TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	iv
LIST OF SYMBOLS AND ABBREVIATIONS	vii
INTRODUCTION	1
OBJECTIVES	3
LITERATURE REVIEW	4
MATERIALS AND METHODS	32
RESULTS AND DISCUSSION	44
CONCLUSION	87
LITERATURE CITED	91
APPENDIX	116
CURRICURUM VATAE	129

LIST OF TABLES

Table		Page
1	Area of cultivation and yield of coconut tree in Thailand in 2001	5
2	Basic characteristics of Tall and Dwarf coconuts	7
3	Weight of different components of fruits from various sources	8
4	Proximate composition (%) of coconut meal	9
5	Beta-mannanase producing bacteria	11
6	Beta-mannanase producing fungi	12
7	Sources of beta-mannosidase	17
8	Alpha-galactosidase producing bacteria	20
9	Alpha-galactosidase producing Fungi and yeast	21
10	Application of oligosaccharides in 'Foods for Specified Health Use'	
	(FOSHU) in Japan	26
11	Ratio of the CM-hydrolysate combination added to reaction mixture.	43
12	Characteristics of the isolate ST1-1	51
13	Characteristics of the isolate CW2-3 comparing to different species	
	of Klebseilla	52
14	Purification of mannanase from Klebsiella oxytoca CW2-3	65
15	Effect of metal ions on S1 from Klebsiella oxytoca CW2-3	72
16	Substrate specificity of S1 from Klebsiella oxytoca CW2-3 toward	
	various substrates	73
17	Characteristic constant of S1 from Klebsiella oxytoca CW2-3	73
18	The summarized properties of purified mannanase, S1	75
19	Reducing sugar of degraded products from S1 on LBG at 2 h, 40°C	79
20	Reducing sugar of degraded products from S1 with 100 mM CoCl ₂	
	on copra meal at 40°C	81
21	The effect of CM-hydrolysate on L. reuteri KUB-AC5, Salmonella	
	serovar Enteritidis S003, and E. coli E010 growth.	83
22	The effect of Co-CM-hydrolysate on L. reuteri KUB-AC5,	
	Salmonella serovar Enteritidis S003, and E. coli E010 growth.	85

LIST OF TABLES (Continued)

Appendix Table		Page
A1	A Sample buffer preparation	121
A2	Acrylamide gel electrophoresis preparation	121
A3	Citrate buffer preparation	122
A4	Phosphate buffer preparation	123
A5	Glycine-NaOH buffer preparation	123
A6	TE buffer preparation	124

LIST OF FIGURES

Figure		Page
1	Longitudinal section of coconut showing the different parts	5
2	Structural features of galactomannan	10
3	Mode of action of beta-mannanase and the 1,4 -β-D-mannan chain	14
4	Mode of action of beta-mannosidase on galactomannan molecule	18
5	Structure of the yeast cell wall	25
6	Lobry de Bruyn-Alberda van Ekenstein reaction	27
7	Mannanase activity of 49 active isolates on IM agar medium	
	containing locust bean gum	44
8	Comparison on mannanase activities of 10 active isolates against	
	locust bean gum and copra meal	45
9	Secondary screening by 10 effective isolates. (A) enhancing	
	activity to L. reuteri KUB-AC5; (B) inhibition activity to	
	S. Enteritidis S003 and E. coli E010	48
10	Summary of 16S rDNA gene analysis of the isolate ST1-1 and	
	CW2-3	53
11	Alignment of the 16S rDNA gene sequence of ST1-1 with	
	Acinetobacter sp. TUT1001	55
12	Alignment of the 16S rDNA gene sequence of CW2-3 with	
	Klebsiella oxytoca strain NG-14	58
13	The effect of temperature and pH on mannanase activity of the	
	isolate ST1-1 and the isolate CW2-3	60
14	Ammonium sulfate precipitation of crude enzyme from Klebsiella	
	oxytoca CW2-3	62
15	Anion exchange chromatography of mannanase on Q Sepharose I	63
16	Anion exchange chromatography of mannanase on Q Sepharose II	64
17	Anion exchange chromatography of mannanase on Q Source	65
18	SDS-PAGE of purified S1	66
19	Native-PAGE of purified S1	67

LIST OF FIGURES (Continued)

Figure		Page
20	Isoelectric focusing electrophoresis of purified S1	67
21	The pH effect on S1 from Klebsiella oxytoca CW2-3	69
22	The effect of temperature on S1 from Klebsiella oxytoca CW2-3	70
23	Locust bean gum degradation by S1 from Klebsiella oxytoca	
	CW2-3 at various times of 0, 1, 2, 3, and 4h	77
24	Effect of CoCl ₂ concentration (mM) on S1 mannanase activity.	77
25	Locust bean gum degradation by S1 with 100mM CoCl ₂ at various	
	times of 0, 1, 2, 3, and 4h	78
26	Locust bean gum degradation by S1 at 2h with various CoCl ₂	
	concentration	79
27	Copra meal degradation by S1 at various times of 0, 1, 2, 3, 4 and	
	24h	80
28	Copra meal degradation by S1 with 100 mM CoCl ₂ at various	
	times of 0, 1, 2, 3, 4 and 24h	81
29	Effect of CM-hydrolysate to the enhancing activity of L. reuteri	
	KUB-AC5 and inhibition activity of Salmonella serovar	
	Enteritidis S003 and E. coli E010.	84
30	Effect of Co-CM-hydrolysate to enhancing activity of L. reuteri	
	KUB-AC5 and inhibition activity of Salmonella serovar	
	Enteritidis S003 and E. coli E010.	86
Append	ix Figure	
A1	Standard curve of mannose concentration	118
A2	Standard curve of protein using Lowry method	119
A3	N-terminal amino acid sequence; standard amino acid sequence,	
	residue 1-7	127
A4	N-terminal amino acid sequence; residue 8-15	128

LIST OF SYMBOLS AND ABBREVIATIONS

bp base pair

cfu/ml colony forming units per milli litre

CMC carboxymethyl cellulose

Da dalton

K_m Michaelis-Menten constant

kDa kilo dalton

LAB lactic acid bacteria

LBG locust bean gum

ME metabolic energy

ml/h milli litre per hour

ml/min milli litre per minute

mg/ml mili gram per milli litre

MRS De Man, Rogosa and Sharpe medium

MW molecular weight

NB nutrient broth
OD optical density

PCR polymerase chain reaction

PNGP *p*-nitrophenyl-α-D-galactopyranoside

rRNA ribosomal ribonucleic acid

SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TLC thin-layer chromatography

U/ml unit of enzyme per milli litre

U/mg protein unit of enzyme per milli gram protein

 V_{max} maximum velocity V/V volume per volume W/V weight per volume

X-Gal 5-bromo-4-chloro-3-indolyl-β-D-galactoside