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Abstract
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A self-aspirating conventional gas burner (CB) is widely used for small and medium
scale industrial plants in Thailand. Unfortunately, it possesses a relatively low thermal
efficiency of about 30%. This thesis is aimed to enhance its thermal efficiency by
applying a porous medium technology. A seclf-aspirating porous medium burner
(SPMB) with matrix-stabilized flame 1s designed and tested to understand its
phenomena. Design of the SPMB is based on the same important characteristics of the
CB, i.c. using the same mixing tube and fuel nozzle. Ergun's equation involving
modified Peclet number (£¢) and the CB's pressure drop across the mixing chamber is
adopted to estimate the diameter of ALOs particles and the diameter of the combustion
chamber. Packed bed burner of the SPMB is then formed by an alumina spheres. The
SPMB yields a submerged flame with an intense thermal radiation emitted downstream
for load and upstream for mixture preheating. Effects of firing rate (CL) and distance
between the burner top and the bottom of loading vessel (£) on the thermal efticiency
and emission characteristics are investigated along European standard (EN-203)
method. CL and H are varied in the range of 21-43 kW and 75-125 mm, respectively.
An average of thermal efficiency of the SPMB is higher than the typical CB of about
4.38%, thus vyielding a relatively high average energy saving of about 12.84%.
Moreover, a porous radiant recirculated burner (PRRB) is integrated with the SPMB to
improve the thermal efficiency. At // = 125 mm, the average of thermal efticiency of
the SPMB with PRRB is increased by 17.51% and 10.44%, respectively in comparison
to the typical CB and SPMB, thus leading to energy saving of about 33.21% and
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20.06%, respectively, by average over the operating range. CO emission level of the
SPMB and SPMB with PRRB has relatively high as compared with the CB throughout -
the range of CL and H because of a lack of secondary air entrainment and incomplete
combustion. But a level of NO, emission is relatively low because of an advantage of
combustion with matrix-stabilized flame. Thus this research is concluded that the
porous technology can improve the thermal efficiency of the CB and considerably

increase the energy saving.

Keywords : Self-Aspirating Burner / Premixed Flame / Porous Medium Burner / Heat
Recirculation / SMEs
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