQGOVHLDDLCNAHIYUFENPKAEGRYICSSHDTIHLUVKMLREK
Arabidopsis Apple Citrus Grape Pear Petunia	(201) (201) (201) (201) (201) (211) (203)	SMPPSLITALSPITRNEA HYSIIR QGQYVHLDDL CNAHIFLYE QAAAKGRYICSSHDATILTISKFL RPK SMPPSLITGLSPILRNESHYGIIK QGQYVHLDDL CLSHIYLYE HPKAE GRYICSSHDATIHELYKMLREK SMPPSLITALSPITRNEA HYPIIK QGGFVHLDDL CSAHIFLFE HPNAKGRYICSSHPATILELA KFLREK SMPPSLITALSPITGNEA HYSIIR QGGFVHLDDL CNAHIYLFE NPKAE GRYICSSHDCIILDLAKMLREK SMPPSLITALSPITGNEA HYSIIR QGGYVHLDDL CLSHIYLYKHPKAE GRYICSSHDTIHELYKMLREK SMPPSLITALSPITGNEA HYCIIK QGQYHLDDL CLSHIYLYKHPKAE GRYICSSHDATIHELYKMLREK TFPSLITALSTIGNEA HYCIIK QGQYHLDDL COSHIFLYE HAKAA GRYICSSHDATIHELYKM KAVREK SMPSLITALSTITGNEA HYCIIK QGQYHLDDL COSHIFLYE HAKAA GRYICSSHDATIHELYKM KAVREK
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangasteen	(201) (201) (201) (201) (201) (211) (203) (200)	SMPPSLITALSPITRNEA HYSIIR QGQYVHLDDL CNAHIFLYE QAAAKGRYICSSHDATILTIS KFL RPK SMPPSLITGLSPILRNESHYGIIK QGQYVHLDDL CLSHIYLYE HPKAE GRYICSSHDATIHELYKMLREK SMPPSLITALSPITRNEA HYPIIK QGQFVHLDDL CSAHIFUFE HPNAKGRYICSSHPATILELA KFLREK SMPPSLITALSPITGNEA HYSIIR QGQFVHLDDL CNAHIYUFEN PKAE GRYICSSHDCIILDLA KMLREK SMPPSLITALSPITGNEA HYGIIK QGQYVHLDDL CLSHIYU YKHPKAE GRYICSSHDATIHELYKMLREK SMPPSLITALSPITGNEA HYGIIK QGQYVHLDDL CSAHIFU YE HAKAD GRFICSSHDATIHELYKMLREK SMPPSLITALSLITGNEA HYGIIK QGQYVHLDDL CSAHIFU YE HAKAD GRFICSSHDATIHELYKMLREK SMPPSLITALSLITGNEA HYGIIK QGQYVHLDDL CSAHIFU YE HAKAB GRYICSSHDATIHELYKMVREK SMPPSLISGLSPLTGNEA HYGIIK QGQYVHLDDL COSHIFLYE HAKAB GRYICSSHDATIHDIA KMVREK SMPPSLISLALITGNEA HYGIIK QGQYVHLDDL CYNHFE HAKAB GRYICSSHDATIHDIA KMVREK
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen	(201) (201) (201) (201) (201) (211) (203) (200)	SMPPSLITALSPITRNEAHYSIIRQGQYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISFELRPK SMPPSLITGLSPITRNEAHYGIIKQGQYVHLDDLCLSHIYDYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPIIKQGQFVHLDDLCNAHIFUFEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITGNEAHYPIIKQGQFVHLDDLCNAHIFUFENPKAEGRYICSSHDATIHELV SMPPSLITGLSPITGNEAHYGIIKQGQFVHLDDLCNAHIFUFENPKAEGRYICSSHDATIHELV SMPPSLITGLSPITGNEAHYGIIKQGQFVHLDDLCNAHIFUFENPKAEGRYICSSHDATIHELV SMPPSLITGLSPITGNEAHYGIIKQGQFVHLDDLCSHIYUYKHPKAEGRYICSSHDATIHELV SMPPSLITGLSPITGNEAHYGIIKQGQFVHLDDLCSHIFUYEHPKAEGRYICSSHDATIHELV SMPPSLITGLSFITGNEAHYGIIKQGQFVHLDDLCSHIFUYEHPKAEGRYICSSHDATIHELV SMPPSLITGLSFITGNEAHYGIIKQGQFVHLDDLCSHIFUYEHPKAEGRYICSSHDATIHELV SMPPSLISGLSFLTGNEAHYGIIKQGPYHLDDLCQSHIFUYEHAKAEGRYICSSHDATIHDIKKLNKK
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen	(201) (201) (201) (201) (201) (211) (203) (200)	SMPPSLITALSPITRNEAHYSIIRQGQYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISFELRPK SMPPSLITGDSFILRNESHYGIIKQGQYVHLDDLCLSHIYDYEHFKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPIIKQGQFVHLDDLCNAHIFUFEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITGNEAHYPIIKQGQFVHLDDLCNAHIFUFEHPKAEGRYICSSHDATIHELVK SMPPSLITGDSPITGNEAHYGIIKQGQFVHLDDLCNAHIFUFENFAEGRYICSSHDATIHELV SMPSLITGDSPITGNEAHYGIIKQGQFVHLDDLCNAHIFUFENFAEGRYICSSHDATIHELV SMPSLITGDSPITGNEAHYGIIKQGQFVHLDDLCNAHIFUFENFAEGRYICSSHDATIHELV SMPSLITGDSPITGNEAHYGIIKQGQFVHLDDLCSHIFUFEHFAADGRFICSSHDATIHELV SMPSLITGDSPITGNEAHYGIIKQGQFVHLDDLCSHIFUFEHFAADGRFICSSHDATIHELV SMPSLITGDSFLTGNEAHYGIIKQGQFVHLDDLCQSHIFUFEHFAADGRFICSSHDATIHELV SMPSLISGDSFLTGNEAHYGIIKQGPYHLDDLCQSHIFUFEHFAKAEGRYICSSHDATIHELV SMPPSLISALALITGNEGHYTILKQGHTVHLDDLQSHIFUYEHAKAEGRYICSSHDATIHELANMLNKK
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis	(201) (201) (201) (201) (201) (211) (203) (200) (200)	SMPPSLITALSPITRNEAHYSIIRQGQYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGLSPILRNESHYGIIKQGQYVHLDDLCLSHIYDYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPIIKQGQFVHLDDLCLSHIYDYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITGNEAHYPIIKQGQFVHLDDLCNAHIYDFENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITGNEAHYSIIRQGQFVHLDDLCLSHIYDYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSIIGNEAHYGIIKQGQYVHLDDLCLSHIYDYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSIIGNEAHYGIIKQGQYVHLDDLCLSHIYDYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSIIGNEAHYGIIKQGQYVHLDDLCSHIYDYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGLSPILRNEGHYCIIKQGQYVHLDDLCQSHIFDYEHAKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYGIIKQCQYVHLDDLCQSHIFDYEHAKAEGRYICSSHDATIHEUVKMLNEK SMPPSLISGDSPLTGNEAHYGIIKQCQYVHLDDLCQSHIFDYEHAKAEGRYICSSHDATIHOIKK SMPPSLISGDSPLTGNEAHYGIKKQCYVHLDDLCQSHIFDYEHAKAEGRYICSSHDATIHOIKK
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple	(201) (201) (201) (201) (201) (211) (203) (200) (200) (271) (271)	SMPPSLITALSPITRNEAHYSIIRQGQYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGLSPILRNESHYGIIKQGQYVHLDDLCLSHIYLYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPIIKQGQFVHLDDLCSAHIFLFEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPIIKQGQFVHLDDLCSAHIFLFEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPIIKQGQFVHLDDLCSHIFUFYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGLSPILRNESHYGIIKQGQYVHLDDLCSHIFUFYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSLITGNEAHYCIIKQGQYVHLDDLCSHIFUFYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSLITGNEAHYCIIKQGQYVHLDDLCSHIFUFYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSLITGNEAHYCIIKQGQYVHLDDLCSHIFUFYKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGLSPLTGNEAHYCIIKQGYVHLDDLCSHIFUFYENAKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGLSPLTGNEAHYCIIKQGYVHLDDLCSHIFUFYENAKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGLSPLTGNEAHYCIIKQGYVHLDDLCSHIFUFYENAKAEGRYICSSHDATIHEUVKMNRK SMPPSLISGLSPLTGNEAHYCIKQGHYVHLDDLVSHIFUFYENAKAEGRYICSSHDATIHOTAKLNEK SMPPSLISGLSPLTGNECHYTIKQGHYVHLDDLVSHIVLYENFKAEGRYICSSHDATIHOTAKLNEK SMPPSLISGLSPLTGNECHYTIKQGHYNLGAEKVHLDDLVSHIVLYENFKAEGRYICSNNDVNIFELANMLNKK
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus	(201) (201) (201) (201) (201) (211) (203) (200) (200) (271) (271) (271)	SMPPSLITALSPITRNEAHYSIIR GGOYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGDSPILRNESHYGIIK GGOYVHLDDLCLSHIVDYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPIK GGOYVHLDDLCSHIFLYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPIK GGOYVHLDDLCSHIFUVKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEHYGIIK GGOYVHLDDLCSHIFUVKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPILRNESHYGIIK GGOYVHLDDLCSHIFUVKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPILRNESHYGIIK GGOYVHLDDLCSHIFUVKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPILRNESHYGIIK GGOYVHLDDLCSHIFUVKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPILRNESHYGIIK GGOYVHLDDLCSHIFUVKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGLSPLTGNEAHYGIIK GGOYVHLDDLCSHIFUVEHPKADGRFICSSHDATIHEUVKMVREK SMPPSLISGLSPLTGNEAHYGIIK GGOYVHLDDLCSHIFUVEHPKADGRFICSSHDATIHEUVKMVREK SMPPSLISGLSPLTGNEAHYGIIK GGOYVHLDDLCSHIFUVENPKAEGRYICSNUDVNIFELANMLNKK SMPPSLISGLSPLTGNEAHYGIIK GGOYVHLDDLCSHIFUVENPKAEGRYICSNUDVNIFELANMLNKK SMPPSLISGLSPLTGNEAHYGIIK GGOYVHLDDLCSHIFUVENPKAEGRYICSNUDVNIFELANMLNKK SMPPSLISGLSPLTGNEAHYGIKGGENFKUSLEMFISSIKVENFAEGRYICSNUDVNIFELANMLNKK SMPPSLISGLSPLTGNEKSTEFSSKKLTEMGENFKUSLEMFISSIKVENFAEGRYICSNUDVNIFELANMLNKK SMPPSLISGLGYDENNKSTEFSSKKLTEMGENFKUSLEMFISSICCROKGFLEVSLSVQSISEIKVP SPENNPTRFREGVDENNKSTEFSSKKLTEMGENFKUSLEMFISSICCROKGFLEVSLSVQSISEIKVP
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape	(201) (201) (201) (201) (201) (201) (201) (201) (201) (200) (271) (271) (271) (271)	SMPPSLITALSPITRNEAHYSIIR GGOYVHLDDLCNAHIFLYE QAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGDSPILRNESHYGIIK GGOYVHLDDLCLSHIVDYE HPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYPIK KGGOYVHLDDLCSAHIFLFEHNAKGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYPIK GGOYVHLDDLCSAHIFLFEHNAKGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYSIIR GGOYVHLDDLCSHIVDYKH KAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPILRNESHYGIIK GGOYVHLDDLCSHIVDYKH KAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPILRNESHYGIIK GGOYVHLDDLCSHIVDYKH KAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSLITGNEAHYGIIK GGOYVHLDDLCSHIVDYKH KAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYGIIK GGOYVHLDDLCSHIVDYKH KAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYGIIK GGOYVHLDDLCSHIVDYEH KADGRFICSSHDATIHDTAKLNEK SMPPSLISGDSPLTGNEAHYGIIK GGOYVHLDDLCSHIVDYEH KAEGRYICSSHDATIHDTAKLNEK SMPPSLISGDSPLTGNEAHYGIIK GGOYVHLDDLVESHIVDYEN KAEGRYICSNYDVNIFELANMLNKK SMPPSLISDDALITGNEGHYTILK GGYVHLDDLVESHIVDYEN KAEGRYICSNYDVNIFELANMLNKK SMPPSLISDDALITGNEGHYTILK GEFYKLSLEBMFIESIET GROK GFLEVSLSVGSISEIKVP YPEYNVPSTDEGVDENKSIEFSKKLREIGFEFKYSLEBMFVGAVDAGRAKGLDIFIPISAEKTEAAEES YPEFNVPTEPEDVDENKNNLFSSKKLTDLGFKFYSLEBMFVGAVDACRAKGLDIFIPISAEKTEAAES YPEYNYPTEPEDVDENKSNCFSSKKLTDLGFKFYSLEDMFVGAVDTCRAKGLLP-LLCENHVSEVSI-
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear	(201) (201)	SMPPSLITALSPITRNEAHYSTIRCGOYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGDSPILRNESHYGIIKCGOYVHLDDLCLSHTWDYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYPTIKCGOYVHLDDLCSAHIFLFEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNESHYGIIKCGOYVHLDDLCSAHIFLFEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNESHYGIIKCGOYVHLDDLCLSHTWDYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNESHYGIIKCGOYVHLDDLCSAHIFLYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSLITGNEAHYGIIKCGOYVHLDDLCSAHIFLYEHPKADGRFICSSHHATIHEUVKMLREK SMPPSLITADSLITGNEAHYGIIKCGOYVHLDDLCSAHIFLYEHPKADGRFICSSHHATIHDIVKMVREK SMPPSLITADSLITGNEAHYGIIKCGOYVHLDDLCSAHIFLYEHPKADGRFICSSHHATIHDIAKLLNEK SMPPSLISGLSPLTGNEAHYGIIKCGOYVHLDDLCSHITLYEHPKADGRYICSSHDATIHDIAKLLNEK SMPPSLISGLSPLTGNEAHYGIIKCGOYVHLDDLCSHITLYEHPKADGRYICSSHDATIHDIAKLNEK SMPPSLISGLSPLTGNEAHYGIIKCGOYVHLDDLCSHITLYEHPKADGRYICSSHDATIHDIAKLNEK SMPPSLISGLSPLTGNEAHYGIIKCGOYVHLDDLCSHIVLYENPKAEGRYICSSHDATIHDIAKLNEK SMPPSLISGLSPLTGNEAHYGIIKCGYKLDDLYESHIVLYENPKAEGRYICSSHDATIHDIAKLNEK SMPPSLISATALITGNEGHYTILKOCHYHLDDLYESHIVLYENPKAEGRYICSNYDVNIFELANMLNKK SMPPSLISATALITGNEGHYTILKOCHYHLDDLYESHIVLYENPKAEGRYICSNYDVNIFELANMLNKK SMPPSLISATALITGNEGHYTILKOCHYHLDDLYESHIVLYENPKAEGRYICSNYDVNIFELANMLNKK SMPPSLISATALITGNEGHYTILKOCHYHLDDLYESHIVLYENPKAEGRYICSNYDVNIFELANMLNKK SMPPSLISATALITGNEGHYTILKOCHYHLDDLYESHIVLYENPKAEGRYICSNYDVNIFELANMLNKK
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear Petunia	(201) (201)	SMPPSLITALSPITRNEAHYSTIRCGOVYHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISFLRPK SMPPSLITGDSFILRNESHYGTIKCGOVYHLDDLCLSHIVDYEHYABGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPTIKCGOVYHLDDLCSAHIFDFEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITGNEAHYPTIKCGOVYHLDDLCNAHIWFFENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCNAHIWFFENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCSHIFLYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCSHIFLYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCSHIFLYEHPKAEGRYICSSHDATIHELV SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIFLYEHAKAEGRYICSSHDATIHELV SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIFLYEHAKAEGRYICSSHDATIHDIKKLNKK SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIFLYEHAKAEGRYICSSHDATIHDIKKLNKK SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIFLYEHAKAEGRYICSSHDATIHDIKKLNKK SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIFLYEHAKAEGRYICSHDATIHDIKKLNKK SMPPSLISGDSPLTGNECHYTILKCGHYTILKCGHYHLDDLVESHIYLYENPKAEGRYICSHDATIHDIKK SMPPSLISGDSTGSKKLTGEGVENGKSKLTDLGFERKYSLEEMFIESTETCROKGFLEVSLSVQSISEIKVP YPEYNIPTEREKGIDDNIEFVHFSSKKLTEIGFERKYSLEEMFIGAVDTCRAKGLIPTIPSLECHNYSEVSI- YPEPNYTEFERGVDENNKSTSFSKKLTDLGFERKYSLEEMFTGAVDTCRAKGLIPFSHEKVPOGKT
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear Petunia Strawberry	(201) (201) (201) (201) (201) (211) (203) (200) (271) (271) (271) (271) (271) (271) (271) (271) (271)	SMPPSLITALSPITRNEAHYSTIRCGOYVHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISFELRPK SMPPSLITGDSFILRNESHYGTIKCGOYVHLDDLCLSHIYDYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPTIKCGOYVHLDDLCSAHIFUFEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITGNEAHYPTIKCGOYVHLDDLCNAHIVHFENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOYVHLDDLCSAHIFUFENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOYVHLDDLCSHIYUYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOYVHLDDLCSHIYUYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOYVHLDDLCSHIYUYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOYVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOYVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOYVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOYVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOYVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOYVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOYVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOYVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOYVHLDDLCOSHTELYEHAKAEGRYICSHDATIHDTAKUNKK SMPPSLISGDSPLTGNEAHYGTIKCGOYVHLDDLCOSHTELYEHAKAEGRYICSHDATIHDTAKUNKK SMPPSLISGDSSKKLTGNGGYKYLDDLGCOSHTELYEHAKAEGRYICSHDATIHDTAKUNKK SMPPSLISGDSSTREGVDENIKSSICFSSKKLTENGFNFKYSLEEMFYGAVDAGRAKGLIPTIPAKENSAES YPEYNYPTEPKGIDDNIEPVHFSSKKLTDLGFKYSLEDMFYGAVDTGRAKGLIPTIPAKENSAES YPEYNYPTEPKGIDDNIEPVHFSSKKLRETGFEFKYSLEDMFYGAVDTGRAKGLIPTAEKENDEKT
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen	(201) (201) (201) (201) (211) (203) (200) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271)	SMPPSLITALSPITRNEAHYSTIRCGOVYHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISFELRPK SMPPSLITGDSPILRNESHYGTIKCGOVYHLDDLCLSHIVDYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPTIKCGOVYHLDDLCLSHIVDYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPTIKCGOVYHLDDLCNAHIVDFENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITGNEAHYGTIKCGOVYHLDDLCLSHIVDYKHPKAEGRYICSSHDATIHEUV SMPPSLITGDSPILRNESHYGTIKCGOVYHLDDLCNAHIVDFENPKAEGRYICSSHDATIHEUV SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCLSHIVDYKHPKAEGRYICSSHDATIHEUV SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCOSHTEDVEHAKAEGRYICSSHDATIHEUV SMPPSLITALSTITGNEAHYGTIKCGOVYHLDDLCOSHTEDVEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCOSHTEDVEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOVHLDDLCOSHTEDVEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOVHLDDLCOSHTEDVEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOVHLDDLCOSHTEDVEHAKAEGRYICSSHDATIHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOVHLDDLCOSHTEDVEHAKAEGRYICSSHDATIHDTAKUNEK SMPPSLISALALITGNEGHYTIKCGIPVHFSKKLTENGFNFKYSLEEMFIESIETCROKGFLPVSLSVQSISEIKVP YPEYNIPTKEKGIDDNEFYHFSSKKLTDLGFFFKYSLEEMFVGAVDAGRAKGLIPTPIAEKTEAAEES IVPEFNVPTEBEDVDENKKNMLFSSKKLTDLGFKFYSLEDMFVGAVDAGRAKGLIPTPIAEKTEAAEES IVPEYNIPTKEKGIDDNEFYHFSSKKLTDLGFFFKYSLEDMFVGAVDAGRAKGLIPTLLCENHVSEVSI- VPEYNIPTKEKGIDDNEFYHFSSKKLTDLGFFFKYSLEDMFVGAVDAGRAKGLIPTPAEKTEAAEESNL WPEYVPTEPKGIDKULSVCFSSKKLTDLGFFFKYSLEDMFVGAVDAGRAKGLIPTPAEKTEAAEESNL WPEYVPTEPKGIDKULSVCFSSKKLTDLGFFFKSLEDMFVGAVDAGRAKGLIPTPAEKTEAAEESNL WPEYVPTEPKGIDKULSVCFSSKKLTDLGFFFKSLEDMFVGAVDAGRAKGLIPTPAEKTEAAEESNL WPEYVPTEFKGIDKULPSVIFSSKKLKEMGFFFKSLEDMFVGAVDAGCAKGLLPTPAEKTEAAEESNL WPEYVPTEFKGIDKULPSVIFSSKKLKEMGFFFKSLEDMFVGAVDAGCAKGLLPTPAEKTEAAEESNL
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen	(201) (201) (201) (201) (211) (203) (200) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271)	SMPPSLITALSPITRNEAHYSTIRCGOVYHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISFELRPK SMPPSLITGDSPILRNESHYGTIKCGOVYHLDDLCLSHIVDYEHPKAEGRYICSSHDATTHEUVKMLREK SMPPSLITALSPITRNEAHYPTIKCGOVYHLDDLCLSHIVDYEHPKAEGRYICSSHDATTHEUVKMLREK SMPPSLITALSPITGNEAHYPTIKCGOVYHLDDLCLSHIVDYEHPKAEGRYICSSHDATTHEUVKMLREK SMPPSLITALSPITGNEAHYSTIRCGOVYHLDDLCLSHIVDYKHPKAEGRYICSSHDATTHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCLSHIVDYKHPKAEGRYICSSHDATTHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCLSHIVDYKHPKAEGRYICSSHDATTHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCOSHTFDYEHAKAEGRYICSSHDATTHEUVKMLREK SMPPSLITALSTITGNEAHYGTIKCGOVYHLDDLCOSHTFDYEHAKAEGRYICSSHDATTHEUVKMLREK SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCOSHTFDYEHAKAEGRYICSSHDATTHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCOSHTFDYEHAKAEGRYICSSHDATTHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOVHLDDLCOSHTFDYEHAKAEGRYICSSHDATTHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOVHLDDLCOSHTFDYEHAKAEGRYICSSHDATTHDTAKULNEK SMPPSLISGDSPLTGNEAHYGTIKCGOVHLDDLCOSHTFDYEHAKAEGRYICSSHDATTHDTAKUNNKK SMPPSLISADATTGNEGHYTTIKCGOVHLDDLCOSHTFDYEHAKAEGRYICSSHDATTHATAKUNNKK SMPPSLISADATTGNEGHYTTIKGEFYKSLEIGTEFYSSKLISTERFERSTING SMPPSLISADATTGNEGHYTTIKGEFYKSKLICHTGFFRYSSELET SMPPSLISADATTGNEGHYTREFYKSSKLITALGFFRYSSELET SMPPSLISADATTGNEGHYTREFYKSSKLITALGFFRYSSELET SMPPSLISADATTGNEGHYTREFYKSSKLITALGFFRYSSELET SMPPSLISADATTGNEGHYTREFYKSSELET SMPPSLISADATTGNEGHYTREFYKSSKLITALGFFRYSSELET SMPPSLISADATTGNEGHYTREFYKSSELET SMPPSLISADATTGNEGHYTREFYKSSELET SMPPSLISADATTGNEGHYTREFYKSSELET SMPPSLISADATTGNEGHYTREFYKSSELET SMPPSLISADATTGNEGHYTREFYKSSELET SMPPSLISADATTGNEGHYTREFYKSSELT SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNEGHYTREFYKSSELET SMPSLISADATTGNE
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis	(201) (201) (201) (201) (201) (211) (203) (200) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (201)	SMPPSLITALSPITRNEAHYSTIRCGOVYHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGDSPILRNESHYGIIKCGOVYHLDDLCLSHIVDYEHYABGRYICSSHDATILELAKFLRPK SMPPSLITADSPITRNEAHYPTIKCGOVYHLDDLCLSHIVDYEHYABGRYICSSHDATILELAKFLREK SMPPSLITADSPITRNEAHYPTIKCGOVYHLDDLCSAHIFUFENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYPTIKCGOVYHLDDLCSHIVDYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYGTIKCGOVYHLDDLCSHIVDYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSFITGNEAHYGTIKCGOVYHLDDLCSHIVDYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSTITGNEAHYGTIKCGOVYHLDDLCSHIVDYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSTITGNEAHYGTIKCGOVYHLDDLCSHIVDYKHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSTITGNEAHYGTIKCGOVYHLDDLCSHIVDYEHAKAEGRYICSSHDATIHETVKMLREK SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVDYEHAKAEGRYICSSHDATIHETVKMLREK SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVDYEHAKAEGRYICSSHDATIHETVKMLREK SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVDYEHAKAEGRYICSNUOVNIFFELANMLNKK SMPPSLISADATITGNEGHYTTIKCGOVYHLDDLCOSHIFUTYEHAKAEGRYICSNUOVNIFFELANMLNKK SMPPSLISADATITGNEGHYTTIKCGOVYHLDDLCPSHIVDYENPKAEGRYICSNUOVNIFFELANMLNKK SMPPSLISADATITGNEGHYTTIKCGOVYHLDDLCOSHIFUTYENPKAEGRYICSNUOVNIFFELANMLNKK SMPPSLISADATITGNEGHYTTIKCGOVYHLDDLCOSHIFUTYENPKAEGRYICSNUOVNIFFELANMLNKK SMPPSLISADATITGNEGHYTTIKCGOVYHLDDLCOSHIFUTYENPKAEGRYICSNUOVNIFFELANMLNKK SMPPSLISADATITGNEGHYTTIKCGOVYHLDDLCOSHIFUTYENPKAEGRYICSNUOVNIFELANMLNKK SMPPSLISADATITGNEGHYTTIKCGOVYHLDDLCOSHIFUTYENPKAEGRYICSNUOVNIFELANMLNKK SMPPSLISADATITGNEGHYTTIKCGOVYHLDDLCOSHIFUTYENPKAEGRYICSNUOVNIFELANMLNKK SMPPSLISADATITGNEGHYTTIKSKKLREIGFERKSLEDMFTGAVDACAKGLIPTYPHEKESTI SHENNIFTERKEN SMPSLISADATITTERKEN SMPSLISADATITTERKEN SMPSLISADATITTERSKKLRENGFERKSLEDMFTGAVDACAKGLIPTSHEKENABESSI SMPSLISADATITTIKSKKLKENGFERKSLEDMFTGAVDACAKGLIPTSHFNNDAK TKNEIIEVKFGDGLTDGMKPCNKTETGVTGERTDAPMLAOOMCA
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple	(201) (201) (201) (201) (201) (211) (203) (200) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (201)	SMPPSLITALSPITRNEAHYSTIRCGOVYHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGDSPILRNESHYGIIKCGOVYHLDDLCLSHIVDYEHYABGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYPTIKCGOVYHLDDLCSAHIFUPENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYPTIKCGOVYHLDDLCSAHIFUPENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYPTIKCGOVYHLDDLCSHIFUPYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYSTIRCGOVYHLDDLCSHIFUPYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSFILRNESHYGIIKCGOVYHLDDLCSHIFUPYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSTITGNEAHYCTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSTITGNEAHYCTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSSHDATIHDTAKLNEK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSNDOVNTFELANMLNKK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSNDOVNTFELANMLNKK SMPPSLISGDSPLTGNEHYTTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSNDOVNTFELANMLNKK SMPPSLISGDSPLTGNEHYTTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSNDOVNTFELANMLNKK SMPPSLISGDSPLTGNEHYTTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSNDOVNTFELANMLNKK SMPPSLISGDSPLTGNEHYTTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSNDOVNTFELANMLNKK SMPPSLISGDSPLTGNEHYTTIKSCHENKYCHYTTIKCGOVYHLDDLCSHIFUPYENPKAEGRYICSNDOVNTFELANN SMPPSLISGDSPLTGNEHYTTIKGOVYHLDDLCSHIFUPYENPKAEGRYICSNDOVNTFELANN SMPPSLISGDSPLTGNEHYTTIKSCHENTIGGERYSSLEDMFTGAVDTCRAKGLIPPSHEKTEAAEES YPEFNVPTEREGVDENTKSVCFSSKKLTDLGFFQCKYTLEDMYKGAIDTCRAKGLIPPSHEKTEAAEESNL SMPPSLISGTSPLTGNEKSCHENTEGVTGERFTAPMLAQOMCA NEVVNPKKPKGIEENLPSVIFSSKKLLDHGFEFKYLDDMFTGAVDACEFTCRKKGLIPLSHFNNDAK TKNEITEVKTGDGLTDGMKPCNKTETGVTGERTDAPMLAQOMCA NLVDVKVG
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus	(201) (201) (201) (201) (201) (211) (201) (201) (201) (271) (201)	SMPPSLITALSPITRNEAHYSTIRCGOVYHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISKFLRPK SMPPSLITGDSPILRNESHYGIIKCGOVYHLDDLCLSHIVDYEHYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYPTIKCGOVYHLDDLCSHIVDYEHYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYPTIKCGOVYHLDDLCSHIVDYEHYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSPITRNEAHYPTIKCGOVYHLDDLCSHIVDYKHYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSITGNEAHYCTIKCGOVYHLDDLCSHIVDYKHYAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSITGNEAHYCTIKCGOVYHLDDLCSHIVDYKHYKAEGRYICSSHDATIHEUVKMLREK SMPPSLITADSITGNEAHYCTIKCGOVYHLDDLCSHIVDYKHYKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIVDYEHYKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIVDYEHYKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIVDYEHYKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIVDYEHYKAEGRYICSSHDATIHOTAKLINEK SMPPSLISGDSPLTGNEAHYCTIKCGOVYHLDDLCSHIVDYEHYKAEGRYICSNDOVNIFELANMLNKK SMPPSLISGDSUSSEN SMPSLISGDSVETGENYTTEKCGHYVHLDDLVESHIVDYEN KAEGRYICSNDOVNIFELANMLNKK SMPPSLISGDATIFSSKKLTENGENSKLEDIGTEKYSLEDMFYGAVDACRAKGLIPIPIPAEKTEAAEES YPENVPTEREDVDENMKNMLFSSKKLTDLGFERKYSLEDMFYGAVDACRAKGLIPIPIPAEKTEAAEES YPENVPTEREDVDENMKNMLFSSKKLTDLGFERKYSLEDMFYGAVDTCRAKGLIPESHEKPODGKT YPEYNIPTERKGVDENKSVCFSSKKLTDLGFERKYSLEDMFTGAVDTCRAKGLIPESHEKPODGKT YPEYNIPTERKGVDENKSVCFSSKKLTDMGFERKYSLEDMFTGAVDTCRAKGLIPESHEKPODGKT YPEYNIPTERKGVDENTSSKKLTDMGFERKYSLEDMFTGAVDTCRAKGLIPESHEKPODGKT YPEYNIPTERKGVDENTSSKKLTDMGFERKYSLEDMFTGAVDACH YPEYNVPKKREGIENTNIHFSSKKLKMGFERKHSLEDMFTGAVDACHKGLIPESHEKRAG- YPEYNIPTERKGIENTNIHFSSKKLKLDHGFERKHSLEDMFTGAVDACHKGLIPESHFNNDAK TKKEIIEVKTGDGLTDGMKPCNKTETGVTGERTDAPMLAQQMCA NLVDVKVG
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape	(201) (201) (201) (201) (201) (211) (201) (201) (201) (201) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (271) (201)	SMPPSLITALSPITRNEAHYSTIRCGOVYHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISFELRPK SMPPSLITGDSPILRNESHYGTIKCGOVYHLDDLCSAHIYDYEH PKACGRYICSSHDATIHETWKMLREK SMPPSLITALSPITRNEAHYPTIKCGOVYHLDDLCSAHIFDYEH PKACGRYICSSHDATIHETWKMLREK SMPPSLITALSPITGNEAHYPTIKCGOVYHLDDLCSAHIFDYEH PKACGRYICSSHDATIHETWKMLREK SMPPSLITALSPITGNEAHYGTIKCGOVYHLDDLCSAHIFDYEH PKACGRYICSSHDATIHETWKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCSAHIFDYEH PKACGRYICSSHDATIHETWKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCSHIFTYKH KACGRYICSSHDATIHETWKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCSHIFTYKH KACGRYICSSHDATIHETWKMLREK SMPPSLISCDSPLTGNEAHYGTIKCGOVYHLDDLCSHIFTYKH KACGRYICSSHDATIHDTAKTLNKK SMPPSLISCDSPLTGNEAHYGTIKCGOVYHLDDLCSHIFTYHAKARGRYICSSHDATIHDTAKTLNKK SMPPSLISCDSPLTGNEAHYGTIKCGOVYHLDDLCSHIFTYHAKARGRYICSHDATIHDTAKTLNKK SMPPSLISCDSPLTGNEAHYGTIKCGOVYHLDDLCSHIFTYHAKARGRYICSHDATIHDTAKTLNKK SMPPSLISCDSPLTGNEAHYGTIKCGOVYHLDDLCSHIFTYHAKARGRYICSHDATIHDTAKTLNKK SMPPSLISCDSPLTGNECHYTIKCGOVYHLDDLCSHIFTYHENKARGRYICSHDATIHDTAKT SMPPSLISCDSPLTGNECHYTIKCGOVYHLDDLCSHIFTYHENKARGRYICSHDATIHDTAKT SMPPSLISCDSPLTGNECHYTIKCGOVYHLDDLCSHIFTYHENKARGRYICSHDATIHDTAKT SMPPSLISCDSPLTGNECHYTIKCGOVYHLDDLCSHIFTYHENKARGRYICSHDATIHDTAKT SMPPSLISCDSPLTGNECHYTIKCGOVYHLDDLCSHIFTYHTYK SMPPSLISCDSFTGNECHYTIKCGOVYHLDDLCSHIFTYHTYK SMPPSLISCDSFTGNECHYTIK SMPPSLISCDSFTGNECHYTIKSTEFSKKL SMPPSLISCDSFTGNECHYTER SMPPSLISCDSFTGNECHYTERSTIC SMPPSLISCDSFTGNECHYTERST SMPPSLISCDSFTGNECHTERSHTGNECHT SMPSLISCDSFTGNECHTERSHTGNECHTERST SMPPSLISCDSFTGNECHTERST SMPPSLISCDSFTGNECHTERST SMPSLISCDSFTGNECHTERST SMPPSLISCDSFTGNECHTERST SMPSLISCDSFTGNE
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear Petunia	(201) (201) (201) (201) (201) (211) (203) (200) (271) (201)	SMPPSLITALSPITRNEAHYSTIRCGOVYHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISFELRPK SMPPSLITGDSFILRNESHYGTIKCGOVYHLDDLCSAHITUYEH KAGGYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPTIKCGOVYHLDDLCSAHIFUFEH KAGGYICSSHDATIHEUVKMLREK SMPPSLITALSPITGNEAHYPTIKCGOVYHLDDLCNAHIVHFENKAKGRYICSSHDATIHEUVKMLREK SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCNAHIVHFENKAKGRYICSSHDATIHEUV SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCSHIVUKHPKAFGRYICSSHDATIHEUV SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCSHIVUKHPKAFGRYICSSHDATIHEUV SMPPSLITGDSPITGNEAHYGTIKCGOVYHLDDLCSHIVUYKHPKAFGRYICSSHDATIHEUV SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVUYEHAKAFGRYICSSHDATIHEUV SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVUYENKAFGRYICSSHDATIHEUV SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVUYENKAFGRYICSSHDATIHEUV SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVUYENKAFGRYICSSHDATIHEUV SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVUYENKAFGRYICSSHDATIHEUV SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVUYENKAFGRYICSSHDATIHEUV SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVUYENKAFGRYICSSHDATIHEUV SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCSHIVUYENKAFGRYICSSHDATIHEUV SMPPSLISGDSFLGENTIGKSKLTGGGYFKYSLEEMFYSLEDMFYGAVDACHAKGLIP SMPPSLISGDSFLGENTIGKSKLTDLGFFKYSLEDMFYGAVDACHAKGLIP THENKOVENNEFSKKLTDLGFFKYSLEDMFYGAVDTCRAKGLIP SMPPSLOVENIKSSCFSKKLTDLGFFFKYSLEDMFTGAVDTCRAKGLIP SMPPSLOVENIKSSCFSKKLTDLGFFFKYSLEDMFTGAVDTCRAKGLIP SMPPSLOVENIKSSCFSKKLTDLGFFFKYSLEDMFTGAVDTCRAKGLIP SMPPSLOVENIKSSCFSKKLTDLGFFFKYSLEDMFTGAVDTCRAKGLIP SMPPSLOVENIKSSCFSKKLTDLGFFFKYSLEDMFTGAVDTCRAKGLIP SMPNTFFFKGIDDNIEFVHFSSKKLREIGFFFKSLEDMFTGAVDTCRAKGLIP SMPNDAK
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Pear Petunia	(201) (201) (201) (201) (201) (211) (203) (200) (271) (201)	SMPPSLITALSPITRNEAHYSTIRCGOVYHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISFELRPK SMPPSLITGDSPILRNESHYGTIKCGOVYHLDDLCSHITUDYEHYAAGGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITRNEAHYPTIKCGOVYHLDDLCSHITUDYEHPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITGNEAHYPTIKCGOVYHLDDLCNAHIVDFENPKAEGRYICSSHDATIHEUVKMLREK SMPPSLITALSPITGNEAHYGTIKCGOVYHLDDLCNAHIVDFENPKAEGRYICSSHDATIHEUV SMPPSLITGDSPILRNESHYGTIKCGOVYHLDDLCSHIVDYKHPKAEGRYICSSHDATIHEUV SMPPSLITGDSPILRNESHYGTIKCGOVYHLDDLCSHIVDYKHPKAEGRYICSSHDATIHEUV SMPPSLITGDSPILRNESHYGTIKCGOVYHLDDLCSHIVDYKAEGRYICSSHDATIHEUVKMLREK SMPPSLISGDSPLTGNEAHYGTIKCGOVYHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKLINKK SMPPSLISGDSPLTGNEAHYGTIKCGOVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKLINKK SMPPSLISGDSPLTGNEAHYGTIKCGOVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKLINKK SMPPSLISGDSPLTGNEAHYGTIKCGOVHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKLINKK SMPPSLISALALITGNEGHYTIKCGIYHLDDLCOSHTELYEHAKAEGRYICSSHDATIHDTAKLINKK SMPPSLISALALITGNEGHYTIKKOCHYHLDDLOSHTEVEHAKAEGRYICSSHDATIHDTAKUNKK SMPPSLISALALITGNEGHYTIKKOCHYHLDDLOSHTEVEHAKAEGRYICSSHDATGRAKGLIPTELCENKVSEVSI SMPPSLISALALITGNEGHYTIKKSKETTIGGFFYKISLEEDFYGAVDAGRAKGLIPTIFAEKGELENKI SMPPSLISALALITGNEGHYTIKKSKET SMPPSLISALALITGNEGHYTIKKSKET SMPPSLISALSALATIGNEGHYTIKKSKET SMPPSLISALSALATIGNEGHYTIKKSKET SMPPSLISALSALATIGNEGHYTIKKSKET SMPPSLISALSALATIGNEGHYTIKKSKET SMPPSLISALSALATIGNEGHYTIKKSKET SMPPSLISALSALATIGNEGHYTIKKSKET SMPPSLISALSALATIGNEGHYTIKKSKET SMPPSLISALSALATIGNEGHYTIKSKENGEFFX SMPPSLISALSALATIGNEGHYTESKKLREGFFX SMPPSLISALSALATIGNEGHYTESKKLREGFFX SMPPSLISALSALATIGNEGHYTESKKLREGFFX SMPPSLISALSALATIGNEGHYTESKKLREGFFX SMPPSLISALSALSALATIGNEGHYTESKKLREGFFX SMPPSLISALSALSALSALSALSALSALSALSALSALSALSALSALS
Arabidopsis Apple Citrus Grape Pear Petunia Strawberry Mangosteen Arabidopsis Grape Petunia Strawberry Mangosteen Arabidopsis Apple Citrus Grape Petunia Strawberry Petunia Strawberry Petunia Strawberry Petunia	(201) (201) (201) (201) (201) (211) (203) (200) (271)	SM PPSLITALSPITRNEAHYSTIRCGOVYHLDDLCNAHIFLYEQAAAKGRYICSSHDATILTISFELRPK SM PPSLITGDSPILRNESHYGTIKCGOVYHLDDLCLSHIVDYEH KA GGYICSSHDATIHEUVKMLREK SM PPSLITALSPITRNEAHYPTIKCGOVYHLDDLCLSHIVDYEH KA GGYICSSHDATIHEUVKMLREK SM PPSLITALSPITGNEAHYSTIRCGOVYHLDDLCLSHIVDYKH KA GGYICSSHDATIHEUVKMLREK SM PPSLITALSPITGNEAHYSTIRCGOVYHLDDLCLSHIVDYKH KA GGYICSSHDATIHEUVKMLREK TF PPSLITALSTIGNEAHYGTIKCGOVYHLDDLCLSHIVDYKH KA GGYICSSHDATIHEUV SM PPSLITALSTIGNEAHYGTIKCGOVYHLDDLCLSHIVDYKH KA GGYICSSHDATIHEUVKMLREK SM PPSLITALSTIGNEAHYGTIKCGOVYHLDDLCOSHTFLYEH KA GGYICSSHDATIHEUVKMLREK SM PPSLITALSTIGNEAHYGTIKCGOVYHLDDLCOSHTFLYEH KA GGYICSSHDATIHEUVKMLREK SM PPSLISALALIGNEGHYTTLKCGOVHLDDLCOSHTFLYEH KA GGYICSSHDATIHDIAKUNKK SM PPSLISALALIGNEGHYTTLKCGHYNLDDLCOSHTFLYEH KA GGYICSSHDATIHDIAKUNKK SM PPSLISALALIGNEGHYTTLKCGHYNLDDLCOSHTFLYEH KA GGYICSSHDATIHDIKK SM PPSLISALALIGNEGHYTTLKCGHYNLSGHYNLYDDLCOSHTFLYEH KA GGYICSSHDATIHDIKK SM PPSLISALALIGNEGHYTTLKCGHYNLSGHYNLYDDLCOSHTFLYEH KA GGYICSSHDATIHDIKK SM PPSLISALALIGNEGHYTTLKCGHYNLFSKKLTENGFNEKYSLEDMFYGANDAGGAKGLIFTPIAEKTEAAEES YN EFNVFSTEEGVDENTKSICFSSKKLTDLGFERKYSLEDMFYGANDAGGAKGLIFTPIAEKTEAAEES YN EFNVFTEBEDVDENKNMLFSSKKLTDLGFERKYSLEDMFYGANDAGGAKGLIFTPIAEKTEAAEESNL YN EYN YN TERKGIDDNE FYHFSSKKLTDLGFERKYSLEDMFYGANDAGGAKGLIFTPAEKTEAAEESNL WPEYN YN TERKGIDDNE FYHFSSKKLTDLGFERKYSLEDMFYGANDAGGANGLIPSTRSAEDNGHNNE YN YN TERKGIDDNE FYHFSSKKLTDLGFERKYSLEDMFYGANDAGGANGLIPSTRSAEDNGHNNE YN NYFKKFGIEENLTNIHFSSKKLKEMGFERKYSLEDMFYGANDAGGANETCRKKGLIPLSHFNNDAK YN YN NFTGKGIEHNLPSVIFSSKKLLDHGFERKYTLDDMFGANETCRKKGLIPLSHFNNDAK YN YN NFTGKGIEHNLPSVIFSSKKLLDHGFERKYTLDDMFGANETCRKKGLIPLSHFNNDAK YN YN NFTGKGIEHNLPSVIFSSKKLLDHGFERKYTLDDMFGANETCRKKGLIPLSHFNNDAK YN YN YN FKYGHANNTHEMLSNVEV

Figure 38 Protein sequence alignment of mangosteen DFR with other DFR proteins. The putative NADP-binding domain and substrate specificity domain are underlined. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; *Arabidopsis*, AAA32783; apple, AAD26204; citrus, AAS00611; grape, CAA53578; pear, AAO39819; petunia, CAA56160; strawberry, AAC25960; mangosteen, ACM62744.

1	AAAAGAAGGCCAAG <u>ATG</u> GTGACCTCAGTGGCTCCAAGAGTAGAGACATTAGCAAGCA	60
	M V T S V A P R V E T L A S S	
61	GGATCCAATGCATCCCAAAAGAGTACATCCGCCCACAAGAGGAGCTAACCAACTTAGGAA G I Q C I P K E Y I R P Q E E L T N L G	120
121	ACATCTTTGAGCAAGAAGAAGAAGGAAGGCCCCCAGGTGCCAACCATTGATTTAGAAGGCA N I F E Q E K K E G P Q V P T I D L E G	180
181	TAGTTTCTGAAGACAAGGAAGTGAGGGACAAATGTTGGGATGAACTAATGAAGGCTGCCA I V S E D K E V R D K C W D E L M K A A	240
241	AGGAATGGGGGGTAATGCACTTGGTTAACCATGGAATTTCCAATGAACTCACTGAGAAGG K E W G V M H L V N H G I S N E L T E K	300
301	TGAAGATTGCTGGAGAGGCTTTCTTTCAACTTCCCATAGAGGAGAAGGAGAAGTATGCTA V K I A G E A F F Q L P I E E K E K Y A	360
361	ATGATCAAGGGTCTGGGATGATCCAAGGGTATGGAAGCAAGTTGGCTAATAATGCTAGTG N D Q G S G M I Q G Y G S K L A N N A S	420
421	GGCGGCTTGAGTGGGAGGAGTACTTCTTTCACTTGGTGTTCCCTGAGGAGAAGAGGGACT G R L E W E D Y F F H L V F P E E K R D	480
481	TGTCCATTTGGCCTAAGACACCTAGTGACTATATTGAGGTAACCAGCGAGTACGCAAGGC L S I W P K T P S D Y I E V T S E Y A R	540
541	AACTGAGAGCTCTTGCAACAAAGGTCCTATCAGCACTATCACTGTGCTTGGGATTAGAAG Q L R A L A T K V L S A L S L C L G L E	600
601	AAGGAAGACTAGAGAAAGAAGTTGGAGGCATTGAAGAACTGGCCCTCCAAATGAAGATCA E G R L E K E V G G I E E L A L Q M K I	660
661	ACTACTACCCCAAGTGTCCTCAACCCGAGCTAGCCCTTGGTGTGGAGGCTCACACCGACG N Y Y P K C P Q P E L A L G V E A H T D	720
721	TGAGTGCACTAACCTTCATCCTCCACAACATGGTCCCTGGCCTCCAACTCTTCTACGAGG V S A L T F I L H N M V P G L Q L F Y E	780
781	GCGAATGGGTCACAGCCAAATGTGTCCCTAACTCAATTATCATGCACATTGGTGACACAT G E W V T A K C V P N S I I M H I G D T	840
841	TGGAGATTTTGAGCAATGGGAAGCTTAAGAGTATTCTTCATAGGGGAGTTGTTAATAAGG L E I L S N G K L K S I L H R G V V N K	900
901	AGAAAGTGAGGATTTCTTGGGCTGTTTTTTGTGAGCCTCCTAAAGATAAGATCATTCTTA E K V R I S W A V F C E P P K D K I I L	960
961	AGCCTTTGCCTGAGCTGTGAGTGAGACTGAGCCACCTATGTTTCCGCCTCGCACGTTTT K P L P E L V S E T E P P M F P P R T F	1020
1021	CACAGCATATTCAGCACAAGCTCTTCAGGAAGAACCAAGATGATGTTGGTCCCAACTGAT S Q H I Q H K L F R K N Q D D V G P N	1080
1081	TACTTGATGTTATTGTGTTTAAATAAAATGTGTGGTCTTATTATTGTTAACTGCATTTAA	1140
1141	TAAGTTCGTGACGTTCAACGTACTTTTATTAGTTAAGTAGTTTTATATTCATGTGTGACA	1200
1201	TTAATGGGTTCATTAAAAGAATATATCCAAAACTACTATGTAAGATGTAATGAAATGAGT	1260
1261	тттасатдстттссттсаааааааа 1285	

Figure 39 Nucleotide sequence of the gene encoding LDOX from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG).

Figure 40 Protein sequence alignment of mangosteen LDOX with other LDOX proteins. Arrows indicate conserved His and Asp residues as required for ferrous-iron coordination, and Arg residue of putative binding site of 2-oxoglutarate. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; *Arabidopsis*, CAD91994; apple, BAB92998; citrus, AAT02642; grape, BAC07545; peach, ABX89943; strawberry, AAU12368 ; mangosteen, ACM62747.

1	ACTCTAATCACACACTCACTTCCAAGCTTCTGCTCTTTTCACAAAGCCAAAGCCAAACC $$M$$ T K P	60
61	CACCACCGATGATCATCCCCACGTGGCAGTGCTAGCCTTCCCATTTGGAACACATGCAGC T T D D H P H V A V L A F P F G T H A A	120
121	CCCACTCCTCCATAACACACCACTTAGCCGCACTTTCCCCCTCCACTCACT	180
181	CTTTGGCACCCCATCTTCCAACTCCTTCATCCTCTCGTCCAACACCAACTTGCCACCCAA F G T P S S N S F I L S S N T N L P P N	240
241	CGTCAAGCCCTACGACGTCTGGGATGGCACCCCTGATGGTTATGCCTATACAGGTGACGT V K P Y D V W D G T P D G Y A Y T G D V	300
301	ACAAGAGGAAATGGGGTTGTTTATAAGTGCGGCTCATGAAAGCTTTAGGAAGGGGGGTGGA Q E E M G L F I S A A H E S F R K G V D	360
361	TAGGGCTGTGGAGGAGAGGGTGAGGGGTAGTTGTTGATGAGTGATGCGTTTTTTTG R A V E E S G R R V S C L M S D A F F W	420
421	GTTTGGGAAGGAGATGGCTGAGGAGATTGGTGGTGGTGGTGGTGGGTACCCTTTTGGAC F G K E M A E E I G G G V M W V P F W T	480
481	TGCTGGCCCTCATGCGCTTTCTAGTCATCTTTATACTGATTTTATCAGGGAGAGTTTTGC A G P H A L S S H L Y T D F I R E S F A	540
541	TGGAGATGTGACGCAGCGTGAAGATGAGCTACTAAGCTCAATCCCAGGAATGTCTAGAGT G D V T Q R E D E L L S S I P G M S R V	600
601	GCGAGTTTGTGATTGCCTGAAGGAGTGGTCTTTGGAAGATTGGATTCACTCTTCTCA R V C D L P E G V V F G R L D S L F S Q	660
661	AATGCTACACAAAATGGGACAAGCGTTACCTAAAGCGGATGCGGTCTTCATAAACTCATT M L H K M G Q A L P K A D A V F I N S F	720
721	TGAAGAACTGGACCCGACGTTTACAAACGACCTCAAGTCCAAGCTCAAATGCTGTCTCAA E E L D P T F T N D L K S K L K C C L N	780
781	CATTGGACCATTCAACTTGATCTCGCCACCGGCACAAGTACCAGATACATATGGCTGCAT I G P F N L I S P P A Q V P D T Y G C I	840
841	ACCCTGGCTTGACAAGCAACAATTAGCCTCCGTGGCTTATGTAAGTTTTGGATCGGCAAC PWLDKQQLASVAYVSFGSAT	900
901	GATACCACTGCCTCATGAGCTCGTGGCACTGGCCGAGGCCTTGGAGGATAGGAAGGTTCC I P L P H E L V A L A E A L E D R K V P	960
961	TTTCATATGGTCACTAAAGGACAACGCAAAAGTACATTTGCCAGATGGGTTCTTGGAGAC F I W S L K D N A K V H L P D G F L E T	1020
1021	GACAAAGTTTCAAGGGATTGTGATACCTTGGGCTCCCCAAGCAAAGGTTCTAGGACATAA T K F Q G I V I P W A P Q A K V L G H K	1080
1081	AGCAGTTGGGGTGTTTATTACCCACTGTGGGTGGAACTCACTTTTAGAAACTATAGTTGG A V G V F I T H C G W N S L L E T I V G	1140
1141	AGGGGTGCCCGTGATCTGTAGGCCTTTTTATGGTGATCAAAGACTTAATGCGAGAATGAT G V P V I C R P F Y G D Q R L N A R M I	1200

Figure 41 Nucleotide sequence of the gene encoding UFGT from mangosteen with its deduced amino acid sequence. The underlined letters indicate the translation start site (ATG).

1201	AGGGGACGTTTGGAAAATTGGTGTTATTGTTAACGGTGGAGTTCTTGCAAAGGAGGCAAT	1260
	G D V W K I G V I V N G G V L A K E A M	
1261	GATTGATTGCTTTGATAAGATACTGTTGCAAGAGGATGGGAAACAGATGAGGGGAAGAAT I D C F D K I L L Q E D G K Q M R G R I	1320
1321	AAAATCCCTAAAAGATCTTGCACTTGCGGCTACTGCTTACAAAGGAAGCTCTAGCGACAA K S L K D L A L A A T A Y K G S S S D N	1380
1381	TATGAGAGAATTGTCTCGGCTAGTATCGAGCCCCTGCAAGTAATAACTGCTGAGAGCCGA M R E L S R L V S S P C K	1440
1441	ATCCTTCGTTTTTCTGTGGTGCATGTAGGTTTATCATGTCAAATGATCAGAACATTTCAC	1500
1501	TTCAAATAACAACAAAGACACGGTGCAAAATAACGTAGGCTTTCCAAAGTAGCACATGAA	1560
1561	CCCAAGCTTGCTCTTTAAAATAATGGCCATTGAGTTTTGAATGAA	1620
1621	ACCTATTTCAACTTCCATCTAATTTAATTATTCAACCGTTTTTTCTTTAGATCAAAAAAA	1680

Figure 41 (Continued).

110

Arabidopsis	(1)	TWTKPSDPTRDSHVAVLAFPFGTHAAPLLTVTRRLASASP-STVFSFFNTAQSNSS
Apple	(1)	MAAPLPIEIEPSSTNGOPHLADAYNRHVAVVAFPFTSHASALLETVRRLATALP-NTLFSFFSTSKSNSS
Citrus	(1)	BAQTQSQPRPHIAVINFFFSTHASSVPSIIKRLAVSSP-TAMFTFFSTPOSNKA
Grape	(1)	AVREAAAAP-HAVFSFFSTHAAPLLAVVRRLAAAAP-HAVFSFFSTSOSNAS
Petunia	(1)	TTSQLHIALLAFFFGSHAAPLLTLVQKLSPFLPSDTIFSFFNTSQSNTS
Strawberry	(1)	RAPVSNQVGGHVAVLAFPFSTHAAPLLNIVCRLAAAAP-STLFSFFNTKQSNSS
Mangosteen	(1)	TKPTTDDHPHVAVLAFFFGTHAAPLLSITHHLAALSP-STHFSFFGTPSSNSF
_		
	/	
Arabidopsis	(33)	IN SADEADKIAN IKY ID IADAYE LATVI SAKEQEAT INDUK IN DE TANAK IN KARA INYATA
Арріе	(70)	
Citrus	(34)	IF STOUCKTLESNYKE ID VSDGYF EGRYF SGKRUEDIELFINNANDANF RKAVERAVAE IGREDICLY IDA
Dotunio	(54)	IF ND AMELT MOON IN SID ISDAY FACTOR ACKOUND ACT DATAFINE ADDRESS FACEWAAA DA AAD IGAFYS CUYADA
Petunia Stresherry	(51)	
Mongostoon	(54)	ILAGNINS LEKISNYS (CEVADGY FOGIY FYGEF (EDIEMMAPDIE RECLEASYAESGEE VSCHYLDA
Mangosceen	(34)	ITP2NINTHIMAVLIDAMOCIEDELKIICDAGNEMGUNISGUESEKKAADKKAEDSKKASCUMSOS
Arabidopsis	(125)	EFMEAADOMTEINASMIAFWTAGANSUSAHIYTDLIRETIGVKEVGERMEETIGVISGDEKIRV
Apple	(140)	ELANGVHLADELGVEAVTPAISELKSISVHVHTDLIRDTIGTQGITGRENDLIVDKNVNIQGLSNVRI
Citrus	(124)	FIGEAREMARDWAN-VEGIPCSPAGPASIALLYTDILEDKIGTQS-QAQDQQLIHFIPGMAKIRV
Grape	(121)	FIMEAADMAABMGVAMLPFWTAGPNSLSTHVYIDEIREKIGVSGIQGREDELLNFIPGMSKVRF
Petunia	(118)	FLOFSYKLAEKINVEØIAFWTAASGSLSVHLYTDFIRSNDETSLNIPGFSSTLKI
Strawberry	(124)	EFMEGVHMADDMEG-VEMVPFWTAGPASISAHVHTDLIESTTSGGCHDEKETITVIAGMSKVRP
Mangosteen	(122)	BFWEGKENAEEIGGGVMWVPFWTAGPHALSSHLYTDFIRES-FAGDVTQREDEULSSHPGMSRVRV
Arabidopsis	(189)	KDTPEGVVFGNLDSVFSKMLHOMGLALPRATAVFINSPEDLDPTLTNNLRSRF-KRVLNIGPLGLLSSTL
Apple	(208)	KDLAEGVIFGNLDSVISGMLLOMGRLLPRATAVFMNGFEEDELPIPNDLKSKV-NKLDNVGPSNVASELP
Citrus	(188)	ADLPEGVVSGDLDSVFSVMVHOMGROLPKAAAVFINSFEEDDEELTNHLKTKFNKKFDSVGEFKULLASD
Grape	(185)	RDLQEGIVFGNLNSLFSRMLHRMGQVLPKATAVFINSPEEDDDSLTNDLKSKL-KTYLNIGPFNLITEP-
Petunia	(173)	SDMPPEVMAENLDLPMPSMLYNMALNLHKAAAVVLNSPEELDPTINKDLKVKL-QKVLNIGPLVDQPTSP
Strawberry	(187)	ODLPEGIIFGNLESLFSRMLHOMGOMPPLATAVFINSFEELDPVITNDLKSKF-KRFLNVGPLDLEPPA
Mangosteen	(187)	CDLPEGVVFGRUDSLFSQMLHKMGQALPKADAVFINSFBEDDPTFINDLKSKL-KCCUNIGPFNUISPP-
Arabidopsis	(258)	QQLVQDPHGCLAMMEKRSSG <mark>SVAV</mark> ISFGTVMTPPPGELAAIAEGHESSKVPPVM
Apple	(277)	PLPPSDACLSMLDKQQAP-SSVYYISFGTVASPAEKEQMAIAEALEATGAPPLM
Citrus	(258)	QQPSSATDLDDKYGCLAMLDKQKKKPASVAYVGFGTVATPSPNEIAAIAEDQPGPSLEASKVPFIM
Grape	(253)	PVVPNTTGCLQMLKERKPTSVVYISFGTVTTPPPAELVALAEALEASRVPFIM
Petunia	(242)	KKVLDACDERGCIIMLEKQKEESVVYLSFGTVTTLPPNEIVAVAEALEAKKPPFIM
Strawberry	(256)	SAATTTPQTAAEAVAGDGCLSMLDEQKVASVVYVSFGSVTRESPEEIMALAEALEASRVPFLM
Mangosteen	(255)	AQVPDTYCCIPMLDKQQLASVAYVSFGSATIPLPHELVALAEALEDRKVPFIM
Arabidopsis	(312)	SLKEKSLVQLPKGFLDRTREQGIVVPWAPQVELLKHEATGVFVTHCGMNSVLESVSGGVPMICRPFFG
Apple	(330)	SIKDSCKTPLLNEFLTKTLSKLNGMVVPWAP OPHVLAHDSVGAFVSHCGWNSIMETIAGRVPMICRPYFA
Citrus	(324)	SLRHRSQANLPNGFLERTRSDGIVVDWATQVNVLAHEAVGVFVTHCGMGSILESIAAGVPMIGRPFFG
Grape	(306)	SLRDKARVHLPEGFLEKTRGYGMVVPWAP OAEVLAHEAVGAFVTHCGWNSLWESVAGGVPLICRPFFG
Petunia	(298)	SLKDNGIKNLFTGFLERTGOFGKIVSMAPOLEILNHSAVGVFVTHCGMNSILEGISCGVPMICRPFFG
Strawberry	(319)	SLRDNLKNRQLDE <mark>FL</mark> SKGKLNGMVVPWAP OPQVLAHGSVGAFVTHCGMNSVLESVAGGVPLICRPFFG
Mangosteen	(308)	SLKDNAKVHLPDGFLETTKFOGIVIPWAPOAKVLGHKAVGVFITHCGWNSLLETIVGGVPVICRPFYG

Figure 42 Protein sequence alignment of mangosteen UFGT with other UFGT proteins. The underline indicates the common motif found in glycosyltransferases. Identical residues are shown in black, conserved residues in dark grey and similar residues in light grey. The accession numbers of these proteins in the GenBank database are as follows; *Arabidopsis*, NP_197207; apple, AAD26203; citrus, AAS00612; grape, BAB41021; petunia BAA89008; strawberry, AAU09442; mangosteen, ACM62748.

Arabidopsis	(380)	DORLINGRAVEVVMEIGMTIING-VFTKDGFEKCLDKVLVODDGKKMKCMAKKLKELAVEAVSSKGRSSEM
Citrus	(400) (392)	DORIMARNYE BYF BIGYIYBDG YFIRBGLYSD BYYD SPESGRAFRDUIRRYNOD Y BBYGPOGS SIRM DORINGRMMEQIMGYGIAYDG GGICTREGLISSLDLILCOEKGIRIREKYTRLKOLONYE BYGPOGS SMON
Grape	(374)	DQRLNGRMVEDALEIGVRIEGG-VFTESGLMSCFDQILSQEKGKKLRENLRALRETADRAVGPKGSSTEN
Petunia	(366)	DQKLNSRMVESVWQIGLQIEGG-SFTKIGTISALDTFFSEEKGKVLRENVKGLKERALEAVKPDGSSSKN
Strawberry	(387)	DQKLNARMVEDVWKIGLRLEGG-VFTKNGMLKSLDMLLSQDKGTKMKNKINTLKQFAKQAVEPKGSSARN
Mangosteen	(376)	DORLNARMIGDVWKIGVIVNGG-VLAKEAMIDCFDKIILQEDGKOMRGRIKSLKDLALANTAYKGSSSDN
•		-
	- 74 4 0 1	
Arabidopsis	(449)	FRGILDAWVNII
Arabidopsis Apple	(449) (469)	FRONLDAVVNII FKSNLDIVSCSNYQV
Arabidopsis Apple Citrus	(449) (469) (462)	FRGULDAVVNII FKSULDIVSGSNYQV LDAUVDMISRSY
Arabidopsis Apple Citrus Grape	(449) (469) (462) (443)	FRGULDAVVNII FKSULDIVSGSNYQV LDAUVDMISRSY FKTUVDLVSKPKDV-
Arabidopsis Apple Citrus Grape Petunia	(449) (469) (462) (443) (435)	FRGHLDAVWHII FRSHLDIVSGSNYQV LDADVDMISRSY FRHVDLVSKFRDV- FRHVELVKCHKLT-
Arabidopsis Apple Citrus Grape Petunia Strawberry	(449) (469) (462) (443) (435) (436)	FRGHLDAVWNII FRSHLDIVSGSNYQV LDADVDMISRSY FRHVDLVSRPKDV- FRHVELVKCHKLT- FESHLEMTTN

Figure 42 (Continued).

4.2 Promoter isolation and analysis of *GmDFR*, *GmLDOX* and *GmUFGT* genes

PCR-based DNA walking of seven libaries (*Dra*I, *Eco*RV, *Hpa*I, *Msc*I, *Sca*I, *Ssp*I and *Stu*I) was used to isolate 5'-flanking regions of *GmDFR* (FJ197138), *GmLDOX* (FJ197139) and *GmUFGT* (FJ197140) of sizes 1,973, 513 and 1,507 bp, respectively (Figure 43-45). The regulatory regions of all sequences were analyzed by PLACE (http://www.dna.affrc.go.jp/PLACE/signalscan.html) (Appendix Table 13-15) and confirmed the result using PlantCARE database (Appendix Table 16-18) (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). These showed several putative *cis*-elements for regulatory motifs involved in plant development. The ethylene responsive element (E4, AWTTCAAA) was found in the *GmDFR* promoter (+430 and -1311) (Figure 43). A motif similar to an ethylene response element (ATTTNAAA) was also found in the *GmDFR* (-728 and -399), *GmLDOX* (-346) and *GmUFGT* promoter (-829) (Figure 43-45) that is similar to the UFGT promoter of grape (El-Kereamy *et al.*, 2003; Tira-Umphon *et al.*, 2007). Several MYB binding sites, such as MYBPLANT (MACCWAMC) and MYBCORE (CNGTTR), were presented in all promoters (Appendix Table 13-18).

1	ATCCACATGGTCATTCCTTTCTAGCTCAAACAGTTCACGTGTTAGTTCGATTGAGGATGC	60
61	CCAGTTAGTTTGTATGGCCTATGTGGCATGTTTTATTTCAGATACTTAGTTGCAAAGTGA	120
121	${\tt CTATAAGGCTCGTATTGACCAACTAGATCACTTTGCTTCATAAACAATTCATAACTGAGG}$	180
181	TAAATGAATTTGGTCTAGGGCATTCACCTCAGTAAGGCCCATTTCCTTGTTATCCAAGTC	240
241	AAAATAAACCCTTTCGCATCTCTGAATCGAGATGAAACACTCTTATCAAGTTGTGTATGG	300
301	TACTAAACTGCACGAGCTCACCTCGTTCAGTTTCACCTACCATTCATAATTCTTCGGATG	360
361	TTAAACACAAAATTCCAAGACCTTGTAATCATAAGCATAATTTGTACTAGCATATATTACC	420
421	TCATTTCAAGAACATAAAGGCTAGACAGGTTAAAGTAAACAGTTAATAGTCTCCAAGCAA	480
481	GCCAATCAGATGACTCCAATTGGCCACCATCATCAGCTCGGTAGAATTCTCAAGGACTCT	540
541	TAACATGAAAAATTTGTCACATCAATCAATTTTCAACAACCACCATCAATTCTTGTTCACT	600
601	${\tt ATAAATAGCAAGGAATCTTCTTCAATAATTCATTCATGCAAGTCCATAAGCTCAAATTCA}$	660
661	$\underline{AA} \texttt{ACTTAATGAAGGCAAACTCTTTGACCCTTATTCCTCTTTCATTTACCACTTTGGTAAT}$	720
721	TACTAAAAGCTAAGCTCTGAGCTCGCACTTCTTTCAAAAACAGAAAACTAATTTGACTTT	780
781	CAGAGAGTTTCTAAAGACAAATCTTTTGAAACCTTTTAGTAACGTATGCTCATCTATTTG	840
841	AAGTGTCCAAACAGACTTGGCAGGGACTCTTTTGCCTCTCTTTTTTTT	900
901	ATTTCGTGTACAATTGTAACTCTACAAAATCTTATAACATCAAATATCAATACAAACATA	960
961	AATTAATTAAATGTTAACACCACCCAAATTTAAACCTTTTTTTATTATAGTATAGATACG	1020
1021	TATGTTACTATGATGAAGTTATTTGTATCGTTTTTGTCATTATTAATTTGCCTATGTTTT	1080
1081	ATCATGTAGAATTAGCGAAATAAAAGGATTCATAAATGAATTATTTGTCATGAAAAAGTC	1140
1141	GATTAAAAAAAAATCTATTTAATCTTTTTTTTTTCCAAATATAATTATATACATAATA	1200
1201	ACATGTCATTATTAAATCAATGTGGAAACAATAGGAG <u>ATTTGAAA</u> ATGGGTCATAGTCTT	1260
1261	TCGTATATTAGAAAAAATCTCTTAGATATATGGGTAATTTAGAGAGAATTTTCGTTTAAT	1320
1321	GTATTTGATCATCACCATAGTAAATCTTCTGGAAAATTTATATATA	1380
1381	TCATGTATAAGTTTAAATTTAAGCAAGATAATAAATATTACACATTGACCACCCCTAACT	1440
1441	GAAAAATATCGCCACTAACGACCCCTAACTAACAAGTATCGCTATTGCTTTGAGGCTTGT	1500
1501	TCATTTCTAATGTTGTTTATAAACACAAATTATTG <u>TTTGAAAT</u> TGAGTAGTGGTTAATGA	1560
1561	CTATAA <u>ATTTAAAAA</u> CATTGTCTATATTTGGCCATGTATTTTATAAAAATTTTAAGAAAAT	1620
1621	ATTTGTGTTTACAATCAAAGTCAAAAGGAACAATGCCATAGTATGATTTAAATTCTCTCT	1680

Figure 43 Nucleotide sequence of *GmDFR* 5' flanking region. The basal promoter elements (TATA and CAAT boxes) are highlighted in gray. The underline letters indicate ethylene responsive element (E4, AWTTCAAA and ATTTNAAA) and bold letters indicate the translation start site (ATG).

1681	AAATTATAATGAACAGTAGTAATGTAGAAGCAGCCCATTGGCGGTTGCTGTAACTGAAAA	1740
1741	${\tt TTTGGAAGCTCCATCTACTTTCCACGAGTCGTCTGTTAAGTAAACACGTGATGGGCCATA$	1800
1801	ACGTCAAAGCCCAAGATAGACTGAACGCTGTAACATACTTCTTGCGCCACTCATATAATA	1860
1861	TATAAAATGGTCAAGTTGCAGACGTTATTAGTCTCAAGTTCATTTGGCTCTCTGCCTAGC	1920
1921	TGTGTTGTGGCCCATTTTCACCCTTTTAAAAATTCATCTCTTCTTCTTCTTCTTCTTCTTCTTCTTTCTTTCTTTCTTTTTTTTTT	76

Figure 43 (Continued).

1	ATTCCTCTCAAATGTGCACTTTCATATGACAGGCGTCTTGGCTATATTTTTTCTTATAACG	60
61	AAAAAGATATTAGTAAAATACCGAAATTATCTCTAAAAAATCAAAAAAATTATGAAATTAG	120
121	${\tt TATTTTTGTCTTTTAGTGGGTACTATAGCACTTTAAA} {\tt ATTTTAAA} {\tt GTTCTTTTTATC}$	180
181	TGAAAACCAAACGGACCCTTAGTAATGGTTAGATGAGATCGAGCCAACGTGCAACTAATT	240
241	GTCAACGCTTAATTTGATCCTTAACCTTAGAAACAACCAGGCCTACTCGAGTCTGGTGAA	300
301	GTCACCCATCACGTGTAAATCTGACCCCCCAACCTTCCCATCATAAGTAGACCCTCACCT	360
361	TCCTCTAGAAACTCGTTGGAGTTAAACCACTGAGCACTACGCTTATCATCTTCCCTATAA	420
421	AAGCGCGACAGAACATTAACCTTCCAACCATCATCTTCCATTAAATAACCACC	480
481	CCTCCCACCCCCAAAAAAAAAAAAAAAAAAAAAAAAAA	

Figure 44 Nucleotide sequence of *GmLDOX* 5' flanking region. The basal promoter elements (TATA and CAAT boxes) are highlighted in gray. The underline letters indicate ethylene responsive element (ATTTNAAA) and bold letters indicate the translation start site (ATG).

1	CCATCACCATAAACCACAAAAAGCTCGTTTTGCTAAAAAATAGCTCGATTACCGAGCTAA	60
61	ACCAAGAAAACTAAGGCTAAAATCAAGATAAACCGAGTTAAAACTGAGCTAAACCCAACT	120
121	AAAACTGAGCTAAAACTGAGCTAGAAGGCCACCAACCGATCTCTCAATGAAAACTAAGCTA	180
181	AGTTAGCTCAGCTCGTCCAAGCGTGCTGACACTCACAGCTTCTAAAGCCATTAAATGTAG	240
241	CATTAAATGACCTGAACCTTACAAGGTCATAGGTAGTCAACATCAGCATTAAATAGCTAC	300
301	AAGGTCAACAAATGAGAGGCCCCCACTTGGCTCAGCAATTTAGCTCGACACAAGTCCTAA	360
361	GGTTCCTAAATTTGATGCAAGTCACATCAAGTCTCACCAACTTTTACGAACTAGGC	420
421	CTCAAGTATAAATACCCACAAATCCTTCCAATTTGAGGATCCTAATACTCCATAGTACTC	480
481	AAAGCTCTTATTTAGCTTGGTATACACATTCTAACTCATTTGCTCACCTTTAACCTTTCA	540
541	${\tt Cacattgccttattagctcggctaacctaacatttagttcggttggacctcaaaacagct}$	600
601	TAAAACTAGCTTAACACCCTTGATTTAGCTCGGCAACATCCATTTGTTGCCCTCCGAGC	660
661	TCTTTTATAT <u>ATTTTAAA</u> CACCTCAAATACTCTATTAACTTGATCGTCGGAAGATCTTCA	720
721	AAGACCAAAAACCTTTGAAGGCTTCTTAGTGATGTTTGCTCATTGTTGCAAGCTTAGAGCA	780
781	GCTTCTAGCCAGTTTCTTTACTCGACTTCCATCTTGGAGAACGTGCCCAGAACATAGTTG	840
841	TCACCCTGTGCAATTTGGTAGCATCATAACTATTATTATAAGGTAAGTTCTAGGTTCTT	900
901	GAGTAAAAACTCTCCCACCCTGAAATTGTTCACTCCTATTTCATATGTAGACTTTACCAA	960
961	TAAAATAGATAAGGTGTGAATCACGTTAAGAAACAACGTGGCTAGTCAAATTGTGGTACA	1020
1021	${\tt CAATCTTATTATGTGGTTTTTTTTTTTTTTTTTTTTTTT$	1080
1081	ATGACTTTACAGATCAAACAGATGCATTTCCTCCTCCTCATTGTAATGTATTAGCGGATT	1140
1141	GATATCAACCATAATCAGAATGCAAGAGCCCACAATACTTCACAAGCGGGGGTTGCCACA	1200
1201	TGCTTCCTACTCCAATTTGGACTTTTCATCAACCAAAATCCAGCTTCACGACTTTTGACT	1260
1261	GGTAAAATGAGTGGCTCCAACCCCCGACTTTTTATTTTA	1320
1321	TATAACAGGT <mark>CAAT</mark> AAAAATTTATGACTTACGAGTCCTCCGTAATCTTTTATTTGTCAGA	1380
1381	ATTTGACAAATTTTTATTACCACTCAACTCCTAAGCATACAA <mark>TATA</mark> TATTCCTCACACTT	1440
1441	GGCACTCAACTCACCACCACTCTAATCACACACTCACTTCCAAGCTTCTGCTCTTTTCAC	1500
1501	AAAGCCA ATG 1510	

Figure 45 Nucleotide sequence of *GmUFGT* 5' flanking region. The basal promoter elements (TATA and CAAT boxes) are highlighted in gray. The underline letters indicate ethylene responsive element (ATTTNAAA) and bold letters indicate the translation start site (ATG).

4.3 Functional testing of GmMYBs using transient tobacco assays

The function of the three mangosteen MYBs was investigated using the dual luciferase assay in *Nicotiana benthamiana* as previously reported (Hellens *et al.*, 2005; Espley *et al.*, 2007). The *GmDFR* promoter was fused to luciferase as was the previously tested *AtDFR* promoter from *Arabidopsis* (Zimmermann *et al.*, 2004). All the *GmMYBs* and *AtPAP1* were driven by the cauliflower mosaic virus 35S promoter and were co-transformed with and without *AtbHLH2* construct. The LUC activity relative to REN was expressed as a ratio to show activation of DFR promoter by a transcription factor included in another plasmid (Figure 46). The activities showed similar patterns with both *AtDFR* and *GmDFR* promoters. The activities of the two promoter assays increased significantly when *GmMYB10* or *AtPAP1* was co-transformed with *Arabidopsis AtbHLH2* (Figure 46). The activity of GmMYB10 and AtPAP1 was higher than that of *GmMYB1* and *GmMYB7* (Figure 46). The results show that *GmMYB10* can activate the DFR biosynthesis gene promoter to a similar extent as *AtPAP1* which regulates *Arabidopsis* pigmentation (Zimmermann *et al.*, 2004).

Figure 46 Transient activation of the mangosteen and *Arabidopsis* DFR promoter by *GmMYBs*, *AtPAP1*, and *AtbHLH2* transcription factors. All TFs were coinfiltrated with DFR-Luc promoter in transient tobacco transformation assays. The dual luciferase assay shows promoter activity expressed as a ratio of DFR promoter luciferase (LUC) to 35S Renilla (REN), where an increase in activity equates to an increase in LUC relative to REN. Data are mean \pm SE of four replicate reactions. The bars with the same letters are not significantly different (*P* > 0.05) using DMRT. 4.4 Expression analysis of *GmMYB*s and anthocyanin biosynthetic genes during colour development of mangosteen fruit

4.4.1 Rapid colouration of mangosteen fruit correlates with changes in gene expression

The red colouration of mangosteen fruit was measured in 7 stages. The fruit can develop their colour both on tree and after harvest. Transcript levels of the isolated anthocyanin biosynthetic genes and MYB transcription factors were determined by real-time PCR during fruit colouration. Transcript levels of *GmMYB10* were confirmed by semi-quantitative RT-PCR. For most of the genes, transcript levels of the on-tree group were highest in the late colour development at stage 5 (Figure 47a-e, g-h) then declined at the final stage (Figure 47). All these genes showed large fold changes in comparison to the light green stage 0, with at least a 12-fold change for PAL. The transcript abundance of all genes in the postharvest fruit at stages 3-6 was higher than the on-tree fruit of the same colour stage (Figure 47, Appendix Table 19 and 20). The transcript levels of *GmUFGT* increased with the greatest fold-change among all the anthocyanin biosynthetic genes, being 571-fold and 763-fold at stage 5 of the on-tree fruit, respectively (Figure 47).

The expression of GmMYB genes showed that the transcript levels of *GmMYBs* increased during fruit colouration and decreased thereafter (Figure 47i-k). *GmMYB10* showed the highest fold changes of the three MYB transcription factors, with more than a 500-fold change at stage 5 (off-tree) and decreased thereafter. The transcript level of *GmMYB10* was confirmed with RT-PCR result (Figure 48). This correlated with the highest ethylene production during colour development (Figure 9 and 10 in study 1). All genes showed high abundance with onset of fruit colour at stage 1 (Figure 47). *GmUFGT* and *GmMYB10* transcript levels both peaked at stage 5 and showed clear upregulation in highly pigmented stages.

Figure 47 Expression profiling of mangosteen anthocyanin biosynthetic and MYB transcription factor genes during colour development. Real-time PCR was used to analyze GmPAL (a), GmCHS (b), GmCHI (c), GmF3H(d), GmF3'H (e), GmDFR (f), GmLDOX (g), GmUFGT (h), GmMYB1 (i), GmMYB7 (j) and GmMYB10 (k) expression patterns. Each column height indicates relative mRNA abundance of mature green fruit (stage 0) which was set to 1. All real time-PCR reactions were normalized using the Cp value corresponding to a mangosteen ELF gene. Data are mean \pm SE of three replicate reactions.

Figure 48 Semi-quantitative RT-PCR of MYB10 transcription factor genes during colour development.

4.4.2 Ethylene regulates red colouration of mangosteen fruit and correlates with *GmMYB* expression.

To study of the effect of ethylene on anthocyanin biosynthesis in mangosteen fruit, the fruit were treated with ethylene and 1-MCP. In fruit treated with air, ethylene and ethylene + 1-MCP (E+M), transcript levels of all anthocyanin biosynthetic genes and *GmMYBs* were similar, with a relatively high abundance within 1 day, whereas the transcript level of 1-MCP treated fruit was constant until day 3 (Figure 49-51). For most of biosynthetic genes, except *GmDFR*, transcript levels increased until day 7 and decreased thereafter (Figure 49). In contrast, 1-MCP inhibited significantly the increases in all anthocyanin biosynthetic genes and *GmMYB* transcript levels after being treated (day 1-3) (Figure 49-51, Appendix Table 21-31). The transcript levels of all genes were transiently down-regulated by 1-MCP application, especially E+M at day 2 (Figure 49-51).

The transcript abundance of *GmMYB10* showed fold changes and increased more than 10-fold within 7 days (Figure 51c). Gene expression associated with ethylene in the air- and ethylene-treated fruit was confirmed by the 1-MCP treatment, which inhibited the transcript levels of all anthocyanin biosynthetic genes and *GmMYBs* (Figure 49-51, Appendix Table 21-31).

Figure 49 Expression analysis of anthocyanin biosynthetic genes in mangosteen fruit. Fruit were treated with air (control), 200 μ L L⁻¹ ethylene for 24 h (ethylene), 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M). The sample of air (control) at harvest time (day 0) was set at 1. Data are mean ± SE from three replications.

Figure 50 Expression analysis of MYB transcription factor genes in mangosteen fruit. Fruit were treated with air (control), 200 μ L L⁻¹ ethylene for 24 h (ethylene), 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M). The sample of air (control) at harvest time (day 0) was set at 1. Data are mean <u>+</u> SE from three replications.

Figure 51 Semi-quantitative RT-PCR of MYB10 transcription factor genes during colour development. Fruit were treated with air (control), 200 μ L L⁻¹ ethylene for 24 h (ethylene), 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M).

4.4.3 Low temperature regulates red colouration of mangosteen fruit and correlates with *GmMYB* expression.

To study the effect of temperature on anthocyanin biosynthesis in mangosteen fruit, the fruit were stored at 25° C (control) and 15° C for 7 days then the later transferred to 25° C. In fruit stored at 25° C (control), transcript levels of all anthocyanin biosynthetic genes and *GmMYBs* increased greatly within 1 day, whereas the transcript levels in the fruit stored at 15° C were constitutive during storage at 15° C (Figure 52-54). For most of biosynthetic genes, except *GmDFR*, transcript levels increased until day 2 and decreased thereafter (Figure 52). After transfer of the fruit from 15° C to 25° C, the levels of all genes increased sharply (Figure 52-54). Low temperature storage at 15° C inhibited significantly transcript levels of all anthocyanin biosynthetic genes and *GmMYBs* (Appendix Table 32-42).

Of all the genes analyzed, the transcript abundance of *GmMYB10* showed the highest levels and increased continuously during storage (Figure 53c). Low temperature inhibited the transcript levels of all anthocyanin biosynthetic genes and *GmMYBs* (Figure 52-54).

Figure 52 Expression analysis of anthocyanin biosynthetic genes in mangosteen fruit. Fruit were stored at 25° C (control) and 15° C for 7 days then transferred to 25° C (arrows). The sample of 25° C at harvest time (day 0) was set at 1. Data are means \pm SE of three replications.

Figure 53 Expression analysis of MYBs transcription factor genes in mangosteen fruit. Fruit were stored at 25°C (control) and 15°C for 7 days then transferred to 25°C (arrows). The sample of 25°C at harvest time (day 0) was set at 1. Data are means \pm SE of three replications.

Figure 54 Semi-quantitative RT-PCR of MYB10 transcription factor genes during colour development. Fruit were stored at 25°C (control) and 15°C for 7 days then transferred to 25°C. Data are means <u>+</u> SE of three replications.

DISCUSSION

1. Colour development and fruit quality of mangosteen fruit during ripening and after harvest

Mangosteen is one of the few species of fruit that develops red colour after harvest, similar to the dark purple changes observed in saskatoon (Rogiers and Knowles, 1999), 'Hass' avocado (Cox et al., 2004) and Chinese bayberry (Zhang et al., 2005). While most of the mangosteen fruit in the current study had started development of red colour on the tree, colour development proceeded quickly during the postharvest period at 25°C. The red colouration of mangosteen fruit harvested at stage 1 (light greenish yellow with 5% scattered pink spots) developed rapidly to dark purple (stage 5) within 5 days (Table 14). Hue values decreased rapidly from 88.1 to 3.7 correlating directly with red colouration. This result indicates that hue value can be used to judge fruit maturity (Figure 7) as has been shown in the fruit. Zhang *et al.* (2005) reported that the fruit colour of bayberry was useful to separate fruit into maturity categories. Mercado-Silva et al. (1998) also reported that fruit colour was the best maturity index of guava. The colour changes in mangosteen correlated well with ethylene production (Figure 9), as has also been found in grapes (El-Kereamy et al., 2003) and saskatoon (Rogiers et al., 1998), suggesting that a useful study could be made on the specific regulatory role of ethylene in stimulating the anthocyanin biosynthetic pathway in fruit such as mangosteen, grape or avocado. The pattern of ethylene production in mangosteen fruit was similar to that in previous reports (Kanchanapoom and Kachanapoom, 1998; Paull and Ketsa, 2004; Noichinda et al., 2007). Both hue values and pericarp firmness decreased rapidly and along with the increase in SSC during fruit colour development, these changes are major phenomena of the mangosteen ripening processes (Noichinda, 1992; Wills et al., 2007).

Postharvest quality of fruit is generally dependent on the stage of maturity at harvest. We found that fruit harvested at any of the defined maturity stages, 1 to 6, ripened such that at stage 6 (purple black) for each of them, there were no significant

differences in fruit qualities (pericarp firmness, SSC and TA) and sensory evaluation (Table 14, B columns). In Malaysia, a guideline for exporting mangosteen recommends harvesting fruit when showing a colour of reddish-yellow with patches of red, which is equivalent to stage 1 for Thailand fruit (Osman and Milan, 2006). This suggests that ripening development was already stimulated and underway at harvest for all stages. There is a practical advantage from this. Current grower practice in Thailand is to harvest fruit at stage 1 (light greenish yellow with 5% scattered pink spots) for export. These results confirm that this has no detrimental effect on final fruit quality, with the advantage of a slightly longer shelf-life over fruit harvested at later stages.

The major anthocyanins found in the pericarp were cyanidin-3-sophoroside and cyanidin-3-glucoside, confirming the brief report of Du and Francis (1977). LC-MS data show at least three cyanidin-3-glycosides, including the pentoside and a further cyanidin with an unidentified residue. The pentoside derivative and unidentified residue (m/z 190) are the first reports in mangosteen. The identification of the residue $(m/z \ 190)$ may require NMR technique in the future. Small amounts of the other cyanidin derivatives were detected. Colour development in mangosteen pericarp was closely correlated with the strongly increasing concentrations of total anthocyanin, cyanidin-3-sophoroside and the cyanidin-3-glucosides (Table 15 and 16, Figure 10 and 12). The rapid elevation of anthocyanic colour suggests that precursor polyphenolics are readily available for conversion to cyanidins. In the absence of other pigments, the dramatic increase in levels of anthocyanin pigments alone explains the final appearance. Results on outer pericarp (skin) section confirmed the general result of increasing red pigment level during colour development (Figure 13). Cox et al. (2004) reported a similar increase in cyanidin-3glucoside which correlated closely with skin colouration of 'Hass' avocado.

2. Cloning and characterization of MYB transcription factors and anthocyanin biosynthesis genes of mangosteen fruit during red colouration

2.1 MYB transcription factors

The regulation of enzymes and genes associated with the anthocyanin pathway has been studied in a number of plant species. In *Arabidopsis*, petunia, grape and apple, both MYB transcription factors and biosynthetic genes have been identified (Borevitz *et al.*, 2000; Kobayashi *et al.*, 2002; Koes *et al.*, 2005; Espley *et al.*, 2007). In this research, MYB transcription factors and anthocyanin biosynthesis genes of mangosteen fruit during red colouration were characterized.

Based on sequence similarity, expression profile and functional testing, we hypothesize that principal *GmMYB10* is the MYB transcription factor regulating anthocyanin biosynthesis in mangosteen fruit. We found three MYB genes encoding putative R2R3-MYB proteins. Stracke et al. (2001) clustered the 133 Arabidopsis R2R3 MYBs into 24 subgroups and AtPAP1 (AtMYB75) regulating anthocyanin biosynthesis was classified into subgroup 10 (Allan et al., 2008). Phylogenetic analysis clearly placed the GmMYBs in clades with the Arabidopsis MYB transcription factors in subgroups 1, 7 and 10 (Figure 24). GmMYB1 had sequence similarity to *FaMYB1* of strawberry containing a putative repressor domain (Figure 23 and 24). The peptide sequence LNLDLTIG was found to be similar to the pdLNL^D/_ELxi^G/_S motif that was proposed to act as a transcriptional repressor of the late flavonoid biosynthesis genes in strawberry FaMYB1 (Aharoni et al., 2001) and the grape C2 repressor (Matus *et al.*, 2008). This result suggests that *GmMYB1* may function as a repressor in mangosteen. GmMYB7 clustered into subgroup 7, close to AtMYB78 and AtMYB108 which are involved in stress signaling (Mengiste et al., 2003; Matus et al., 2008). AtMYB108 encodes BOS1 (BOtrytis-Susceptible1) which is responsible for the activation of a subset of defense pathways (Mengiste et al., 2003) and also acts with AtMYB24 to regulate jasmonate-mediated stamen development (Mandaokar and Browse, 2008). GmMYB7 has the peptide sequence LLILQLHSRWGNRWSKIARF that differs from the amino acid motif

[DE]Lx₂[RK]x₃Lx₆Lx₃R predicted to allow interaction with bHLHs, suggesting that it does not interact with bHLH proteins (Figure 23) (Zimmermann *et al.*, 2004). In *GmMYB10*, sequence analysis of the *GmMYB10*-encoded protein shows high homology with *Arabidopsis* PAP1, *Antirrhinum* ROSEA1, apple MYB10 and other anthocyanin-related MYBs (Figure 23 and 24) (Mol *et al.*, 1998; Schwinn *et al.*, 2006; Allan *et al.*, 2008). Thus phylogeny suggests that *GmMYB10* is a new member of the MYB anthocyanin activators and *GmMYB1* could be a repressor of the flavonoid pathway. A signature motif [DE]Lx₂[RK]x₃Lx₆Lx₃R for the interaction between MYB and bHLH proteins was found in the R2R3 DNA-binding domain of the GmMYB partner (Zimmermann *et al.*, 2004).

2.2 Anthocyanin biosynthesis genes

In anthocyanin biosynthesis pathway, there are several steps. The mangosteen anthocyanin biosynthesis genes have now been completely characterized. All the biosynthetic genes had sequence similarity to anthocyanin-related genes in other plants especially grape, citrus and strawberry. In the hydroxylation step, we found only flavanone 3'-hydroxylase (F3'H). This enzyme catalyzes the hydroxylation of flavonoids at the 3' positions of the B-ring leading to the respective cyanidin derivatives (Winkel-Shirley, 2001). However, identification of the flavonoid 3', 5'-hydroxylase (F3'5'H) using both nested and race PCR strategy was not successful. Based on anthocyanin identification, these results correlated with cyanidin pigments in mangosteen fruit. The results suggest that mangosteen fruit does not have a functional flavonoid 3', 5'-hydroxylase enzyme similar to *Arabidopsis*, apple and rose (Forkmann, 1991). It may be concluded that mangosteen cannot produce blue pigment.

2.3 Promoter isolation and analysis of *GmDFR*, *GmLDOX* and *GmUFGT* genes

The 5' flanking regions of *GmDFR*, *GmLDOX* and *GmUFGT* were obtained using ligation –mediated PCR (Genome Walker Kit, Clontech). *Cis*-acting

elements present in GmDFR, GmLDOX and GmUFGT 5' flanking regions were predicted using PLACE database and confirmed using PlantCARE and manual searching. We found several MYB binding sites, such as MYBPLANT (MACCWAMC) and MYBCORE (CNGTTR) and many ethylene response elements (ATTTNAAA, AWTTCAAA) in all 5' flanking regions (Montgomery et al., 1993; Solano et al., 1995; Tamagnone et al., 1998). Espley et al. (2009) reported that MYB10 protein autoregulated transcript levels by binding to a putative MYB binding domain. Our result suggested that *GmMYB* may activate the anthocyanin biosynthetic genes via the MYB binding sites that were found in both promoters as MYBPLANT (MACCWAMC) and MYBCORE (CNGTTR). Furthermore, ethylene may regulate gene activity by activating ethylene response elements in the promoter of ethylene inducible genes such as E4 and E8 (Montgomery et al., 1993; Deikman et al., 1998). Solano et al. (1998) showed that EIN3/EILs, ethylene-related transcription factors, regulated gene expression by binding directly to a primary ethylene response element (PERE) related to the tomato E4-element. This motif was found in the GmDFR, *GmLDOX* and *GmUFGT* 5'flanking regions, similar to the UFGT promoter of grape that is up-regulated transcript level. (El-Kereamy et al., 2003; Tira-Umphon et al., 2007).

2.4 Functional testing of GmMYBs using transient tobacco assays

In transient expression assays, we demonstated that *GmMYB10* can function as an anthocyanin regulator by infiltrating the GmMYBs with and without *AtbHLH2* (*AtEGL3*) which activated *GmDFR* and *AtDFR* promoters. The results were confirmed using *AtPAP1* infiltration as a positive control. *GmMYB10* display was more specific to both *GmDFR* and *AtDFR* promoters than GmMYB1 and GmMYB7 (Figure 46). Both *GmMYB10* and *AtPAP1* showed a high dependence on *AtbHLH2* (*AtEGL3*) as a partner, similar to other anthocyanin-related MYBs (Bogs *et al.*, 2007; Walker *et al.*, 2007). The results suggest that *GmMYB10* can activate the expression of genes encoding enzymes of anthocyanin biosynthesis. Furthermore, *GmMYB10* could activate the anthocyanin biosynthetic genes including *GmLDOX* and *GmUFGT* promoter via the MYB binding sites that were found in both promoters as MYBPLANT (MACCWAMC) and MYBCORE (CNGTTR) (Solano *et al.*, 1995; Tamagnone *et al.*, 1998).

In summary, the results of sequence analysis and functional testing indicate that *GmMYB10* is a MYB transcription factor playing a key role in regulating anthocyanin biosynthesis in mangosteen fruit.

3. Rapid colouration of mangosteen fruit correlates with changes in gene expression

Mangosteen fruit clearly develop intense red colour both on the tree and after harvest with high anthocyanin pigmentation. The transcript levels of the three mangosteen MYBs, GmMYB1, GmMYB7 and GmMYB10, increased markedly with onset of red colouration both on-tree and after harvest (Figure 47i-j). However, GmMYB10 was the most up-regulated of GmMYB transcription factors and the most abundant (up to 299-fold in on-tree fruit and 501-fold in postharvest fruit at stage 5 dark purple), and declined at the final stage (black purple). This expression pattern was similar to that of MdMYB10 in apple (Espley et al., 2007) and that of VvMYBPA1 in grape berry skins (Bogs et al., 2007). Expression patterns therefore give further support to the suggestion that *GmMYB10* is a candidate to regulate anthocyanin biosynthesis of mangosteen fruit. The expression patterns of all anthocyanin biosynthesis genes correlated with those of *GmMYB10*, in that fold changes were substantial with onset of colour development and declined at the final stages. Almieda et al. (2007) found that the transcript level of anthocyanin biosynthesis pathway genes in 'Queen Elisa' strawberry increased during fruit development and decreased at the red stage. This expression pattern was similar to that found in apple after light exposure with an increase in colour development and anthocyanin content (Kim et al., 2003). Of the anthocyanin biosynthesis genes, transcript levels of *GmUFGT* showed the greatest fold change suggesting *GmUFGT* may be the key biosynthetic gene similar to the results in grape (Boss *et al.*, 1996; Kobayashi et al., 2001) and may controlled by GmMYB10. In grape, VvMYBA1 and VvMYBA2 transcription factors regulate specifically the expression of the UFGT

gene (Kobayashi *et al.*, 2002; Walker *et al.*, 2007). Regulation of anthocyanin biosynthesis has been shown to be at the level of transcription in pigmented organs in other species (Mol *et al.*, 1998; Schwinn *et al.*, 2006), and transcript levels indicate final phenotype including colour, anthocyanin content and composition (Castellarin and Gaspero 2007).

4. Ethylene regulates red colouration of mangosteen fruit correlated with *GmMYB* expression.

From results on tree and after harvest, the red colouration of mangosteen fruit is controlled by ethylene and the ethylene inhibitor (1-MCP) application. 1-MCP clearly delayed red colouration (hue value), pericarp firmness, ethylene production and anthocyanin accumulation (Figure 14-17). The application of 1-MCP in delaying red colouration and anthocyanin content has been found previously in fruit such as grape (Chervin et al., 2004) and strawberry (Jiang et al., 2001). Jiang et al. (2001) reported that 1-MCP delayed fruit colour (hue value), firmness, ethylene production and anthocyanins in strawberry fruit. 1-MCP also inhibited PAL activity which is the first enzyme in anthocyanin biosynthesis pathway. However, ethylene application could not induce red colouration and ethylene production in mangosteen fruit (Figure 15 and 17a). Pirivavinit (2008) also reported that exogenous ethylene did not affect colour development and ethylene production in mangosteen fruit when compared with the control. This ineffectiveness of ethylene application in inducing red colouration agrees with low transcript levels of all biosynthetic and MYB transcription factor genes when compared with the control (air) (Figure 49 and 50). This result may be caused by the time of ethylene application during the preclimateric period (Noichinda, unpublished data). We also found that ethylene production of mangosteen fruit at stage 1 increased sharply (Figure 9). These results indicated that ethylene treatment did not induce red colouration of mangosteen fruit when the fruit at stage 1 (light greenish yellow with 5% scattered pink spots) were treated

1-MCP application in both 1-MCP and ethylene+1-MCP treatments downregulated GmMYBs, especially GmMYB10, and all anthocyanin biosynthesis gene expression. These results indicate that ethylene and *GmMYB10* expression work closely to control the anthocyanin biosynthesis in mangosteen pigmentation. Ethylene may directly regulate GmMYB10 and all anthocyanin biosynthesis genes at the transcription level. In grape, ethylene induced both anthocyanins and internal ethylene concentrations when externally applied by up-regulating anthocyanin biosynthetic genes (El-Kereamy et al., 2003). Tira-Umphon et al. (2007) showed that ethylene-induced anthocyanin in grape berries and cell suspensions were dependent on UFGT expression and independent of MYBA expression. The report showed little change in the expression of the MYB transcription factor, with different responses to ethylene. Mangosteen, a climacteric fruit, is more sensitive to ethylene than grape (a non-climateric fruit) and red colouration of mangosteen fruit changed rapidly (Palapol et al., 2009). In addition, we found two ethylene response elements (E4, AWTTCAAA) in the GmDFR promoter. We also found a motif similar to an ethylene response element (ATTTNAAA) in the GmDFR, GmLDOX and GmUFGT promoters that is similar to the UFGT promoter of grape (El-Kereamy et al., 2003; Tira-Umphon et al., 2007). Solano et al. (1998) showed that EIN3/EILs, ethylenerelated transcription factors, regulate gene expression by binding directly to a primary ethylene response element (PERE) related to the tomato E4-element. This data indicates that *GmMYB10* and anthocyanin structural genes may be co-ordinately regulated for anthocyanin synthesis in mangosteen fruit in response to ethylene.

5. Low temperature storage regulates red colouration of mangosteen fruit correlated with *GmMYB* expression.

In this study, colour of fruit stored at 15°C developed much slower than in fruit stored at 25°C (Figure 17). Ratanamarno *et al.* (2004) reported that mangosteen fruit at stage 1 stored at 15°C changed to stage 6 later than fruit stored at high temperatures (30-35°C). Similarly low temperature storage of strawberry maintained fruit quality and delayed an increase in anthocyanin content (Shin *et al.*, 2008). After transfer of the fruit from 15°C to 25°C, the increase in red colouration and anthocyanin content, and the decrease in pericarp firmness changed markedly and correlated closely with an increase in ethylene production (Figure 19-21). This data support that the ethylene plays an important role in ripening of mangosteen fruit. Kim et al. (2003) reported that the transcript level of anthocyanin biosynthesis genes correlated with anthocyanin content. However, the study of low temperature storage regulated anthocyanin biosynthesis is still underway. All transcript levels in mangosteen fruit stored at 25°C in this study were firstly reported to increase clearly with red colouration. Low temperature storage at 15°C inhibited the transcript levels of all anthocyanin biosynthetic genes and then increased abundance when the fruit were transferred to 25°C (Figure 52). This was concomitant with an increase in ethylene production after transfer of fruit to 25°C (Figure 21). El-Kereamy et al. (2003) also reported that ethylene induced both anthocyanins and internal ethylene concentration up-regulating anthocyanin biosynthetic genes. Low ethylene production in fruit stored at 15°C and an increase in ethylene production with transfer from 15°C to 25°C, indicates that ethylene may directly regulate fruit colouration during low temperature storage via up-regulation of transcript level of anthocyaninrelated genes.

In summary, we concluded that anthocyanin pigmentations were synthesized from PAL to UFGT as illustrated in Figure 55. *GmMYB10* plays a role in the regulation of anthocyanin biosynthesis genes in mangosteen fruit including *GmDFR*, *GmLDOX* and *GmUFGT* (red arrows). Anthocyanin biosynthesis in mangosteen fruit is dependent on ethylene which may directly (green arrows), or via other signal transduction intermediates (blue arrow), modulate transcript levels of *GmMYB10* and anthocyanin biosynthetic genes especially *GmUFGT*. Ethylene may regulate gene activity by activating the ethylene response element (PERE) within the promoters of anthocyanin-related genes. The role of ethylene in red colouration of mangosteen fruit can be also illustrated in Figure 55.

Figure 55 Model of anthocyanin biosynthesis in mangosteen fruit.

CONCLUSIONS

Characterization of MYB transcription factors and anthocyanin biosynthesis genes of mangosteen fruit during red colouration can be summarized as following:

1. Mangosteen fruit harvested from stage 1 (light greenish yellow with 5-50% scattered pink spots) can develop colour to the final stage (purple black).

2. The minimum harvest stage for high quality fruit was when the fruit skin is light greenish yellow with 5-50% scattered pink spots.

3. Anthocyanin content in the outer pericarp is higher than in the inner pericarp.

4. Cyanidin-3-sophoroside and cyanidin-3-glucoside are the major compounds and increased with fruit colour development.

5. Anthocyanin biosynthesis in mangosteen fruit is dependent on ethylene.

6. 1-Methycyclopropene (ethylene inhibitor) and low temperature storage (15 $^{\circ}$ C) can delay colour development and anthocyanin pigmentation with resulting down-regulation of the *GmMYB* transcription factor and all anthocyanin biosynthesis genes.

7. *GmUFGT* is a key biosynthetic gene in mangosteen pigmentation.

8. *GmMYB10* plays a role in the specific regulation of anthocyanin biosynthesis both on- and off-tree in mangosteen fruit.

9. The ethylene response elements (E4, AWTTCAAA and ATTTNAAA) were found in all promoters.

LITERATURE CITED

- Abeles, F.B., P.W. Morgan and M.E. Saltveit. 1992. Ethylene in Plant Biology, 2nd eds. Academic Press, NY.
- Aharoni, A., C.H.R.D. Vos, M. Wein, Z. Sun, R. Greco, A. Kroon, J.N.M. Mol and A.P. O'Connell. 2001. The strawberry *FaMYB1* transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco.
 Plant J. 28:319-332.
- Ali, M.B., N. Singh, A.M. Shohael, E.J. Hahn, K.Y. Paek. 2006. Phenolics metabolism and lignin synthesis in root suspension cultures of *Panax ginseng* in response to copper stress. **Plant Sci**. 171: 147-154.
- Allan, A.C., R.P. Hellens and W.A. Laing. 2008. MYB transcription factors that colour our fruit. Trends Plant Sci. 13:99-102.
- Almeida, J.R.M., E. D'Amico, A. Preuss, F. Carbone, C.H.R. de Vos, B. Deiml, F. Mourgues, G. Perrotta, T.C. Fischer, A.G. Bovy, S. Martens and C. Rosati. 2007. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (*Fragaria x ananassa*). Arch. Biochem. Biophys. 465:61-71.
- Atchley, W.R., W. Terhalle and A. Dress. 1999. Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J. Mol. Evol. 48:501-516.
- Auta, J., Y. Chen, W. Ruzicka and D. Grayson. 2007. Nucleic acid quantitation using the competitive polymerase chain reaction. pp. 341-361. *In* Handbook of Neurochemistry and Molecular Neurobiology. Kluwer Academic Publishers, New York.

- Avila, J., C. Nieto, L. Canas, M.J. Benito and J. Paz-Ares. 1993. *Petunia hybrida* genes related to the maize regulatory C1 gene and to animal myb protooncogenes. **Plant J.** 3:553-562.
- Awad, M.A. and A. de Jager. 2002. Relationships between fruit nutrients and concentrations of flavonoids and chlorogenic acid in 'Elstar' apple skin. Sci. Hortic. 92: 265–276.
- Bailey, B.A., H. Bae, M.D. Strem, G.A. de Mayolo, M.J. Guiltinan, J.A. Verica, S.N. Maximova and J.H. Bowers. 2005. Developmental expression of stress response genes in *Theobroma cacao* leaves and their response to Nep1 treatment and a compatible infection by *Phytophthora megakarya*. Plant Physiol. Biochem. 43:611-622.
- Ban, Y., C. Honda, Y. Hatsuyama, M. Igarashi, H. Bessho and T. Moriguchi. 2007.
 Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48:958-970.
- Bogs, J., F.W. Jaffe, A.M. Takos, A.R. Walker and S.P. Robinson. 2007. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 143:1347-1361.
- Borevitz, J.O., Y. Xia, J. Blount, R.A. Dixon and C. Lamb. 2000. Activation tagging Identifies a conserved MYB regulator of phenylpropanoid biosynthesis. **Plant Cell** 12:2383-2394.
- Boss, P.K., C. Davies and S. Robinsson. 1996. Analysis of the expression of anthocyanin pathway genes in developing *Vitis vinifera* L. cv. Shiraz grape berries and the implications for pathway regulation. **Plant Physiol.** 111: 1059-1066.

and C. Davies. 2001. Molecular biology of sugar and anthocyanin accumulation in grape berries, pp. 1-34. *In* Roubelakis-Angelakis, K.A., ed. **Molecular Biology and Biotechnology of the Grapevine**. Kluwer Academic Press, The Netherlands.

- Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72: 248-254.
- Bradley, J.M., K.M. Davies, S.C. Deroles, S.J. Bloor and D.H. Lewis. 1998. The maize LC regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J. 13: 381–392.
- Britsch, L., B. Ruhnau-Brich and G. Forkmann. 1992. Molecular cloning, sequence analysis, and *in vitro* expression of flavanone 3 beta-hydroxylase from *Petunia hybrida*. J. Biol. Chem. 267: 5380–5387.

J. Dedio, H. Saedler and G. Forkmann. 1993. Molecular
 characterization of flavanone 3 beta-hydroxylases consensus sequence,
 comparison with related enzymes and the role of conserved histidine residues.
 Eur. J. Biochem. 217, 745–754.

- Bronstein, I., J. Fortin, P.E. Stanley, G.S.A.B. Stewart and L.J. Kricka. 1994. Chemiluminescent and bioluminescent reporter gene assays. Anal. Biochem. 219:169-181.
- Broun, P. 2005. Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in *Arabidopsis*. Curr. Opin. Plant Biol. 8:272-279.

- Bustin, S. A. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25: 169-193.
- Carey, C.C., J.T. Strahle, D.A. Selinger and V.L. Chandler. 2004. Mutations in the pale aleurone color1 regulatory gene of the *Zea mays* anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in *Arabidopsis thaliana*. **Plant Cell** 16:450-464.
- Castellarin, S. and G. Di Gaspero. 2007. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. **BMC Plant Biol.** 7:46.
- Chervin, C., A. El-Kereamy, J.P. Roustan, A. Latch, J. Lamon and M. Bouzayen. 2004. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. **Plant Sci.** 167:1301-1305.
- Chopra, S., Hoshino, A., Boddu, J. and Iida, S. (2006) Flavonoid pigments as tools in molecular genetics, pp. 147–173. *In* Glotewold, E., ed. The Science of Flavonoids. Springer Press, New York.
- Cox, K.A., T.K. McGhie, A. White and A.B. Woolf. 2004. Skin colour and pigment changes during ripening of 'Hass' avocado fruit. Postharvest Biol. Technol. 31:287-294.
- Dale, J. W. and M. von Schantz. 2003. From Genes to Genomes Concepts and Applications of DNA Technology. John Wiley & Sons, Ltd., West Sussex.
- Davies, K. 2004. **Plant Pigments and Their Manipulation.** Blackwell Publishing Ltd., Oxford.

- de Vetten, N., F. Quattrocchio, J. Mol and R. Koes. 1997. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev. 11:1422-1434.
- de Wet, J.R., K.V. Wood, D.R. Helinski and M. DeLuca. 1985. Cloning of firefly luciferase cDNA and the expression of active luciferase in *Escherichia coli*. **PNAS** 82:7870-7873.
- Deikman, J., R. Xu, M.L. Kneissl, J.A. Ciardi, K.-N. Kim and D. Pelah. 1998.
 Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5'-flanking region of the ripening-related E8 gene. Plant Mol. Biol. 37:1001-1011.
- Delgado-Vargas, F. and O. Paredes-Lopez 2002. Natural Colorants for Food and Nutraceutical Uses. CRC Press, USA.
- Du, C.T. and F.J. Francis. 1977. Anthocyanin of mangosteen (*Garcinia mangostana* L). J. Food Sci. 42: 1667-1668.
- El-Kereamy A., C. Chervin, J.P. Roustan, V. Cheynier, J.M. Souquet, M. Moutounet, J. Raynal, C. Ford, A. Latche, J.C. Pech and M. Bouzayen. 2003. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. **Physiol. Plant.** 119(2): 175-182.
- Espley, R.V., R.P. Hellens, J. Putterill, D.E. Stevenson, S. Kutty-Amma and A.C. Allan. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. **Plant J.** 49: 414-427.
- Forkmann, G. 1991. Flavonoids as Flower Pigments: The formation of the natural spectrum and its extension by genetic engineering. Plant Breeding. 106: 1-26.

and W. Heller. 1999. Biosynthesis of flavonoids. pp. 713–748. *In* Sankawa, U., ed. **Comprehensive Natural Products Chemistry**. Amsterdam, Elsevier.

- Freeman, W. M., S. J. Walker and K. E. Vrana. 1999. Quantitative RT-PCR: pitfalls and potential. BioTechniques 26: 112-125.
- Gachon, C., A. Mingam and B. Charrier. 2004. Real-time PCR: what relevance to plant studies? J. Exp. Bot. 55(402): 1445-1454.
- Giambernardi, T.A. and R.J. Klebe. 2000. Relative reverse transcription-polymerase chain reaction. pp. 51-58. *In* Developmental Biology Protocols. Humana Press, NJ
- Goff, S.A., K.C. Cone and V.L. Chandler. 1992. Functional analysis of the transcriptional activator encoded by the maize B gene: Evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev. 6: 864-875.

, T.M. Klein, B.A. Roth, M.E. Fromm, K.C. Cone, J.P. Radicella and V.L. Chandler. 1990. Transactivation of anthocyanin biosynthetic genes following transfer of *B* regulatory genes into maize tissues. **EMBO J.** 9: 2517-2522.

- Gollop, R., S. Even, V. Colova-Tsolova and A. Perl. 2002. Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. J. Exp. Bot. 53(373): 1397-1409.
- Gomez-Cordoves, M.C., F. Varela, C. Larrigaudiere and M. Vendrell. 1996. Effect of ethephon and seniphos treatments on the anthocyanin composition of starking apples. J. Agric. Food Chem. 44: 3449-3452.

- Goodrich, J., R. Carpenter and E.S. Coen. 1992. A common gene regulates pigmentation pattern in diverse plant species. **Cell** 68:955-964.
- Goto-Yamamoto, N., G.H. Wan, K. Masaki and S. Kobayashi. 2002. Structure and transcription of three chalcone synthase genes of grapevine (*Vitis vinifera*).
 Plant Sci. 162: 867-872.
- Griesser, M., T. Hoffmann, M.L. Bellido, C. Rosati, B. Fink, R. Kurtzer, A. Aharoni, J. Munoz-Blanco and W. Schwab. 2008. Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiol. 146: 1528-1539.

Gross, J. 1987. Pigments in Fruits. Academic Press, London.

- Grotewold, E., M.B. Sainz, L. Tagliani, J.M. Hernandez, B. Bowen and V.L. Chandler. 2000. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. PNAS 97: 13579-13584.
- Heim, M.A., M. Jakoby, M. Werber, C. Martin, B. Weisshaar and P.C. Bailey. 2003. The basic helix-loop-helix transcription factor family in plants: A genomewide study of protein structure and functional diversity. Mol. Biol. Evol. 20: 735-747.
- Heller, W. and G. Forkmann. 1994. Biosynthesis of flavonoids, pp. 499-535. *In*Harborne, J.B., ed. The Flavonoids- Advances in Research since 1986.
 Chapman and Hall, London.

- Hernandez, J.M., G.F. Heine, N.G. Irani, A. Feller, M.G. Kim, T. Matulnik, V.L.
 Chandler and E. Grotewold. 2004. Different mechanisms participate in the
 R-dependent activity of the R2R3 MYB transcription factor C1. J. Biol.
 Chem. 279: 48205-48213.
- Holcroft, D.M., M.I. Gil and A.A. Kader. 1998. Effect of carbon dioxide on anthocyanins, phenylalanine ammonia lyase and glucosyltransferase in the arils of stored pomegranates. J. Amer. Soc. Hort. Sci. 123(1): 136-140.
- Holton, T.A. and E.C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071-1083.
- Honda, C., K. Nobuhiro, W. Masato, K. Satoru, K. Shozo, S. Junichi, Z. Zilian, T. Tomomi and M. Takaya, 2002. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol. Biochem. 40: 955-962.
- Hrazdina, G. and G.J. Wagner. 1985. Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch. Biochem. Biophys. 237: 88-100.
 - and R.A. Jensen. 1992. Spatial organization of enzymes in plant metabolic pathways. **Annu. Rev. Plant. Physiol. Plant Mol. Biol.** 43: 241-267.
- Jaakola, L., K. Maatta, A.M. Pirttila, R. Torrenen, S. Karenlampi, and A. Hohtola 2002. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. **Plant Physiol.** 130: 729-739.

Jackson, D., F. Culianez-Macia, A.G. Prescott, K. Roberts and C. Martin. 1991. Expression patterns of myb genes from Antirrhinum flowers. Plant Cell 3: 115-125.

, K. Roberts, and C. Martin. 1992. Temporal and spatial control of expression of anthocyanin biosynthetic genes in developing flowers of *Antirrhinum majus*. **Plant J.** 2: 425-434.

Jeong, S.T., N. Goto-Yamamoto, K. Hashizume and M. Esaka. 2006. Expression of the flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes and flavonoid composition in grape (*Vitis vinifera*). Plant Sci. 170(1): 61-69.

, _____, S. Kobayashi and M. Esaka. 2004. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. **Plant Sci.** 167: 247-252.

- Jiang, Y., D.C. Joyce and L.A. Terry. 2001. 1-Methycyclopropene treatment affects strawberry fruit decay. Postharvest Biol. Technol. 23: 227-232.
- Johnson, E.T., S. Ryu, H. Yi, B. Shin, H. Cheong and G. Choi. 2001. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4reductase. Plant J. 25: 325-333.
- Ju Z.G., Y. Yuan, C. Liu and S. Xin. 1995. Relationships among phenylalanine ammonia-lyase activity, simple phenol concentrations and anthocyanin accumulation in apple. Sci. Hortic. 61: 215-266.
- Ju, Z. 1998. Fruit bagging, a useful method for studying anthocyanin synthesis and gene expression in apples. **Sci. Hortic.** 77: 155-164.

- Kanchanapoom, K. and M. Kanchanapoom. 1998. Mangosteen, pp. 191-216. In Shaw P.E., Jr., H.T. Chan and S. Nagi, eds. Tropical and Subtropical Fruits. AgScience Inc., USA.
- Kim, S., L. Jae-Rin, H. Sung-Tae, Y. Yung-Keun, A. Gynheung and K. Seong-Ryong. 2003. Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Sci. 165: 403-413.
- Klempnauer, K.H., T.J. Gonda and J. Michael Bishop. 1982. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: The architecture of a transduced oncogene. **Cell** 31: 453-463.
- Kobayashi, S., M. Ishimaru, C.K. Ding, H. Yakushiji, and N. Goto. 2001.
 Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (*Vitis vinifera*) and their sports with red skin. Plant Sci. 160: 543-550.

, _____, K. Hiraoka and C. Honda. 2002. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. **Planta** 215: 924-933.

, N. Goto-Yamamoto and H. Hirochika. 2004. Retrotransposoninduced mutations in grape skin color. **Science** 304: 982.

- Koes, R., W. Verweij and F. Quattrocchio. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10: 236-242.
- Kondo, S., K. Hiraoka, S. Kobayashi, C. Honda and N. Terahara. 2002. Changes in the expression of anthocyanin biosynthetic genes during apple development.
 J. Amer. Soc. Hort. Sci. 127: 971-976.

- Konig, P., R. Giraldo, L. Chapman and D. Rhodes. 1996. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85: 125-136.
- Kosiyachinda, S. and Tansiriyakul, S. 1988. Respiration rate and ethylene production of fresh fruits, vegetables and cut flowers. J. Food. 18: 1-10 (In Thai).
- Kreuzaler, F., Ragg, H., Fauz, E., Kuhn, D.N. and K. Hahlbrock. 1983. UVinduction of chalcone synthase mRNA in cell suspension cultures of *Petroselinum hortense*. **PNAS** 80: 2591-2593.
- Kristiansen, K.N. and W. Rohde. 1991. Structure of the *Hordeum vulgare* gene encoding dihydroflavonol-4-reductase and molecular analysis of ANT18 mutants blocked in flavonoid synthesis. **Mol. Gen. Genet.** 230: 49-59.
- Krumlauf, R. 1994. Analysis of gene expression by Northern blot. Mol. Biotechnol. 2: 227-242.
- Kumar, A. and B.E. Ellis. 2001. The phenylalanine ammonia-lyase gene family in raspberry: structure, expression, and evolution. **Plant Physiol.** 127: 230-239.
- Kumar, S., K. Tamura and M. Nei. 2004. MEGA3: Integrated software for olecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163.
- Lacombe, E., S. Hawkins, J.V. Doorsselaere, J. Piquemal, D. Goffner, O.
 Poeydomenge, A.M. Boudet and J. Grima-Pettenati. 1997. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 11: 429-441.

- Liew, C.F., C.J. Goh, C.S. Loh and S.H. Lim. 1998. Cloning and characterization of full-length cDNA clones encoding chalcone synthase from the orchid *Bromheadia finlaysoniana*. Plant Physiol. Biochem. 36:647-656.
- Lipsick, J.S. 1996. One billion years of myb. Oncogene 13: 223-235.
- Lister, C.E., J.E. Lancaster and J.R.L. Walker. 1996. Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J. Sci. Food Agric. 71: 313-330.
- Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2- $^{\Delta\Delta Ct}$ method. Methods. 25: 402-408.
- Lopez-Gomez, R. and M.A. Gomez-Lim. 1992. A method for extracting intact RNA from fruits rich in polysaccharides using ripe mango mesocarp. **HortScience** 27: 440–442.
- Lorenz, W.W., R.O. McCann, M. Longiaru and M.J. Cormier. 1991. Isolation and expression of a cDNA encoding *Renilla reniformis* luciferase. **PNAS** 88: 4438-4442.
- Macheix, J.J., A. Fleuriet and J. Billot. 1990. **Fruit Phenolics.** CRC Press, Inc., Boca Raton, Florida.
- MacLean, D.D., D.P. Murr, J.R. DeEll and C.R. Horvath. 2006. Postharvest variation in apple (*Malus domestica* Borkh.) flavonoids following harvest, storage, and 1-MCP treatment. J. Agr. Food Chem. 4(3): 870-8.

- Mahesh, V., J. Rakotomalala, L. Le Gal, H. Vigne, A. de Kochko, S. Hamon, M. Noirot and C. Campa. 2006. Isolation and genetic mapping of a *Coffea canephora* phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids. Plant Cell Rep. 25: 986-992.
- Mandaokar, A. and J. Browse. 2009. MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in *Arabidopsis*. Plant Physiol. 149: 851-862.
- Marques, S.M. and J.C.G. Esteves da Silva. 2009. Firefly bioluminescence: A mechanistic approach of luciferase catalyzed reactions. **IUBMB Life**. 61: 6-17.
- Martin, C. and J. Paz-Ares. 1997. MYB transcription factors in plants. **Trends Genet.** 13: 67-73.

_____, A. Prescott, S. Mackay, J. Bartlett and E. Vrijlandt. 1991. Control of anthocyanin biosynthesis in flowers of *Antirrhinum majus*. **Plant J.** 1: 37-49.

- Martin, F.W. 1980. Durian and mangosteen, pp. 407-414. *In* S. Nagy and P.E.
 Shawx, eds. Tropical and Subtropical Fruits : Composition, Properties and Uses. The AVI Publishing, Westport, CN.
- Matthews, J.C., K. Hori and M.J. Cormier. 1977. Purification and properties of Renilla reniformis luciferase. **Biochemistry** 16: 85-91.
- Matus, J. T., F. Aquea and P. Arce-Johnson. 2008. Analysis of the grape MYB
 R2R3 subfamily reveals expanded wine quality-related clades and conserved
 gene structure organization across Vitis and *Arabidopsis* genomes. BMC
 Plant Biol. 8: 83.

- Mengiste, T., X. Chen, J. Salmeron and R. Dietrich. 2003. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in *Arabidopsis*. Plant Cell 15: 2551-2565.
- Mercado-Silva, E., P. Benito-Bautista and M.A. Garcia-Velasco. 1998. Fruit development, harvest index and ripening changes of guavas produced in central Mexico. Postharvest Biol. Technol. 13: 143-150.
- Mol, J., E. Grotewold and R. Koes. 1998. How genes paint flowers and seeds. Trends Plant Sci. 3: 212-217.
- Montgomery, J., V. Pollard, J. Deikman and R.L. Fischer. 1993. Positive and negative regulatory regions control the spatial distribution of polygalacturonase transcription in tomato fruit pericarp. Plant Cell 5: 1049-1062.
- Mori, S., H. Kobayashi, Y. Hoshi, M. Kondo and M. Nakano. 2004. Heterologous expression of the flavonoid 3',5'-hydroxylase gene of *Vinca major* alters flower color in transgenic *Petunia hybrida*. Plant Cell Rep. 22: 415-421.
- Moyano, E., I. Portero-Robles, N. Medina-Esco-bar, V. Valpuesta, J. Muñoz-Blanco and J.L. Caballero. 1998. A fruit specific putative dihydroflavonol 4reductase gene is differentially expressed in strawberry during the ripening process. **Plant Physiol.** 117: 711-716.
- Muir, S.R., G.J. Collins, S. Robinson, S. Hughes, S. Bovy, C.H. De Vos, A.J. van Tunen and M.E. Verhoeyen. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnol. 19: 470-474.

- Murre, C., P.S. McCaw and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777-783.
- Nakajima, Y., T. Kimura, K. Sugata, T. Enomoto, A. Asakawa, H. Kubota, M. Ikeda and Y. Ohmiya. 2005. Multicolor luciferase assay system: one-step monitoring of multiple gene expressions with a single substrate.
 BioTechniques 38: 891-894.
- Nakasone, H.Y. and R.E. Paull. 1998. **Tropical Fruits.** CAB International, Wallingford.
- Naylor, L.H. 1999. Reporter gene technology: the future looks bright. **Biochem. Pharmacol.** 58: 749-757.
- Nesi, N., C. Jond, I. Debeaujon, M. Caboche and L. Lepiniec. 2001. The *Arabidopsis* TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13: 2099-2114.
- Noichinda, S. 1992. Effect of modified atmosphere on quality and storage life of mangosteen (*Garcinia mangostana* L.) fruit. M.S. thesis. Kasetsart University (In Thai).

, K. Bodhipadma, S. Singkhornart and S. Ketsa. 2007. Changes in pectic substances and cell wall hydrolase enzymes of mangosteen (*Garcinia mangostana*) fruit during storage. **NZ J. Crop Hort. Sci**. 35: 229-233.

Office of Agriculture Economics. 2009. **Export statistics: Mangosteen**. Available source: <u>http://www.oae.go.th//export/13statistic01Mug.xls</u>, February 10, 2009.

- Ogata, K., H. Hojo, S. Aimoto, T. Nakai, H. Nakamura, A. Sarai, S. Ishii and Y. Nishimura. 1992. Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. **PNAS** 89: 6428-6432.
- Osman, M.B.and A.R. Milan. 2006. **Mangosteen:** *Garcinia mangostana* L. Southampton Centre for Underutilised Crops, University of Southampton, Southampton, UK.
- Pabo, C.O. and R.T. Sauer. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61: 1053-1095.
- Palapol, Y., S. Ketsa, D. Stevenson, J.M. Cooney, A.C. Allan and I.B. Ferguson.
 2009. Colour development and quality of mangosteen (*Garcinia mangostana* L.) fruit during ripening and after harvest. Postharvest Biol. Technol. 51: 349-353.
- Paull, R.E. and S. Ketsa. 2004. Mangosteen. In Gross, K.C., C.Y. Wang and M.E. Salveit, eds. The Commercial Storage of Fruits Vegetables and florist and Nursery Stocks. USDA Agric. Handb. No. 66 (revised). Available source <u>http://usna.usda.gov/hb66/092mangosteen.pdf</u>, May 10, 2006.
- Pelletier, M.K., I.E. Burbulis and B. Winkel-Shirley. 1999. Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and endproducts in *Arabidopsis* seedlings. **Plant Mol. Biol.** 40: 45-54.
- Pfaffl, M.W. 2001. A new mathematical model for relative quantification in realtime RT-PCR. Nucl. Acids Res. 29: e45.
- Piccaglia, R., M. Marotti and G. Baldoni. 2002. Factors influencing anthocyanin content in red cabbage (*Brassica oleracea* var. *capitata* L. f. rubra (L.) Thell.). J. Sci. Food Agric. 82: 1504-1509.

- Piriyavinit, P. 2008. Control of Ripening in Mangosteen (*Garcinia mangostana* L.) Fruit after Harvest. M. S. Thesis. Kasetsart University (In Thai).
- Popenoe, W. 1974. Manual of Tropical and Subtropical Fruits. Hafner Press, New York.
- Quaedvlieg, N., J. Dockx, G. Keultjes, P. Kock, J. Wilmering, P. Weisbeek and S. Smeekens. 1996. Identification of a light-regulated MYB gene from an *Arabidopsis* transcription factor gene collection. **Plant Mol. Biol.** 32: 987-993.
- Ralston, L., S. Subramanian, M. Matsuno and O. Yu. 2005. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. **Plant Physiol.** 137: 1375-1388.
- Ramsay, N.A. and B.J. Glover. 2005. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. **Trends Plant Sci.** 10: 63-70.
- Ratanamarno, S. 1999. Effects of light and temperature on pigment contents and phenylalanine ammonia-lyase (PAL) activity in mangosteen pericarp.
 Ph.D. Thesis, Chiangmai University (in Thai).

, U. Chamnong and S. Kobkiat. 2005. Effects of bagging and storage temperature on anthocyanin content and phenylalanine ammonialyase (PAL) activity in mangosteen (*Garcinia mangostana* L.) fruit pericarp during maturing. **Songklanakarin J. Sci. Technol.** 27(4): 711-717.

Rein, M. J. 2005. Copigmentation reactions and color stability of berry anthocyanins. Available source: <u>http://ethesis.helsinki.fi/julkaisut/maa/skemi/vk/rein</u>. March 15, 2006. Rogiers, S.Y. and N.R. Knowles. 1999. A comparison of preharvest and postharvest ethylene production and respiration rates of saskatoon (*Amelanchier alnifolia* Nutt.) fruit during development. Can. J. Bot. 77: 323-332.

, G.N.M. Kumar and N.R. Knowles. 1998. Regulation of ethylene production and ripening by saskatoon (*Amelanchier alnifolia* Nutt.) fruit. **Can. J. Bot.** 76: 1743-1754.

- Saito, K., M. Kobayashi, Z. Gong, Y. Tanaka and M. Yamazaki. 1999. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: Molecular cloning and functional expression of cDNA from a red forma of *Perilla frutescens*. **Plant J.** 17: 181-189.
- Sambrook, J. and D.W. Russel 2001. Molecular Cloning: A Laboratory Manual. 3rd eds. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Saure, M.C. 1990. External control of anthocyanin formation in apple. Sci. Hortic. 42: 181-218.
- Schwinn, K., J. Venail, Y. Shang, S. Mackay, V. Alm, E. Butelli, R. Oyama, P.
 Bailey, K. Davies and C. Martin. 2006. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18: 831-851.
- Shin, Y., J.A. Ryu, R.H. Liu, J.F. Nock and C.B. Watkins. 2008. Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. **Postharvest Biol. Technol.** 49: 201-209.

- Sherf B.A., S.L. Navarro, R.R. Hannah and K.V. Wood. 1996 Dual-luciferase reporter assay: an advanced co-reporter technology integrating firefly and *Renilla* luciferase assay. **Promega Notes** 57: 2.
- Smith, T.F., C. Gaitatzes, K. Saxena and E.J. Neer. 1999. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24: 181-185.
- Solano, R., A. Stepanova, Q. Chao and J.R. Ecker. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12: 3703-3714.
- Solano, R., C. Nieto, J. Avila, L. Canas, I. Diaz and J. Paz-Ares. 1995. Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. EMBO J. 14: 1773-1784.
- Sparvoli, F., C. Martin, A. Scienza, G. Gavazzi and C. Tonelli. 1994. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (*Vitis vinifera* L.). Plant Mol. Biol. 24: 743-755.
- Spayd, S.E., J.M. Tarara, D.L. Mee, and J.C. Ferguson. 2002. Separation of sunlight and temperature effects on the composition of *Vitis vinifera* cv. Merlot berries. Amer. J. Enol. Vitic. 53: 171-182.
- Stevenson, D.E., R. Wibisono, D.J. Jensen, R.A. Stanley and J.M. Cooney. 2006.
 Direct acylation of flavonoid glycosides with phenolic acids catalysed by
 Candida antarctica lipase B (Novozym 435[®]). Enzyme Microb. Technol. 39: 1236-1241.
- Stracke, R., M. Werber and B. Weisshaar. 2001. The R2R3-MYB gene family in *Arabidopsis thaliana*. Curr. Opin. Plant Biol. 4: 447-456.
- Streit, S., C.W. Michalski, M. Erkan, J. Kleeff and H. Friess. 2009. Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nat. Protocols 4: 37-43.
- Takos, A.M., F.W. Jaffe, S.R. Jacob, J. Bogs, S.P. Robinson and A.R. Walker. 2006. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. **Plant Physiol.** 142: 1216-1232.
- Tamagnone, L., A. Merida, A. Parr, S. Mackay, F.A. Culianez-Macia, K. Roberts and C. Martin. 1998. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. **Plant Cell** 10: 135-154.
- Tanaka, Y., S. Tsuda and T. Kusumi. 1998. Metabolic engineering to modify flower color. Plant Cell Physiol. 39: 1119-1126.
- Tira-Umphon, A., J. P. Roustan and C. Chervin. 2007. The stimulation by ethylene of the UDP glucose-flavonoid 3-O-glucosyltransferase (UFGT) in grape tissues is independent from the MybA transcription factors. Vitis 46: 210-211.
- Tohge, T., Y. Nishiyama, M.Y. Hirai, M. Yano, J.I. Nakajima, M. Awazuhara, E.
 Inoue, H. Takahashi, D.B. Goodenowe, M. Kitayama, M. Noji, M. Yamazaki and K. Saito. 2005. Functional genomics by integrated analysis of metabolome and transcriptome of *Arabidopsis* plants over-expressing an MYB transcription factor. **Plant J.** 42: 218-235.
- Toledo-Ortiz, G., E. Huq and P.H. Quail. 2003. The *Arabidopsis* Basic/Helix-Loop-Helix transcription factor family. **Plant Cell** 15: 1749-1770.
- Tongdee, S.C. and A. Suwanagul. 1989. Postharvest mechanical damage in mangosteen. **ASEAN Food J**. 4(4): 151-155.

- Tsuda, T., M. Yamaguchi, C. Honda and T. Moriguchi. 2004. Expression of anthocyanin biosynthesis genes in the skin of peach and nectarine fruit. J. Amer. Soc. Hort. Sci. 129: 857–862.
- Ubi, B.E., C. Honda, H. Bessho, S. Kondo. M. Wada, S. Kobayashi, T. Moriguchi.
 2006. Expression analysis of anthocyanin biosynthesis genes in apple skin:
 Effect of UV-B and temperature. Plant Sci. 170: 571-578.
- VanGuilder, H.D., K.E. Vrana and W.M. Freeman. 2008. Twenty-five years of quantitative PCR for gene expression analysis. **BioTechniques** 44: 619-626.
- Walker, A.R., E. Lee, J. Bogs, D.A.J. McDavid, M.R. Thomas and S.P. Robinson. 2007. White grapes arose through the mutation of two similar and adjacent regulatory genes. **Plant J.** 49: 772-785.
- , P.A. Davison, A.C. Bolognesi-Winfield, C.M. James, N. Srinivasan, T.L. Blundell, J.J. Esch, M.D. Marks and J.C. Gray. 1999. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in *Arabidopsis*, encodes a WD40 repeat protein. **Plant Cell** 11: 1337-1349.
- Wang, H., O. Arakawa and Y. Motomura. 2000. Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonia-lyase (PAL) activity in 'Jonathan' apples. Postharvest Biol. Technol. 19: 123-128.
- Weston, K. 1998. Myb proteins in life, death and differentiation. Curr. Opin. Genet. Dev. 8: 76-81.
- Wills, R., B. McGlasson, D. Graham and D. Joyce. 2007. Postharvest: An Introduction to the Physiology and Handling of Fruit, Vegetables and Ornamentals (5th ed.). UNSW Press. Sydney.

- Wilson, T. and J.W. Hastings. 1998. BIOLUMINESCENCE. Annu. Rev. Cell. Dev. Biol. 14: 197-230.
- Winkel-Shirley, B. 2001. Flavonoid biosynthesis. a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126: 485-493.
- Wood, K.V., J.R. de Wet, N. Dewji and M. DeLuca. 1984. Synthesis of active firefly luciferase by *in vitro* translation of RNA obtained from adult lanterns.
 Biochem. Biophys. Res. Commun. 124: 592-596.
- Yamazaki, M., E. Yamagishi, Z. Gong, M. Fukuchi-Mizutani, Y. Fukui, Y. Tanaka, T. Kusumi, M. Yamaguchi and K. Saito. 2002. Two flavonoid glucosyltransferases from *Petunia hybrida*: molecular cloning, biochemical properties and developmentally regulated expression. **Plant Mol. Biol.** 48: 401-411.
- Yapwattanaphum, C., Subhadrabanhu, S. Sugiura, A., Yonemori, K. and Utsunomiya, N. 2002. Utilisation of some *Garcinia* species in Thailand.Acta Hort. 575(2): 563-570.
- Zhang, W., K. Chen, B. Zhang, C. Sun, C. Cai, C. Zhou, W. Xu, W. Zhang and I.B. Ferguson. 2005. Postharvest responses of Chinese bayberry fruit. Postharvest Biol. Technol. 37: 241-251.
- Zimmermann, I.M., M.A. Heim, B. Weisshaar and J.F. Uhrig. 2004. Comprehensive identification of *Arabidopsis thaliana* MYB transcription factors interacting with R/B-like BHLH proteins. **Plant J.** 40: 22-34.
- Zipper, H., H. Brunner, J. Bernhagen and F. Vitzthum. 2004. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucl. Acids Res. 32: e103.

Zuker, A., T. Tzfira, H. Ben-Meir, M. Ovadis, E. Shklarman, H. Itzhaki, G.
Forkmann, S. Martens, I. Neta-Sharir, D. Weiss and A. Vainstein. 2002.
Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol. Breeding 9: 33-41.

APPENDIX

Stage	L* value ¹	a* value ^{1,2}	b* value ¹	hue value ¹
0	68.8a	-7.9f	38.8a	101.5a
1	61.1b	1.0e	33.8b	88.1b
2	56.8c	11.8c	27.1c	66.4c
3	46.3d	21.7b	18.7d	40.8d
4	35.0e	30.1a	13.2e	23.7e
5	25.6f	17.8b	4.8f	15.1f
6	23.0f	4.9d	0.3g	3.7g
F-test	***	***	***	***

Appendix Table 1 Colour development (L*, a*, b* and hue value) of mangosteen fruit harvested at stage 1 compared to stage 0.

² The ¹values were x+100 transformed data and untransformed values were presented

Stage	L* value ¹	a* value ¹	b* value ¹	hue value ¹
1	24.5	4.9ab	0.47	5.23
2	23.6	4.9ab	0.40	4.69
3	22.9	5.6a	0.47	4.54
4	23.1	4.6b	046	5.57
5	23.6	4.7b	0.49	5.94
6	23.0	3.7c	0.26	4.13
F-test	ns	**	ns	ns

Appendix Table 2 Fruit colour (L*, a*, b* and hue value) of mangosteen at stage 6 developed from 6 different maturity stages.

ns = non-significantly different

Days after harvest (days)	Ethylene production $(mg kg^{-1} s^{-1})^1$
0	1.021
0.25	1.59kl
0.5	2.13kl
0.75	2.63jk
1.0	3.39ij
1.25	3.51ij
1.5	4.36hi
1.75	4.91gh
2.0	5.05gh
2.25	5.44fgh
2.5	5.99efg
2.75	6.46def
3.0	6.91cde
3.5	7.68abc
4.0	7.70abc
4.5	8.17ab
5.0	8.49a
6	8.00abc
7	7.81abc
8	7.90abc
9	7.17bcd
F-test	***

Appendix Table 3 Ethylene production (mg kg⁻¹ s⁻¹) of mangosteen fruit at stage 6 developed from 6 different maturity stages.

***= significantly different at $P \le 0.001$

1

Stage	Outer pericarp ¹	Inner pericarp ¹
1	3550.3d	312.5c
2	3629.4d	331.9c
3	3765.2cd	407.4bc
4	4239.9ab	488.8ab
5	4050.2bc	385.8bc
6	4509.9a	544.8a
F-test	***	**

Appendix Table 4 Total anthocyanin content (mg kg⁻¹) of mangosteen at stage 6 developed from 6 different maturity stages.

** = significantly different at $P \le 0.01$

Appendix Table 5 Fruit colour (hue value) of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μL L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μg L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μl L⁻¹ ethylene for 24 h +1 μg L⁻¹ 1-MCP for 12 h (E+M).

	Days after harvest											
Treatment	0	1	2	3	4	5	6	7	9	11	13	
Air (control)	88.9	28.1b	22.5b	17.6b	13.8c	11.6c	12.9b	10.2bc	5.8c			
ethylene	88.9	28.0b	21.9b	17.5b	13.9c	10.9c	9.7b	6.8c				
1-MCP	88.9	78.3a	75.9a	65.8a	66.1a	59.1a	52.1a	45.5a	23.5a	12.7	8.1	
E+M	88.9	29.2b	23.9b	23.4b	21.7d	21.0b	16.7b	17.9b	12.2b	10.3	5.6	
F-test	ns	***	***	***	***	***	***	***	***	na	na	

ns = non-significantly different

***= significantly different at $P \le 0.001$

Appendix Table 6Colour index (score) of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4
treatments; 1) air (control), 2) 200 μL L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μg L⁻¹ 1-MCP for 12 h
(1-MCP treatment) and 4) 200 μl L⁻¹ ethylene for 24 h +1 μg L⁻¹ 1-MCP for 12 h (E+M).

Treatment		Days after harvest											
	0	1	2	3	4	5	6	7	9	11	13		
Air (control)	1.0	3.7a	4.2a	4.5b	4.9b	5.1a	5.2a	5.8b	6.0a				
ethylene	1.0	3.8a	4.3a	4.9a	5.1a	5.2a	5.9a	6.0a					
1-MCP	1.0	1.2b	1.3c	1.9d	2.0c	1.9c	2.3d	2.8d	4.9b	5.0	5.8		
E+M	1.0	3.7a	3.9b	4.0c	4.2c	4.7b	4.7c	4.9c	5.4b	5.9	6.0		
F-test	ns	***	***	***	***	***	***	***	***	na	na		

ns = non-significantly different

***= significantly different at $P \le 0.001$

Appendix Table 7 Pericarp firmness (N) of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μL L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μg L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μl L⁻¹ ethylene for 24 h +1 μg L⁻¹ 1-MCP for 12 h (E+M).

Treatment		Days after harvest											
i reatment .	0	1	2	3	4	5	6	7	9	11	13		
Air (control)	815.0	105.3b	82.7b	65.8b	58.9a	49.1b	47.4b	47.9b	44.0a				
ethylene	815.0	97.2b	85.8b	68.4b	58.9a	57.4b	48.4b	42.9b					
1-MCP	815.0	224.0a	161.3a	103.9a	83.4a	73.1a	56.1ab	54.3a	47.4a	52.7	48.4		
E+M	815.0	106.7b	101.0b	80.3b	73.4a	68.6a	66.7a	54.8a	50.7a	56.5	43.4		
F-test	ns	***	**	**	ns	**	*	**	ns	na	na		

- ns = non-significantly different
- * = significantly different at $P \le 0.05$
- ** = significantly different at $P \le 0.01$
- ***= significantly different at $P \le 0.001$

Appendix Table 8Total anthocyanin content (mg kg⁻¹) of mangosteen fruit treated with the ethylene inhibitor 1-MCP following 4
treatments;1) air (control), 2) 200 μL L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μg L⁻¹ 1-MCP for 12 h
(1-MCP treatment) and 4) 200 μl L⁻¹ ethylene for 24 h +1 μg L⁻¹ 1-MCP for 12 h (E+M).

Treatment		Days after harvest ¹											
	0	1	2	3	4	5	6	7	9	11	13		
Air (control)	98.8	391.2a	582.3ab	832.6b	1307.0a	1630.5b	2131.2b	2944.8a	3428.8a				
ethylene	98.8	384.9a	667.0a	1284.4a	1312.4a	2028.7a	2491.1a	3239.8a					
1-MCP	98.8	131.5b	180.0c	262.0d	451.3b	590.5d	937.1c	967.7c	1893.3b	2192.0	2990.3		
E+M	98.8	422.3a	463.0b	518.5c	695.1b	997.2c	1073.6c	1402.1b	2015.3b	3039.7	2979.4		
F-test	ns	***	**	***	***	***	***	***	**	na	na		

- ns = non-significantly different
- ** = significantly different at $P \le 0.01$
- ***= significantly different at $P \le 0.001$

Treatment	Days after harvest ¹										
Treatment	0	1	2	3	4	5	6	7	9	11	13
Air (control)	88.9	34.9	21.1	18.1	13.1	13.3	11.1	5.7	7.4		
$15^{\circ}C (7 d) + 25^{\circ}C$	88.9	67.3	65.5	69.7	68.6	58.2	54.0	48.3	19.7	16.5	5.9
<i>t</i> -test	ns	**	***	***	***	*	***	***	***		

Appendix Table 9 Fruit colour (hue value) of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C.

Asterisks indicate a significant difference between mean values according to Student *t*-test

- ns = non-significantly different
- * = significantly different at $P \le 0.05$
- ** = significantly different at $P \le 0.01$

Treatment		Days after harvest ¹										
Treatment	0	1	2	3	4	5	6	7	9	11	13	
Air (control)	1.0	3.4	4.2	4.9	5.0	5.0	5.5	5.9	6.0			
$15^{\circ}C(7 d) + 25^{\circ}C$	1.0	1.3	1.7	2.1	2.0	2.2	2.7	2.8	4.7	5.3	6.0	
t-test	ns	***	***	***	***	***	***	***	***			

Appendix Table 10 Colour index (score) of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C.

Asterisks indicate a significant difference between mean values according to Student *t*-test

ns = non-significantly different

Treatment	Days after harvest ¹										
Treatment	0	1	2	3	4	5	6	7	9	11	13
Air (control)	815.0	132.2	75.3	65.0	61.2	52.2	59.1	43.8	45.7		
$15^{\circ}C(7 d) + 25^{\circ}C$	815.0	327.9	266.9	266.1	215.6	172.3	131.0	120.3	64.4	50.5	45.7
t-test	ns	**	*	***	*	*	**	***	**		

Appendix Table 11 Pericarp firmness (N) of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C.

Asterisks indicate a significant difference between mean values according to Student *t*-test

- ns = non-significantly different
- * = significantly different at $P \le 0.05$
- ** = significantly different at $P \le 0.01$

Appendix Table 12 Total anthocyanin content (mg kg⁻¹) of mangosteen fruit stored at 25°C (control) and 15°C for 7 days then transferred to 25°C.

Treatment		Days after harvest ¹										
Treatment	0	1	2	3	4	5	6	7	9	11	13	
Air (control)	98.8	275.2	790.7	871.9	1334.0	1849.3	2386.6	2931.7	3250.7			
$15^{\circ}C(7 d) + 25^{\circ}C$	98.8	167.2	222.6	270.5	497.7	347.1	435.2	484.0	1340.5	2023.2	3240.6	
F-test	ns	ns	ns	**	***	*	***	**	***			

¹ Asterisks indicate a significant difference between mean values according to Student *t*-test

ns = non-significantly different

* = significantly different at $P \le 0.05$

** = significantly different at $P \le 0.01$

Factor or sitename	Location	(Strand)	Signal sequence	SITE
-300ELEMENT	111	(+)	TGHAAARK	S000122
-300ELEMENT	1131	(+)	TGHAAARK	S000122
-300ELEMENT	1440	(+)	TGHAAARK	S000122
ABRELATERD1	37	(+)	ACGTG	S000414
ABRELATERD1	1786	(+)	ACGTG	S000414
ABRELATERD1	36	(-)	ACGTG	S000414
ABRELATERD1	1785	(-)	ACGTG	S000414
ABRERATCAL	36	(+)	MACGYGB	S000507
ABRERATCAL	1784	(-)	MACGYGB	S000507
ACGTABOX	1017	(+)	TACGTA	S000130
ACGTABOX	1017	(-)	TACGTA	S000130
ACGTATERD1	37	(+)	ACGT	S000415
ACGTATERD1	822	(+)	ACGT	S000415
ACGTATERD1	897	(+)	ACGT	S000415
ACGTATERD1	1018	(+)	ACGT	S000415
ACGTATERD1	1786	(+)	ACGT	S000415
ACGTATERD1	1801	(+)	ACGT	S000415
ACGTATERD1	1882	(+)	ACGT	S000415
ACGTATERD1	37	(-)	ACGT	S000415
ACGTATERD1	822	(-)	ACGT	S000415
ACGTATERD1	897	(-)	ACGT	S000415
ACGTATERD1	1018	(-)	ACGT	S000415
ACGTATERD1	1786	(-)	ACGT	S000415
ACGTATERD1	1801	(-)	ACGT	S000415
ACGTATERD1	1882	(-)	ACGT	S000415
AMYBOX1	1772	(-)	TAACARA	S000020
ANAERO2CONSENSUS	1709	(+)	AGCAGC	S000478
ANAERO3CONSENSUS	1329	(+)	TCATCAC	<u> S000479</u>
ARR1AT	1236	(+)	NGATT	S000454
ARR1AT	48	(+)	NGATT	S000454
ARR1AT	1140	(+)	NGATT	<u>S000454</u>
ARR1AT	1106	(+)	NGATT	<u>S000454</u>
ARR1AT	1664	(+)	NGATT	<u>S000454</u>
ARR1AT	265	(-)	NGATT	S000454
ARR1AT	386	(-)	NGATT	S000454
ARR1AT	484	(-)	NGATT	S000454
ARR1AT	563	(-)	NGATT	S000454

(-)

(–)

(-)

(-)

(-)

(-)

(-)

(–)

(-)

(-)

(+)

(+)

NGATT

NGATT

NGATT

NGATT

NGATT

NGATT

NGATT

NGATT

NGATT

TGACG

TGTCA

TGTCA

614

800

928

1152

1215

1276

1343

1379

1633

1802

554

1055

ARR1AT

ARR1AT

ARR1AT

ARR1AT

ARR1AT

ARR1AT

ARR1AT

ARR1AT

ARR1AT

BIHD10S

BIHD10S

ASF1MOTIFCAMV

Appendix Table 13 Cis-acting element in GmDFR 5' flanking region using PLACE database.

S000454

S000454

S000454

S000454

<u>S000454</u>

S000454

S000454

S000454

S000454

S000024

S000498

S000498

Factor or sitename	Location	(Strand) Signal sequence	SITE
BIHD10S	1204	(+)	TGTCA	S000498
BIHD10S	1944	(+)	TGTCA	S000498
BOXLCOREDCPAL	335	(+)	ACCWWCC	S000492
CAATBOX1	165	(+)	CAAT	S000028
CAATBOX1	483	(+)	CAAT	S000028
CAATBOX1	497	(+)	CAAT	S000028
CAATBOX1	562	(+)	CAAT	S000028
CAATBOX1	566	(+)	CAAT	S000028
CAATBOX1	586	(+)	CAAT	S000028
CAATBOX1	623	(+)	CAAT	S000028
CAATBOX1	911	(+)	CAAT	S000028
CAATBOX1	948	(+)	CAAT	S000028
CAATBOX1	1218	(+)	CAAT	S000028
CAATBOX1	1229	(+)	CAAT	S000028
CAATBOX1	1632	(+)	CAAT	S000028
CAATBOX1	1651	(+)	CAAT	S000028
CAATBOX1	1951	(+)	CAAT	S000028
CAATBOX1	50	(-)	CAAT	S000028
CAATBOX1	134	(-)	CAAT	S000028
CAATBOX1	499	(-)	CAAT	S000028
CAATBOX1	913	(-)	CAAT	<u>5000028</u>
CAATBOX1	1424	(-)	CAAT	<u>5000028</u>
CAATBOX1	1484	(-)	CAAT	5000028
CAATBOX1	1532	(-)	CAAT	<u>5000028</u>
CAATBOX1	1542	(-)	CAAT	<u>5000028</u>
CAATBOX1	1576	(-)	CAAT	<u>5000028</u>
CAATBOX1	1717	(-)	CAAT	<u>5000028</u>
CACGTGMOTIF		(+)	CACGTG	<u>5000042</u>
CACGTGMOTIF	1785	(+)	CACGTG	<u>S000042</u>
CACGTGMOTIF	36	(-)	CACGTG	<u>S000042</u>
CACGTGMOTIF	1785	(-)	CACGTG	<u>5000042</u>
	149	(+)	YACT	<u>5000012</u> 5000449
CACTETPPCA1	278	(+)	YACT	<u>5000449</u>
CACTETODCA 1	597	(+)	VACT	<u>5000119</u> 5000449
CACTETICAL CACTETIDCAL	709	(+)	VACT	<u>5000115</u> 5000449
CACTETICAL CACTETIDCAL	705	(+)	VACT	<u>5000119</u> 5000449
CACTFTDDCA1	1453	(+)	VACT	<u>S000449</u> S000449
	10/0	(+)	IACI VACT	<u>S000449</u>
	1040	(+)	IACI	<u>5000449</u>
	103 201	(+)	IACI VACT	<u>5000449</u>
	301	(+)	IACI	<u>5000449</u>
	404	(+)	IACI VACT	<u>S000449</u> S000449
	1026	(+)	IACI VACE	<u>5000449</u>
	1026 1756	(+)	IACI	5000449
	L/50	(+)	IACI	5000449
	1030 116	(+)	IACI	5000449
		(-)	IACT VACT	<u>SUUU449</u>
		(-)	IACT	5000449
CACTFTPPCAL	454	(-)	YAC'I'	<u>S000449</u>
CACTFTPPCAL	818	(-)	YAC'I'	<u>S000449</u>
CACTFTPPCA1	842	(-)	YACT	<u>S000449</u>

Factor or sitename	Location	(Strand) Signal sequence	SITE
CACTFTPPCA1	1009	(–)	YACT	<u>S000449</u>
CACTFTPPCA1	1339	(-)	YACT	S000449
CACTFTPPCA1	1475	(-)	YACT	S000449
CACTFTPPCA1	1546	(-)	YACT	S000449
CACTFTPPCA1	1549	(-)	YACT	S000449
CACTFTPPCA1	1660	(-)	YACT	S000449
CACTFTPPCA1	1695	(-)	YACT	S000449
CACTFTPPCA1	1698	(-)	YACT	S000449
CACTFTPPCA1	1779	(-)	YACT	S000449
CANBNNAPA	39	(-)	CNAACAC	S000148
CARGCW8GAT	599	(+)	CWWWWWWWWG	S000431
CARGCW8GAT	1526	(+)	CWWWWWWWWG	S000431
CARGCW8GAT	599	(-)	CWWWWWWWWG	S000431
CARGCW8GAT	1526	(-)	CWWWWWWWWG	S000431
CBFHV	1138	(-)	RYCGAC	S000497
CCA1ATLHCB1	1149	(+)	AAMAATCT	S000149
CCA1ATLHCB1	1273	(+)	AAMAATCT	S000149
CCAATBOX1	482	(+)	CCAAT	5000030
CCAATBOX1	496	(+)	CCAAT	5000030
CCAATBOX1	1950	(+)	CCAAT	5000030
CCAATBOX1	499	(-)	CCAAT	<u>5000030</u>
CCAATBOX1	1717	(-)	CCAAT	<u>5000030</u>
CTACADIANI.FI.HC	140	()	CAANNINATC	<u>S000050</u>
CIACADIANLELHC	478	(+) (+)	CAANNINATC	<u>S000252</u>
CIACADIANLELHC	146	(-)	CANNINNATC	<u>S000252</u>
	1266	() (+)		<u>S000252</u> S000491
	1886	(+) (+)	TATIAG	<u>S000491</u> S000491
	300	(+) (+)	CTAC	<u>S000491</u> S000493
CURECORECR	103	(+) (+)	CTAC	<u>2000493</u>
CURECORECK	403	(+)	GIAC	<u>2000493</u>
CURECORECR	200	(+)	GIAC	<u>200049</u>
CURECORECR	300	(-)	GIAC	<u>2000493</u>
CURECORECR	403	(-)	GIAC	<u>2000493</u>
DOECORECK	900 114	(-)	GIAC	<u>5000493</u>
DOFCOREZM	114	(+)	AAAG	<u>S000265</u>
DOFCOREZM	430	(+)	AAAG	5000265
DOFCOREZM	452	(+)	AAAG	5000265
DOFCOREZM	/26	(+)	AAAG	S000265
DOFCOREZM	793	(+)	AAAG	<u>S000265</u>
DOFCOREZM	1103	(+)	AAAG	<u>S000265</u>
DOFCOREZM	1135	(+)	AAAG	<u>S000265</u>
DOFCOREZM	1637	(+)	AAAG	<u>S000265</u>
DOFCOREZM	1644	(+)	AAAG	<u>S000265</u>
DOFCOREZM	1806	(+)	AAAG	<u>S000265</u>
DOFCOREZM	17	(-)	AAAG	<u>\$000265</u>
DOFCOREZM	151	(-)	AAAG	<u>\$000265</u>
DOFCOREZM	251	(–)	AAAG	<u> S000265</u>
DOFCOREZM	681	(–)	AAAG	<u>S000265</u>
DOFCOREZM	698	(-)	AAAG	<u>S000265</u>
DOFCOREZM	711	(-)	AAAG	<u>S000265</u>
DOFCOREZM	751	(-)	AAAG	S000265

Factor or sitename	Location	(Strand	l) Signal sequence	SITE
DOFCOREZM	777	(–)	AAAG	S000265
DOFCOREZM	803	(-)	AAAG	S000265
DOFCOREZM	813	(-)	AAAG	S000265
DOFCOREZM	869	(-)	AAAG	S000265
DOFCOREZM	880	(-)	AAAG	S000265
DOFCOREZM	996	(-)	AAAG	S000265
DOFCOREZM	1164	(-)	AAAG	S000265
DOFCOREZM	1258	(-)	AAAG	S000265
DOFCOREZM	1368	(-)	AAAG	S000265
DOFCOREZM	1488	(-)	AAAG	S000265
DOFCOREZM	1758	(-)	AAAG	S000265
DOFCOREZM	1962	(-)	AAAG	S000265
DPBFCOREDCDC3	1784	(+)	ACACNNG	S000292
DPBFCOREDCDC3	36	(-)	ACACNNG	S000292
E2FCONSENSUS	1717	(+)	WTTSSCSS	S000476
EBOXBNNAPA	4	(+)	CANNTG	S000144
EBOXBNNAPA	36	(+)	CANNTG	S000144
EBOXBNNAPA	487	(+)	CANNTG	<u>S000144</u>
EBOXBNNAPA	497	(+)	CANNTG	S000144
EBOXBNNAPA	911	(+)	CANNTG	<u>S000144</u>
EBOXBNNAPA	1785	(+)	CANNTG	<u>S000144</u>
EBOXBNNAPA	1901	(+)	CANNTG	<u>S000144</u>
EBOXBNNAPA	4	(-)	CANNTG	<u>S000144</u>
EBOXBNNAPA	36	(-)	CANNTG	<u>S000144</u>
EBOXBNNAPA	487	(-)	CANNTG	<u>S000144</u>
EBOXBNNAPA	497	(-)	CANNTG	<u>S000144</u>
EBOXBNNAPA	911	(-)	CANNTG	<u>S000144</u>
EBOXBNNAPA	1785	(-)	CANNTG	S000144
EBOXBNNAPA	1901	(-)	CANNTG	S000144
EECCRCAH1	775	(+)	GANTTNC	<u>5000494</u>
EECCRCAH1	785	(+)	GANTTNC	S000494
EECCRCAH1	638	(-)	GANTTNC	S000494
EECCRCAH1	916	(-)	GANTTNC	S000494
EECCRCAH1	1340	(-)	GANTTNC	S000494
ELRECOREPCRP1	135	(+)	TTGACC	S000142
ELRECOREPORP1	683	(+)	TTGACC	<u>5000142</u>
ELRECOREPORP1	1425	(+)	TTGACC	<u>5000142</u>
ELRECOREPORP1	1932	(+)	TTGACC	<u>5000142</u>
ELRECOREPORP1	1869	(-)	TTGACC	<u>S000142</u>
ERELEE4	655	(+)	ΑΨΤΤΟΆΑΑ	<u>5000017</u>
ERELEE4	1536	(-)	Α₩ΤΤĊΑΑΑ	<u>5000037</u>
GARE1OSREP1	1772	(-)	TAACAGA	<u>5000419</u>
GARE2OSREP1	820	(+)	ТААССТА	5000420
GAREAT	1470	(+)	TAACAAR	5000120
GAREAT	276	(-)	TAACAAR	5000439
GATABOX	101	(+)	GATA	5000439
GATABOX	1015	(+)	GATA	5000039
CATABOX	1015	(+) (+)	CATA	<u>8000039</u>
GATABOX	1407	(+) (+)	CATA	<u>8000039</u>
GATABOX	1815	(+)	GATA	5000039
	TOTJ	× · · /	~ * * * * *	

Factor or sitename	Location	(Strand	d) Signal sequence	SITE
GATABOX	231	(–)	GATA	<u>\$0000</u> 39
GATABOX	284	(-)	GATA	S000039
GATABOX	945	(-)	GATA	S000039
GATABOX	1046	(-)	GATA	S000039
GATABOX	1080	(-)	GATA	S000039
GATABOX	1447	(-)	GATA	S000039
GATABOX	1477	(-)	GATA	S000039
GT1CONSENSUS	179	(+)	GRWAAW	S000198
GT1CONSENSUS	547	(+)	GRWAAW	S000198
GT1CONSENSUS	715	(+)	GRWAAW	S000198
GT1CONSENSUS	1132	(+)	GRWAAW	S000198
GT1CONSENSUS	1242	(+)	GRWAAW	S000198
GT1CONSENSUS	1271	(+)	GRWAAW	S000198
GT1CONSENSUS	1293	(+)	GRWAAW	S000198
GT1CONSENSUS	1351	(+)	GRWAAW	S000198
GT1CONSENSUS	1352	(+)	GRWAAW	S000198
GT1CONSENSUS	1407	(+)	GRWAAW	S000198
GT1CONSENSUS	1441	(+)	GRWAAW	S000198
GT1CONSENSUS	1615	(+)	GRWAAW	S000198
GT1CONSENSUS	1736	(+)	GRWAAW	<u>S000198</u>
GT1CONSENSUS	221	(-)	GRWAAW	<u>S000198</u>
GT1CONSENSUS	415	(-)	GRWAAW	<u>5000198</u>
GT1CONSENSUS	568	(-)	GRWAAW	<u>5000198</u>
GT1CONSENSUS	1308	(-)	GRWAAW	<u>S000198</u>
GT1CONSENSUS	704	(-)	GRWAAW	<u>S000198</u>
GT1CONSENSUS	1078	(-)	GRWAAW	<u>5000198</u>
GT1CONSENSUS	1171	(-)	GRWAAW	<u>5000198</u>
GT1CONSENSUS	1172	(-)	GRWAAW	<u>5000198</u>
GT1CORE	448	(+)	GGTTA	<u>S000125</u>
GT1CORE	1552	(+)	GGTTAA	<u>S000125</u>
GT1GMSCAM4	1132	(+)	GAAAAA	<u>S000453</u>
GT1GMSCAM4	1271	(+)	GAAAAA	<u>S000453</u>
GT1GMSCAM4	1441	(+)	GAAAAA	<u>S000453</u>
GT1GMSCAM4	1171	(-)	CAAAAA	<u>S000453</u>
GTGANTG10	117	(+)	CTCL	<u>5000133</u> 5000378
GTGANTG10	1788	(+)	CTGA	<u>S000378</u>
GIGANIGIO GTGANTG10	25	(-)	GIGA	<u>S000370</u> S000378
CTCANTC10	1/10	()	CTCA	9000378
CTCANTC10	204	(-)	GIGA CTCA	<u>3000370</u> 9000270
GIGANIGIU CTCANTC10	204	(-)	GIGA	<u>5000376</u> 9000279
GIGANIGIU CTCANTC10	222	(-)	GIGA	<u>5000370</u> 9000270
GIGANIGIU CTCANTC10	222	(-)	GIGA	<u>5000376</u>
GIGANIGIO CTCINTCIO	550	(-)	GIGA CTCA	<u>2000270</u>
GIGANIGIU CTCANTCIO	596	(-)	GIGA	5000378
GIGANTGIU	1332	(-)	GTGA	5000378
GIGANIGIU	1946	(-)	GTGA AGEEA	5000378
HEAMOTIFTAH3H4	1801	(+)	ACGICA	<u>SUUUU53</u>
TROY	282	(-)	GATAAG	SUUU124
TROXCOKE	1407	(+)	GATAA	<u>S000199</u>
TROXCORE	230	(-)	GATAA	<u>S000199</u>
IBOXCORE IBOXCORE	230 283	(GATAA GATAA	<u> </u>

Factor or sitename	Location	(Strand) Signal sequence	SITE
IBOXCORE	1079	(-)	GATAA	S000199
IBOXCORENT	281	(-)	GATAAGR	S000424
INRNTPSADB	420	(+)	YTCANTYY	S000395
INRNTPSADB	326	(+)	YTCANTYY	S000395
INRNTPSADB	1500	(+)	YTCANTYY	S000395
INRNTPSADB	1540	(-)	YTCANTYY	S000395
INRNTPSADB	1818	(-)	YTCANTYY	S000395
MARTBOX	881	(+)	TTWTWTTWTT	S000067
MARTBOX	882	(+)	TTWTWTTWTT	S000067
MARTBOX	883	(+)	TTWTWTTWTT	S000067
MARTBOX	997	(+)	TTWTWTTWTT	S000067
MARTBOX	1165	(+)	TTWTWTTWTT	S000067
MARTBOX	1166	(+)	TTWTWTTWTT	S000067
MYB1AT	1551	(-)	WAACCA	S000408
MYB1LEPR	41	(+)	GTTAGTT	S000443
MYBILEPR	64	(+)	GTTAGTT	<u>5000443</u>
MYBILEPR	1467	(-)	GTTAGTT	<u>5000443</u>
MYB2AT	172	(+)	ТААСТС	<u>S000177</u>
MYB2AT	1436	(+)	ТААСТС	<u>S000177</u>
MVB2AT	1731	(+)	TAACTC	<u>S000177</u>
MVR2AT	1,51 62	(-)	TAACTC	<u>S000177</u>
MYR2AT	460	(-)	TAACIG	<u>S000177</u>
MYR2CONGENGUGAT	172	() (+)	XYYCKC IYYCIG	<u>S000177</u>
MUD2CONSENSUSAT	1/26	(+) (+)	VAACKC	<u>S000402</u>
MUBZCONSENSUSAI	1721	(+) (+)	TAACKG	<u>S000409</u>
MUBZCONSENSUSAI	1/31	(-)	TAACKG	<u>S000409</u>
MUBZCONSENSUSAI	460	(-)	TAACKG	<u>S000409</u>
MIDZCONSENSOSAI	400	() (_)		<u>S00040</u> S000176
MIBCORE	160	(+)	CNGIIK	<u>S000176</u>
MIBCORE	1722	(+)		<u>5000170</u>
MUDCODE	1722 1772	(+)		<u>S000176</u>
MUDCODE	173	(+)		<u>S000176</u>
MIBCORE	1426	(-)	CNGIIR	<u>S000176</u>
MIBCORE	1430	(-)	CNGIIR	5000176
MYBCORE	1/31	(-)	CNGTTR	<u>S000176</u>
MYBPLANI	334	(+)	MACCWAMC	<u>S000167</u>
MYBPZM	336	(+)	CCWACC	<u>S000179</u>
MYBSTI	231	(-)	GGATA	<u>S000180</u>
MYCATERD1	4	(-)	CATGTG	<u>S000413</u>
MYCATRD22	4	(+)	CACATG	<u>S000174</u>
MYCCONSENSUSAT	4	(+)	CANNTG	<u>S000407</u>
MYCCONSENSUSAT	36	(+)	CANNTG	<u>\$000407</u>
MYCCONSENSUSAT	487	(+)	CANNTG	<u> 8000407</u>
MYCCONSENSUSAT	497	(+)	CANNTG	<u> 8000407</u>
MYCCONSENSUSAT	911	(+)	CANNTG	<u> S000407</u>
MYCCONSENSUSAT	1785	(+)	CANNTG	<u> S000407</u>
MYCCONSENSUSAT	1901	(+)	CANNTG	<u> S000407</u>
MYCCONSENSUSAT	4	(-)	CANNTG	<u> S000407</u>
MYCCONSENSUSAT	36	(-)	CANNTG	<u> \$000407</u>
MYCCONSENSUSAT	487	(-)	CANNTG	<u>\$000407</u>
MYCCONSENSUSAT	497	(-)	CANNTG	S000407

Factor or sitename	Location	(Strand) Signal sequence	SITE
MYCCONSENSUSAT	911	(–)	CANNTG	S000407
MYCCONSENSUSAT	1785	(-)	CANNTG	S000407
MYCCONSENSUSAT	1901	(-)	CANNTG	S00040
NAPINMOTIFBN	1419	(+)	TACACAT	S000070
NODCON1GM	801	(-)	AAAGAT	S000461
NODCON1GM	1162	(-)	AAAGAT	S00046
NODCON1GM	1960	(-)	AAAGAT	S00046
NODCON2GM	280	(+)	CTCTT	S000462
NODCON2GM	537	(+)	CTCTT	S000462
NODCON2GM	679	(+)	CTCTT	S000462
NODCON2GM	696	(+)	CTCTT	S000462
NODCON2GM	867	(+)	CTCTT	S000462
NODCON2GM	878	(+)	CTCTT	S000462
NODCON2GM	1279	(+)	CTCTT	S000462
NTBBF1ARROLB	451	(-)	ACTTA	S00027
OSE1ROOTNODULE	801	(-)	АААДАТ	S00046
OSE1ROOTNODULE	1162	(-)	АААДАТ	<u>500046</u>
OSE1ROOTNODULE	1960	(-)	АААДАТ	<u>500046</u>
OSE 2 ROOTNODULE	280	(+)	CTCTT	5000468
OSE2ROOTNODULE	537	(+)	CTCTT	<u>5000468</u>
OSE2ROOTNODULE	679	(+)	CTCTT	<u>5000468</u>
OSE2ROOTNODULE	696	(+)	CTCTT	<u>5000468</u>
OSE2ROOTNODULE	867	(+)	CTCTT	<u>5000468</u>
OSE2ROOTNODULE	878	(+)	CTCTT	<u>5000100</u>
OSE2ROOTNODULE	1279	(+)	CTCTT	<u>5000100</u> 5000468
DALBOXDDC	570	(+)		<u>S000130</u>
	243	(+)		<u>S000130</u>
DOLASIGI	1099	(+)	ΔΔΤΔΔΔ	500008
	1196	(+)	λαπλλ	<u>S00008</u>
	1/10	(+) (+)		<u>5000000</u>
	1410	(+)		<u>2000080</u>
	1001	(-)		<u>5000080</u>
	1001	(-) (+)		<u>200008</u>
	1202	(+)		<u>200000</u>
	1392	(-)		<u>500008</u>
POLASIGS	1050	(+)		500008
POLASIGS	1059	(-)		500008
POLASIG3	1120	(-)		5000088
POLASIG3	1208	(-)		<u>S000088</u>
POLASIG3	1529	(-)	AATAAT	<u>S000088</u>
POLASIG3	1953	(-)	AATAAT	<u>S000088</u>
POLLENILELAT52	762	(+)	AGAAA	<u>S00024</u>
POLLENILELAT52	1270	(+)	AGAAA	<u>S00024</u>
POLLENILELAT52	1614	(+)	AGAAA	<u>S00024</u>
POLLEN1LELAT52	18	(-)	AGAAA	S00024
POLLEN1LELAT52	788	(-)	AGAAA	S00024
POLLENILELAT52	1504	(-)	AGAAA	S00024
POLLEN1LELAT52	1925	(-)	AGAAA	S00024
PREATPRODH	1849	(+)	ACTCAT	<u>S00045</u>
PROLAMINBOXOSGLUB1	111	(+)	TGCAAAG	<u>\$000354</u>
PYRIMIDINEBOXHVEPB1	1170	(+)	TTTTTTCC	S000298

Factor or sitename	Location	(Strand) Signal sequence	SITE
PYRIMIDINEBOXOSRAMY1A	812	(+)	CCTTTT	S00025
PYRIMIDINEBOXOSRAMY1A	995	(+)	CCTTTT	S00025
PYRIMIDINEBOXOSRAMY1A	1102	(-)	CCTTTT	S00025
PYRIMIDINEBOXOSRAMY1A	1643	(-)	CCTTTT	S00025
RAV1AAT	573	(+)	CAACA	S00031
RAV1AAT	1511	(-)	CAACA	S00031
RAV1AAT	1930	(-)	CAACA	S00031
RHERPATEXPA7	310	(+)	KCACGW	S00051
RHERPATEXPA7	35	(+)	KCACGW	S00051
RHERPATEXPA7	1786	(-)	KCACGW	S00051
ROOTMOTIFTAPOX1	413	(+)	ATATT	S00009
ROOTMOTIFTAPOX1	1265	(+)	ATATT	S00009
ROOTMOTIFTAPOX1	1415	(+)	ATATT	S00009
ROOTMOTIFTAPOX1	1583	(+)	ATATT	S00009
ROOTMOTIFTAPOX1	1619	(+)	АТАТТ	500009
ROOTMOTIFTAPOX1	1938	(+)	АТАТТ	<u>500009</u>
ROOTMOTIFTAPOX1	943	(-)	АТАТТ	<u>500009</u>
ROOTMOTIFTAPOX1	1179	(-)	АТАТТ	500009
ROOTMOTIFTAPOX1	1414	(-)	ΔΤΑΤΤ	<u>500009</u>
ROOTMOTIFTAPOX1	1445	(-)	ΔጥΔጥጥ	<u>500009</u>
	1618	(-)	ΔጥΔጥጥ	<u>500009</u>
	1857	(-)	ΔጥΔጥጥ	<u>500009</u>
RYREPEATENNAPA	635	(+)	CATGCA	<u>500005</u>
S1FBOXSORDS1L21	297	(+)	атаата	500020
S1FBOXSORDS1L21	2227	(-)	ATCOTA	500022
STRECONSSTOR10A	553	()	VTCTCWC	500022
SEBECONSSTER10A	1943	(+)	YTGTOWC	500039
SEF1MOTIF	1410	(-)	ΔΤΔΤΤΤΔWW	<u>S00000</u>
SEF4MOTIFGM7S	1050	(+)	RTTTTTR	<u>S00010</u>
SEF4MOTIFGM7S	755	(-)	RTTTTR	<u>500010</u>
SEF 4MOTIFCM7S	1603	(-)	RTTTTTR RTTTTTR	500010
SEF4MOTIFGM7S	1965	(-)	RTTTTR	<u>S00010</u>
	1792	(+)	TCCCCV	<u>S00047</u>
TIATCYTC	1712	(-)	TCCCCV	<u>500047</u>
TIATCYTC	1808	(-)	TCCCCV	<u>500017</u> 500047
IIATCITC IIATCVTC	216	(-)	TCCCCY	<u>S00017</u>
	503	() (_)		<u>200049</u>
	1/51	(+)	GCCAC	<u>500040</u>
	1946	(+)	GCCAC	<u>500040</u>
	1040	(+)	GCCAC	<u>500040</u>
SOUTILIU SOUTILIU	50 1707	(-)	CCCCC	<u>200048</u>
	1723 216	(+)		<u>500048</u>
	210	(-)		500048
SKEAIMSU	230	(+)		500047
SURECOREATSULIRII	409	(-)	GAGAC	500049
SURECUREAISULIRII	1750	(-)	GAGAC	500049
SV4UCUKEENHAN	1/58 425	(-)	GIGGWWHG	<u>S00012</u>
TAAAGSTKSTI	435	(+)	TAAAG	<u>S00038</u>
TAAAGSTKST1	451	(+)	TAAAG	<u>S00038</u>
TAAAGSTKST1	792	(+)	TAAAG	S00038

Factor or sitename	Location	(Strand	l) Signal sequence	SITE
TAAAGSTKST1	1962	(–)	TAAAG	S000387
TATABOX2	600	(+)	TATAAAT	S000109
TATABOX2	1562	(+)	TATAAAT	S000109
TATABOX2	1356	(-)	TATAAAT	S000109
TATABOX3	1061	(+)	TATTAAT	S000110
TATABOX4	1359	(+)	TATATAA	S000111
TATABOX4	1859	(+)	ТАТАТАА	S000111
TATABOX4	1186	(-)	ΤΑΤΑΤΑΑ	S000111
TATABOX4	1358	(-)	ΤΑΤΑΤΑΑ	S000111
TATABOX5	93	(+)	TTATTT	S000203
ΤΑΤΑΒΟΧ5	1039	(+)	TTATT	5000203
ΤΑΤΑΒΟΧ5	1121	(+)	 	<u>5000203</u>
ΤΑΤΑΒΟΧ5	242	(-)	 	<u>5000203</u>
ΤΑΤΑΒΟΧ5	1098	(-)	 	<u>5000203</u>
TATABOXOSPAL	1156	(+)	 ͲΔͲͲͲΔΔ	<u>S000400</u>
TATAPVTRNALEII	1357	(+)	ͲͲͲϪͲϪͲϪ	<u>5000340</u>
TATADVTRNALEU	1859	(-)	ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ	<u>5000340</u>
TATCCAOSAMY	231	(+)		5000403
TROXATGAPB	150	(+)	ACTTTG	5000383
TROXATCADE	710	(+)	ACTTTC	5000383
TBOXATGADB	113	(-)	ACTITC	<u>5000303</u> 5000383
TBOXATGADB	1636	(-)	ACTITC	5000383
TGACGTVMAMY	1801	(-)	TGACGT	<u>S000303</u> S000377
TGTCACACMCUCUMISIN	554	() (+)	таталал	<u>S000377</u> S000422
TGICACACMCOCOMISIN	1655	(-)	AMNAUCCC	<u>2000422</u>
TRANSINI IDICOIS	1655	(-)	RMNAUGGC	<u>S000201</u>
IICANSINI IMONOCOIS	216	() (+)	CCCCAWWW	S000202 S000471
WRROYDCWRKV1	682	(+) (+)	TTTCACV	<u>S000471</u> S000310
WDDOXFCWRRTI WDDOXDCWDKV1	002 770	(+) (+)	TTTCACY	<u>2000310</u>
WDDOXFCWRRTI WDDOXDCWDKV1	227	(-)	TTTCACT	<u>2000310</u>
WBBOAPCWRRII WBBOAPCWBRV1	1630	(-)		<u>2000310</u>
WBBOXFCWRRTT WBOXATNDD1	135	() (+)	TTCAC	5000310
	£83	(+) (+)	TTCAC	8000300
WDOXAINPRI WDOXATNDD1	003 772	(+)	TTCAC	<u>2000390</u>
	1/25	(+)	TIGAC	<u>5000390</u>
	1022	(+)		<u>5000390</u>
	1932	(+)	TIGAC	<u>5000390</u>
	230	(-)		<u>5000390</u>
	1040	(-)		<u>5000390</u>
	1003	(-)	TIGAC	<u>5000390</u>
WBOXAINPRI	110	(-)	TIGAC	5000390
WBUAHVISUI	118	(+)		5000442
WBUAHVISUI	491	(+)		5000442
WBOXHVISUI	//4	(+)	TGACT TGACT	<u>SUUU442</u>
WBOXHVISUI	1558	(+)	TGACT TGACT	5000442
WBOXHVISUI	237	(-)	TGACT	5000442
MROXHAT201	1639	(-)	TGACT	<u>S000442</u>
WBOXN'I'E'RF'3	118	(+)	TGACY	<u>S000457</u>
WBOXNTERF3	136	(+)	TGACY	<u>S000457</u>
WBOXNTERF3	491	(+)	TGACY	S000457

Factor or sitename	Location	(Strand) Signal sequence	SITE
WBOXNTERF3	684	(+) TGACY	S000457
WBOXNTERF3	774	(+) TGACY	S000457
WBOXNTERF3	1426	(+) TGACY	S000457
WBOXNTERF3	1558	(+) TGACY	S000457
WBOXNTERF3	1933	(+) TGACY	S000457
WBOXNTERF3	237	(-) TGACY	S000457
WBOXNTERF3	1639	(-) TGACY	S000457
WBOXNTERF3	9	(-) TGACY	S000457
WBOXNTERF3	1249	(-) TGACY	S000457
WBOXNTERF3	1869	(-) TGACY	S000457
WRKY710S	118	(+) TGAC	S000447
WRKY710S	136	(+) TGAC	S000447
WRKY710S	491	(+) TGAC	S000447
WRKY710S	684	(+) TGAC	S000447
WRKY710S	774	(+) TGAC	S000447
WRKY710S	1426	(+) TGAC	S000447
WRKY710S	1558	(+) TGAC	S000447
WRKY710S	1933	(+) TGAC	S000447
WRKY710S	10	(-) TGAC	S000447
WRKY710S	238	(-) TGAC	S000447
WRKY710S	555	(-) TGAC	S000447
WRKY710S	1056	(-) TGAC	S000447
WRKY710S	1127	(-) TGAC	S000447
WRKY710S	1205	(–) TGAC	S000447
WRKY710S	1250	(-) TGAC	S000447
WRKY710S	1640	(-) TGAC	S000447
WRKY710S	1803	(–) TGAC	S000447
WRKY710S	1870	(–) TGAC	S000447
WRKY710S	1945	(-) TGAC	S000447

Factor or sitename	Location	(Strand) Signal sequence	SITE
ABRELATERD1	227	(+)	ACGTG	S000414
ABRELATERD1	311	(+)	ACGTG	S000414
ABRELATERD1	310	(-)	ACGTG	S000414
ABRERATCAL	226	(+)	MACGYGB	S000507
ABRERATCAL	310	(+)	MACGYGB	S000507
ACGTATERD1	227	(+)	ACGT	S000415
ACGTATERD1	311	(+)	ACGT	S000415
ACGTATERD1	227	(-)	ACGT	S000415
ACGTATERD1	311	(-)	ACGT	S000415
ARR1AT	98	(-)	NGATT	S000454
ARR1AT	318	(-)	NGATT	S000454
BIHD10S	240	(+)	TGTCA	S000498
BIHD10S	26	(-)	TGTCA	S000498
BOXCPSAS1	482	(+)	CTCCCAC	S000226
BOXLCOREDCPAL	332	(+)	ACCWWCC	S000492
BOXLCOREDCPAL	357	(+)	ACCWWCC	S000492
BOXLCOREDCPAL	439	(+)	ACCWWCC	S000492
BP50SWX	225	(+)	CAACGTG	S000436
CAATBOX1	9	(+)	CAAT	S000028
CAATBOX1	238	(-)	CAAT	S000028
CACGTGMOTIF	310	(+)	CACGTG	S000042
CACGTGMOTIF	310	(-)	CACGTG	S000042
CACTFTPPCA1	16	(+)	YACT	S000449
CACTFTPPCA1	151	(+)	YACT	S000449
CACTFTPPCA1	388	(+)	YACT	S000449
CACTFTPPCA1	395	(+)	YACT	S000449
CACTFTPPCA1	143	(+)	YACT	S000449
CACTFTPPCA1	284	(+)	YACT	S000449
CACTFTPPCA1	72	(-)	YACT	S000449
CACTFTPPCA1	119	(-)	YACT	S000449
CACTFTPPCA1	137	(-)	YACT	S000449
CACTFTPPCA1	201	(-)	YACT	S000449
CACTFTPPCA1	346	(-)	YACT	S000449
CATATGGMSAUR	22	(+)	CATATG	S000370
CATATGGMSAUR	22	(-)	CATATG	S000370
CPBCSPOR	68	(+)	TATTAG	S000491
CURECORECR	142	(+)	GTAC	S000493
CURECORECR	142	(-)	GTAC	S000493
DOFCOREZM	63	(+)	AAAG	S000265
DOFCOREZM	165	(+)	AAAG	S000265
DOFCOREZM	420	(+)	AAAG	S000265
DOFCOREZM	501	(+)	AAAG	S000265
DOFCOREZM	18	(-)	AAAG	S000265
DOFCOREZM	132	(-)	AAAG	S000265
DOFCOREZM	153	(-)	AAAG	S000265
DOFCOREZM	171	(-)	AAAG	S000265
DPBFCOREDCDC3	310	(-)	ACACNNG	S000292
EBOXBNNAPA	22	(+)	CANNTG	S000144

Factor or sitename	Location	(Strand	l) Signal sequence	SITE
EBOXBNNAPA	310	(+)	CANNTG	<u>S000144</u>
EBOXBNNAPA	22	(–)	CANNTG	S000144
EBOXBNNAPA	310	(–)	CANNTG	S000144
EECCRCAH1	315	(-)	GANTTNC	S000494
EECCRCAH1	368	(-)	GANTTNC	S000494
GATABOX	66	(+)	GATA	S000039
GATABOX	88	(-)	GATA	S000039
GATABOX	177	(-)	GATA	S000039
GATABOX	404	(-)	GATA	S000039
GT1CONSENSUS	60	(+)	GRWAAW	S000198
GT1CONSENSUS	86	(-)	GRWAAW	S000198
GT1CONSENSUS	47	(-)	GRWAAW	S000198
GT1CONSENSUS	175	(-)	GRWAAW	S000198
GT1CORE	261	(-)	GGTTAA	S000125
GT1CORE	436	(-)	GGTTAA	S000125
GT1GMSCAM4	60	(+)	GAAAAA	S000453
GT1GMSCAM4	47	(-)	GAAAAA	S000453
GTGANTG10	296	(+)	GTGA	<u>S000378</u>
GTGANTG10	302	(-)	GTGA	<u>S000378</u>
GTGANTG10	309	(-)	GTGA	S000378
GTGANTG10	355	(-)	GTGA	<u>5000378</u>
TROX	402	(-)	GATAAG	<u>S000124</u>
TBOXCORE	87	(-)	GATAA	<u>S000121</u>
TBOXCORF	176	(-)	CATAA	<u>S000199</u>
IBOXCORE	403	(-)	CATAA	<u>S000199</u>
LTRF1HVBLT49	81	(+)	CCCAAA	<u>S000155</u>
	493	(-)	ᠬᡎᠮ᠕ᡎᠮ᠕ᡢ᠇᠇	<u>S000250</u>
MARTBOX	493	(-)		<u>S000007</u>
MARIBUA MYD1 AT	101	(-)		<u>3000007</u>
	104	(+)	WAACCA	<u>S000408</u>
	204	(+)	WAACCA	<u>S000408</u>
MUDIAI	200	(-)		<u>S000408</u>
	200	(-)	ACCC	<u>S000173</u>
MIBCOREAICICBL	190	(+)	AACGG	<u>5000502</u>
	185	(+)	MACCWAMC	<u>S000167</u>
MYBPZM	329	(+)	CCWACC	<u>S000179</u>
MYBPZM	444	(+)	CCWACC	<u>S000179</u>
MYCCONSENSUSAT	22	(+)	CANNTG	<u>S000407</u>
MYCCONSENSUSAT	310	(+)	CANNTG	<u>S000407</u>
MYCCONSENSUSAT	22	(-)	CANNTG	<u>S000407</u>
MYCCONSENSUSAT	310	(-)	CANNTG	<u>S000407</u>
NODCON1GM	63	(+)	AAAGAT	<u>S000461</u>
NTBBF1ARROLB	152	(+)	ACTTTA	<u>S000273</u>
NTBBF1ARROLB	164	(-)	ACTTTA	<u>\$000273</u>
OSE1ROOTNODULE	63	(+)	AAAGAT	<u>\$000467</u>
POLLEN1LELAT52	269	(+)	AGAAA	<u>S000245</u>
POLLEN1LELAT52	367	(+)	AGAAA	<u>S000245</u>
POLLEN1LELAT52	49	(-)	AGAAA	S000245
REALPHALGLHCB21	185	(+)	AACCAA	<u>S000362</u>
RHERPATEXPA7	309	(+)	KCACGW	<u>S000512</u>
rherpatexpa7	227	(–)	KCACGW	S000512

Factor or sitename	Location	(Strand)) Signal sequence	SITE
ROOTMOTIFTAPOX1	43	(+)	ATATT	S000098
ROOTMOTIFTAPOX1	67	(+)	ATATT	S000098
ROOTMOTIFTAPOX1	464	(-)	ATATT	S000098
SEF1MOTIF	460	(-)	ATATTTAWW	S000006
SEF4MOTIFGM7S	94	(-)	RTTTTTR	S000103
SURE2STPAT21	116	(-)	AATACTAAT	S000185
T/GBOXATPIN2	226	(+)	AACGTG	S000458
TAAAGSTKST1	164	(+)	TAAAG	S000387
TAAAGSTKST1	153	(-)	TAAAG	S000387
TATABOXOSPAL	461	(-)	TATTTAA	S000400
WBOXATNPR1	241	(-)	TTGAC	S000390
WBOXHVISO1	300	(-)	TGACT	S000442
WBOXNTCHN48	321	(+)	CTGACY	S000508
WBOXNTERF3	322	(+)	TGACY	S000457
WBOXNTERF3	300	(-)	TGACY	S000457
WRKY710S	26	(+)	TGAC	S000447
WRKY710S	322	(+)	TGAC	S000447
WRKY710S	241	(-)	TGAC	S000447
WRKY710S	301	(-)	TGAC	S000447
WUSATAg	458	(-)	TTAATGG	S000433

Factor or sitename	Location	(Strand) Signal sequence	SITE
-300CORE	1085	(–)	TGTAAAG	S000001
-300ELEMENT	1084	(-)	TGHAAARK	S000122
-300ELEMENT	1221	(-)	TGHAAARK	S000122
ABRELATERD1	821	(+)	ACGTG	S000414
ABRELATERD1	996	(+)	ACGTG	S000414
ABRELATERD1	982	(–)	ACGTG	S000414
ABREOSRAB21	821	(+)	ACGTSSSC	S000012
ABRERATCAL	820	(+)	MACGYGB	S000507
ABRERATCAL	995	(+)	MACGYGB	S000507
ACGTABREMOTIFA2OSEM	996	(+)	ACGTGKC	S000394
ACGTATERD1	821	(+)	ACGT	S000415
ACGTATERD1	983	(+)	ACGT	S000415
ACGTATERD1	996	(+)	ACGT	S000415
ACGTATERD1	821	(–)	ACGT	S000415
ACGTATERD1	983	(–)	ACGT	S000415
ACGTATERD1	996	(–)	ACGT	S000415
ANAERO1CONSENSUS	1053	(–)	AAACAAA	S000477
ANAERO2CONSENSUS	777	(+)	AGCAGC	S000478
ARR1AT	46	(+)	NGATT	S000454
ARR1AT	1136	(+)	NGATT	S000454
ARR1AT	622	(+)	NGATT	S000454
ARR1AT	81	(–)	NGATT	S000454
ARR1AT	389	(–)	NGATT	S000454
ARR1AT	441	(-)	NGATT	S000454
ARR1AT	979	(–)	NGATT	S000454
ARR1AT	1022	(–)	NGATT	S000454
ARR1AT	1153	(–)	NGATT	S000454
ARR1AT	1237	(-)	NGATT	S000454
ARR1AT	1363	(–)	NGATT	S000454
ARR1AT	1464	(–)	NGATT	S000454
BIHD10S	839	(+)	TGTCA	S000498
BIHD10S	1374	(+)	TGTCA	S000498
BIHD10S	207	(-)	TGTCA	S000498
BIHD10S	1384	(-)	TGTCA	S000498
BOXCPSAS1	912	(+)	CTCCCAC	S000226
BOXIIPCCHS	996	(+)	ACGTGGC	S000229
BOXLCOREDCPAL	150	(+)	ACCWWCC	S000492
BP50SWX	994	(+)	CAACGTG	S000436
BS1EGCCR	1185	(+)	AGCGGG	S000352
CAATBOX1	164	(+)	CAAT	S000028
CAATBOX1	336	(+)	CAAT	S000028
CAATBOX1	388	(+)	CAAT	S000028
CAATBOX1	449	(+)	CAAT	S000028
CAATBOX1	851	(+)	CAAT	S000028
CAATBOX1	958	(+)	CAAT	S000028
CAATBOX1	1021	(+)	CAAT	S000028
CAATBOX1	1173	(+)	CAAT	S000028
CAATBOX1	1213	(+)	CAAT	S000028
CAATBOX1	1331	(+)	CAAT	S000028

Factor or sitename	Location	(Strand) Signal sequence	SITE
CAATBOX1	1420	(+)	CAAT	S000028
CAATBOX1	544	(-)	CAAT	S000028
CAATBOX1	761	(-)	CAAT	S000028
CAATBOX1	925	(-)	CAAT	S000028
CAATBOX1	1010	(-)	CAAT	S000028
CAATBOX1	1120	(-)	CAAT	S000028
CAATBOX1	1138	(-)	CAAT	S000028
CACTFTPPCA1	210	(+)	YACT	S000449
CACTFTPPCA1	324	(+)	YACT	S000449
CACTFTPPCA1	931	(+)	YACT	S000449
CACTFTPPCA1	1401	(+)	YACT	S000449
CACTFTPPCA1	1436	(+)	YACT	S000449
CACTFTPPCA1	1443	(+)	YACT	S000449
CACTFTPPCA1	1458	(+)	YACT	S000449
CACTFTPPCA1	1471	(+)	YACT	S000449
CACTFTPPCA1	1475	(+)	YACT	S000449
CACTFTPPCA1	466	(+)	YACT	S000449
CACTFTPPCA1	476	(+)	YACT	S000449
CACTFTPPCA1	688	(+)	YACT	S000449
CACTFTPPCA1	799	(+)	YACT	S000449
CACTFTPPCA1	1176	(+)	YACT	S000449
CACTFTPPCA1	1208	(+)	YACT	S000449
CACTFTPPCA1	425	(-)	YACT	S000449
CACTFTPPCA1	474	(-)	YACT	S000449
CACTFTPPCA1	747	(-)	YACT	S000449
CACTFTPPCA1	902	(-)	YACT	S000449
CACTFTPPCA1	1270	(-)	YACT	S000449
CAREOSREP1	1405	(+)	CAACTC	S000421
CAREOSREP1	1447	(+)	CAACTC	S000421
CARGCW8GAT	287	(+)	CWWWWWWWWG	S000431
CARGCW8GAT	1366	(+)	CWWWWWWWWG	S000431
CARGCW8GAT	287	(-)	CWWWWWWWWG	S000431
CARGCW8GAT	1366	(-)	CWWWWWWWWG	S000431
CATATGGMSAUR	942	(+)	CATATG	S000370
CATATGGMSAUR	942	(-)	CATATG	S000370
CCAATBOX1	448	(+)	CCAAT	S000030
CCAATBOX1	957	(+)	CCAAT	S000030
CCAATBOX1	1212	(+)	CCAAT	S000030
CEREGLUBOX2PSLEGA	167	(+)	TGAAAACT	S000033
CGACGOSAMY3	705	(-)	CGACG	S000205
CPBCSPOR	551	(+)	TATTAG	S000491
CPBCSPOR	1129	(+)	TATTAG	S000491
CPBCSPOR	462	(-)	TATTAG	S000491
CURECORECR	475	(+)	GTAC	S000493
CURECORECR	1016	(+)	GTAC	S000493
CURECORECR	475	(-)	GTAC	S000493
CURECORECR	1016	(-)	GTAC	S000493
DOFCOREZM	2.0	(+)	AAAG	S000265
DOFCOREZM	224	(+)	AAAG	S000265
DOFCOREZM	481	(+)	AAAG	5000265

Factor or sitename	Location	(Strand) Signal sequence	SITE
DOFCOREZM	720	(+)	AAAG	S000265
DOFCOREZM	1501	(+)	AAAG	S000265
DOFCOREZM	405	(-)	AAAG	S000265
DOFCOREZM	528	(-)	AAAG	S000265
DOFCOREZM	535	(-)	AAAG	S000265
DOFCOREZM	662	(-)	AAAG	S000265
DOFCOREZM	732	(-)	AAAG	S000265
DOFCOREZM	796	(-)	AAAG	S000265
DOFCOREZM	952	(-)	AAAG	S000265
DOFCOREZM	1085	(-)	AAAG	S000265
DOFCOREZM	1222	(-)	AAAG	S000265
DOFCOREZM	1252	(-)	AAAG	S000265
DOFCOREZM	1288	(-)	AAAG	S000265
DOFCOREZM	1366	(-)	AAAG	S000265
DOFCOREZM	1493	(-)	AAAG	S000265
DPBFCOREDCDC3	348	(+)	ACACNNG	S000292
DPBFCOREDCDC3	1435	(+)	ACACNNG	S000292
E2FCONSENSUS	1057	(+)	WTTSSCSS	S000476
EBOXBNNAPA	309	(+)	CANNTG	S000144
EBOXBNNAPA	324	(+)	CANNTG	S000144
EBOXBNNAPA	517	(+)	CANNTG	S000144
EBOXBNNAPA	642	(+)	CANNTG	S000144
EBOXBNNAPA	942	(+)	CANNTG	S000144
EBOXBNNAPA	1099	(+)	CANNTG	S000144
EBOXBNNAPA	1197	(+)	CANNTG	S000144
EBOXBNNAPA	1436	(+)	CANNTG	S000144
EBOXBNNAPA	309	(-)	CANNTG	S000144
EBOXBNNAPA	324	(-)	CANNTG	S000144
EBOXBNNAPA	517	(-)	CANNTG	S000144
EBOXBNNAPA	642	(-)	CANNTG	S000144
EBOXBNNAPA	942	(-)	CANNTG	S000144
EBOXBNNAPA	1099	(-)	CANNTG	S000144
EBOXBNNAPA	1197	(-)	CANNTG	S000144
EBOXBNNAPA	1436	(-)	CANNTG	S000144
EECCRCAH1	804	(+)	GANTTNC	S000494
EECCRCAH1	1345	(+)	GANTTNC	S000494
EECCRCAH1	377	(-)	GANTTNC	S000494
ELRECOREPCRP1	303	(-)	TTGACC	S000142
ELRECOREPORP1	1328	(-)	TTGACC	<u>5000142</u>
EMHVCHORD	1084	(-)	тдтааадт	S000452
GATABOX	87	(+)	GATA	S000039
GATABOX	968	(+)	GATA	5000039
GATABOX	1141	(+)	GATA	5000039
GATABOX	1143	(-)	GATA	5000039
GT1CONSENSUS	27 27	(+)	GRWAAW	5000000
GT1CONSENSUS	1261	(+)	GRWAAW	5000198
GT1CONSENSUS	1201 48	(-)	GRWAAW	5000198
GT1CONSENSUS	1106	$\left(- \right)$	GRWAAW	S000198
GT1CONSENSUS	1206	$\left(- \right)$	GRWAAW	S000198
CT1CONCENCIC	100		CDWAAW	<u>2000100</u>

Appendix	Table 15	(Continued).
----------	----------	--------------

Factor or sitename	Location	Location (Strand) Signal sequence			
GT1CORE	530	(-)	GGTTAA	S00012	
GT1MOTIFPSRBCS	1394	(-)	KWGTGRWAAWRW	S00005	
GTGANTG10	748	(+)	GTGA	S00037	
GTGANTG10	976	(+)	GTGA	S000378	
GTGANTG10	4	(-)	GTGA	<u>S000378</u>	
GTGANTG10	213	(-)	GTGA	<u>S00037</u>	
GTGANTG10	382	(-)	GTGA	<u>500037</u>	
GTGANTG10	398	(-)	GTGA	<u>500037</u>	
GTGANTG10	524	(-)	GTGA	<u>500037</u>	
GTGANTC10	538	(-)	GTGA	<u>S00037</u>	
CTCANTC10	9.00 9.41	()	CTCA	<u>500037</u>	
CTCANTC10	030	()	CTCA	<u>500037</u>	
CTCANTC10	930	(-)	GIGA CTCA	<u>500037</u>	
CTCANTC10	901 1100	(-)	GIGA	<u>S000370</u>	
GIGANIGIO GEONEGIO	1246	(-)	GIGA	<u>300037</u>	
GIGANIGIU GEGANEGIO	1240	(-)	GIGA	500037	
GIGANIGIU	1422	(-)	GIGA	<u>S00037</u>	
GIGANIGIO	1433	(-)	GIGA	S00037	
GIGANIGIO	1451	(-)	GIGA	<u>S00037</u>	
GIGANIGIO	1466	(-)	GTGA	<u>S00037</u>	
GTGANTG10	1474	(-)	GTGA	<u>S00037</u>	
GTGANTG10	1497	(-)	GTGA	<u>S00037</u>	
IBOX	968	(+)	GATAAG	<u>S00012</u>	
IBOXCORE	87	(+)	GATAA	<u>S00019</u>	
IBOXCORE	968	(+)	GATAA	<u> S00019</u>	
IBOXCORENT	968	(+)	GATAAGR	S00042	
INRNTPSADB	1473	(+)	YTCANTYY	<u> S00039</u>	
INRNTPSADB	929	(+)	YTCANTYY	<u> S00039</u>	
INRNTPSADB	101	(–)	YTCANTYY	<u> S00039</u>	
INRNTPSADB	122	(–)	YTCANTYY	<u>S00039</u>	
INRNTPSADB	132	(-)	YTCANTYY	<u>S00039</u>	
INRNTPSADB	1264	(–)	YTCANTYY	<u>S00039</u>	
INTRONUPPER	881	(+)	MAGGTAAGT	<u>S00008</u>	
L1BOXATPDF1	232	(+)	TAAATGYA	<u>S00038</u>	
LECPLEACS2	669	(-)	TAAAATAT	<u>S00046</u>	
LTRECOREATCOR15	1284	(+)	CCGAC	S00015	
LTRECOREATCOR15	706	(-)	CCGAC	S00015	
MARTBOX	1037	(+)	TTWTWTTWTT	S00006	
MARTBOX	1038	(+)	TTWTWTTWTT	S00006	
MARTBOX	1039	(+)	TTWTWTTWTT	S00006	
MARTBOX	1040	(+)	TTWTWTTWTT	S00006	
MARTBOX	1041	(+)	TTWTWTTWTT	S00006	
MARTBOX	1042	(+)	TTWTWTTWTT	S00006	
MARTBOX	1043	(+)	TTWTWTTWTT	S00006	
MARTBOX	1044	(+)	TTWTWTTWTT	S00006	
MARTBOX	1045	(+)	TTWTWTTWTT	S00006	
MARTBOX	1046	(+)	TTWTWTTWTT	S00006	
MYB1AT	11	(+)	WAACCA	S00040	
MYB1AT	59	(+)	WAACCA	S00040	
MYB1AT	1034	(-)	WAACCA	<u>S00040</u>	
MUDICDO	±051 564	(-)	CTTACCTT	<u>S00018</u>	

Factor or sitename	Location	(Strand	l) Signal sequence	SITE
MYBCORE	580	(+)	CNGTTR	S000176
MYBCORE	152	(-)	CNGTTR	S000176
MYBCORE	1323	(-)	CNGTTR	S000176
MYBPLANT	564	(+)	MACCWAMC	S000167
MYBPLANT	149	(+)	MACCWAMC	S000167
MYBPZM	151	(+)	CCWACC	S000179
MYBPZM	1277	(+)	CCWACC	S000179
MYBPZM	581	(-)	CCWACC	S000179
MYCATERD1	1197	(-)	CATGTG	S000413
MYCATRD22	1197	(+)	CACATG	S000174
MYCCONSENSUSAT	309	(+)	CANNTG	S000407
MYCCONSENSUSAT	324	(+)	CANNTG	<u>5000407</u>
MYCCONSENSUSAT	517	(+)	CANNTG	<u>S000407</u>
MYCCONSENSUSAT	642	(+)	CANNTG	<u>5000407</u>
MYCCONSENSUSAT	942	(+)	CANNTG	<u>5000407</u>
MYCCONSENSUSAT	1099	(+)	CANNTG	<u>5000407</u>
MYCCONSENSUSAT	1197	(+)	CANNTG	<u>5000107</u>
MYCCONSENSUSAT	1436	(+)	CANNTG	5000405
MYCCONSENSUSAT	309	(-)	CANNTG	5000405
MYCCONSENSUSAT	302	(-)	CANNTC	<u>S000405</u>
MYCCONSENSUSAT	524	(-)	CANNTC	<u>3000407</u> 9000407
MYCCONSENSUSAT	542	(-)	CANNTC	<u>S000407</u>
MICCONSENSUSAI	042	(-)	CANNIG	<u>500040</u>
MYGGONGENGUGAT	1000	(-)	CANNIG	<u>500040</u>
MYCCONSENSUSAI	1099	(-)	CAININIG	<u>S000407</u>
MYCCONSENSUSAI	1426	(-)	CAININIG	<u>S000407</u>
MICCONSENSUSAI	1430 E02	(-)		5000407
NAPINMOTIFBN NODCON1CM	503 1264	(+)		5000070
NODCONIGM	1304	(-)		5000461
NODCONZGM	485	(+)		<u>S000462</u>
NODCONZGM	000	(+)		5000462
NODCONZGM	1491	(+)		5000462
NUDCUNZGM	1164	(-)		S000462
NIBBFIARROLB	951	(+)	ACTITA	5000273
N.I.BBE TARROLB	1084	(+)	ACTITA	<u>S000273</u>
OSEIROOTNODULE	1364	(-)	AAAGAT	<u>S00046</u>
OSE2ROOTNODULE	485	(+)	CTCTT	<u>S000468</u>
OSE2ROOTNODULE	660	(+)	CTCTT	<u>S000468</u>
OSE2ROOTNODULE	1491	(+)	CTCTT	<u>S000468</u>
OSE2ROOTNODULE	1164	(-)	CTCTT	<u>S000468</u>
POLASIG1	959	(+)	AATAA	<u>S000080</u>
POLASIG1	1332	(+)	AATAA	<u>S000080</u>
POLASIG1	1291	(-)	AATAA	<u>\$000080</u>
POLASIG1	1368	(–)	AATAA	<u>\$000080</u>
POLASIG1	1393	(-)	AATAA	<u>\$000080</u>
POLASIG3	872	(-)	AATAAT	<u>\$00008</u>
POLLEN1LELAT52	65	(+)	AGAAA	S000245
POLLEN1LELAT52	989	(+)	AGAAA	<u>S000245</u>
POLLEN1LELAT52	793	(–)	AGAAA	<u>\$000245</u>
PREATPRODH	514	(+)	ACTCAT	<u>\$000450</u>
PREATPRODH	1267	(-)	ACTCAT	S000450

Factor or sitename	Location (Strand) Signal sequence	SITE
PRECONSCRHSP70A	687 (-) S	CGAYN	RNNNNNNNNNNNNN	S00050
QELEMENTZMZM13	264	(+)	AGGTCA	S00025
QELEMENTZMZM13	302	(+)	AGGTCA	S00025
QELEMENTZMZM13	1327	(+)	AGGTCA	S00025
QELEMENTZMZM13	248	(-)	AGGTCA	S00025
RAV1AAT	278	(+)	CAACA	S00031
RAV1AAT	306	(+)	CAACA	S00031
RAV1AAT	635	(+)	CAACA	S00031
RAV1AAT	646	(-)	CAACA	S00031
RAV1AAT	763	(-)	CAACA	S00031
REALPHALGLHCB21	60	(+)	AACCAA	S00036
REALPHALGLHCB21	1231	(+)	AACCAA	S00036
RHERPATEXPA7	981	(+)	KCACGW	S00051
RHERPATEXPA7	1246	(+)	KCACGW	S00051
RHERPATEXPA7	821	(-)	KCACGW	S00051
ROOTMOTIFTAPOX1	669	(+)	ATATT	S00009
ROOTMOTIFTAPOX1	1426	(+)	ATATT	S00009
ROOTMOTIFTAPOX1	1421	(-)	ATATT	S00009
SEBFCONSSTPR10A	838	(+)	YTGTCWC	S00039
SEF3MOTIFGM	112	(+)	AACCCA	S00011
SEF4MOTIFGM7S	1303	(+)	RTTTTR	S00010
SEF4MOTIFGM7S	1390	(+)	RTTTTR	S00010
SEF4MOTIFGM7S	904	(-)	RTTTTR	S00010
SEF4MOTIFGM7S	1334	(-)	 RTTTTTTR	S00010
SITEIIATCYTC	1167	(-)	TGGGCY	S00047
SORLTPIAT	147	(+)	GCCAC	S00048
SORLTPIAT	1195	(+)	GCCAC	S00048
SORLTPIAT	998	(-)	GCCAC	S00048
SORLTPIAT	1271	(-)	GCCAC	S00048
SORLTP2AT	318	(-)	GGGCC	<u>S00048</u>
SURECOREATSULTE11	395	(-)	GAGAC	500049
T/GBOXATPIN2	820	(+)	AACGTG	<u>S00045</u>
T/GBOXATPIN2	995	(+)	AACGTG	<u>S00045</u>
T/GBOXATPIN2	982	(-)	AACGTG	<u>S00045</u>
TAAAGSTKST1	223	(+)	TAAAG	<u>S00038</u>
TAAAGSTKST1	528	(-)	TAAAG	<u>S00038</u>
TAAAGSTKST1	796	(-)	TAAAG	<u>S00038</u>
TAAACSTKST1	952	(-)	TAAAG	<u>S00038</u>
TAAACSTROTT TAAACSTRST1	1085	(-)	TAAAG	<u>S00030</u>
TATABOX2	427	(+)		<u>S00030</u>
TATABOX2	875	(-)		<u>S00010</u>
	675	(-)		S00010
TATABOXI	488	(_) (_)	ᠴᡊᠴᡊᠴ ᡎᡎ᠌ᢧᡎᡎᡎ	SU0020
	400 Q72	(+) (+)	ᠴᠴᡘᠯᠴᠴ ᡎᡎ᠋᠌ᡘᡎᡎᡎ	<u>200020</u>
	1066	(+) (+)	ᠴᠴᡘᠯᠴᠴ ᡎᡎ᠋᠌ᡘᡎᡎᡎ	<u>200020</u>
	1000	(+)	⊥⊥A⊥⊥⊥ ͲͲ⊼ͲͲͲ	<u>200020</u>
	1260	(+)	⊥⊥A⊥⊥⊥ ͲͲ⊼ͲͲͲ	<u>200020</u>
	200 KQCT	(+)		<u>SUUUZU</u>
	780	(-)		500040
	209	()		000010
Factor or sitename	Location	(Strand	l) Signal sequence	SITE
--------------------	----------	---------	--------------------	---------
WBBOXPCWRKY1	1306	(+)	TTTGACY	S000310
WBBOXPCWRKY1	1004	(–)	TTTGACY	S000310
WBOXATNPR1	1255	(+)	TTGAC	S000390
WBOXATNPR1	1307	(+)	TTGAC	S000390
WBOXATNPR1	1383	(+)	TTGAC	S000390
WBOXATNPR1	276	(-)	TTGAC	S000390
WBOXATNPR1	304	(-)	TTGAC	S000390
WBOXATNPR1	1005	(-)	TTGAC	S000390
WBOXATNPR1	1329	(-)	TTGAC	S000390
WBOXHVISO1	1082	(+)	TGACT	S000442
WBOXHVISO1	1256	(+)	TGACT	S000442
WBOXHVISO1	1308	(+)	TGACT	S000442
WBOXHVISO1	1344	(+)	TGACT	S000442
WBOXHVISO1	275	(-)	TGACT	S000442
WBOXHVISO1	380	(-)	TGACT	S000442
WBOXHVISO1	1004	(-)	TGACT	S000442
WBOXHVISO1	1299	(-)	TGACT	S000442
WBOXNTERF3	248	(+)	TGACY	S000457
WBOXNTERF3	1082	(+)	TGACY	S000457
WBOXNTERF3	1256	(+)	TGACY	S000457
WBOXNTERF3	1308	(+)	TGACY	S000457
WBOXNTERF3	1344	(+)	TGACY	S000457
WBOXNTERF3	275	(-)	TGACY	S000457
WBOXNTERF3	380	(-)	TGACY	S000457
WBOXNTERF3	1004	(-)	TGACY	S000457
WBOXNTERF3	1299	(-)	TGACY	S000457
WBOXNTERF3	265	(-)	TGACY	S000457
WBOXNTERF3	303	(-)	TGACY	S000457
WBOXNTERF3	1328	(-)	TGACY	S000457
WRKY710S	207	(+)	TGAC	S000447
WRKY710S	248	(+)	TGAC	S000447
WRKY710S	1082	(+)	TGAC	S000447
WRKY710S	1256	(+)	TGAC	S000447
WRKY710S	1308	(+)	TGAC	S000447
WRKY710S	1344	(+)	TGAC	S000447
WRKY710S	1384	(+)	TGAC	S000447
WRKY710S	266	(-)	TGAC	S000447
WRKY710S	276	(-)	TGAC	S000447
WRKY710S	304	(-)	TGAC	S000447
WRKY710S	381	(-)	TGAC	S000447
WRKY710S	840	(–)	TGAC	S000447
WRKY710S	1005	(-)	TGAC	S000447
WRKY710S	1300	(-)	TGAC	S000447
WRKY710S	1329	(-)	TGAC	S000447
WRKY710S	1375	(-)	TGAC	S000447
WUSATAg	228	(-)	TTAATGG	S000433

3-AF1 binding site (fun	ction: light respon	sive element)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
3-AF1 binding site	Solanum tuberosum	1272	-	10	AAGAGATATTT
AAGAA-motif					
Site Name	Organism	Position	Strand	Matrix score.	sequence
AAGAA-motif	Avena sativa	748	-	7	GAAAGAA
AAGAA-motif	Avena sativa	1365	-	7	GAAAGAA
ABRE (function: cis-ac	ting element invol-	ved in the abso	cisic acid re	sponsivene	ss)
Site Name	Organism	Position	Strand	Matrix score.	sequence
ABRE	Arabidopsis thaliana	35	+	6	CACGTG
ABRE	Arabidopsis thaliana	1784	+	6	CACGTG
ABRE	Hordeum vulgare	77	+	9	CCTACGTGGC
AC-II					
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>AC-II</u>	Phaseolus vulgaris	569	+	9.5	(C/T)T(T/C)(C/T) (A/C)(A/C)C(A/C) A (A/C)C(C/A) (C/A)C
ACE (function: cis-acti	ng element involve	ed in light resp	onsiveness)	
Site Name	Organism	Position	Strand	Matrix score.	sequence
ACE	Petroselinum crispum	990	-	9	AAAACGTTTA
ACE	Petroselinum crispum	1014	+	9	GACACGTATG
ATGCAAAT motif (fu	nction: cis-acting r	egulatory elen	nent associa	ated to the T	GAGTCA motif)
Site Name	Organism	Position	Strand	Matrix score.	sequence
ATGCAAAT motif	Oryza sativa	1040	-	8	ATACAAAT
Box 4 (function: part of	f a conserved DNA	module invol	ved in light	responsive	eness)
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>Box 4</u>	Petroselinum crispum	961	+	6	ATTAAT
<u>Box 4</u>	Petroselinum crispum	1375	+	6	ATTAAT
<u>Box 4</u>	Petroselinum crispum	1061	+	6	ATTAAT

Appendix Table 16Cis-acting element in GmDFR 5' flanking region usingPlantCARE database.

Box I (function: light	t responsive element)				
Site Name	Organism	Position	Strand	Matrix score.	sequence
Box I	Pisum sativum	751	+	7	TTTCAAA
Box I	Pisum sativum	1535	-	7	TTTCAAA
Box I	Pisum sativum	1238	-	7	TTTCAAA
Box I	Pisum sativum	804	-	7	TTTCAAA
Box I	Pisum sativum	1368	+	7	TTTCAAA
Box II (function: par	t of a light responsive	element)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
Box II	Pisum sativum	412	-	11	GTGAGGTAATAT
Box-W1 (function: fi	ungal elicitor responsi	ive element)			
Site Name	Organism	Position	Strand	Matrix	sequence
Box-W1	Petroselinum	134	+	6	TTGACC
Box-W1	crispum Petroselinum	1931	+	6	TTGACC
Box-W1	crispum Petroselinum	1424	+	6	TTGACC
Box-W1	Crispum Petroselinum crispum	682	+	6	TTGACC
Box-W1	Petroselinum crispum	1868	-	6	TTGACC
CAAT-box (function	: common <i>cis</i> -acting	element in pro	moter and	enhancer re	egions)
Site Name	Organism	Position	Strand	Matrix score.	sequence
CAAT-box	Hordeum	49	-	4	CAAT
CAAT-box	vulgare Hordeum vulgare	133	-	4	CAAT
CAAT-box	Glycine max	164	+	5	CAATT
CAAT-box	Brassica rana	187	_	5	САААТ
CAAT-box	Brassica rapa Brassica rapa	367	+	5	САААТ
CAAT-box	Brassica rapa Brassica rapa	398	-	5	САААТ
CAAT-box	Arabidopsis	481	+	5	CCAAT
CAAT-box	Hordeum	482	+	4	CAAT
CAAT-box	Arabidopsis	495	+	5	CCAAT
CAAT-box	Glycine max	496	+	5	CAATT
CAAT-box	Glycine max	497	-	5	CAATT
CAAT-box	Arabidopsis	498	-	5	CCAAT
CAAT-box	Brassica rana	550	-	5	CAAAT
CAAT-box	Hordeum	561	+	4	CAAT
<u>CAAT-box</u>	Glycine max Glycine max	565 585	+ +	5	CAATT CAATT
CITIT DUA	Giyeine mar	202		5	C11111

	o i	D in pro		Matrix)
Site Name	Organism	Position	Strand	score.	sequence
CAAT-box	Hordeum vulgare	622	+	4	CAAT
CAAT-box	Daucus carota	648	+	11	AGCTCAATTTCA
CAAT-box	Brassica rapa	652	+	5	CAAAT
CAAT-box	Brassica rapa	770	-	5	CAAAT
CAAT-box	Brassica rapa	797	+	5	CAAAT
CAAT-box	Brassica rapa	835	-	5	CAAAT
<u>CAAT-box</u>	Glycine max	910	+	5	CAATT
<u>CAAT-box</u>	Glycine max	911	-	5	CAATT
CAAT-box	Hordeum vulgare	912	-	4	CAAT
CAAT-box	Brassica rapa	940	+	5	CAAAT
CAAT-box	Hordeum	947	+	4	CAAT
<u></u>	vulgare	224		_	G + + + T
CAAT-box	Brassica rapa	984	+	5	CAAAT
<u>CAAT-box</u>	Brassica rapa	1040	-	5	CAAAT
<u>CAAT-box</u>	Brassica rapa	1065	-	5	CAAAT
<u>CAAT-box</u>	Brassica rapa	1122	-	5	CAAAT
CAAT-box	Brassica rapa	1176	+	5	CAAAT
CAAT-box	Hordeum vulgare	1217	+	4	CAAT
CAAT-box	Hordeum vulgare	1228	+	4	CAAT
CAAT-box	Brassica rapa	1237	-	5	CAAAT
CAAT-box	Brassica rapa	1322	-	5	CAAAT
CAAT-box	Hordeum vulgare	1423	-	4	CAAT
CAAT-box	Hordeum	1483	-	4	CAAT
CAAT-box	Brassica rana	1525	+	5	САААТ
CAAT-box	Hordeum	1531	-	4	CAAT
<u> </u>	vulgare				
CAAT-box	Glycine max	1540	-	5	CAATT
CAAT-box	Hordeum	1541	-	4	CAAT
CAAT-box	vulgare Hordeum vulgare	1575	-	4	CAAT
CAAT-box	Brassica rapa	1584	-	5	CAAAT
CAAT-box	Brassica rapa	1620	-	5	CAAAT
CAAT-box	Hordeum vulgare	1650	+	4	CAAT
CAAT-box	Arabidopsis thaliana	1716	-	5	CCAAT
CAAT-box	Brassica rapa	1739	-	5	CAAAT
CAAT-box	Brassica rapa	1901	-	5	CAAAT
CAAT-box	Arabidopsis	1949	+	5	CCAAT
CAAT-box	Glvcine max	1950	+	5	CAATT
				-	

CAT-box (function: c	is-acting regulatory e	element relate	d to meriste	em expressi	ion)
Site Name	Organism	Position	Strand	Matrix score.	sequence
CAT-box	Arabidopsis	1450	+	6	GCCACT
<u>CAT-box</u>	thaliana Arabidopsis thaliana	1845	+	6	GCCACT
CATT-motif (function	n: part of a light resp	onsive elemer	nt)		
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>CATT-motif</u>	Zea mays	199	+	6	GCATTC
CGTCA-motif (function	ion: cis-acting regula	tory element	involved in	the MeJA-	responsiveness)
Site Name	Organism	Position	Strand	Matrix score.	sequence
CGTCA-motif	Hordeum vulgare	1801	+	5	CGTCA
ERE (function: ethyle	ene-responsive eleme	nt)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
ERE	Dianthus carvophyllus	1535	-	8	ATTTCAAA
G-Box (function: cis-	acting regulatory eler	ment involved	l in light res	sponsivenes	ss)
Site Name	Organism	Position	Strand	Matrix score.	sequence
G-Box	Pisum sativum	35	+	6	CACGTG
<u>G-Box</u>	Pisum sativum	1784	+	6	CACGTG
G-box (function: cis-a	acting regulatory elen	nent involved	in light res	ponsivenes	s)
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>G-box</u>	Solanum	3	+	7	CACATGG
<u>G-box</u>	tuberosum Nicotiana	851	+	10	CAGACGTGGCA
<u>G-box</u>	plumbaginifolia Arabidopsis	35	+	6	CACGTG
<u>G-box</u>	Arabidopsis thaliana	1784	+	6	CACGTG
GA-motif (function: r	part of a light respons	ive element)			
			~	Matrix	
Site Name	Organism	Position	Strand	score.	sequence
<u>GA-motili</u>	neuantnus annuus	1937	-	δ	AAAUAIUA
GAG-motif (function	: part of a light respon	nsive element	t)		
Site Name	Organism	Position	Strand	Matrix score.	sequence
GAG-motif	Spinacia oleracea	256	-	7	AGAGATG
GAG-motif	Arabidopsis thaliana	781	+	7	AGAGAGT

GARE-motif (function	n: gibberellin-respon	sive element)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
GARE-motif	Brassica	757	+	7	AAACAGA
GARE-motif	Brassica oleracea	848	+	7	AAACAGA
GCN4_motif (function	n: cis-regulatory eler	ment involved	in endospe	rm express	ion)
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>GCN4_motif</u>	Oryza sativa	477	+	7	CAAGCCA
GT1-motif (function:	light responsive eler	nent)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>GT1-motif</u>	Arabidopsis thaliana	447	+	6	GGTTAA
GT1-motif	Avena sativa	1551	+	7	GGTTAAT
<u>GT1-motif</u>	Solanum tuberosum	574	-	10	ATGGTGGTTGG
HSE (function: elemen	nt involved in heat s	tress responsiv	veness)		
Site Name	Organism	Position	Strand	Matrix score.	sequence
HSE	Brassica oleracea	1271	+	9	AAAAAATTTC
L-box (function: part of	of a light responsive	element)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>L-box</u>	Petroselinum crispum	330	+	10	TCTCACCTACC
MBS (function: MYE	B binding site involv	ed in drought-	inducibility	/)	
Site Name	Organism	Position	Strand	Matrix score.	sequence
MBS	Arabidopsis thaliana	61	-	6	TAACTG
MBS	Arabidopsis	1730	+	6	TAACTG
MBS	Arabidopsis	459	-	6	TAACTG
MBS	Arabidopsis	171	+	6	TAACTG
<u>MBS</u>	Arabidopsis thaliana	1435	+	6	TAACTG
P-box (function: gibbe	erellin-responsive ele	ement)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>P-box</u>	Oryza sativa	1641	-	7	CCTTTTG

Site Name	Organism	Position	Strand	Matrix score.	sequence
Skn-1 motif	Oryza sativa	9	+	5	GTCAT
Skn-1 motif	Oryza sativa	1204	+	5	GTCAT
Skn-1 motif	Orvza sativa	1055	+	5	GTCAT
Skn-1 motif	Orvza sativa	1556	_	5	GTCAT
Skn-1 motif	Oryza sativa	489	-	5	GTCAT
Skn-1 motif	Orvza sativa	1249	+	5	GTCAT
Skn-1 motif	Oryza sativa	1126	+	5	GTCAT
ol (function: light r	esponsive element)				
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>Sp1</u>	Zea mays	979	+	5.5	CC(G/A)CCC
<u>Sp1</u>	Zea mays	1428	+	5.5	CC(G/A)CCC
ATA-box (function	: core promoter eleme	ent around -30) of transcri	ption start)	
Sita Nama	Organism	Dogition	Strand	Matrix	00000000
Site Name	Organism	Position	Strand	score.	sequence
TATA-box	Lycopersicon	90	+	5	TTTTA
	esculentum				
<u>TATA-box</u>	Arabidopsis thaliana	121	+	4	TATA
TATA-box	Brassica napus	410	+	6	ATATAT
TATA-box	Arabidopsis thaliana	411	+	4	ΤΑΤΑ
TATA-box	Glycine max	413	-	5	TAATA
TATA-box	Glycine max	463	+	5	TAATA
TATA-box	Nicotiana tabacum	597	+	9	tcTATAAAta
TATA-box	Ac	599	+	7	ΤΑΤΑΑΑΤ
TATA-box	Lycopersicon	723	-	5	TTTTA
TATA-box	esculentum Lycopersicon esculentum	813	+	5	TTTTA
TATA-box	Orvza sativa	922	+	7	TACAAAA
TATA-box	Arabidopsis thaliana	931	-	5	TATAA
TATA-box	Arabidopsis	932	+	4	TATA
TATA-box	Lycopersicon	999	+	5	TTTTA
TATA-box	Glycine max	1002	-	5	TAATA
TATA-box	Brassica napus	1003	+	6	ATTATA
TATA-box	Arabidopsis thaliana	1004	-	5	TATAA
TATA-box	Arabidopsis thaliana	1010	+	4	ΤΑΤΑ
TATA-box	Glycine max	1060	-	5	ΤΑΑΤΑ
TATA-box	Lycopersicon	1076	+	5	TTTTA
				-	

				Motion	
Site Name	Organism	Position	Strand	score.	sequence
TATA-box	Lycopersicon esculentum	1100	-	5	TTTTA
TATA-box	Lycopersicon esculentum	1143	-	5	TTTTA
TATA-box	Avena sativa	1177	-	12	TATATTTATAT
TATA-box	Brassica oleracea	1179	+	7	ATATAAT
TATA-box	Arabidopsis thaliana	1180	+	4	TATA
TATA-box	Brassica napus	1184	+	6	ATTATA
TATA-box	Arabidopsis thaliana	1185	-	7	TATATAA
TATA-box	Arabidopsis thaliana	1186	+	4	TATA
TATA-box	Arabidopsis thaliana	1188	+	4	TATA
TATA-box	Glycine max	1194	+	5	TAATA
TATA-box	Glycine max	1209	-	5	TAATA
TATA-box	Arabidopsis thaliana	1263	+	4	TATA
TATA-box	Glycine max	1265	-	5	TAATA
TATA-box	Brassica napus	1285	+	6	ATATAT
TATA-box	Arabidopsis thaliana	1286	+	4	TATA
TATA-box	Antirrhinum majus	1354	-	8	TATAAATT
TATA-box	Ac	1355	_	7	ΤΑΤΑΑΑΤ
TATA-box	Arabidopsis thaliana	1356	-	6	TATAAA
TATA-box	Arabidopsis thaliana	1357	-	7	ΤΑΤΑΤΑΑ
TATA-box	Arabidopsis thaliana	1358	+	9	taTATAAAtc
TATA-box	Brassica	1359	+	7	ATATAAT
TATA-box	Arabidopsis	1360	+	4	TATA
TATA-box	Helianthus	1383	-	6	TATACA
TATA-box	Arabidopsis	1385	+	4	TATA
TATA-box	Lycopersicon	1396	+	5	TTTTA
TATA-box	Glycine max	1408	+	5	ТААТА
TATA-box	Glycine max	1415	-	5	ТААТА
TATA-box	Arabidopsis	1515	-	6	TATAAA
	thaliana			-	

Matrix						
Site Name	Organism	Position	Strand	score.	sequence	
TATA-box	Arabidopsis thaliana	1517	+	6	TATAAA	
TATA-box	Daucus carota	1559	+	9	ccTATAAAT	
TATA-box	Ac	1561	+	7	TATAAAT	
TATA-box	Lycopersicon esculentum	1569	-	5	TTTTA	
TATA-box	Arabidopsis thaliana	1581	+	4	ΤΑΤΑ	
TATA-box	Pisum sativum	1596	-	8	TATAAAAT	
TATA-box	Arabidopsis thaliana	1597	-	7	TATAAAA	
TATA-box	Arabidopsis thaliana	1598	-	6	TATAAA	
<u>TATA-box</u>	Arabidopsis thaliana	1599	-	5	ΤΑΤΑΑ	
TATA-box	Arabidopsis thaliana	1600	+	6	TATAAA	
TATA-box	Lycopersicon esculentum	1602	-	5	TTTTA	
TATA-box	Lycopersicon esculentum	1608	+	5	TTTTA	
TATA-box	Brassica napus	1682	+	6	ATTATA	
TATA-box	Arabidopsis thaliana	1683	-	5	ΤΑΤΑΑ	
TATA-box	Arabidopsis thaliana	1684	+	4	TATA	
TATA-box	Brassica oleracea	1852	+	7	ΑΤΑΤΑΑΤ	
TATA-box	Arabidopsis thaliana	1853	+	4	TATA	
TATA-box	Glycine max	1855	+	5	TAATA	
TATA-box	Arabidopsis thaliana	1856	-	9	tcTATATAtt	
TATA-box	Brassica napus	1857	+	6	ATATAT	
TATA-box	Arabidopsis thaliana	1858	+	4	TATA	
TATA-box	Brassica oleracea	1859	+	6	ΑΤΑΤΑΑ	
TATA-box	Arabidopsis thaliana	1860	+	6	TATAAA	
TATA-box	Lycopersicon esculentum	1862	-	5	TTTTA	
TATA-box	Glycine max	1885	-	5	TAATA	
TATA-box	Zea mays	1962	+	8	TTTAAAAA	
TATA-box	Lycopersicon esculentum	1964	-	5	TTTTA	

TC-rich repeats (function: <i>cis</i> -acting element involved in defense and stress responsiveness							
Site Name	Organism	Position	Strand	Matrix score.	sequence		
TC-rich repeats	Nicotiana	614	+	9	ATTTTCTTCA		
TC-rich repeats	tabacum Nicotiana tabacum	1610	-	9	ATTTTCTTCA		
TGA-element (function	: auxin-responsive	element)					
Site Name	Organism	Position	Strand	Matrix score.	sequence		
TGA-element	Brassica oleracea	1456	+	6	AACGAC		
TGACG-motif (functio	n: cis-acting regula	tory element	involved in	the MeJA-r	esponsiveness)		
Site Name	Organism	Position	Strand	Matrix score.	sequence		
TGACG-motif	Hordeum vulgare	1801	-	5	TGACG		
Unnamed_1	0						
Site Name	Organism	Position	Strand	Matrix score.	sequence		
Unnamed 1	Zea mays	1761	-	5	CGTGG		
Site Name	Organism	Position	Strand	Matrix score.	sequence		
Unnamed 11	Zea mays	1216	-	9	TCCACATAGA		
Unnamed_13							
Site Name	Organism	Position	Strand	Matrix score.	sequence		
Unnamed 13	Zea mays	1174	+	9	TCCAAGTATA		
Unnamed_3				Matrix			
Site Name	Organism	Position	Strand	score.	sequence		
Unnamed 3	Zea mays	1761	-	5	CGTGG		
Unnamed_4							
Site Name	Organism	Position	Strand	Matrix score.	sequence		
<u>Unnamed_4</u>	Petroselinum hortense	470	+	4	CTCC		
Unnamed 4	Petroselinum	1233	-	4	CTCC		
Unnamed 4	Petroselinum hortense	493	+	4	CTCC		
Unnamed4	Petroselinum hortense	1748	+	4	CTCC		

W box					
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>W box</u>	Arabidopsis	134	+	6	TTGACC
Whee	thaliana Arabidonsis	1021	Т	6	TTCACC
<u>w box</u>	thaliana	1951	Ŧ	0	HUACC
<u>W box</u>	Arabidopsis	1424	+	6	TTGACC
	thaliana				
<u>W box</u>	Arabidopsis	682	+	6	TTGACC
<u>W box</u>	thaliana Arabidopsis	1868	-	6	TTGACC
aha CMA la (function	thaliana	naire alaman	4)		
clis-CMATa (function	i. part of a fight respo	insive element	ι)		
Site Name	Organism	Position	Strand	Matrix score.	sequence
chs-CMA1a	Daucus carota	1775	-	8	TTACTTAA
circadian (function: ci	is-acting regulatory e	lement involv	ed in circad	lian control))
Site Name	Organism	Position	Strand	Matrix score	sequence
circadian	Lycopersicon	139	+	6	CAANNNNATC
<u>circadian</u>	esculentum Lycopersicon	477	+	6	CAANNNNATC
<u>circadian</u>	esculentum Lycopersicon esculentum	145	-	6	CAANNNNATC

Appendix Table 17Cis-acting element in GmLDOX 5' flanking region usingPlantCARE database.

ABRE (function: cis-	acting element involv	ed in the abso	cisic acid re	sponsivene	ess)
Site Name	Organism	Position	Strand	Matrix score.	sequence
ABRE	Arabidopsis thaliana	309	+	6	CACGTG
AC-II					
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>AC-II</u>	Phaseolus vulgaris	469	+	11	CCACCAACCCCC
AE-box (function: pa	rt of a module for lig	ht response)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>AE-box</u>	Arabidopsis thaliana	268	+	8	AGAAACAA
ARE (function: cis-ac	ting regulatory element	ent essential f	or the anaer	robic induc	tion)
Site Name	Organism	Position	Strand	Matrix score.	sequence
ARE	Zea mays	183	-	6	TGGTTT
ARE	Zea mays	383	-	6	TGGTTT
CAAT-box (function)	common cis-acting	element in pro	omoter and	enhancer re	egions)
Site Name	Organism	Position	Strand	Matrix score.	sequence
CAAT-box	Hordeum	8	+	4	CAAT
	vulgare				
<u>CAAT-box</u>	Hordeum	237	-	4	CAAT
	vulgare				
<u>CAAT-box</u>	Glycine max	236	-	5	CAATT
<u>CAAT-box</u>	Brassica rapa	251	-	5	CAAAT
CE3 (function: cis-ac	ting element involved	l in ABA and	VP1 respon	nsiveness)	
Site Name	Organism	Position	Strand	Matrix score.	sequence
CE3	Oryza sativa	26	-	9	GACGCGTGTC
G-Box (function: cis-	acting regulatory eler	nent involved	l in light res	sponsivenes	58)
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>G-Box</u>	Pisum sativum	225	-	6	CACGTT
G-Box	Pisum sativum	309	+	6	CACGTG
GATA-motif (functio	n: part of a light resp	onsive)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
GATA-motif	Solanum tuberosum	258	-	9	AAGGATAAGG

Site Name	Organism	Position	Strand	Matrix	sequence
Site Maine	Organishi	1 OSITION	Stranta	score.	sequence
<u>GT1-motif</u>	Arabidopsis thaliana	260	-	6	GGTTAA
<u>GT1-motif</u>	Arabidopsis thaliana	435	-	6	GGTTAA
GT1-motif	Avena sativa	434	-	7	GGTTAAT
<u>GT1-motif</u>	Solanum tuberosum	443	-	10	ATGGTGGTTGC
LTR (function: cis-ac	ting element involve	d in low-temp	erature resp	oonsiveness	5)
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>LTR</u>	Hordeum vulgare	80	+	6	CCGAAA
Skn-1_motif (function	n: cis-acting regulato	ry element re	quired for e	ndosperm e	xpression)
Site Name	Organism	Position	Strand	Matrix score.	sequence
Skn-1 motif	Orvza sativa	24	-	5	GTCAT
Sp1 (function: light r	esponsive element)			,	
			a :	Matrix	
Site Name	Organism	Position	Strand	score.	sequence
Sp1	Zea mays	324	+	5	CC(G/A)CCC
Sp1	Zea mays	480	+	5	CC(G/A)CCC
Sp1	Zea mays	473	+	5.5	CC(G/A)CCC
Sp1	Zea mays	484	+	5.5	CC(G/A)CCC
$\frac{s_{1}}{Sn1}$	Zea mays	469	+	5 5	CC(G/A)CCC
<u>Sp1</u>	Zea mays	476	+	5	CC(G/A)CCC
TATA-box (function)	core promoter elem	ent around -3) of transcri	ntion start)	00(0/11)000
Site Name	Organism	Position	Strand	Matrix score.	sequence
TATA-box	Arabidopsis thaliana	41	+	4	ТАТА
TATA-box	Arabidopsis thaliana	145	+	4	ΤΑΤΑ
TATA-box	Glycine max	67	-	5	TAATA
TATA-box	Arabidopsis thaliana	413	+	9	ccTATAAAaa
TATA-box	Arabidopsis thaliana	52	-	5	TATAA
TATA-box	Lycopersicon esculentum	160	+	5	TTTTA
TATA-box	Lycopersicon esculentum	93	-	5	TTTTA
TATA-box	Lycopersicon	417	-	5	TTTTA
TATA-box	Orvza sativa	49	-	8	TATAAGAA
TATA-box	Lycopersicon	155	-	5	TTTTA
TATA-box	Lycopersicon esculentum	73	-	5	TTTTA

Appendix	Table 17	(Continued).
----------	----------	--------------

TATA-box (function:	core promoter eleme	ent around -30) of transcri	ption start)	
Site Name	Organism	Position	Strand	Matrix score.	sequence
TATA-box	Arabidopsis	41	+	4	TATA
TATA-box	thaliana Arabidopsis thaliana	415	+	6	TATAAA
TATA-box	Arabidopsis thaliana	53	+	4	ΤΑΤΑ
TATA-box	Lycopersicon esculentum	173	+	5	TTTTA
TATA-box	Lycopersicon esculentum	132	+	5	TTTTA
TATA-box	Arabidopsis thaliana	465	+	4	TATA
TCA-element (functio	n: cis-acting elemen	t involved in a	salicylic aci	d responsiv	eness)
Site Name	Organism	Position	Strand	Matrix score.	sequence
TCA-element	Nicotiana tabacum	498	-	9	CCATCTTTTT
Unnamed_4					
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>Unnamed_4</u>	Petroselinum hortense	377	-	4	CTCC
Unnamed4	Petroselinum hortense	481	+	4	CTCC
box E					
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>box E</u>	Petroselinum crispum	303	+	9	ACCCATCAAG

Appendix Table 18	<i>Cis</i> -acting element in <i>GmUFGT</i> 5'	flanking	region	using
	PlantCARE database.			

4cl-CMA2b (function	: light responsive ele	ement)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
4cl-CMA2b	Petroselinum crispum	395	+	10	TCTCACCAACC
AAGAA-motif					
Site Name	Organism	Position	Strand	Matrix score.	sequence
AAGAA-motif	Avena sativa	792	-	9	gGTAAAGAAA
ABRE (function: cis-a	acting element involv	ved in the abso	cisic acid re	sponsivene	ss)
Site Name	Organism	Position	Strand	Matrix score.	sequence
ABRE	Arabidopsis thaliana	995	+	7	ACGTGGC
AC-I					
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>AC-I</u>	Populus tremuloides	395	+	10	TCTCACCAACC
AE-box (function: par	rt of a module for lig	ht response)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>AE-box</u>	Arabidopsis thaliana	988	+	8	AGAAACAA
ARE (function: cis-ac	ting regulatory elem	ent essential f	or the anaer	robic induct	ion)
Site Name	Organism	Position	Strand	Matrix score.	sequence
ARE	Zea mays	10	-	6	TGGTTT
ARE	Zea mays	1033	+	6	TGGTTT
ARE	Zea mays	58	-	6	TGGTTT
Box II (function: part	of a light responsive	element)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>Box II</u>	Solanum tuberosum	1393	-	9	TGGTAATAA
Box-W1 (function: fu	ngal elicitor respons	ive element)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
Box-W1	Petroselinum	302	-	6	TTGACC
<u>Box-W1</u>	Petroselinum crispum	1327	-	6	TTGACC

Appendix Table 18	(Continued).
-------------------	--------------

C' N	0 ·	D	G (1	Matrix	
Site Name	Organism	Position	Strand	score.	sequence
CAAT-box	Hordeum	163	+	4	CAAT
	vulgare				ons)sequenceCAAT
CAAT-box	Brassica rapa	308	+	5	CAAAT
CAAT-box	Glycine max	335	+	5	CAATT
CAAT-box	Brassica rapa	369	-	5	CAAAT
CAAT-box	Hordeum	387	+	4	CAAT
	vulgare				
CAAT-box	Brassica rapa	438	+	5	CAAAT
CAAT-box	Arabidopsis	447	+	5	CCAAT
	thaliana				
CAAT-box	Glycine max	448	+	5	CAATT
CAAT-box	Brassica rapa	450	-	5	CAAAT
CAAT-box	Brassica rapa	517	-	5	CAAAT
CAAT-box	Arabidopsis	543	-	6	gGCAAT
	thaliana				
CAAT-box	Brassica rapa	642	-	5	CAAAT
CAAT-box	Brassica rapa	683	+	5	CAAAT
<u>CAAT-box</u>	Hordeum vulgare	760	-	4	CAAT
CAAT-box	Glycine max	850	+	5	CAATT
CAAT-box	Brassica rapa	852	-	5	CAAAT
CAAT-box	Glycine max	923	-	5	CAATT
CAAT-box	Hordeum	924	-	4	CAAT
CAAT-box	Arabidonsis	956	+	5	ССААТ
CARI-00X	thaliana	750	1	5	CCAAI
CAAT-box	Hordeum	957	+	4	СААТ
<u>CHITI UOX</u>	vuloare	551		•	Churr
CAAT-box	Brassica rapa	1006	+	5	САААТ
CAAT-box	Glycine max	1008	_	5	CAATT
CAAT-box	Hordeum	1009	-	4	CAAT
<u>ernir oon</u>	vulgare	1009		·	Chill
CAAT-box	Hordeum	1020	+	4	CAAT
<u>ormin 0011</u>	vulgare	1020		·	01111
CAAT-box	Brassica rapa	1067	-	5	CAAAT
CAAT-box	Hordeum	1119	-	4	CAAT
	vulgare				
CAAT-box	Hordeum	1137	-	4	CAAT
	vulgare				
CAAT-box	Hordeum	1172	+	4	CAAT
	vulgare				
CAAT-box	Arabidopsis	1211	+	5	CCAAT
	thaliana				
CAAT-box	Glycine max	1212	+	5	CAATT
CAAT-box	Brassica rapa	1214	-	5	CAAAT
CAAT-box	Hordeum	1330	+	4	CAAT
	vulgare				
C A A T-boy	Brassica rapa	1370	_	5	САААТ

CAAT-box (function	: common cis-acting	element in pro	omoter and	enhancer re	gions)
Site Name	Organism	Position	Strand	Matrix score.	sequence
CAAT-box	Brassica rapa	1380	-	5	CAAAT
CAAT-box	Brassica rapa	1386	+	5	CAAAT
CAAT-box	Hordeum vulgare	1419	+	4	CAAT
CAT-box (function: o	cis-acting regulatory	element relate	d to meriste	em expressi	on)
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>CAT-box</u>	Arabidopsis thaliana	1269	-	6	GCCACT
CATT-motif (functio	n: part of a light resp	onsive elemer	nt)		
Site Name	Organism	Position	Strand	Matrix score.	sequence
CATT-motif	Zea mays	1157	-	6	GCATTC
G-Box (function: cis-	acting regulatory eler	ment involved	l in light res	sponsivenes	s)
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>G-Box</u>	Pisum sativum	819	-	6	CACGTT
<u>G-Box</u>	Pisum sativum	994	-	6	CACGTT
$\frac{G-Box}{C how (function) of a first of a $	Pisum sativum	981	+	6	CACGII
G-box (function. cis-	acting regulatory eler	nent mvolved	in light les	Motrix	8)
Site Name	Organism	Position	Strand	score.	sequence
<u>G-box</u>	Zea mays	819	-	6	CACGTT
<u>G-box</u>	Solanum	1432	+	10	ICACACGIGGC
G-box	tuberosum Zea mays	994	_	6	CACGTT
<u>G-box</u>	Zea mays Zea mays	981	+	6	CACGTT
G-box	Zea mays	1246	+	6	CACGAC
GA-motif (function:	part of a light respons	sive element)		Ũ	0.100.10
Site Name	Organism	Position	Strand	Matrix score.	sequence
GA-motif	Arabidopsis thaliana	964	+	8	ATAGATAA
GARE-motif (functio	n: gibberellin-respon	sive element)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
GARE-motif	Brassica	1095	+	7	AAACAGA
GC-motif (function: e	enhancer-like element	t involved in a	anoxic spec	ific inducib	ility)
<u> </u>	Q	D '4'	<u> </u>	Matrix	
Site Name	Organism	Position	Strand	score.	sequence
<u>GC-motif</u>	Zea mays	1186	-	6	CCCCCG
<u>GC-motif</u>	Zea mays	1280	+	6	CCCCCG
GIT-motif (function:	light responsive elen	nent)		Matri	
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>GT1-motif</u>	Arabidopsis thaliana	529	-	6	GGTTAA

I-box (function: part of	of a light responsive	element)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>I-box</u>	Triticum aestivum	966	+	8	AGATAAGG
L-box (function: part	of a light responsive	element)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>L-box</u>	Petroselinum crispum	395	+	10	TCTCACCAACC
MNF1 (function: light	t responsive element)			
Site Name	Organism	Position	Strand	Matrix score.	sequence
MNF1	Zea mays	822	+	6.5	GTGCCC(A/T)(A/ T)
MRE (function: MYB	binding site involve	ed in light resp	oonsiveness)	,
Site Name	Organism	Position	Strand	Matrix score.	sequence
MRE	Petroselinum crispum	563	+	7	AACCTAA
Skn-1_motif (function	n: cis-acting regulato	ry element red	quired for e	ndosperm e	expression)
Site Name	Organism	Position	Strand	Matrix	sequence
	Orgunishi	246	Struita	score.	CTTC A TT
Skn-1_motif	Oryza sativa	246	-	5	GICAI
Skn-1_motif	Oryza sativa	1342	-	2	GICAI
<u>Skn-1_motif</u>	Oryza sativa	1080	-	5	GICAI
<u>Skn-1_motif</u>	Oryza sativa	265	+	5	GTCAT
<u>Skn-1_motif</u>	Oryza sativa	1299	+	5	GTCAT
Sp1 (function: light re	esponsive element)				
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>Sp1</u>	Zea mays	914	+	5.5	CC(G/A)CCC
Sp1	Zea mays	1059	+	5	CC(G/A)CCC
TATA-box (function:	core promoter elem	ent around -30) of transcri	ption start)	
Cite Name	One entire	D:	Cture 1	Matrix	
Site Name	Organism	Position	Strand	score.	sequence
TATA-box	Lycopersicon esculentum	33	-	5	TTTTA
TATA-box	Lycopersicon esculentum	77	-	5	TTTTA
TATA-box	Lycopersicon	98	-	5	TTTTA
TATA-box	Lycopersicon	119	-	5	TTTTA
TATA-box	Lycopersicon	405	+	5	TTTTA
TATA-box	Ac	426	+	7	ΤΑΤΑΑΑΤ
TATA-box	Glycing mar	462	+	, 5	ΤΔΔΤΛ
TATA-box	Arabidonsis	500	+	5 Д	ΤΔΤΔ
<u>11117-00A</u>	thaliana	500	I	т	11117
TATA-box	Glycine max	550	-	5	ΤΑΑΤΑ
TATA-box	Lycopersicon esculentum	600	-	5	TTTTA

TATA-box (function	: core promoter eleme	ent around -30) of transcri	ption start)	
Site Name	Organism	Position	Strand	Matrix score.	sequence
TATA-box	Arabidopsis thaliana	661	-	9	taTATAAAgg
TATA-box	Arabidopsis	662	-	7	TATAAAA
TATA-box	Arabidopsis	663	-	6	ΤΑΤΑΑΑ
TATA-box	Arabidopsis	664	-	7	ΤΑΤΑΤΑΑ
TATA-box	Arabidopsis	665	+	4	TATA
TATA-box	Brassica napus	666	+	6	ATATAT
TATA-box	Arabidopsis thaliana	667	+	4	TATA
TATA-box	Lycopersicon esculentum	671	+	5	TTTTA
TATA-box	Glycine max	692	-	5	TAATA
TATA-box	Glycine max	870	-	5	TAATA
TATA-box	Daucus carota	873	-	8	TATAAATA
TATA-box	Ac	874	-	7	TATAAAT
TATA-box	Arabidopsis thaliana	875	-	6	TATAAA
TATA-box	Arabidopsis thaliana	876	-	5	TATAA
TATA-box	Arabidopsis thaliana	877	+	4	TATA
TATA-box	Lycopersicon esculentum	903	-	5	TTTTA
TATA-box	Lycopersicon esculentum	960	-	5	TTTTA
TATA-box	Glycine max	1026	-	5	TAATA
TATA-box	Glycine max	1072	+	5	TAATA
TATA-box	Glycine max	1128	-	5	TAATA
TATA-box	Lycopersicon esculentum	1262	-	5	TTTTA
TATA-box	Lycopersicon esculentum	1289	+	5	TTTTA
TATA-box	Lycopersicon esculentum	1294	+	5	TTTTA
TATA-box	Brassica oleracea	1319	+	6	ATATAA
TATA-box	Arabidopsis thaliana	1320	+	4	TATA
TATA-box	Lycopersicon esculentum	1333	-	5	TTTTA

TATA-box (function:	core promoter eleme	ent around -30) of transcri	ption start)	
Site Name	Organism	Position	Strand	Matrix	sequence
TATA-box	Arabidopsis thaliana	661	-	9	taTATAAAgg
TATA-box	Arabidopsis	662	-	7	ΤΑΤΑΑΑΑ
TATA-box	Lycopersicon	1366	+	5	TTTTA
TATA-box	Lycopersicon	1391	+	5	TTTTA
TATA-box	Glycine max	1394	_	5	ΤΑΑΤΑ
TATA-box	Brassica napus	1421	+	6	ΑΤΑΤΑΤ
TATA-box	Arabidopsis	1422	+	4	ТАТА
	thaliana			-	
TATA-box	Brassica napus	1423	+	6	ATATAT
TATA-box	Arabidopsis	1424	+	4	TATA
	thaliana				
TGG-motif (function:	part of a light respon	nsive element)		
	<u>, , , , , , , , , , , , , , , , , , , </u>		~ 1	Matrix	
Site Name	Organism	Position	Strand	score.	sequence
TGG-motif	Gossypium hirsutum	1190	+	8	GGTTGCCA
Unnamed 1					
Site Name	Organism	Position	Strand	Matrix score.	sequence
Unnamed 1	Zea mays	996	+	5	CGTGG
Unnamed 2	2				
Site Name	Organism	Position	Strand	Matrix score.	sequence
Unnamed_2	Petroselinum hortense	563	+	9	AACCTAACCT
Unnamed_3					
Site Name	Organism	Position	Strand	Matrix score.	sequence
Unnamed 3	Zea mays	996	+	5	CGTGG
Unnamed_4	÷				
Site Name	Organism	Position	Strand	Matrix score.	sequence
Unnamed4	Petroselinum hortense	467	+	4	CTCC
Unnamed_4	Petroselinum hortense	1113	+	4	CTCC
Unnamed 4	Petroselinum	932	+	4	CTCC
Unnamed4	Petroselinum hortense	1407	+	4	CTCC

Appendix Table 18 (Continu	ed).
----------------------------	------

Unnamed_4					
Site Name	Organism	Position	Strand	Matrix score.	sequence
Unnamed 4	Petroselinum hortense	815	-	4	CTCC
Unnamed4	Petroselinum hortense	1274	+	4	CTCC
Unnamed4	Petroselinum hortense	1110	+	4	CTCC
Unnamed4	Petroselinum hortense	1209	+	4	CTCC
Unnamed 4	Petroselinum hortense	652	+	4	CTCC
Unnamed4	Petroselinum hortense	1356	+	4	CTCC
Unnamed 4	Petroselinum hortense	911	+	4	CTCC
W box					
Site Name	Organism	Position	Strand	Matrix score.	sequence
<u>W box</u>	Arabidopsis thaliana	302	-	6	TTGACC
<u>W box</u>	Arabidopsis thaliana	1327	-	6	TTGACC

Genes¹ Stage PAL CHS CHI F3H F3'H DFR LDOX UFGT MYB1 MYB7 MYB10 1.00d 1.00e 1.00d 1.00f 1.00c 1.00d 1.00e 1.00d 1.00c 1.00d 0 1.00e 125.77d 2.78c 5.95d 7.11c 19.87d 8.87e 13.04b 11.97c 1.44cd 5.47bc 17.37d 1 3.63c 7.51c 12.15bc 30.20c 13.82d 12.95bb 16.02c 187.15c 1.79bc 5.70bc 33.38d 2 3 3.70c 6.86 10.26bc 26.07cd 10.97de 14.03b 18.13c 178.68c 2.04bc 8.22b 31.08d 5.62b 9.69b 14.16b 45.98b 23.25b 31.83a 39.08b 370.74b 2.39b 9.89b 76.88c 4 5 11.51a 13.10a 26.65a 70.03a 42.58a 31.76a 58.95a 571.45a 4.87a 15.11a 299.26a 6.11b 5.70d 12.74bc 43.37b 17.28c 17.03b 34.79b 225.21c 2.43b 124.99b 6 15.19a *F*-test *** *** *** *** *** *** *** *** *** *** ***

Appendix Table 19 The relative expression of mangosteen anthocyanin biosynthesis and MYB transcription factor genes during colour development harvested from tree.

¹ Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

***= significantly different at $P \le 0.001$

Appendix Table 20 The relative expression of mangosteen anthocyanin biosynthesis and MYB transcription factor genes during colour development after harvest.

Stage		Genes ¹									
Suge .	PAL	CHS	CHI	F3H	F3'H	DFR	LDOX	UFGT	MYB1	MYB7	MYB10
0	1.00c	1.00e	1.00e	1.00e	1.00d	1.00c	1.00e	1.00f	1.00d	1.00d	1.00d
1	5.30b	7.10d	8.80d	20.66d	22.10c	8.28c	10.34d	193.36e	2.38c	5.54c	73.50d
2	12.83a	19.68b	28.15c	72.62b	44.39b	30.07b	32.15c	517.39c	5.62b	7.07c	302.90c
3	16.26a	25.91a	44.91b	105.06a	69.34a	42.06a	56.49b	678.77ab	7.68a	13.39b	407.38
4	12.65a	16.65b	45.41b	98.36a	63.79a	29.02b	56.24b	645.10b	6.18b	13.35b	410.83ab
5	14.35a	18.24b	81.49a	95.92a	64.05a	35.33ab	69.10a	763.36a	5.73b	17.86a	500.96a
6	7.51b	10.67c	27.16c	49.80c	31.65c	25.26b	35.68c	400.87d	3.28c	14.21ab	340.13bc
F-test	***	***	***	***	***	***	***	***	***	* * *	***

¹ Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

***= significantly different at $P \le 0.001$

Appendix Table 21 The relative expression of *PAL* of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M).

Treatment -	Days after harvest ¹							
Treatment	0	1	2	3	7	11		
Air (control)	1.00	3.18a	3.49a	3.12a	2.06ab			
ethylene	1.00	2.36b	2.90b	2.87a	2.18a			
1-MCP	1.00	0.88d	1.01c	0.91b	1.43c	3.26		
E+M	1.00	1.79c	0.44d	0.96b	1.61bc	2.43		
F-test	ns	***	***	***	*	na		

Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

* = significantly different at $P \le 0.05$

***= significantly different at $P \le 0.001$

na = no analysis

Appendix Table 22 The relative expression of *CHS* of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M).

Treatment -	Days after harvest ¹						
Treatment	0	1	2	3	7	11	
Air (control)	1.00	3.18a	4.07a	3.87a	3.50a		
ethylene	1.00	2.76b	3.06b	3.56a	2.93ab		
1-MCP	1.00	0.73d	1.18c	1.21b	3.46a	4.46	
E+M	1.00	2.09c	0.32d	0.76b	2.39b	4.42	
F-test	ns	***	***	***	*	na	

Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

* = significantly different at $P \le 0.05$

***= significantly different at $P \le 0.001$

na = no analysis

Appendix Table 23 The relative expression of *CHI* of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M).

Treatment -	Days after harvest ¹							
Treatment	0	1	2	3	7	11		
Air (control)	1.00	3.86a	5.24a	4.26a	4.04a			
ethylene	1.00	3.61a	4.33b	4.34a	3.70ab			
1-MCP	1.00	1.04b	1.45c	1.27b	3.30ab	5.57		
E+M	1.00	3.42a	0.72d	0.62b	3.10b	4.71		
F-test	ns	***	***	***	ns	na		

Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

***= significantly different at $P \le 0.001$

na = no analysis

Appendix Table 24 The relative expression of *F3H* of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M).

Treatment -	Days after harvest ¹							
Treatment	0	1	2	3	7	11		
Air (control)	1.00	4.63a	4.94a	4.27a	2.88a			
ethylene	1.00	4.62a	4.62a	3.29b	2.76a			
1-MCP	1.00	0.94b	1.12b	0.81c	1.27c	4.89		
E+M	1.00	3.79a	0.70c	0.84c	2.25b	2.64		
F-test	ns	***	***	***	***	na		

Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

***= significantly different at $P \le 0.001$

na = no analysis

Appendix Table 25 The relative expression of F3'H of mangosteen fruit treated with ethylene the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 µL L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 µg L⁻¹ 1-MCP) for 12 h (1-MCP treatment) and 4) 200 µl L⁻¹ ethylene for 24 h +1 µg L⁻¹ 1-MCP for 12 h (E+M).

Treatment -	Days after harvest ¹							
Treatment	0	1	2	3	7	11		
Air (control)	1.00	4.01a	4.36a	3.95a	2.66a			
ethylene	1.00	3.87a	3.87a	3.36a	2.47ab			
1-MCP	1.00	0.65c	0.81b	0.75b	1.31c	3.92		
E+M	1.00	2.58b	0.53b	0.80b	1.84bc	2.42		
F-test	ns	***	***	***	**	na		

Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

** = significantly different at $P \le 0.01$

***= significantly different at $P \le 0.001$

na = no analysis

Appendix Table 26 The relative expression of *DFR* of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M).

Treatment -	Days after harvest ¹							
Heatment	0	1	2	3	7	11		
Air (control)	1.00	3.06a	4.09a	4.16a	5.01a			
ethylene	1.00	2.17b	2.87b	3.18b	3.99ab			
1-MCP	1.00	0.43c	0.89c	0.85c	4.04ab	6.03		
E+M	1.00	2.31b	0.37c	0.78c	3.08b	5.26		
F-test	ns	***	***	***	*	na		

Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

* = significantly different at $P \le 0.05$

***= significantly different at $P \le 0.001$

na = no analysis

Appendix Table 27 The relative expression of *LDOX* of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ L L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M).

Treatment -	Days after harvest ¹							
Treatment	0	1	2	3	7	11		
Air (control)	1.00	5.30a	7.38a	7.87a	6.55a			
ethylene	1.00	5.44a	6.94a	6.35b	6.04a			
1-MCP	1.00	1.11c	1.86b	1.50c	4.52b	8.74		
E+M	1.00	4.70b	1.01c	1.54c	4.36b	7.30		
F-test	ns	***	***	***	**	na		

Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

** = significantly different at $P \le 0.01$

***= significantly different at $P \le 0.001$

na = no analysis

Appendix Table 28The relative expression of UFGT of mangosteen fruit treated
with ethylene and the ethylene inhibitor 1-MCP following 4
treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h
(ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP
treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP
for 12 h (E+M).

Traatmant -	Days after harvest ¹							
Treatment	0	1	2	3	7	11		
Air (control)	1.00	3.92a	4.84a	4.22a	3.26			
ethylene	1.00	4.12a	4.74a	3.84a	3.20			
1-MCP	1.00	0.95c	1.25b	1.19b	2.39	4.85		
E+M	1.00	3.56b	1.07b	1.54b	3.00	3.66		
F-test	ns	***	***	***	ns	na		

Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

***= significantly different at $P \le 0.001$

na = no analysis

Appendix Table 29 The relative expression of *MYB1* of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M).

Traatmont -	Days after harvest ¹								
Treatment	0	1	2	3	7	11			
Air (control)	1.00	3.89a	3.66a	3.96a	2.39				
ethylene	1.00	2.89b	2.35b	4.31a	1.91				
1-MCP	1.00	0.80d	1.10c	1.79b	2.30	3.29			
E+M	1.00	1.96c	0.50d	0.71c	2.19	2.46			
F-test	ns	***	***	***	ns	na			

Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

***= significantly different at $P \le 0.001$

na = no analysis

Appendix Table 30 The relative expression of *MYB7* of mangosteen fruit treated with ethylene the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M).

Treatment	Days after harvest ¹							
Treatment	0	1	2	3	7	11		
Air (control)	1.00	3.97a	4.93a	5.05a	7.43a			
ethylene	1.00	4.04a	3.11b	5.13a	7.42a			
1-MCP	1.00	1.72b	1.78c	2.22b	4.06b	7.56		
E+M	1.00	3.35a	3.16b	2.15b	3.78b	10.00		
F-test	ns	**	***	***	**	ns		

Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

** = significantly different at $P \le 0.01$

***= significantly different at $P \le 0.001$

na = no analysis

Appendix Table 31 The relative expression of *MYB10* of mangosteen fruit treated with ethylene and the ethylene inhibitor 1-MCP following 4 treatments; 1) air (control), 2) 200 μ L L⁻¹ ethylene for 24 h (ethylene treatment), 3) 1 μ g L⁻¹ 1-MCP for 12 h (1-MCP treatment) and 4) 200 μ l L⁻¹ ethylene for 24 h +1 μ g L⁻¹ 1-MCP for 12 h (E+M).

Tractment	Days after harvest ¹							
Treatment	0	1	2	3	7	11		
Air (control)	1.00	10.73d	16.58a	13.30a	19.97b			
ethylene	1.00	5.93b	7.56b	14.31a	17.67b			
1-MCP	1.00	1.62d	3.26c	4.25b	39.10a	26.96		
E+M	1.00	4.35c	0.31d	1.44b	12.04c	28.50		
F-test	ns	**	***	***	***	na		

¹ Mean values followed by different letters in the same column are significantly different at $P \le 0.05$ using DMRT

ns = non-significantly different

** = significantly different at $P \le 0.01$

***= significantly different at $P \le 0.001$

na = no analysis

Treature ant	Days after harvest ¹						
Ireatment	0	1	2	3	7	11	
25°C (control)	1.00	3.04	3.90	3.45	2.51		
$15^{\circ}C(7 d) + 25^{\circ}C$	1.00	0.63	1.01	0.91	1.54	3.73	
t-test	ns	*	**	**	*		

Appendix Table 32 The relative expression of *PAL* of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

Asterisks indicate a significant difference between mean values according to Student *t*-test

ns = non-significantly different

1

* = significantly different at $P \le 0.05$

** = significantly different at $P \le 0.01$

Appendix Table 33 The relative expression of *CHS* of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

Turaturant	Days after harvest ¹						
Treatment	0	1	2	3	7	11	
25°C (control)	1.00	3.21	3.88	3.86	3.38		
$15^{\circ}C(7 d) + 25^{\circ}C$	1.00	0.70	0.87	0.83	1.18	5.04	
<i>t</i> -test	ns	***	*	**	***		

¹ Asterisks indicate a significant difference between mean values according to Student *t*-test

- ns = non-significantly different
- * = significantly different at $P \le 0.05$
- ** = significantly different at $P \le 0.01$
- ***= significantly different at $P \le 0.001$

Treature and	Days after harvest ¹						
Ireatment	0	1	2	3	7	11	
25°C (control)	1.00	4.00	6.93	5.63	4.45		
$15^{\circ}C(7 d) + 25^{\circ}C$	1.00	0.82	0.84	0.68	1.23	5.84	
<i>t</i> -test	ns	***	***	*	***		

Appendix Table 34 The relative expression of *CHI* of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

Asterisks indicate a significant difference between mean values according to Student *t*-test

ns = non-significantly different

1

* = significantly different at $P \le 0.05$

***= significantly different at $P \le 0.001$

Appendix Table 35 The relative expression of F3H of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

Treature and	Days after harvest ¹						
Treatment	0	1	2	3	7	11	
25°C (control)	1.00	4.00	5.56	4.66	3.48		
$15^{\circ}C(7 d) + 25^{\circ}C$	1.00	0.78	0.76	0.69	1.17	5.95	
<i>t</i> -test	ns	***	**	***	***		

¹ Asterisks indicate a significant difference between mean values according to Student *t*-test

- ns = non-significantly different
- ** = significantly different at $P \le 0.01$
- ***= significantly different at $P \le 0.001$
| T () | | | Days after | r harvest ¹ | | |
|----------------------------------|------|------|------------|------------------------|------|------|
| Treatment | 0 | 1 | 2 | 3 | 7 | 11 |
| 25°C (control) | 1.00 | 3.31 | 5.07 | 4.37 | 2.83 | |
| $15^{\circ}C(7 d) + 25^{\circ}C$ | 1.00 | 0.42 | 0.53 | 0.48 | 0.77 | 5.07 |
| <i>t</i> -test | ns | ** | ** | * | *** | |

Appendix Table 36 The relative expression of F3'H of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

ns = non-significantly different

1

- * = significantly different at $P \le 0.05$
- ** = significantly different at $P \le 0.01$
- ***= significantly different at $P \le 0.001$

Appendix Table 37 The relative expression of *DFR* of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

Treatment			Days after	harvest ¹		
Treatment	0	1	2	3	7	11
25°C (control)	1.00	2.63	2.76	3.06	4.51	
$15^{\circ}C(7 d) + 25^{\circ}C$	1.00	0.60	0.69	0.74	1.58	5.51
<i>t</i> -test	ns	***	*	**	***	

¹ Asterisks indicate a significant difference between mean values according to Student *t*-test

- ns = non-significantly different
- * = significantly different at $P \le 0.05$
- ** = significantly different at $P \le 0.01$
- ***= significantly different at $P \le 0.001$

Treature ant			Days after	r harvest ¹		
Treatment	0	1	2	3	7	11
25°C (control)	1.00	4.29	8.14	8.13	7.00	
$15^{\circ}C(7 d) + 25^{\circ}C$	1.00	0.74	0.73	0.74	1.26	9.35
t-test	ns	***	**	**	**	

Appendix Table 38 The relative expression of *LDOX* of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

ns = non-significantly different

1

** = significantly different at $P \le 0.01$

***= significantly different at $P \le 0.001$

Appendix Table 39 The relative expression of UFGT of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

T 4 4			Days after	r harvest ¹		
Treatment	0	1	2	3	7	11
25°C (control)	1.00	3.33	4.74	4.19	3.55	
$15^{\circ}C(7 d) + 25^{\circ}C$	1.00	0.80	1.16	1.16	1.46	5.83
t-test	ns	***	**	**	**	

¹ Asterisks indicate a significant difference between mean values according to Student *t*-test

- ns = non-significantly different
- ** = significantly different at $P \le 0.01$
- ***= significantly different at $P \le 0.001$

Treature ant	Days after harvest ¹						
Treatment	0	1	2	3	7	11	
25°C (control)	1.00	3.49	4.55	3.79	2.87		
$15^{\circ}C(7 d) + 25^{\circ}C$	1.00	0.95	1.27	0.72	1.08	3.44	
<i>t</i> -test	ns	**	***	***	***		

Appendix Table 40 The relative expression of *MYB1* of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

ns = non-significantly different

1

** = significantly different at $P \le 0.01$

***= significantly different at $P \le 0.001$

Appendix Table 41 The relative expression of *MYB7* of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

T 4 4			Days after	r harvest ¹		
Treatment	0	1	2	3	7	11
25°C (control)	1.00	4.71	6.06	6.52	8.71	
$15^{\circ}C(7 d) + 25^{\circ}C$	1.00	1.19	1.60	1.07	1.41	6.57
t-test	ns	**	***	*	***	

¹ Asterisks indicate a significant difference between mean values according to Student *t*-test

- ns = non-significantly different
- * = significantly different at $P \le 0.05$
- ** = significantly different at $P \le 0.01$
- ***= significantly different at $P \le 0.001$

T ()			Days after	harvest ¹		
Ireatment	0	1	2	3	7	11
25°C (control)	1.00	8.69	12.48	18.59	18.72	
$15^{\circ}C(7 d) + 25^{\circ}C$	1.00	1.02	1.52	1.67	3.00	22.90
<i>t</i> -test	ns	**	***	***	***	

Appendix Table 42 The relative expression of *MYB10* of mangosteen fruit stored at 25° C (control) and 15° C for 7 days then transferred to 25° C.

ns = non-significantly different

1

** = significantly different at $P \le 0.01$

***= significantly different at $P \le 0.001$

Appendix Figure 1 GeneRacer protocol (Invitrogen, USA).

Appendix Figure 2 pGEM-T Easy vector (Promega, USA).

Appendix Figure 3 Genome Walker protocol (Clontech, USA).

Appendix Figure 4 T-DNA region of the transient expression vector pGreenII 0800-LUC.

Appendix Figure 5 T-DNA region of the transient expression vector pGreenII 62-SK

Appendix Figure 6 LC-MS of anthocyanin in outer pericarp at stage 6 of mangosteen fruit.

Appendix Figure 6 (Continued).

CURRICULUM VITAE

NAME	: Mr. Yossapol Palapol						
BIRTH DATE	: July 12,	: July 12, 1977					
BIRTH PLACE	: Chantha	buri, Thailand					
EDUCATION	: YEAR 1999 2002	INSTITUTE KMITL. Kasetsart Univ.	DEGREE/DIPLOMA B.Sc. (Agriculture) M.S. (Horticulture)				
POSITION/TITLE	: Lecturer	ſ					
WORK PLACE	: Faculty of Science and Art, Burapha University Chanthaburi IT Campus						
SCHORLARSHIP	: Thailand Research Fund grant number PHD/00210/2547 and Commission on Higher Education, Ministry of Education						