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Abstract  
 

The beta-hemolytic group A Streptococcus (GAS)  is responsible for its sequel, acute rheumatic 

fever (ARF), which may lead to the more serious condition on other heart diseases. To gain a better 

understanding of the transmission in a population, we formulated epidemic models using a standard 

compartmental model and a continuous-time Markov chain. The models allow for the contribution 

of disease carrier and the effect of treatment.  The equilibrium points and stability are analyzed in 

relation to the basic reproduction number based on the deterministic model. For the stochastic model, 

numerical simulation of sample paths is performed.  The results indicate that the dynamic behavior 

for the two approaches depends on the epidemic threshold.  Under stable endemic condition, most 

sample paths fluctuate around its mean and deterministic curve.  On the other hand, when the basic 

reproduction number is less than one, the stochastic system undergoes a minor outbreak, while the 

deterministic curve approaches zero. The results are expected to be the first step of a deeper analysis 

of stochastic treatment linked to its deterministic counterpart.    

 

Keywords:  group A Streptococcus; acute rheumatic fever; deterministic model; stochastic model; 

carriers 
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1. Introduction  
 

The beta-hemolytic group A Streptococcus (GAS) bacteria [1] is the main cause of infections of the 

throat and skin such as pharyngitis, tonsillitis, sinusitis, impetigo, rheumatic fever, and meningitis. 

These can occur in any gender and at any age.  The most common of GAS occurs in children ages 

5-15 [2-8] .  GAS are carried in the throat or on the skin of individuals where the individuals may 

have no symptoms of illness [9-11]  and infections can be spread from person to person by direct 

contact or inhalation of the secretions in the nasopharynx such as mucus and saliva [8] .  Treatment 

of a GAS with an antibiotic such as penicillin can reduce the risk of ARF by about 90%.  In about 

10% of cases, GAS still remain in the throat even though the individual has had a full course of 

treatment [12]. Treatment failures of GAS may arise from the ineffectiveness of antibiotic therapy 
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or an incomplete course of the prescribed antibiotic.  The patients who failed from these treatments 

may be asymptomatic or classified as carriers, which can be a significant impact on the GAS 

epidemic, since they do not take any special precautions to prevent transmission [1, 13-15]. 

Untreated GAS pharyngitis or treatment failures may develop into acute rheumatic fever 

(ARF), which is a non-communicable disease caused by disorders of an autoimmune [16]. ARF is 

most common in 5-15 years old [4]. The symptoms of ARF are swelling, skin inflammation, blisters 

or bulges underneath the skin, heart tissue damage, and inflammation of the brain, which causes a 

movement disorder called Chorea. About 0.3%-3.0% of people will develop ARF following a GAS 

infection.  In addition, patients who have had previous attacks of ARF have a recurrence of ARF 

following a GAS infection in 30% - 80%  of cases [ 12] .  There are about 5 million individuals 

worldwide with rheumatic heart disease and there are about 282,000 new cases per year and 233,000 

deaths from this disease each year due to lack of proper infection prevention of GAS [16-18]. 

Mathematical models have been used widely as a tool to study the propagation of diseases 

[1, 12] .  In addition to deterministic formulation, stochastic model can be used to treat the realistic 

contact pattern given by unpredictable individual behaviors. In this research, we study the dynamics 

of infectious and asymptomatic GAS infections that affect the dynamics of ARF. Deterministic and 

associated stochastic models are constructed to compare the system behaviors.  An analytic 

framework is based on the deterministic analysis while a numerical simulation is the main approach 

used to solve the stochastic model.   

 

 

2. Materials and Methods  
 

2.1 Basic assumptions and the deterministic model 
 

We employ the standard compartmental SIS model for the models of GAS and ARF [19] .   The 

model is formulated under the assumption that individuals infected with GAS can be treated by 

using an antibiotic such as penicillin or amoxicillin [ 5] .  In addition to the possible failure of 

antibiotic treatment with several reasons [18, 20-23] , we assume that even if a full course of the 

antibiotic is taken, a small fraction of GAS may remain in the throat.  Therefore, asymptomatic 

carriers will be defined as errors of treatment which is different from the previous study [24] .  By 

the term ‘error of treatment’ , we mean that some treated patients may have not complied with the 

treatment steps or may not have completed the full course of drug administration and dosage.  

Suppose that the total population, N is constant.  We denote S  as the number of 

susceptible individuals, I  as the number of symptomatic GAS individuals, C  as the number of 

asymptomatic GAS individuals or carriers and, A  as the number of individuals that develop ARF. 

Figure 1 shows the flow diagram of GAS infection and ARF development.  Since both I   and C   

individuals have positive throat cultures for GAS [23, 25] , new ARF patients may develop from 

these two groups [26]. The differential equations describing the transition rates are given by 

 

1 2 2 1( )
dS

I C S A I S
dt

    = − + + + −     (1) 

                        
1 2 1 1( ) ( )

dI
I C S C I

dt
    = + + + +−ò    (2) 

                       
1 2(1 ) ( )

dC
I C

dt
   = − − + +ò   (3) 
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1 2 2( )

dA
I C A

dt
   = − ++   (4) 

 

where the definitions of the parameter values used in the above model and their corresponding 

values are given in Table 1.  Since carriers are thought to have a lower density of GAS in their 

pharynx, compared to those with an acute infection [25-28] , and GAS carriers are at little risk for 

developing acute rheumatic fever [26], we presume that 2 1  and 2 1  . We note that given the 

nonnegative initial conditions, the solutions are nonnegative for all time, and if the initial condition 

is positive, then the set   

( ) 4( ), ( ), ( ), ( ) : 0 , , , /S t I t C t A t S I C A + =    ¡  

is a positively invariant. 

 

 
 

Figure 1. Flowchart describing the transition between compartments 

 

Table 1. Symbols and definition of the parameters 

Parameters Description 

  recruitment rate of susceptible class 

1  rate at which the infectious individual gets antibiotic treatment 

  proportion of effectiveness of antibiotic treatment 

2  per capita recovery rate of ARF individual  

1  rate at which a symptomatic GAS individual can infect a susceptible 

2  rate at which a GAS carrier can infect a susceptible 

  per capita natural death rate of all compartment 

ò  rate at which a carrier becomes symptomatic GAS individual 

1  rate at which a symptomatic GAS individual develops ARF 

2  rate at which a carrier develops ARF 
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2.2 Stochastic model 

 

A continuous time Markov chain (CTMC) associated with the deterministic counterpart is presented. 

As opposed to the deterministic model, the stochastic model better explains the uncertainty and 

variability in a real epidemic due to the complex pattern of human contact, which is unpredictable 

[29-31] .  In this study, however, the aim is to demonstrate the random nature via the simulated 

trajectories which can be compared with the numerical solution of the deterministic model, while 

we left the stochastic analysis as the future extension.  

The multivariate random process is assumed to obey the Markov property where the 

meaning is the same as in the deterministic model. Hence, we denote S ( t ), I ( t ), C ( t ) and A ( t ) 

as the stochastic processes that have a common state space {1,2,3,..., N } where t [ 0, ). We note 

that the values of discrete random variables are denoted by the lower case.  The transition 

probabilities related with a small period of time 0t   is given by 

 

               
( )( ( )

( ) ( ))

( ), ( ), ( ), ( ) , , , |

( ), ( ), ( ), ( ) , , , .

P S t t I t t C t t A t t s j i k c m a n

S t I t C t A t s i c a

+ + + + = + + + +

=
                         (5) 

 

The transition probability is time-homogeneous and satisfies the Markov property.  Summarized in 

Table 2 are the changes, , ,S I C    and A  associated with thirteen events. Given (0)I  0i= 

and (0)C  0c=  , the state ( , , , )s i c a , where  0I =  and 0C =  refer to absorbing states; the 

epidemic ends at time t  when an absorbing state is reached.  

 

Table 2. Model assumptions  

Event Change ( , , ,S I C C    ) Probability 

Infection to I  ( 1,1,0,0− ) s ( 1 2i c + ) t o+ ( t ) 

Death of S   ( 1,0,0,0− ) s t  o+ ( t ) 

Recruitment  (1,0,0,0 ) t o+ ( t ) 

Recover from A  to S   (1,0,0, 1− ) 2a t  o+ ( t ) 

Recover from I  to S   (1, 1,0,0− ) 1i t  o+ ( t ) 

Recover from I  to C   ( 0, 1,1,0− ) (1 − ) 1i t  o+ ( t ) 

Recover from I  to A   ( 0, 1,0,1− ) 1i t  o+ ( t ) 

Death of I   ( 0, 1,0,0− ) i t  o+ ( t ) 

Moving from C  to 𝐼  ( 0,1, 1,0− ) c tò o+ ( t ) 

Develop from C  to A   ( 0,0, 1,1− ) 2c t  o+ ( t ) 

Death of C   ( 0,0, 1,0− ) c t  o+ ( t ) 

Death of A   ( 0,0,0, 1− ) a t  o+ ( t ) 

For any event other than in Table 2, we let ( ) ( ), , , 0,0,0,0S I C A    = . 

      
 

2.3 Simulation and the basic reproduction number 
 

Here, we implement numerical simulation for stochastic realization ( sample path)  of the process. 

Gillespie [29] developed a numerical method for the simulation of CTMC models, which is known 
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as the Gillespie algorithm or the stochastic simulation algorithm. The Markov property implies that 

inter-event time is exponentially distributed, where a parameter    is the sum of the rates for all 

possible events: 

                 ( ) ( ) ( )1 2 2 1 1 1 21 ,s i c a i i i c c s i c a         = + + + + + − + + + + + + +ò              (6) 

where ( , , ,s i c a )  is specific for the state of ( S , I , C , A )  at a given time t .  From the inverse 

method, we obtain the value of the inter-event time 𝜏  by 

                                                                        1ln u



= −                                                           (7) 

where 1u  is a uniform random generator.  To determine which event will occur, we construct a 

probability distribution of twelve events, i.e. , , 1,2, 12ip i = K , and hence apply the inverse method 

by generating a second uniform random value, 2u  such that if 2u  lies in k- th subinterval among  

[ 10, p ], ( 1 1 2,p p p+ ] ,…, ( 1 2 11... ,1p p p+ + + ], then the k-th event occurs. 

 Since A N S I C= − − − , we denote the disease-free equilibrium of the model as  

0 0 0 0( , , ) ( / ,0,0)E S I C = =  .  

We then derive the basic reproduction number, 0R  by using the next generation method [ 32] .  

Therefore, we obtain 

                                          1 2 2 1

0

1 2 1 2

( ) (1 )
.

( ) ( )( )
R

     

        

 + + + −
=  

+ + + + + + 

ò

ò ò
                                  (8) 

 

 

3. Results and Discussion  
 

3.1 Stability analysis 

 

Let us begin with the existence and uniqueness of the endemic equilibrium
*E = (

* * *, ,S I C ) .  By 

solving the system of algebraic equations, and rewriting in terms of 0R , we have 

            

*

0

,S
R


=     (9) 

 ( )*

0

2

1
1 ,I

R



 

 
= − + +

 
ò                                              (10) 

and          

( )*

1

0

1
1 1C

R
  



 
= − − 

 

                                                 (11) 

where 

( )

( )( ) ( )( )
2

1 2 222 1

.
1

 




       

+ +
=

+ + + − ++ + +

ò

ò
 

 

Since the endemic equilibrium is biological meaningful when all variables are positive, from above 

expression, 
*E  can be uniquely determined when 0 1R  . 

 The stability of 0E can be determined by calculating the Jacobian matrix  
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                                    ( )

( )

( )

( ) ( )

1 2

2 1 2 2

1 2

0 1 1

21

0

0 1

J E 

 
    

 

 
 

 

  

   
− + − − − +  

  
  

= − + + + 
 
 − −
 
 
 

+ +

ò

ò

.                    (12) 

The characteristic equation is given by  

                                              ( )( )2

2 1 2 0c c    + + + + =                                                    (13) 

 

where 

                                                 21
1

1 1 ,2c 


 



+ + += + −ò                                      (14) 

                                    ( ) ( )1

1 2

22 11 1 .c
 

    
 


    

+ + − −


= − − − +   
 

−


ò ò                    (15) 

 

Due to the presence of trivial eigenvalue, the problem is reduced to the second order equation. 

Suppose that 0 1R  , from equation (15) , we find 2 0c  .  Hence, it follows that 1 0c  .  Therefore, 

we find that the disease-free equilibrium 0E  is locally asymptotically stable if 0 1R  . 

 Next, we will derive the conditions for which the endemic is stable.  Let us suppose that 

0 1R  , and define  

( ) ( )
(1) (2)

0 0

2 1

1 1
, .

1
R R

     
= =

+ + −ò
 

We calculate a Jacobian matrix at * * * *( , , )E S I C= ,  

( )

( ) ( )

* * * *

1 2 2 1 2 1 2 2

* * * *

1 2 1 1 2

1 2

1

0 1

I C S S

J I C S S

        

    









 

 − − − − − − + − −
 

= + − + + + 
 + + − − 

ò

ò

, 

and hence obtain the characteristic equation  

                                                          3 2

1 2 3 0a a a  + + + =                                                        (16) 

where  
* * *

1 1 2 2 1 1 2( ,)a I S C        = + + + + + + +− ++ò  

( )( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( ) ( )

* * * *

2 1 1 1 1 2 2 2 1 2 2 1 1

* * *

2 2 1 2 1 2 1 2 ,

1 2

2 1

a I I S C

C C S

                

            

= + − − +

+ + + + +

+ + + + + + + + + +

+ + + + + − −

ò

ò ò

( ) ( ) ( ) ( )( ) ( ) ( )

( )( )( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )

1

2

* * * * * *

3 1 1 2 2 1 2 2 1 2 1 2

* *

1 2 2 2 2 1 1 2

* * *

2 1 1 2 1 2

1 1 1

1 .

a I C C S I C

I S C

I C S

                

              

       

− − − + + +

+ + +

= + + +

+ + +

− +

+ −

+

+ + ++

+ +

+

− +−

ò

ò ò

ò

  

According to Routh-Hurwitz criteria [33] , the necessary condition for the real parts of all 

eigenvalues are negative is that the coefficients of the characteristic equation (16) must be positive. 
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Observe that if (1)

0 0R R , then * * 0I S−   leads to 1 0a  , and hence * * 0C S−   which leads to

3 0a  .  Thus, it is immediate that if (1)

0 0R R , and (2)

0 0R R  then 2 0a  .  Finally, after some 

tedious work, it can be verified that if such two conditions hold, then we find 1 2 3 0a a a−  . The last 

condition fulfills the necessary and sufficient conditions in Routh-Hurwitz criterion.  

In summary, we have that the endemic equilibrium is asymptotically stable if   

  (1) (2)

0 0 01 max , .R R R +   

In order to assure the stability of the endemic state, the value of the basic reproduction 

number must satisfy the above condition. The additional parameters, such as (1)

0R  and (2)

0R , merely 

provide the sufficient conditions for this to happen.  Further analysis, such that the above condition 

does not hold while 0 1R  , requires a deeper investigation into the parameter relationship which is 

beyond the scope of this study.  

 

3.2 Numerical results 

 

To support our theoretical results, we present numerical results where the total population is 

assumed as 1000N =  and other parameter values, including the references are provided in Table 3. 

In this section, the numerical solutions of deterministic models will be compared with the sample 

paths of the stochastic model. 

From the range of parameter values, we first choose 1 0.00089 = , 2 0.000001 = , 

0.0027=ò  and 1 0.8. =  From the analytic results, it follows that 0E = ( 1,000,0,0 )  and 

0 0.8926R = .  Thus, these parameter values combined with the rest in Table 3, form a set of 

parameters at which the disease will eventually die out.  Figure 2 (a)  illustrates the time-dependent 

solutions of the deterministic model confirming the accordance with theoretical prediction.  

 

Table 3: The values of the parameters 

Parameters Values Units Reference 

1  0.1 1−  day
1−
 [12] 

  0.9  - [12] 

2  0.8 0.8  day
1−
 [12] 

  0.00004  day
1−
 [1] 

ò  0.0027 0.0110−  day
1−
 [1] 

1  0.2  day
1−
 [12] 

2  0.1  day
1−
 Estimated 

  0.04  person·day
1−
 [1] 

1  0.00089 0.0099−  person
1−
· day

1−
 [1] 

2  0.000001 0.0005−  person
1−
· day

1−
 [1] 

 

The graph of the solutions shown in Figure 2 (b) illustrates the dynamic behavior of 

deterministic model when we choose 1 20.00356, 0.000004, = = and The difference from the 

previous case is that we increase the contact rates from both infected groups and reduce the treatment 

rate. Based on these parameter values, we find that 
*E = ( 252.1,370.9, 252.7,124.3 ) (1)

0 2.0162,R =  
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Figure 2. The solution curves of deterministic model with initial conditions ( )0 999S = and

( )0 1I = . (a) Disease-free equilibrium 0E  is asymptotically stable when 0 1R   and (b) endemic 

equilibrium 
*E is asymptotically stable when (1) (2)

0 0 01 max( , ).R R R +  

 
(2)

0 2.5903R = and 0 3.9666R = , respectively.  To consider the long- term epidemic pattern, we see 

that, on average, there will be about 37% who have symptomatic infections, and about 12.43% are 

expected to develop the ARF condition in the future.  We note that rate of increase of the force of 

infection by the contact rates from each infectious group is the same at 300% , while the treatment 

rate is reduced by only 12.5%. 

Let us now focus on the sample paths of the stochastic model. As in the deterministic case, 

the graph will be plotted in the case  0 1R   and 
0 1 maxR  + ( (1) (2)

0 0,R R ) using the same parameter 

values and initial conditions.  In the absence of the theoretical conjecture, it can be argued that, for 

0 1R  , a minor outbreak may exist with a positive probability [24]. This implies that under the small 

number of infectious individuals, there is a fraction of realizations that indicates the presence of 

successful transmission of a small magnitude and a finite time interval, while the remaining paths 

are instantly extinct in the successive step by chance.  This is referred to as the minor epidemic.  In 

our case, the minor outbreak is observed in Figure 3 (a).     

In contrast to the minor outbreak, the system may possess the major outbreak or endemic 

persistence.  The fifty sample paths are plotted in Figure 3 (b), demonstrating a random fluctuating 

pattern around its mean. In this case (but not always), the paths also fluctuate around the solution of 

deterministic model. It is possible that the more samples, the more deviation is observed. However, 

most of the paths fluctuate around the endemic level under the degree of variability.    
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Figure 3. Simulations of ample paths. (a) The fifty sample paths when 0 1R  . (b) The dashed 

curve is the ODE solution (black solid line) and the other curves are fifty sample paths when 

0 3.9666.R =  

 

 

4. Conclusions 
 

In the deterministic model, we found two equilibrium points. The disease-free equilibrium is locally 

asymptotically stable when the basic reproduction number less than one.  The endemic equilibrium 

is locally asymptotically stable when the basic reproduction number is greater than one plus the 

maximum of two additional parameters.  Due to the complexity of parameter relations, these two 

parameters are difficult to interpret in terms of biological meaning.  In fact, further analysis to 

establish the stronger stability condition is required.  

Qualitative comparison between deterministic and stochastic dynamics can be made via 

numerical simulations.  Although the trend of stochastic realizations behaves in the similar fashion 

with the deterministic solutions subject to the stable condition of endemic state, when the basic 

reproduction number is less than one, their behaviors are quite different.  This is because of the 

stochastic nature of individuals. The further extension should be determination of the probability of 

extinction and the probability of the outbreak, analysis of the stochastic fade out, and quantification 

of variance.  

From sensitivity analysis, the most effective parameter relevant to the outbreaks of disease 

is the rate at which an infected individual can infect a susceptible one.  From sensitivity index, we 

note that the parameter that can be practically controlled to directly reduce the outbreak of disease 

is 1  .  While these analyses can be easily done for the deterministic model, the role of parameter 

variation can alter the stochastic behaviors if they are quantified. We conclude that the cooperation 

between the two approaches may be mutually supportive and produce insight into the disease 

dynamics, knowledge that can facilitate disease management and control.   
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