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Abstract 
 
This paper proposes an effective implementation of Strassen’s algorithm with AVX intrinsics to augment matrix-matrix 

multiplication in a multicore system. AVX-2 and FMA3 intrinsic functions are utilized, along with OpenMP, to implement the 

multiplication kernel of Strassen’s algorithm. Loop tiling and unrolling techniques are also utilized to increase the cache 

utilization. A systematic method is proposed for determining the best stop condition for the recursion to achieve maximum 

performance on specific matrix sizes. In addition, an analysis method makes fine-tuning possible when our algorithm is adapted 

to another machine with a different hardware configuration. Performance comparisons between our algorithm and the latest 

versions of two well-known open-source libraries have been carried out. Our algorithm is, on average, 1.52 and 1.87 times faster 

than the Eigen and the OpenBLAS libraries, respectively, and can be scaled efficiently when the matrix becomes larger.  
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1. Introduction 

 

In recent years, the Advanced Vector Extension 

(AVX) instruction set has been bundled with all the CPUs 

produced by Intel and AMD. It allows multiple pieces of 

floating-point data to be processed at the same time, resulting 

in very high performance. Its successor, AVX-2, added 256-

bit integer operations and fused-multiply-accumulate opera-

tions for floating-point data, useful for scientific applications. 

Many researchers have reported on its use to augment 

processing performance. For example, Kye, Lee, and Lee 

(2018) increased the processing speed of matrix transposition, 

Al Hasib, Cebrian, and Natvig (2018) proposed an imple-

mentation of k-means clustering for a compressed dataset, and 

Bramas and Kus (2018) speeded up the processing of a sparse 

matrix-vector product. Hassan, Mahmoud, Hemeida, and 

Saber (2018) utilized AVX and OpenMP to accelerate vector-

matrix multiplication, Barash, Guskova and Shchur (2017) 

 
improved the performance of random number generators, and 

Bramas (2017) boosted the speed of the quicksort algorithm. 

We employ AVX intrinsics for an effective imple-

mentation of Strassen’s algorithm for single precision matrix-

matrix multiplication. We decided to utilize AVX-2 with its 

FMA3 capabilities, which are available in reasonably priced 

CPUs, from both Intel and AMD. Our aim is to augment the 

speed of applications that rely on matrix-matrix multiplication 

using off-the-shelf CPUs.  

 

2. Matrix-Matrix Multiplication 
 

Matrix-matrix multiplication, defined as c = a×b, 

where a, b, and c are n×n, requires 2n3 floating-point 

operations. The basic sequential algorithm is shown in Figure 

1. The performance of the algorithm in Giga Floating-Point 

Operation per Second (GFLOPS) is  

 
 ,
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where s is the execution time of the program in seconds. 
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Figure 1. Basic sequential algorithm to calculate matrix-matrix 
multiplication of size n×n. 

 

3. AVX Instruction Set and the FMA3 
 

The third generation of Intel’s Advanced Vector 

Extensions (AVX) (Intel, 2011) comprises sixteen 256-bit 

registers, YMM0-YMM15, supporting both integer and 

floating-point operations. The AVX instructions allow eight 

single-precision floating-point operations to be processed 

simultaneously, twice the number supported by Streaming 

SIMD Extensions (SSE). There are four main ways to take 

advantage of AVX instructions: 1) using assembly language to 

call AVX instructions directly; 2) using the AVX inline 

assembly in C or C++; 3) using compiler intrinsics; or 4) 

utilizing the compiler’s automatic vectorization feature. We 

employ compiler intrinsics to implement Strassen’s algorithm 

because this gives better performance than auto-vectorization, 

but is not as cumbersome or error prone as assembly 

language. Using AVX inline assembly in a high level 

language is not significantly different from utilizing compiler 

intrinsics (Hassana, Hemeida, & Mahmoud, 2016).  

The syntax of AVX intrinsic functions follows the 

pattern _mm256_<operation>_ <suffix> (Mitra, Johnston, 

Rendell, McCreath, & Zhou, 2013) where the operation can 

be load, store, arithmetic, or logical operation, and the suffix is 

the type of data used. For example, _mm256_add_ps and 

_mm256_add_pd add 32-bit and 64-bit floating-point data 

respectively. Figure 2 shows more function prototype exam-

ples. 

Floating-point matrix-matrix multiplication relies on 

the fused-multiply-add operation, which can be implemented 

using the _mm256_mul_ps and _mm256_add_ps functions. 

However, replacing these two functions with a single _mm256 

_fmadd_ps call can speed up the computation. This fused-

multiply-add (FMA) operation performs the multiplication 

and addition of the 64-bit floating-point data in a single step 

with rounding. Intel Haswell processors have supported FMA 

since 2013 (Intel, 2019), and the processors currently 

produced by AMD also support it (Advanced Micro Devices, 

2019). 

 

4. Optimization Methods for Parallel Matrix-Matrix  

    Multiplication 
 

The single-instruction-multiple-data (SIMD) pro-

cessing of the AVX gives higher performance than using 

scalar instructions, and every processing core has an AVX 

unit. As a consequence, very high performance is expected by 

utilizing AVX instructions on a multi-core machine. Also, to 

maximize the performance of the parallel application utilizing 

AVX, OpenMP is employed in conjunction with two opti-

mization techniques: loop tiling and loop unrolling. 

 

4.1 Loop tiling 
 

 If the size of the data is very large, it is impossible 

to keep it all inside the cache. Data movements between the 

cache and main memory may be required very often, leading 

to many cache miss penalties. To reduce this effect, the data 

can be split into smaller chunks, and each chunk is loaded by 

the processor and kept inside the cache automatically by its 

cache controller. Increased reuse of these data from the cache 

leads to improved performance. In the case of matrix-matrix 

multiplication, c=a×b, the matrices are stored in 3 arrays, and 

each data element of a and b will be accessed multiple times. 

If the matrix size is n×n, then each data element from each 

matrix will be accessed at least n times. When loop tiling is 

applied, the outer loop keeps a chunk of the first source matrix 

inside the cache, while a series of chunks taken from the 

second matrix are processed by the inner loop. This pattern 

allows the chunk of the first matrix to be reused many times 

before being flushed from the cache. The next chunk from the 

first matrix will then be processed using the same pattern, and 

so on. The chunk size in the outer loop must be large enough 

to minimize memory accesses and to increase temporal 

locality. However, it must not be larger than the L1 data cache 

to prevent some of the data being evicted to the higher cache 

level. The programmer must find an appropriate chunk size 

for each implementation.  

 

4.2 Loop unrolling 
 

 Loop unrolling is an attempt to increase program 

execution speed by sacrificing program code size. By re-

ducing the number of loop iterations, branch penalties will be 

potentially decreased, but the loop body will become larger as 

it is unrolled. Also modern CPUs use superscalar  and  out-of- 

order execution techniques, which enable many independent 

instructions to be executed simultaneously, producing in-
 

 
 

Figure 2.     Example AVX intrinsic function prototypes. 
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struction level parallelism. Therefore, instruction execution 

units inside the processor are better utilized if the unrolled 

statements are independent of each other. However, because 

loop unrolling increases the size of the program, the code may 

become larger than the L1 code cache, which could degrade 

performance due to cache misses. Moreover, the unrolled code 

may be more difficult for the programmer to understand. 

 

4.3 OpenMP 
 

The OpenMP API for shared memory architectures 

allows the programmer to easily develop a parallel application 

for multiprocessors and multi-core machines. OpenMP di-

rectives allow a program to create multiple concurrent threads 

that are assigned to different processing cores through the 

runtime environment. It allows the data to be split between 

processing cores to encourage data parallelism, with each core 

processing only its part of the data. OpenMP also provides an 

easy way for the programmer to create different tasks 

executed by different threads, thereby supporting task 

parallelism.  

To efficiently apply loop tiling, loop unrolling, and 

AVX intrinsics in OpenMP, there are several considerations 

that must be kept in mind. The first is that the data must be 

kept in the CPU registers as long as possible, before being 

moved to higher latency memory (the L1 cache, and then the 

higher cache). Also, loop tiling must allow at least one larger 

block of data to be used by every core at the same time. This 

reduces memory contention between the processing cores, 

while smaller blocks are accessed by different cores. 

However, to provide fast access, the larger block must not be 

bigger than the cache. Finally, unrolling must produce as 

many independent operations as possible, but should not result 

in register spilling and movement of the code to the L2 cache. 

 

5. Advanced AVX-Intrinsic based Matrix-Matrix  

    Multiplication 
 

 The algorithm for single precision floating-point 

matrix-matrix multiplication (c = a×b) using AVX intrinsics 

is shown in Figure 3. The variables r0, r1, r2, r3, a0, b0 and 

b1 are of type __m256, and will be mapped to the YMM 

registers inside the CPU. Sixteen consecutive data elements 

from matrix b are preloaded using _mm256_load_ps, and kept 

in variables b0 and b1. The data from matrix a are loaded one 

element at a time before being broadcast to all eight elements 

of the target AVX register. This broadcast data will be 

multiplied with the preloaded b0 and b1 values, and the 

products kept in two registers, r0 and r1. To reduce memory 

accesses, the preloaded data from matrix b will be reused and 

multiplied with the next data element read from the next row 

of matrix a using the same pattern. Two additional registers 

are required to keep the appended results, r2 and r3. The 

products will be accumulated in variables r0 to r3 before 

being stored in the destination matrix c at the end of the 

innermost loop. The VectorSize parameter is set to 8 because 

this is the number of 32-bit floating-point operations that the 

AVX instructions can perform in parallel. The data between 

a[i][k] and a[i+1][k] are multiplied with the data from matrix 

b, and four results are written into matrix c. This approach 

means that the unrolling factor, defined as UF, is set to 2 in 

Figure  3,  but  if  greater  performance  is  required,  then  this 

 
 

Figure 3. Matrix-matrix multiplication of size n×n  using AVX 

intrinsics. 

 
factor could be increased. For example, if UF is increased to 4, 

then four data elements from matrix a (a[i][k], a[i+1][k], 

a[i+2][k], a[i+3][k]) are multiplied with the preloaded data 

from matrix b, and eight products are stored in 8 variables, 

named r0 to r7, before being written to matrix c. By 

increasing the UF value, the preloaded data from matrix b will 

be utilized repeatedly, thus reducing memory accesses and 

augmenting performance. 

 Loop tiling is utilized in this algorithm by splitting 

the kk-loop counter into blocks whose size is specified by the 

TileSize parameter. The appropriate values for TileSize and UF 

need to be determined for several matrix sizes to achieve 

maximum performance. A multi-core version of this algorithm 

is created by applying a “#pragma omp parallel for” statement 

to the outermost loop, and the list of private variables for each 

thread must be declared explicitly.  

 Due to its use of AVX instructions, loop tiling, and 

unrolling, our proposed algorithm is called “AVX-Tiling” for 

easier reference in the rest of this paper. 

 

6. Strassen’s Algorithm and the AVX Instruction Set 
 

The computation complexity for the conventional 

matrix-matrix multiplication of matrices of size n×n is O(n3), 

and Strassen algorithm reduces this to O(n2.8074) (Stothers, 

2010). Many algorithms, based on Coppersmith-Winograd’s 

method (1990), have been proposed to achieve better 

performance. For example, Davie and Stothers reduces the 

complexity of Coppersmith-Winograd from O(n2.375477) to 

O(n2.3736897) (2013), and Le Gall’s method is O(n2.3728639) 

(2014). However, unlike Strassen, the Coppersmith-Winograd 

based algorithms are rarely used in practice because they are 
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difficult to implement (Le Gall, 2012). 

 The Strassen algorithm splits each input matrix into 

4 chunks, each one fourth of the original’s size. The addition, 

subtraction, and multiplication operations are applied to these 

sub-matrices, as shown in Figure 4, and the result is kept in an 

output matrix c. If multiplication operation between these sub-

matrices is required, then they are recursively split again using 

the same mechanism until a stop condition is reached. In 

theory, this condition is determined by the smallest size that 

the multiplication routine can support, but usually it is 

unnecessary to use Strassen down to this level. Instead, the 

programmer must determine what number of recursive levels 

gives the best performance for their implementation. At each 

level, it is necessary to allocate memory for 21 temporary 

matrices, i.e. M1, M1A, M1B, M2, M2A, B11, M3, M3B, A11, M4, 

M4B, A22, M5, M5A, B22, M6, M6A, M6B, M7, M7A, and M7B, all of 

which are the same size. After the matrix c at the current level 

is complete, memory deallocation of these matrices prevents 

memory overflow. 

Figure 5 shows pseudo code for implementing 

Strassen’s algorithm using AVX intrinsics. To create the sub-

matrices at each level of recursion, two steps are required, and 

both use OpenMP to enable parallel operations to take place. 

The first step creates sub-matrices that use data from matrix a, 

and the second creates sub-matrices from matrix b. Figure 6 

shows the pseudo code for creating A11, A22, and all of MxA, 

and this pseudo code can also be applied to creating B11, B22, 

and all of MxB. The algorithm passes its sub-matrices through 

7 recursive calls, to produce the output data in M1-M7. Then 

Cxy is generated from M1-M7 using the same programming 

style as in Figure 6. 

 

7. Experimental Results and Discussions 
 

The performance of single precision floating-point 

matrix-matrix multiplication was evaluated across several 

configurations. The test machine was a 2.5GHz Core i7-

4710HQ (Haswell microarchitecture) with 4 processing cores, 

with hyperthreading turned on. The programs were written 

using Microsoft Visual C++ 2017 and OpenMP. Every test 

matrix was of size n×n. Sixteen different values for n were 

investigated, starting from 1024, and incremented by 1024 in 

each subsequent configuration, until the last value of n was 

16380. To obtain the GFLOPS performance of each confi-

guration, the RDTSC command (Intel, 1997) was executed 

before and after each matrix multiplication to measure the 

number of clock cycles.  The s variable in equation (1) was 

obtained by dividing this number of clock cycles by the CPU 

frequency. 

  We implemented a simple matrix-matrix multipli-

cation, as shown in Figure 1, and a parallel version was 

obtained by adding the “pragma omp parallel for” statement, 

along with the declaration of the local variables that were 

utilized in each thread. When the compiler’s optimization and 

automatic vectorization were turned off, the obtained 

performance was as shown in Figure 7. The parallel version is 

about 2.99 times faster than the serial version, on an average. 

The best performance of 2.09 GFLOPS came from the parallel 

version when the matrix size was 1024×1024. After automatic 

vectorization was turned on, and the optimization option of 

the compiler set to /O2 for maximum speed, the performance 

of the simple matrix-matrix multiplication increased dra-

matically. The best performance was now 42.37 GFLOPS 

when the matrix size was 2048×2048.  

 

 
 

Figure 4. The Strassen algorithm. 
 

 
 

Figure 5. Our proposed AVX based Strassen algorithm. 
 

 

 
 

Figure 6.     Create A11, A22, and the MxA sub-matrices. 
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Figure 7.     Performance of simple matrix-matrix multiplication. 

 

There are two things to note. The first is that 

utilizing OpenMP speeds up matrix-matrix multiplication 

quite efficiently. Although the average speedup factor (3.6) is 

less than the number of processing cores (4), some cases 

attained speedup factors higher than the number of cores. For 

example, when the matrix dimension was 2048, 3072, or 

8168, the speedups were 5.97, 4.73, or 4.04 respectively. 

Secondly, the performances of the optimizations and the 

automatic vectorization are excellent when we compare the 

results to the parallel versions of matrix-matrix multiplication. 

As a consequence, all the implementations in the rest of this 

section use compiler’s optimizations. 

Our AVX-Tiling algorithm employs several para-

meters which can be adjusted to obtain better performance. To 

make AVX-Tiling more suitable for the recursion in 

Strassen’s algorithm, the unrolling factor UF should be a 

power of two. As a consequence, our algorithm employed four 

different UF values – 2, 4, 8, and 16 – combined with four 

different TileSize values – 8, 16, 32, and 64 – resulting in 16 

combinations. The best {UF, TileSize} pair was {4, 16}, and 

its performance is shown in Figure 8. The best performance 

was 107.39 GFLOPS when the matrix size was 2048×2048,  

but the performance tends to decrease as the matrix size gets 

larger. The lowest performance, as shown in Figure 8, was 

34.14 GFLOPS. 

 Why did a UF value of 4 give better results than 2, 

8, or 16? Disassembly of the compiled program showed that if 

UF was set to 2 or 4, then the required number of the 

accumulate registers did not exceed the number of available 

AVX registers, which were 4 and 8 respectively. The total 

number of independent calculations using the FMA in-

struction should be as large as possible to provide a maximum 

throughput of the FMA engine inside the AVX unit. Therefore 

setting UF to 4 gave better performance than 2, but setting the 

UF to 8 or 16 required 16 or 32 accumulated registers 

respectively. This combined with the three registers needed to 

store the preloaded value from matrix b and the broadcast 

value from matrix a, exceeded the number of hardware 

registers. This caused the compiler to use register spilling, 

which resulted in reduced performance. 

 Two more related questions are: 1) what was the 

reason for the decrease of performance when matrix size was 

larger, and 2) why was maximum performance obtained for a 

matrix size of 2048×2048?  
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Figure 8.     Performance of our AVX-Tiling matrix-matrix multiplication when the {UF, TileSize} was set to {4, 16}. 
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By profiling the program, we found that OpenMP 

parallelizes the i-loop of the AVX-Tiling algorithm among the 

processing cores. Let A, B, and C be the tiles of data for the 

matrices a, b, c in the j-loop, as shown in Figure 9. The total 

number of bytes in the A tile can be calculated from 

UF*TileSize*sizeof(float), and the total number of bytes in the 

B tile can be determined using TileSize*n*sizeof(float). The 

number of bytes in the C tile is obtained from UF 

*n*sizeof(float). When the TileSize is set to 16, the size of the 

A tile is 256 bytes, and is not dependent on the size of the 

source matrices, but the size of the B and C tiles does depend 

on the size. Table 1 shows the memory required for the B and 

C tiles for different matrix sizes. Since hyperthreading was 

turned on, each processing core is responsible for 2 threads at 

a time, so each thread in the same processing core will read 

the same data from the B tile. However, two threads requires 

two A tiles and two C tiles. As mentioned before, the size of 

the A tile is quite small, so reading two separate A tiles for 

each thread is not a problem because both tiles can be stored 

inside the core’s L1 cache. However, the size of the B and C 

tiles depends on the size of the destination matrix, so it is 

impossible to keep two C tiles for both threads, and a B tile in 

the L1 cache simultaneously. As shown in Table 1, when the 

matrix size is less than 2048×2048, all the tiles from matrices 

b and c can be kept inside the L2 cache, which is 256 KB. 

This size restriction is the main reason why our AVX-Tiling 

algorithm gives the best result for a matrix size of 2048×2048, 

when the TileSize is set to 16. 

Once the best values for UF and TileSize had been 

determined, AVX-Tiling algorithm was utilized as a multi-

plication kernel for Strassen’s algorithm. Our implementation 

of Strassen’s algorithm using the AVX, as outlined in Figures 

4 and 5, relies on the creation of sub-matrices at each level of 

recursion, along with SIMD addition/subtraction functions, 

and multiplication kernels. The algorithm divides the matrix 

into four parts at each level of recursion, stopping when the 

level reaches the stop condition. Then the multiplication 

kernel is utilized to obtain a result for that level. Four different 

recursive levels were tested, and the results are shown in 

Figure 10 and Table 2. 

Table 2 shows the performance of our imple-

mentation of Strassen’s algorithm. Four different recursive 

levels were tested for each matrix size, and performance was 

obtained in GFLOPS. The level of recursion that gave the best 

performance for each matrix size is shown in bold italics in 

the respective row of the table. For a matrix of size 

5120×5120 or smaller, the best performance was obtained 

with one level of recursion. For matrix sizes of 6144×6144 to 

10240×10240, our algorithm gave best results at two levels of 

recursion. However, for very large matrices, of sizes larger 

than 10240×10240, three levels of recursion gave the 

optimum performance. 

Why do different matrix sizes need different levels 

of recursion to attain peak performance, as shown in Figure 10 

and Table 2? We calculated the size of the sub-matrices at 

each recursive level of the tested matrix sizes, and the results 

are shown in Table 3. We found that almost all the sub-

matrices that deliver maximum performance are of size 

2048×2048 or smaller. This result conforms with what 

happened when we used the AVX-Tiling algorithm alone, as 

shown in Table 1. However, another sub-matrix size, 

2560×2560, delivered the best performance. After calculating  
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Figure 9. Tiles for the source and destination matrices in the j-loop 

of the AVX-Tiling algorithm. 

 
Table 1. Memory requirements for each tile, and total memory 

required for (B+2*C) when the {UF, TileSize} is {4, 16}. 
 

Matrix size 

Memory required for each tile (kilobytes) 

B C B+2*C 

    

1024×1024 64 16 96 

2048×2048 128 32 192 
3072×3072 192 48 288 

4096×4096 256 64 384 
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Figure 10.     Performance of Strassen matrix-matrix multiplication for different levels of recursion. 
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                                                 Table 2.     Performance of matrix-matrix multiplication using Strassen algorithm. 
 

Matrix size 

Performance (GFLOPS) at different levels of recursion 

1 level 2 levels 3 levels 4 levels 

     

1024×1024 79.29 53.06 28.34 20.00 
2048×2048 96.21 95.89 63.03 33.87 

3072×3072 121.25 99.78 69.74 43.54 

4096×4096 102.51 93.64 75.92 53.15 
5120×5120 99.13 94.87 85.21 60.72 

6144×6144 88.15 133.48 119.54 76.49 

7168×7168 121.14 145.02 126.34 84.64 
8192×8192 110.88 133.99 120.81 88.83 

9216×9216 107.72 138.29 136.12 100.43 

10240×10240 101.54 143.20 137.33 106.98 
11264×11264 113.45 128.18 141.06 113.34 

12288×12288 97.01 126.24 138.45 118.65 
13312×13312 97.05 128.69 146.82 124.58 

14336×14336 84.16 125.24 147.07 129.85 

15360×15360 89.40 120.48 154.62 134.29 
16384×16384 74.77 120.62 141.80 126.67 

     

 
                                              Table 3.     Sizes of the sub-matrices at different recursive levels. 
 

Matrix size 

Sizes of the sub-matrices to be calculated  

with the AVX-Tiling algorithm at different recursive levels 

1 level 2 levels 3 levels 4 levels 

     

1024×1024 512×512 256×256 128×128 64×64 
2048×2048 1024×1024 512×512 256×256 128×128 

3072×3072 1536×1536 768×768 384×384 192×192 

4096×4096 2048×2048 1024×1024 512×512 256×256 
5120×5120 2560×2560 1280×1280 640×640 320×320 

6144×6144 3072×3072 1536×1536 768×768 384×384 

7168×7168 3584×3584 1792×1792 896×896 448×448 
8192×8192 4096×4096 2048×2048 1024×1024 512×512 

9216×9216 4608×4608 2304×2304 1152×1152 576×576 

10240×10240 5120×5120 2560×2560 1280×1280 640×640 
11264×11264 5632×5632 2816×2816 1408×1408 704×704 

12288×12288 6144×6144 3072×3072 1536×1536 768×768 

13312×13312 6656×6656 3328×3328 1664×1664 832×832 
14336×14336 7168×7168 3584×3584 1792×1792 896×896 

15360×15360 7680×7680 3840×3840 1920×1920 960×960 

16384×16384 8192×8192 4096×4096 2048×2048 1024×1024 
     

 

the required memory for the B and C tiles, we found that the 

total memory required for (B+2*C) equaled 240 KB, which 

was smaller than the L2 cache size of our machine. 

These results highlight two important considera-

tions: the first is that when the matrix size is small (≤ 2048), 

the use of AVX-Tiling alone (see Figure 8 and Figure 10) 

gives better performance at all recursive levels compared to 

Strassen+AVX-Tiling. The second point is that when the 

matrix size becomes larger, Strassen+AVX-Tiling gives better 

performance, but the number of recursive levels needs to be 

determined based on the size of the matrix and the size of the 

L2 cache.  

To give our algorithm the flexibility to be imple-

mented on processors with different sizes of L2 cache, we 

propose an algorithm that obtains the optimal recursive level 

value for the Strassen algorithm when utilizing AVX-Tiling as 

a multiplication kernel: 



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:)84(
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CUTileSize

n
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,         

                                                                                               (2) 
 

where C is the size of the L2 cache and n is the size of the 

destination matrix. 
If L from equation (2) equals 0, then AVX-Tiling 

should be applied to the input matrix directly. However, when 

L is greater than zero, Strassen+AVX-Tiling is utilized with L 

recursive call levels.  

We compared the performance of our algorithm 

utilizing equation (2) with the two latest versions of the open-

source libraries, Eigen (version 3.3.7) and OpenBLAS 

(version 0.3.5). These libraries were compiled on our test 

machine, with /O2 optimization, multithreaded support, and 

other optimizations for the Haswell microarchitecture, and 

Figure 11 shows their GFLOPS performance.  Our  algorithm
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Figure 11.   Performance comparison of our AVX-based Strassen algorithm versus the Eigen and the OpenBLAS libraries. 

 

is, on average, 1.52 and 1.87 times faster than Eigen and 

OpenBLAS respectively. 

 

8. Conclusions 
 

We have proposed an effective implementation of 

Strassen’s algorithm for matrix-matrix multiplication that 

utilizes AVX instructions and OpenMP on a multi-core 

architecture. The results show that our algorithm is, on 

average, 1.52 and 1.87 times faster than the latest versions of 

the Eigen and the OpenBLAS libraries, respectively. In 

addition, the performance of our algorithm increases as the 

matrix size becomes larger, while the performance of both the 

open-source libraries remains flat.  

Even though Strassen requires less multiplications 

compared to conventional matrix multiplication, it does 

require additional additions and subtractions, and comes with 

the overhead of memory copying between the current source 

matrix and its sub-matrices. Therefore, too many recursive 

calls in Strassen’s algorithm may reduce performance. We 

have proposed a systematic method for determining an 

optimum number of recursive levels to obtain the best 

performance for each matrix size. It ensures that sub-matrix 

size does not exceed the size of the L2 cache.  
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