TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	iii
LIST OF ABBREVIATIONS	vii
INTRODUCTION	1
LITERATURE REVIEWS	3
MATERIAL AND METHOD	16
RESULT AND DISCUSSION	21
CONCLUSION	36
LITERATURE CITED	38
APPENDIX	40
APPENDIX A Materials Testing	41
APPENDIX B Theoretical and Calculation of Axial Force and	
Deformation	47
APPENDIX C Experimental Result	52
APPENDIX D Materials Preparation	57
APPENDIX E Material and Equipment	68

LIST OF TABLES

Table		Page
1	Detail of reinforced concrete column test specimens	18
2	Test result of concrete compressive strength for	
	column specimens	21
3	Effect of confined column by transverse reinforcement	25
4	Comparison of Stress between WWR and RB	30
5	Axial compression force from experimental and theoretical	31
Appendi	ix Table	
A 1	Compressive strength of concrete samples	42
A2	Tensile strength of Round bar, RB6 (SR24)	43
A3	Tensile strength of Round bar, RB9 (SR24)	44
A4	Tensile strength of Round bar, DB12 (SD30)	45
A5	Tensile strength of Welded wire reinforcement, CDR6	46

LIST OF FIGURES

Figure		Page
1	Reinforcement arrangements and geometric properties of column	
	(a) Cross section and (b) Elevation	6
2	Effect of tie arrangement on moment – curvature relationship	7
3	Confined pressure resulting from different reinforcement	
	arrangement	9
4	Confined - concrete model proposed by Saatcioglu and	
	Rezvi (1992)	10
5	Uniaxial Compressive Stress – Strain Curve	11
6	(A) Definition of $\frac{\mathcal{E}_1}{\mathcal{E}_0}$	
	(B) Ductility – Brittle Behavior as function of volumetric Ratio	
	of WWR and Spacing - to - Width	13
7	Confined concrete stress – strain curve	14
8	Comparisons of axial load and volumetric of FRP and steel	
	confined concrete	15
9	Cross section of concrete specimens	17
10	Detail section of specimens	19
11	Column testing setup	20
12	Test set-up	22
13	CDR6/2(7.5) showing clear signs of covering failure	23
14	Theoretical relationship between axial force and axial	
	deformation of test specimen	24
15	Comparison between axial force and deformation of column	
	confined by round bar 6mm (RB6) with spacing 7.5 cm and 10 cm.	26
16	Comparison between axial force and deformation of column	
	confined by welded wire reinforcement 6mm (CDR6) with	
	spacing 7.5 cm and 10 cm.	27

LIST OF FIGURES (Cont'd)

Figure		Page
17	Comparison between axial force and deformation of column	
	confined by CDR6/2(7.5) and RB6(7.5)	28
18	Comparison between axial force and deformation of column	
	confined by CDR6/1(10), CDR6/2(10) and RB6 (10)	29
19	Tiny crack occurring at 70-80% of peak load (No Tie bar column)	32
20	Column exploded after reaching ultimate load (No Tie bar column)	33
21	Tiny crack occurring at 70-80% of peak load (RB6(7.5))	33
22	Covering crack (RB6(7.5))	34
23	Covering spalling at ultimate load (RB6(7.5))	34
24	Failure of welded wire reinforcement (CDR6/2(10))	35
Appendi	x Figure	
A1	Stress and strain curve of Round bar RB6mm	
	(Average from 3 samples)	43
A2	Stress and strain curve of Round bar RB9mm	
	(Average from 3 samples)	44
A3	Stress and strain curve of Deformed bar DB12mm	
	(Average from 3 samples)	45
A4	Stress and strain curve of Welded wire reinforcement CDR6	
	(Average from 3 samples)	46
B1	Relationship between stress and strain of confined column by	
	Saatcioglu's method	50
C1	Relationship between axial force and axial deformation of	
	column confined by RB6(7.5)	53
C2	Relationship between axial force and axial deformation of	
	column confined by RB6(10.0)	53

LIST OF FIGURES (Cont'd)

Appendix Figure		Page
C3	Relationship between axial force and axial deformation of	
	column confined by CDR6/2(7.5)	54
C4	Relationship between axial force and axial deformation of	
	column confined by CDR6/1(10.0)	54
C5	Relationship between axial force and axial deformation of	
	column confined by CDR6/2(10.0)	55
C6	Relationship between axial force and axial deformation of	
	column confined by Plain column (No Tie)	55
C7	Relationship between axial force and axial deformation of	
	column confined by RB6(7.5), RB(10.0), CDR6/2(7.5),	
	CDR6/1(10.0), CDR6/2(10.0), No Tie	56
D1	Transverse reinforcement used for testing	58
D2	Transverse reinforcement RB6(7.5)	58
D3	Transverse reinforcement RB6(10)	59
D4	Transverse reinforcement CDR6/2(10)	59
D5	Transverse reinforcement CDR6/1(10) and No Tie	60
D6	Strain gages type KC-60-120-A1-11L1M&R	60
D7	Strain gages installed	61
D8	Connectivity check	61
D9	Standard cylindrical mold	62
D10	Preparation of formwork	62
D11	Materials preparation	63
D12	Mixing concrete	63
D13	Casting concrete	64
D14	Concrete cast in formwork	64
D15	Concrete cast in cylindrical mold	65
D16	Preparation for LDVT	65
D17	Curing	66

LIST OF FIGURES (Cont'd)

Appendix Figure		Page
D18	Capped with sulfur compound	66
D19	Cylindrical specimens for compressive test	67
E1	Material and Equipment no.1	69
E2	Material and Equipment no.2	69
E3	Material and Equipment no.3	70
E4	Material and Equipment no.4	70
E5	Material and Equipment no.5	71
E6	Material and Equipment no.6	71
E7	Material and Equipment no.7	72
E8	Tidal crack	73
E9	Visible crack	74
E10	Final stage	75

LIST OF ABBREVIATIONS

 A_{g} = Gross area of section

 A_{st} = Total area of longitudinal reinforcement

 A_{sh} = Area of transverse reinforcement

 b_c = Width of column (m.)

cm = Centimeter

CDR = Column confined by welded wire reinforcement

D =Width of specimen

 E_c = Young's modulus of concrete

 E_s = Young's modulus of steel

 E_{sl} = Young's modulus of the wires

 ε_0 = Axial strain of plain concrete column

 ε_1 = Axial strain of reinforced concrete column

 f_c = Compressive strength of concrete cylinder (kg/cm²)

 f_{cc} = Strength of concrete subjected to lateral pressure (kg/cm²)

 f_{co} = Unconfined concrete strength in members (Mpa)

 f_{cp} = The peak stress of the reinforced specimen

 f_{co} = The peak stress of the plain specimen

 f_{y} = Specified yield strength of nonprestressed reinforcement

 f_{vh} = Yield strength of transverse reinforcement

 f_t = Average lateral confinement pressure (MPa)

FRP = Fiber - reinforced polymer

kg = Kilogram

 k_1 = Coefficients of lateral pressure

 k_2 = Coefficients of confined column

m = Meter

 ρ = Volumetric ratio of WWF

LIST OF ABBREVIATIONS (Cont'd)

Pc = Compressive force of concrete cylinder

 P_{nv} = Normalized axial load at yielding point

 P_{nu} = Normalized axial load at ultimate point

RB = Round bar

s = Longitudinal spacing of transverse reinforcement (m.)

 s_1 = Spacing of Longitudinal reinforcement (m.)

WWR = Welded wire reinforcement

 Δ_{v} = Deformation at yielding point

 Δ_u = Deformation at ultimate point