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Abstract

This work compared the capabilities of the Organic Rankine Cycle (ORC) operating
under saturated and superheated conditions. Furthermore, a guideline for using a single
and mixed-working fluid in an ORC was suggested. The potential of applying mixed-
working fluid in an ORC was explored and the optimal composition of the selected
working fluids was determined. In this study, the recovery of medium grade energy
from a biogas-fueled internal combustion engine (ICE) was considered. The stack
temperature, acid dew point and mass flow rate of the exhaust gas supplied to an ORC
were 400°C, 110°C and 4,582.83 kg/hr, respectively. The model development of 16
working fluids, consisting of 13 hydrocarbons and 3 halocarbons were carried out by
using Aspen Plus V.7.1. For a single working fluid, all selected hydrocarbons and
halocarbons were investigated whereas only hydrocarbons were studied in case of the
mixed-working fluid because the halocarbons showed much lower potential to generate
work when compared to the hydrocarbons. There were two objective functions being
considered, i.e. maximizing net work output and maximizing profit. The key
optimization parameters were the mass flow rate of the working fluid, the compositions
of the selected working fluids, the turbine inlet pressure, the turbine outlet pressure and
the superheating temperature. The optimization results revealed that pure toluene and a
mixture of toluene and n-tetradecane (C14) operating under saturated condition were the
most favorable alternative for the single working fluid and mixed-working fluid,
respectively. When consider the profit gained from pure toluene and a toluene-C14
~ mixture, it was found that the profit gained from a toluene-C14 mixture was higher than
that obtained by pure toluene. In consequence, it can be concluded that a mixture of
97.29 %wt toluene and 2.71 %wt n-tetradecane was the best working fluid under the
condition in this study.

Keywords: Biogas-Fueled Internal Combustion Engine/ Organic Rankine Cycle/
Working Fluid Selection/ Mixed-Working Fluid
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