CHAPTER 4 RESULTS AND DISCUSSIONS (I)

4.1 Coverage of cyanobacterial genomes with cyanoCOGs

Altogether, the process of cyanoCOGs construction started with 182,663 proteins
encoded by 49 cyanobacterial genomes and ended with 160,409 of these proteins being
included in 15,741 cyanoCOGs (the cyanoCOGs and accompanying materials are
available in the supplement CD). With the growth of the genome collection and the
various procedures for COG construction, the coverage of cyanobacterial genomes
further increase. Figures 4.1 and 4.2 show that, on the average, the cyanoCOGs
described here cover 87.8% of genes in a cyanobacterial genome as compared to 42%
with previously release COGs which included total 69 genomes from the diverged
organismal groups with only 4 of cyanobacterial genomes. For all cyanobacterial
genome, this constructed cyanoCOGs showed the more coverage of the protein families
than the COGs on the NCBI databases. The increasing of genes that exist in
cyanoCOGs suggests that this constructed cyanoCOGs are more specific to the
cyanobacterial species than previous NCBI COGs.

For finding the core and accessory gene sets of cyanobacteria, the distribution of
number of species in cyanoCOGs was considered. As shows in figures 4.3 and 4.4, in
the quantitative term, the cyanoCOGs with a large number of species (more than 44
genomes) are considered as the core gene sets, and the remainders are “shell” gene sets.
More formally, assuming the distribution is described by an exponent, the best
approximation was achieved with a sum of three exponential functions. The first
exponent could be constructed to represent the conserved gene core (~915 cyanoCOGs),
the second one describes the “shell” of moderately common genes (~4,860
¢yanoCOGs), and the third one corresponds to the “ORFans” (~9,895 cyanoCOGs),
which include the small number of (typically, but not necessarily, closely related)

species. The cyanoCOGs that exist on only one species was determined as the recent
paralog proteins.

For assigning the functional categories of the constructed cyanoCOGs, the similarity
search against the previous version of NCBI COGs was performed. The whole COGs
functional categories, that consist of the information storage and processing, the cellular
processes and signaling, the metabolism, and the poorly characterized, are summarized
their categories abbreviation in the table 4.1. Then, the best hit of NCBI COGs
categories was assigned to the query cyanoCOGs. If the constructed cyanoCOGs was
not found in COGs database, the X category was assigned to that query cyanoCOGs.
figures 4.5 and 4.6 demonstrate the proportion of each cyanoCOGs categories for all
cyanobacterial genomes, the X categories was found more than 40% in every species
(except in TELOBP1 ~ 35%). Form this result; the small NCBI COGs database was
taking into consideration, which means this database does not appropriate to determine
the protein function for the cyanobacteria groups. On the other hand, the vast amount of
unknown functionality genes or proteins could be concluded.
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Figure 4.1 Coverage of cyanobacterial genomes with cyanoCOGs in green and NCBI
COGs in red (Abbreviation as in Table 3.1).
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Figure 4.2 The percentage coverage of cyanobacterial genomes with cyanoCOGs in

green and NCBI COGs in red (Abbreviation as in Table 3.1).
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function of cyanoCOGs (the genome abbreviations on the X-axis as shown in Table 3.1

and the abbreviation of COGs categories on the right Y-axis as shown in the Table 4.1).
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abbreviation of COGs categories on the right Y-axis as shown in the Table 4.1).

Figure 4.6 The percentage functional breakdown of the entire set of cyanoCOGs of
each species (the genome abbreviations on the X-axis as shown in Table 3.1 and the



Table 4.1 The NCBI COGs functional categories (Tatusov, et al., 2001).

Information storage and processing_

J

Translation, ribosomal structure and biogenesis

A

RNA processing and modification

K

Transcription P

L

Replication, recombination and repair

B

Chromatin structure and dynamics

Cellular processes and signaling

Cell cycle control, cell division, chromosome partitioning

Nuclear structure

Defense mechanisms

Signal transduction mechanisms

Cell wall/membrane/envelope biogenesis

Cell motility

Cytoskeleton

Extracellular structures

Intracellular trafficking, secretion, and vesicular transport
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Posttranslational modification, protein turnover, chaperones

Metab
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Energy production and conversion

Carbohydrate transport and metabolism
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Inorganic ion transport and metabolism

QO |—|T|mmOa
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4.2 Phyletic pattern

The notion of a phyletic pattern, which is the pattern of presence-absence of a
cyanoCOGs in the analyzed set of species, has been developed in the original COGs
study. Subsequently, phyletic pattern has been extensively employed for both functional
prediction and starting material for evolutionary reconstruction. Figure 4.7 shows that
the distribution of phyletic patterns in the new set of cyanoCOGs. The decay of the
curve is remarkable steep, which is a substantial majority of the patterns (5,013 of
15,741) are unique, that is, represented by one cyanoCOGs only. Examination of the list
of top 25 widespread cyanoCOGs is particularly instructive (as shown in table 4.2). In
this list, 15 patterns are “trivial”, which is represented in multiple species of a compact
monophyletic group, such as Nostocales or Oscillatioriales. The one exception are the
“all” pattern which describes the strictly defined core of 570 cyanobacterial genes
represented in all species, and the other nine exception are the paralog pattern which
describe the gene that occur in the unique genome. The most “non-trivial™ pattern is the
one that includes in cyanoCOGs that represent in two species which are A. maxima and
S. platensis (760 cyanoCOGs).

Phyletic pattern of cyanobacteria was also used for reconstruction phylogenetic network
by using the SplitTree 4.8 program (Huson and Bryant, 2006), then, the result shows in
Figure 4.8. The phylogenetic network represent how close between each genome, which
mean the closely related genome are closely link together. The individual branch length
of the phylogenetic network represents how much individual genes are. On the other
hand, the share branch length from two or more genomes shows the share properties
between genomes, which represented by the orthologous gene from those genomes.
This phylogenetic network can separate the cyanobacterial into several groups, such as,
the Nostocales, Oscillatoriales, Choococcales and picocyanobacteria.  This
reconstructed phylogenetic network shown the same topology with the previous
phylogenetic tree that using the conserved protein families across cyanobacteria genome
(Swingley, et al., 2008). This phylogenetic network can separate a marine
picocyanobacteria from another cyanobacterial group. The prior study on the marine
cyanobacteria showed the similar topology of phylogenetic networks with this study
(Dufresne, et al., 2008). The organisms which have the same environmental niche are
grouped together. For instance, both of SEL7942 and SEL6301 are Synechococcus spp.,
but they are not grouped with another Synechococcus spp. groups. Because they are the
fresh water Synechococcus spp. the other are marine Synechococcus spp. On the other
hand, both of SJA33AB and SJA23BA also separate to other Synechococcus groups,
because these two organisms live in the extreme environment (Y ellowstone).
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Figure 4.7 Distribution of phyletic patterns by the number of cyanoCOGs. This figure
shows 5,013 unique patterns for cyanoCOGs and the most 25 frequent phyletic patterns
have shown the Table 4.2.



Table 4.2 The 25 most frequent phyletic patterns in the cyanoCOGs.

58

Phyletic pattern® cl::,r,':,l)g(;z;fs Comment
0100000000000000000000000000000000000010000000000 760 Arthospira spp.
T 11 570 All species
0000000000000000000000000001100000000000000000000 318
00000000000000000000000000000000001 1000000000000 296
000000001 1000000000000000000000000000000000000000 293
1000000000000000000000000000000000000000000000000 283 AMA 1017 paralog
0010000000000001000000000000000000000000000000000 276
0000000000000000000000000000000011000000000000000 233 ZVO ‘:}‘;ﬁ:‘;mcc“s
0000010100000000000000000000000000000000000000000 206
0001100000000000000000000000000000000000000000000 199
0010000000000011000000000000000000000000000000000 152
0010000000000011100000000000000000000000000000000 145 Nostocales
0000000000000100000000000000000000000000000000000 129 MEANS43 paralog
0100000000001000000000000000000000000010000000000 124
0000000000000000000000101000000000000000000000000 122
0000000000001000000000000000000000000000000000000 95 L: rgf)'g%
0000000000010000000000000000000000000000000000000 91 GV17421 paralog
0000000000000000000000000000000000000010000000000 82 SPLATC] paralog
0010000000000010000000000000000000000000000000000 75
T TTOT I L T L L1111l 7
0000000000000010000000000000000000000000000000000 69 NPC3102 paralog
0000000000000000001011010110000000000000000000000 69
0000000000000011000000000000000000000000000000000 68
00000000000000000111111111111111000000011 11111100 67
0100000000001000000000000000000000000010000000001 65 Oscillatoriales
0100000000000000000000000000000000000000000000000 62 AMA S328 paralog
0000000000000000000000000000000000000000000000001 60 TERI101 paralog
0000001000000000000000000000000000000000000000000 52 CPC7425 paralog
1000001000000000000000000000000000000000000000000 48
0001100000100000000000000000000000000000000000000 48

*The phyletic pattern is the pattern that indicated absent (0) or present (1) for each genome. Each position
of phyletic pattern are represent the genome of AMA1017, AMAS328, AVA9413, CAT1142, CCC110,
CPC7424, CPC7425, CPC7822, CPC8801, CPC8802, CWAS8501, GVI7421. LPC8106, MEAN843.
NPC7102, NPU3102, NSP9441, PMA 1375, PMA1986, PMA9211, PMA9215. PMA9301. PMA9303,
PMA9312, PMA9313, PMA9315, PMA9601, PMANA 1A, PMANA2A, SCC9311, SCC9502, SCC9605.
SEL6301, SEL7942, SJA23BA, SJA33AB, SPC6803, SPC7002, SPLACI, SRCC307. SRS9916.
SRS9917. SWHS5701, SWH7803, SWH7805, SWH8102, SYBL107. TELOBPI. and TERIIOL.

respectively (Abbreviation as in Table 3.1).
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4.3 Phylogenomic of cyanobacteria

Tredditionally, the phylogenetic tree buildings base on a small subunit of ribosomal
RNA (16S rRNA), which is the most popular molecular marker in cyanobacteria also
(Honda, er al., 1999). However, it is not sufficient for study at a sub-generic level
because it is highly conserved among closely related species and strain. Then, there are
several studies purposed to use another molecular marker such as using another
proteins, using the consensus phylogenetic tree that reconstructed from several protiens,
using the genome context, or using the concatenated ribosomal proteins in order to
identify the phylogenetic relationships in the sub-generic level (Luo, er al., 2008; Han,
et al., 2009). In this study, the concatenated ribosomal protein genes, including 20 large
and 16 small subunits were used to reconstruct the evolutionary tree for the
cyanobacteria. The inferred phylogenetic tree that is shown in the figure 4.9 was
reconstructed by using the neighbor joining methods. The 1,000 bootstrapping was
performed in order to evaluate the robustness of the inferred phylogenetic tree and result
the high number of bootstrapping (more than 60 for every node). Then, the
reconstructed evolutionary tree can also separate the cyanobacterial in to the specific
clade, such as Nostocales, Oscillatioriales, Chroococcales or picocyanobacteria. The
reconstructed phylogenetic tree from concatenated ribosomal protein genes is equivalent
to the previous16s ribosomal RNA tree and paleontology study (Tomitani, er al., 2006).
In addition, this result also equivalent to the evolutionary tree that reconstruct by using
the conserved protein families across the cyanobacterial species (Swingley, et al.,
2008).
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Figure 4.9 The evolutionary tree of cyanobacteria genome reconstructed by using
concatenated ribosomal proteins with Neighbor Joining method (Abbreviation as in
table 3.1). The number at each node represents the Bootstrapping value.



43

4.4 Evolutionary scenarios in cyanobacteria lineage

For the evolution for cyanobacterial lineage, the biological properties and
environmental niches of ancestral state for each cyanobacterial groups in the figure 4.10
as represented into the “LCCA”, “A”, “B”, “C”, “D”, “E”, “F”, and “G” group were
described in the table 4.3. The prior cyanoCOGs and evolutionary tree were used for
tracing the evolutionary scenarios in the cyanobacterial lineage by applying the
parsimonious evolutionary scenario algorithm (Mirkin, et al., 2003). The number of
gene loss and gain along each branch of the tree was shown in figure 4.11. The LCCA is
conservatively estimated to contain 2,468 genes compared to 3,128, 2,722, and 2,055
genes of the last common ancestor of Nostocales, Oscillatoriales, and
picocyanobacteria, respectively. When comparing with 181 signature genes in
cyanobacteria that have been reported before (Martin, et al., 2003), the LCCA shown a
large amount of genes for its cellular processing. However, the 181 signature genes are
the shared orthologous gene in the cyanobacterial species that cannot found in other
organismal groups. Moreover, there has extensively lost in the marine
picocyanobacteria clades, and extensively gained in the fresh water cyanobacteria, such
as the cyanobacteria that habits in the extreme environmental condition, Nostocales,
Oscillatoriales, and Chroococcales, the number of gene gain and loss was shown in the
Figure 4.11. For assigning the biological properties of every cyanobacterial ancestral
states, the analysis of the gene sets of cyanoCOGs by study their functional breakdown
with the cyanoCOGs categories was performed. The amount and the proportion of the
metabolism gene groups of the cyanoCOGs for each ancestral genome represented in
the figure 4.12.
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Figure 4.10 The cyanobacterial ancestral form represent by “LCCA”, *A”, “B™, =@
“D”, “E”, “F”, and “G”, the description of their share biological property of each group
was described in the Table 4.3 (Abbreviation as in Table 3.1).
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Figure 4.11 The summary of gene gain and loss along the cyanobacterial lineages. Each
branch is labeled by 2 numbers: blue, the number of gained along the branch; red. the
number of lost along the branch (Abbreviation as in Table 3.1).
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Represented the number of the cyanoCOGs catecgories. (B) Represented the percentage
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Table 4.3 The description of cyanobacterial group according to figure 4.11 relate to
their biological property and environmental niche.

Inferred biological property and

Grosp Descriptign environmental niche
1.CCA | Last Cyanobacterial Common Ancestor Photoautotrophs
A GVI17421, SJA33AB, SJA23BA Ancestor Inhabit in the extreme environmental niches
B TELOBP1, AMA1017, CPC7425 Ancestor | Uncharacterized
(& Nostocales Ancestor Filamentous nitrogen fixing cyanobacteria
D Oscillatoriales Ancestor Non-nitrogep jinige, Tiseyious
cyanobacteria
E Chroococcales Ancestor Unicellular, nitrogen fixing cyanobacteria
F Synechococcus elongates Ancestor Obligate photoautotrophs
G Picocyanobacteria Ancestor Marine cyanobacteria, small genome size
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4.5 Evolutionary scenarios of photosynthetic apparatus in
cyanobacterial lineage

In the same way to trace the genomic evolution scenarios in the cyanobacterial lineage
in the prior part, the parsimonious evolutionary algorithm was applied to the
photosynthetic apparatus genes for tracing thé evolutionary scenarios of this genes
group in the cyanobacterial lineage. Reconstruction of gene gain and loss along the
evolutionary trajectory in cyanobacterial lineage was performed using the parsimonious
evolutionary scenarios algorithm (Mirkin, et al., 2003). This algorithm was applied with
the entire genomic repertoire or the interested gene sets. For this study, the entire set of
cyanoCOGs was applied to delineate the biological properties and genomic function of
each projected cyanobacterial ancestral nodes as described in table 4.3. In addition, the
photosynthesis apparatus gene sets in cyanoCOGs were used to unravel the evolution
dynamics of these important gene sets in cyanobacteria as illustrated by the number of
gained and lost genes for each cyanobacterial lineages (as shown in the figure 4.11).
These photosynthesis apparatus gene sets in cyanobacteria can be subdivided into nine
groups (in total of 259 genes) comprised of photosystem I proteins, photosystem Il
proteins, phycobillisome proteins, chlorophyll-binding proteins, chlorophyll
biosynthesis enzyme, cytochrome bf6 complex subunit, water—soluble electron carriers,
Calvin cycle enzymes, regulatory and uncharacterized chloroplast proteins. The existing
photosynthetic gene groups for various cyanobacteria ancestral states are summarized in
table 4.4. There are 51 genes that inherited into all descendent genomes from the
LCCA, on the other hand, 36 genes have been lost during the course of evolution. The
loss of ancestral genes was counterbalanced by the emergence of 172 genes via the
HGT or duplication of the existed genes.

From our observation, with the photosynthesis apparatus evolution in cyanobacterial
lineage, the LCCA is hypothesized to be a photoautotroph, since it contains sufficient
photosynthesis machineries. Along the cyanobacterial evolution as illustrated by the
number of gene gains and losses in figure 4.13, the extensive gene losses were
discovered in the picocyanobacteria ancestor and Prochlorococcus ancestor.
Conversely, the extensive gene gains were discovered particularly in the freshwater
Synenccococcus ancestor, the cyanobacteria that habit in the extreme environment
niches and the Nitrogen—fixing filamentous cyanobacteria (Nostocales). The ancestors
of extreme environmental cyanobacteria and Oscillatoriales have gained their
photosynthesis apparatus accessories, such as protoporphyrinogen oxidase, during the
course of evolution. Considering phosphoribulokinase enzyme, there are three scenarios
that might have occurred during the evolution of cyanobacterial lineage. The first and
the second events were the transferring of this enzyme from LCCA to the fresh water
cyanobacteria and the picocyanobacteria. The third event was the acquiring of this gene
at the common ancestor node of Nostocales and Oscillatoriales. Another notable
acquisition is a group of phycobilosome linker proteins, which are different among
cyanobacterial clades. For instance, fresh water cyanobacteria inherited this group of
proteins from LCCA, while picocyanobacteria gained phycobilisome proteins from
other sources. Furthermore, the phycocyanin, phycoerythrin, and allophycocyanin were
inherited from LCCA to entire cyanobacterial ancestral states, whereas
Phrochlorococcus ancestor extensively lost these genes group. This result represents

that this organismal group renders the different light harvesting complexes (Guan, et dl.,
2007).
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Table 4.4 The photosynthesis-related genes in ancestral cyanobacterial genomes. The
description of cyanobacterial group according to Figure 4.11 relate to their biological

property and environmental niche.

Gene products

[LccaA] A Bl cCc [ b | E | F |

G

Photosystem I Proteins

-

» PsaAl. PsaA2, PsaB, PsaD, PsaF, PsalL Ancestral genes that inherited to all descendent genomes

« Psal™, Psa)® | PsaK®™, PsaM™, PsaX Gene gained by HGT

» PsaJ’¥, PsaK"® Y Nl iy | ESY Y Y [ ¥ 1 ¥

» PsaM'® Y N | N Y R Y | N | N

- Psal® Y N s, FONg SN N | Y

Photos¥s)tem II Proteins

;’stljijb/;sb‘WPSbD’ R3hN. BAONIPsbO, PRl Ancestral genes that inherited to all descendent genomes

« PsaA™ Psbl, PsbK, PsbL, PsbX®, PsbY®, PsbZ® | Gene gained by HGT

* Psbl Y Y i B N N N Y
_+PsbM Y Y L= | YRR YSF N Y

« PsbT. PsbY™, PsbZ™ Y N[ N|N]N[NJNI]|Y

Phycobilisome %))r(;teins - = ok

AN R@: 1 a), ay, § a). 3

;;\ﬁ;/}, §/(\gt?§ CEC?E,CCDpc G;,CC‘;)CC/I\, L C’I\A(‘:“E)(;?L C§’ Ancestral genes that inherited to all descendent genomes

" ) () ® ) )

Cpc/?ﬁg?Cp-)eRl?icCDM(;”, f-‘?{cé I\}blf PR CPED™ | Gene gained by HGT

» CpcA™® ¥ CpceCF, CpeS Y N[ N]N N[ NN Y

« ApcA™ ¥, CpcB@'? Y Y [ N] N NI NervEdl Y

« CpeD® Y ¥ Y % i Y Y | N

Chlorophyll-binding proteins
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Figure 4.13 The gain and loss events of the photosynthesis apparatus gene along the
cyanobacterial lineages. Each branch is labeled by 2 numbers: blue, the number of

gained along the branch; red, the number of lost along the branch (genome abbreviation
as in Table 3.1).
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For modern descendent genomes, we found that the complexity of photosynthesis of
these cyanobacteria has increased as evident by the homoplasy of PsbA and PsbD
proteins that might be transduced by horizontal gene transfer via cyanophages as
proposed to occur in picocyanobacteria (Lindell, et al., 2004; Sandaa, et al., 2008;
Millard, er al., 2009; Sharon, et al., 2009). Obviously, the photosynthesis apparatus for
each cyanobacterial clade and their evolutionary scenarios of these genes are different.
To delineate these situations, the adaptation to the new environmental niches of the
descendent genomes was taken into consideration. For example, the marine
cyanobacteria or the cyanobacteria that thrive in the extreme environments need to
duplicate their ancestral genes or acquire more genes from others for the appropriate
functions to meet the habitat or environmental requirements (Luque, et al., 2008).

For the photosynthetic gene sets, the occurrence of the same gene function (name) was
clustered into the difference cyanoCOGs. The further analysis of this gene groups was
performed, such as the phylogenetic analysis for this gene group. The phylogenetic tree
of Psal and PsaM was reconstructed by using the same gene from cyanoCOGs and this
gene form the photoautotroph organism (as shown in the figure 4.14), this phylogenetic
analysis indicated that there are very small conserved domain between these
cyanoCOGs and has the distant phylogeny between these cyanoCOGs. Moreover, the
analysis of the Psal protein was reconstruction of this gene with the Psal gene from
other photoautotroph organism.

For analysis the horizontal gene transfer events along the cyanobacteria lineages, the
using of the orthologous protein from cyanobacteria another organimal groups were
performed to reconstruct the evolutionary tree. For example, the phylogenetic analysis
of the Psal protein in cyanobacteria and plastids of another organismal groups has
indicated that the closely related between this gene in cyanobacteria and plastids. In
particularly, the Psal proteins from Nostocales (Ortho14395) is very closely relate to
the Psal of the red algae Cyanidium caldarium, and fresh water cyanobacterial Psal
proteins are closely related to the Psal from the plastid genomes more than the marine
picocyanobacterial genes (as show in the figure 4.15). Then, the horizontal gene transfer
of this gene between the red algae and Nostocales was taking into consideration. In the
environmental perspective, the fresh water cyanobacteria and the fresh water red algae
are living in the same habitat and environmental niches, and then it is easily to transfer
the genetic material between these two organisms (Rogers, et al., 2007).

Recent study indicated that several photosynthesis apparatus genes could be found in
the marine virus genomes and it cause the horizontal gene transfer across genome
(Sharon, et al., 2009). The phylogenetic analysis of Psa4 and PsaD were performed by
using the cyanobacteria proteins and the cyanophages proteins in order to determine the
genomic distance between those organisms. Phylogenetic tree of Psad and PsaD
proteins, which done by using the neighbor joining methods with 1,000 bootstrapping
are shown in the figure 4.16. The result indicated that Psad4 and PsaD proteins of
cyanophages are closely related to the genes that found in Prochlorococcus. The
horizontal gene transfer between the cyanophages and Prochlorococcus genome was
taken into consideration.
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Figure 4.14 The photosynthetic tree reconstructed from (A) Psal, (B) PsaM proteins
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Figure 4.15 The evolutionary tree of Psal proteins from cyanobacteria with the Psal
protein from plastids of other organismal groups (Cyanidium caldarium, Adiantum
capillus-veneris, Porphyra yezoensis, Micromonas sp., Ostreococcus tauri,
Nephroselmis olivacea, and Paulinella chromatophora).
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Figure 4.16 The phylogenetic tree of Psad4 (A) and PsaD (B) proteins of cyanobacteria
with the same proteins from cyanophages. The number in each node represents the
Bootstrapping values.
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