
Songklanakarin J. Sci. Technol.

42 (6), 1368-1376, Nov. - Dec. 2020

Original Article

An effective implementation of Strassen’s algorithm

using AVX intrinsics for a multicore architecture

Nwe Zin Oo and Panyayot Chaikan*

Department of Computer Engineering, Faculty of Engineering,

Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand

Received: 23 April 2019; Revised: 24 August 2019; Accepted: 26 September 2019

Abstract

This paper proposes an effective implementation of Strassen’s algorithm with AVX intrinsics to augment matrix-matrix

multiplication in a multicore system. AVX-2 and FMA3 intrinsic functions are utilized, along with OpenMP, to implement the

multiplication kernel of Strassen’s algorithm. Loop tiling and unrolling techniques are also utilized to increase the cache

utilization. A systematic method is proposed for determining the best stop condition for the recursion to achieve maximum

performance on specific matrix sizes. In addition, an analysis method makes fine-tuning possible when our algorithm is adapted

to another machine with a different hardware configuration. Performance comparisons between our algorithm and the latest

versions of two well-known open-source libraries have been carried out. Our algorithm is, on average, 1.52 and 1.87 times faster

than the Eigen and the OpenBLAS libraries, respectively, and can be scaled efficiently when the matrix becomes larger.

Keywords: advanced vector extension, AVX, AVX-2, matrix-matrix multiplication, FMA, Strassen’s algorithm

1. Introduction

In recent years, the Advanced Vector Extension

(AVX) instruction set has been bundled with all the CPUs

produced by Intel and AMD. It allows multiple pieces of

floating-point data to be processed at the same time, resulting

in very high performance. Its successor, AVX-2, added 256-

bit integer operations and fused-multiply-accumulate opera-

tions for floating-point data, useful for scientific applications.

Many researchers have reported on its use to augment

processing performance. For example, Kye, Lee, and Lee

(2018) increased the processing speed of matrix transposition,

Al Hasib, Cebrian, and Natvig (2018) proposed an imple-

mentation of k-means clustering for a compressed dataset, and

Bramas and Kus (2018) speeded up the processing of a sparse

matrix-vector product. Hassan, Mahmoud, Hemeida, and

Saber (2018) utilized AVX and OpenMP to accelerate vector-

matrix multiplication, Barash, Guskova and Shchur (2017)

improved the performance of random number generators, and

Bramas (2017) boosted the speed of the quicksort algorithm.

We employ AVX intrinsics for an effective imple-

mentation of Strassen’s algorithm for single precision matrix-

matrix multiplication. We decided to utilize AVX-2 with its

FMA3 capabilities, which are available in reasonably priced

CPUs, from both Intel and AMD. Our aim is to augment the

speed of applications that rely on matrix-matrix multiplication

using off-the-shelf CPUs.

2. Matrix-Matrix Multiplication

Matrix-matrix multiplication, defined as c = a×b,

where a, b, and c are n×n, requires 2n3 floating-point

operations. The basic sequential algorithm is shown in Figure

1. The performance of the algorithm in Giga Floating-Point

Operation per Second (GFLOPS) is

 ,

910*

***2

s

nnn
GFLOPS (1)

where s is the execution time of the program in seconds.

*Corresponding author

 Email address: panyayot@coe.psu.ac.th

N. Z. Oo & P. Chaikan / Songklanakarin J. Sci. Technol. 42 (6), 1368-1376, 2020 1369

Figure 1. Basic sequential algorithm to calculate matrix-matrix
multiplication of size n×n.

3. AVX Instruction Set and the FMA3

The third generation of Intel’s Advanced Vector

Extensions (AVX) (Intel, 2011) comprises sixteen 256-bit

registers, YMM0-YMM15, supporting both integer and

floating-point operations. The AVX instructions allow eight

single-precision floating-point operations to be processed

simultaneously, twice the number supported by Streaming

SIMD Extensions (SSE). There are four main ways to take

advantage of AVX instructions: 1) using assembly language to

call AVX instructions directly; 2) using the AVX inline

assembly in C or C++; 3) using compiler intrinsics; or 4)

utilizing the compiler’s automatic vectorization feature. We

employ compiler intrinsics to implement Strassen’s algorithm

because this gives better performance than auto-vectorization,

but is not as cumbersome or error prone as assembly

language. Using AVX inline assembly in a high level

language is not significantly different from utilizing compiler

intrinsics (Hassana, Hemeida, & Mahmoud, 2016).

The syntax of AVX intrinsic functions follows the

pattern _mm256_<operation>_ <suffix> (Mitra, Johnston,

Rendell, McCreath, & Zhou, 2013) where the operation can

be load, store, arithmetic, or logical operation, and the suffix is

the type of data used. For example, _mm256_add_ps and

_mm256_add_pd add 32-bit and 64-bit floating-point data

respectively. Figure 2 shows more function prototype exam-

ples.

Floating-point matrix-matrix multiplication relies on

the fused-multiply-add operation, which can be implemented

using the _mm256_mul_ps and _mm256_add_ps functions.

However, replacing these two functions with a single _mm256

_fmadd_ps call can speed up the computation. This fused-

multiply-add (FMA) operation performs the multiplication

and addition of the 64-bit floating-point data in a single step

with rounding. Intel Haswell processors have supported FMA

since 2013 (Intel, 2019), and the processors currently

produced by AMD also support it (Advanced Micro Devices,

2019).

4. Optimization Methods for Parallel Matrix-Matrix

 Multiplication

The single-instruction-multiple-data (SIMD) pro-

cessing of the AVX gives higher performance than using

scalar instructions, and every processing core has an AVX

unit. As a consequence, very high performance is expected by

utilizing AVX instructions on a multi-core machine. Also, to

maximize the performance of the parallel application utilizing

AVX, OpenMP is employed in conjunction with two opti-

mization techniques: loop tiling and loop unrolling.

4.1 Loop tiling

 If the size of the data is very large, it is impossible

to keep it all inside the cache. Data movements between the

cache and main memory may be required very often, leading

to many cache miss penalties. To reduce this effect, the data

can be split into smaller chunks, and each chunk is loaded by

the processor and kept inside the cache automatically by its

cache controller. Increased reuse of these data from the cache

leads to improved performance. In the case of matrix-matrix

multiplication, c=a×b, the matrices are stored in 3 arrays, and

each data element of a and b will be accessed multiple times.

If the matrix size is n×n, then each data element from each

matrix will be accessed at least n times. When loop tiling is

applied, the outer loop keeps a chunk of the first source matrix

inside the cache, while a series of chunks taken from the

second matrix are processed by the inner loop. This pattern

allows the chunk of the first matrix to be reused many times

before being flushed from the cache. The next chunk from the

first matrix will then be processed using the same pattern, and

so on. The chunk size in the outer loop must be large enough

to minimize memory accesses and to increase temporal

locality. However, it must not be larger than the L1 data cache

to prevent some of the data being evicted to the higher cache

level. The programmer must find an appropriate chunk size

for each implementation.

4.2 Loop unrolling

 Loop unrolling is an attempt to increase program

execution speed by sacrificing program code size. By re-

ducing the number of loop iterations, branch penalties will be

potentially decreased, but the loop body will become larger as

it is unrolled. Also modern CPUs use superscalar and out-of-

order execution techniques, which enable many independent

instructions to be executed simultaneously, producing in-

Figure 2. Example AVX intrinsic function prototypes.

1370 N. Z. Oo & P. Chaikan / Songklanakarin J. Sci. Technol. 42 (6), 1368-1376, 2020

struction level parallelism. Therefore, instruction execution

units inside the processor are better utilized if the unrolled

statements are independent of each other. However, because

loop unrolling increases the size of the program, the code may

become larger than the L1 code cache, which could degrade

performance due to cache misses. Moreover, the unrolled code

may be more difficult for the programmer to understand.

4.3 OpenMP

The OpenMP API for shared memory architectures

allows the programmer to easily develop a parallel application

for multiprocessors and multi-core machines. OpenMP di-

rectives allow a program to create multiple concurrent threads

that are assigned to different processing cores through the

runtime environment. It allows the data to be split between

processing cores to encourage data parallelism, with each core

processing only its part of the data. OpenMP also provides an

easy way for the programmer to create different tasks

executed by different threads, thereby supporting task

parallelism.

To efficiently apply loop tiling, loop unrolling, and

AVX intrinsics in OpenMP, there are several considerations

that must be kept in mind. The first is that the data must be

kept in the CPU registers as long as possible, before being

moved to higher latency memory (the L1 cache, and then the

higher cache). Also, loop tiling must allow at least one larger

block of data to be used by every core at the same time. This

reduces memory contention between the processing cores,

while smaller blocks are accessed by different cores.

However, to provide fast access, the larger block must not be

bigger than the cache. Finally, unrolling must produce as

many independent operations as possible, but should not result

in register spilling and movement of the code to the L2 cache.

5. Advanced AVX-Intrinsic based Matrix-Matrix

 Multiplication

 The algorithm for single precision floating-point

matrix-matrix multiplication (c = a×b) using AVX intrinsics

is shown in Figure 3. The variables r0, r1, r2, r3, a0, b0 and

b1 are of type __m256, and will be mapped to the YMM

registers inside the CPU. Sixteen consecutive data elements

from matrix b are preloaded using _mm256_load_ps, and kept

in variables b0 and b1. The data from matrix a are loaded one

element at a time before being broadcast to all eight elements

of the target AVX register. This broadcast data will be

multiplied with the preloaded b0 and b1 values, and the

products kept in two registers, r0 and r1. To reduce memory

accesses, the preloaded data from matrix b will be reused and

multiplied with the next data element read from the next row

of matrix a using the same pattern. Two additional registers

are required to keep the appended results, r2 and r3. The

products will be accumulated in variables r0 to r3 before

being stored in the destination matrix c at the end of the

innermost loop. The VectorSize parameter is set to 8 because

this is the number of 32-bit floating-point operations that the

AVX instructions can perform in parallel. The data between

a[i][k] and a[i+1][k] are multiplied with the data from matrix

b, and four results are written into matrix c. This approach

means that the unrolling factor, defined as UF, is set to 2 in

Figure 3, but if greater performance is required, then this

Figure 3. Matrix-matrix multiplication of size n×n using AVX

intrinsics.

factor could be increased. For example, if UF is increased to 4,

then four data elements from matrix a (a[i][k], a[i+1][k],

a[i+2][k], a[i+3][k]) are multiplied with the preloaded data

from matrix b, and eight products are stored in 8 variables,

named r0 to r7, before being written to matrix c. By

increasing the UF value, the preloaded data from matrix b will

be utilized repeatedly, thus reducing memory accesses and

augmenting performance.

 Loop tiling is utilized in this algorithm by splitting

the kk-loop counter into blocks whose size is specified by the

TileSize parameter. The appropriate values for TileSize and UF

need to be determined for several matrix sizes to achieve

maximum performance. A multi-core version of this algorithm

is created by applying a “#pragma omp parallel for” statement

to the outermost loop, and the list of private variables for each

thread must be declared explicitly.

 Due to its use of AVX instructions, loop tiling, and

unrolling, our proposed algorithm is called “AVX-Tiling” for

easier reference in the rest of this paper.

6. Strassen’s Algorithm and the AVX Instruction Set

The computation complexity for the conventional

matrix-matrix multiplication of matrices of size n×n is O(n3),

and Strassen algorithm reduces this to O(n2.8074) (Stothers,

2010). Many algorithms, based on Coppersmith-Winograd’s

method (1990), have been proposed to achieve better

performance. For example, Davie and Stothers reduces the

complexity of Coppersmith-Winograd from O(n2.375477) to

O(n2.3736897) (2013), and Le Gall’s method is O(n2.3728639)

(2014). However, unlike Strassen, the Coppersmith-Winograd

based algorithms are rarely used in practice because they are

N. Z. Oo & P. Chaikan / Songklanakarin J. Sci. Technol. 42 (6), 1368-1376, 2020 1371

difficult to implement (Le Gall, 2012).

 The Strassen algorithm splits each input matrix into

4 chunks, each one fourth of the original’s size. The addition,

subtraction, and multiplication operations are applied to these

sub-matrices, as shown in Figure 4, and the result is kept in an

output matrix c. If multiplication operation between these sub-

matrices is required, then they are recursively split again using

the same mechanism until a stop condition is reached. In

theory, this condition is determined by the smallest size that

the multiplication routine can support, but usually it is

unnecessary to use Strassen down to this level. Instead, the

programmer must determine what number of recursive levels

gives the best performance for their implementation. At each

level, it is necessary to allocate memory for 21 temporary

matrices, i.e. M1, M1A, M1B, M2, M2A, B11, M3, M3B, A11, M4,

M4B, A22, M5, M5A, B22, M6, M6A, M6B, M7, M7A, and M7B, all of

which are the same size. After the matrix c at the current level

is complete, memory deallocation of these matrices prevents

memory overflow.

Figure 5 shows pseudo code for implementing

Strassen’s algorithm using AVX intrinsics. To create the sub-

matrices at each level of recursion, two steps are required, and

both use OpenMP to enable parallel operations to take place.

The first step creates sub-matrices that use data from matrix a,

and the second creates sub-matrices from matrix b. Figure 6

shows the pseudo code for creating A11, A22, and all of MxA,

and this pseudo code can also be applied to creating B11, B22,

and all of MxB. The algorithm passes its sub-matrices through

7 recursive calls, to produce the output data in M1-M7. Then

Cxy is generated from M1-M7 using the same programming

style as in Figure 6.

7. Experimental Results and Discussions

The performance of single precision floating-point

matrix-matrix multiplication was evaluated across several

configurations. The test machine was a 2.5GHz Core i7-

4710HQ (Haswell microarchitecture) with 4 processing cores,

with hyperthreading turned on. The programs were written

using Microsoft Visual C++ 2017 and OpenMP. Every test

matrix was of size n×n. Sixteen different values for n were

investigated, starting from 1024, and incremented by 1024 in

each subsequent configuration, until the last value of n was

16380. To obtain the GFLOPS performance of each confi-

guration, the RDTSC command (Intel, 1997) was executed

before and after each matrix multiplication to measure the

number of clock cycles. The s variable in equation (1) was

obtained by dividing this number of clock cycles by the CPU

frequency.

 We implemented a simple matrix-matrix multipli-

cation, as shown in Figure 1, and a parallel version was

obtained by adding the “pragma omp parallel for” statement,

along with the declaration of the local variables that were

utilized in each thread. When the compiler’s optimization and

automatic vectorization were turned off, the obtained

performance was as shown in Figure 7. The parallel version is

about 2.99 times faster than the serial version, on an average.

The best performance of 2.09 GFLOPS came from the parallel

version when the matrix size was 1024×1024. After automatic

vectorization was turned on, and the optimization option of

the compiler set to /O2 for maximum speed, the performance

of the simple matrix-matrix multiplication increased dra-

matically. The best performance was now 42.37 GFLOPS

when the matrix size was 2048×2048.

Figure 4. The Strassen algorithm.

Figure 5. Our proposed AVX based Strassen algorithm.

Figure 6. Create A11, A22, and the MxA sub-matrices.

1372 N. Z. Oo & P. Chaikan / Songklanakarin J. Sci. Technol. 42 (6), 1368-1376, 2020

0

5

10

15

20

25

30

35

40

45

0 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264 12288 13312 14336 15360 16384

Matrix Dimension

P
e
r
fo

r
m

a
n

c
e
 (

G
F

L
O

P
S

)

Parallel without Compiler Optimizations

Serial without Compiler Optimizations

Parallel with Compiler Optimizations

Serial with Compiler Optimizations

Figure 7. Performance of simple matrix-matrix multiplication.

There are two things to note. The first is that

utilizing OpenMP speeds up matrix-matrix multiplication

quite efficiently. Although the average speedup factor (3.6) is

less than the number of processing cores (4), some cases

attained speedup factors higher than the number of cores. For

example, when the matrix dimension was 2048, 3072, or

8168, the speedups were 5.97, 4.73, or 4.04 respectively.

Secondly, the performances of the optimizations and the

automatic vectorization are excellent when we compare the

results to the parallel versions of matrix-matrix multiplication.

As a consequence, all the implementations in the rest of this

section use compiler’s optimizations.

Our AVX-Tiling algorithm employs several para-

meters which can be adjusted to obtain better performance. To

make AVX-Tiling more suitable for the recursion in

Strassen’s algorithm, the unrolling factor UF should be a

power of two. As a consequence, our algorithm employed four

different UF values – 2, 4, 8, and 16 – combined with four

different TileSize values – 8, 16, 32, and 64 – resulting in 16

combinations. The best {UF, TileSize} pair was {4, 16}, and

its performance is shown in Figure 8. The best performance

was 107.39 GFLOPS when the matrix size was 2048×2048,

but the performance tends to decrease as the matrix size gets

larger. The lowest performance, as shown in Figure 8, was

34.14 GFLOPS.

 Why did a UF value of 4 give better results than 2,

8, or 16? Disassembly of the compiled program showed that if

UF was set to 2 or 4, then the required number of the

accumulate registers did not exceed the number of available

AVX registers, which were 4 and 8 respectively. The total

number of independent calculations using the FMA in-

struction should be as large as possible to provide a maximum

throughput of the FMA engine inside the AVX unit. Therefore

setting UF to 4 gave better performance than 2, but setting the

UF to 8 or 16 required 16 or 32 accumulated registers

respectively. This combined with the three registers needed to

store the preloaded value from matrix b and the broadcast

value from matrix a, exceeded the number of hardware

registers. This caused the compiler to use register spilling,

which resulted in reduced performance.

 Two more related questions are: 1) what was the

reason for the decrease of performance when matrix size was

larger, and 2) why was maximum performance obtained for a

matrix size of 2048×2048?

0

20

40

60

80

100

120

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264 12288 13312 14336 15360 16384

Matrix Dimension

P
e
r
fo

r
m

a
n

c
e
 (

G
F

L
O

P
S

)

Figure 8. Performance of our AVX-Tiling matrix-matrix multiplication when the {UF, TileSize} was set to {4, 16}.

N. Z. Oo & P. Chaikan / Songklanakarin J. Sci. Technol. 42 (6), 1368-1376, 2020 1373

By profiling the program, we found that OpenMP

parallelizes the i-loop of the AVX-Tiling algorithm among the

processing cores. Let A, B, and C be the tiles of data for the

matrices a, b, c in the j-loop, as shown in Figure 9. The total

number of bytes in the A tile can be calculated from

UF*TileSize*sizeof(float), and the total number of bytes in the

B tile can be determined using TileSize*n*sizeof(float). The

number of bytes in the C tile is obtained from UF

*n*sizeof(float). When the TileSize is set to 16, the size of the

A tile is 256 bytes, and is not dependent on the size of the

source matrices, but the size of the B and C tiles does depend

on the size. Table 1 shows the memory required for the B and

C tiles for different matrix sizes. Since hyperthreading was

turned on, each processing core is responsible for 2 threads at

a time, so each thread in the same processing core will read

the same data from the B tile. However, two threads requires

two A tiles and two C tiles. As mentioned before, the size of

the A tile is quite small, so reading two separate A tiles for

each thread is not a problem because both tiles can be stored

inside the core’s L1 cache. However, the size of the B and C

tiles depends on the size of the destination matrix, so it is

impossible to keep two C tiles for both threads, and a B tile in

the L1 cache simultaneously. As shown in Table 1, when the

matrix size is less than 2048×2048, all the tiles from matrices

b and c can be kept inside the L2 cache, which is 256 KB.

This size restriction is the main reason why our AVX-Tiling

algorithm gives the best result for a matrix size of 2048×2048,

when the TileSize is set to 16.

Once the best values for UF and TileSize had been

determined, AVX-Tiling algorithm was utilized as a multi-

plication kernel for Strassen’s algorithm. Our implementation

of Strassen’s algorithm using the AVX, as outlined in Figures

4 and 5, relies on the creation of sub-matrices at each level of

recursion, along with SIMD addition/subtraction functions,

and multiplication kernels. The algorithm divides the matrix

into four parts at each level of recursion, stopping when the

level reaches the stop condition. Then the multiplication

kernel is utilized to obtain a result for that level. Four different

recursive levels were tested, and the results are shown in

Figure 10 and Table 2.

Table 2 shows the performance of our imple-

mentation of Strassen’s algorithm. Four different recursive

levels were tested for each matrix size, and performance was

obtained in GFLOPS. The level of recursion that gave the best

performance for each matrix size is shown in bold italics in

the respective row of the table. For a matrix of size

5120×5120 or smaller, the best performance was obtained

with one level of recursion. For matrix sizes of 6144×6144 to

10240×10240, our algorithm gave best results at two levels of

recursion. However, for very large matrices, of sizes larger

than 10240×10240, three levels of recursion gave the

optimum performance.

Why do different matrix sizes need different levels

of recursion to attain peak performance, as shown in Figure 10

and Table 2? We calculated the size of the sub-matrices at

each recursive level of the tested matrix sizes, and the results

are shown in Table 3. We found that almost all the sub-

matrices that deliver maximum performance are of size

2048×2048 or smaller. This result conforms with what

happened when we used the AVX-Tiling algorithm alone, as

shown in Table 1. However, another sub-matrix size,

2560×2560, delivered the best performance. After calculating

A

Matrix a

B
 UF

TileSize

Matrix b Matrix c

T
il

eS
iz

e

C

nn n

n

UF

Figure 9. Tiles for the source and destination matrices in the j-loop

of the AVX-Tiling algorithm.

Table 1. Memory requirements for each tile, and total memory

required for (B+2*C) when the {UF, TileSize} is {4, 16}.

Matrix size

Memory required for each tile (kilobytes)

B C B+2*C

1024×1024 64 16 96

2048×2048 128 32 192
3072×3072 192 48 288

4096×4096 256 64 384

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264 12288 13312 14336 15360 16384

Matrix Dimension

P
e
r
fo

r
m

a
n

c
e
 (

G
F

L
O

P
S

)

1 level

2 levels

3 levels

4 levels

Figure 10. Performance of Strassen matrix-matrix multiplication for different levels of recursion.

1374 N. Z. Oo & P. Chaikan / Songklanakarin J. Sci. Technol. 42 (6), 1368-1376, 2020

 Table 2. Performance of matrix-matrix multiplication using Strassen algorithm.

Matrix size

Performance (GFLOPS) at different levels of recursion

1 level 2 levels 3 levels 4 levels

1024×1024 79.29 53.06 28.34 20.00
2048×2048 96.21 95.89 63.03 33.87

3072×3072 121.25 99.78 69.74 43.54

4096×4096 102.51 93.64 75.92 53.15
5120×5120 99.13 94.87 85.21 60.72

6144×6144 88.15 133.48 119.54 76.49

7168×7168 121.14 145.02 126.34 84.64
8192×8192 110.88 133.99 120.81 88.83

9216×9216 107.72 138.29 136.12 100.43

10240×10240 101.54 143.20 137.33 106.98
11264×11264 113.45 128.18 141.06 113.34

12288×12288 97.01 126.24 138.45 118.65
13312×13312 97.05 128.69 146.82 124.58

14336×14336 84.16 125.24 147.07 129.85

15360×15360 89.40 120.48 154.62 134.29
16384×16384 74.77 120.62 141.80 126.67

 Table 3. Sizes of the sub-matrices at different recursive levels.

Matrix size

Sizes of the sub-matrices to be calculated

with the AVX-Tiling algorithm at different recursive levels

1 level 2 levels 3 levels 4 levels

1024×1024 512×512 256×256 128×128 64×64
2048×2048 1024×1024 512×512 256×256 128×128

3072×3072 1536×1536 768×768 384×384 192×192

4096×4096 2048×2048 1024×1024 512×512 256×256
5120×5120 2560×2560 1280×1280 640×640 320×320

6144×6144 3072×3072 1536×1536 768×768 384×384

7168×7168 3584×3584 1792×1792 896×896 448×448
8192×8192 4096×4096 2048×2048 1024×1024 512×512

9216×9216 4608×4608 2304×2304 1152×1152 576×576

10240×10240 5120×5120 2560×2560 1280×1280 640×640
11264×11264 5632×5632 2816×2816 1408×1408 704×704

12288×12288 6144×6144 3072×3072 1536×1536 768×768

13312×13312 6656×6656 3328×3328 1664×1664 832×832
14336×14336 7168×7168 3584×3584 1792×1792 896×896

15360×15360 7680×7680 3840×3840 1920×1920 960×960

16384×16384 8192×8192 4096×4096 2048×2048 1024×1024

the required memory for the B and C tiles, we found that the

total memory required for (B+2*C) equaled 240 KB, which

was smaller than the L2 cache size of our machine.

These results highlight two important considera-

tions: the first is that when the matrix size is small (≤ 2048),

the use of AVX-Tiling alone (see Figure 8 and Figure 10)

gives better performance at all recursive levels compared to

Strassen+AVX-Tiling. The second point is that when the

matrix size becomes larger, Strassen+AVX-Tiling gives better

performance, but the number of recursive levels needs to be

determined based on the size of the matrix and the size of the

L2 cache.

To give our algorithm the flexibility to be imple-

mented on processors with different sizes of L2 cache, we

propose an algorithm that obtains the optimal recursive level

value for the Strassen algorithm when utilizing AVX-Tiling as

a multiplication kernel:

)84(
2

:)84(
2

minarg
0

FLFLL
UTileSize

n
CUTileSize

n
CL

,

 (2)

where C is the size of the L2 cache and n is the size of the

destination matrix.
If L from equation (2) equals 0, then AVX-Tiling

should be applied to the input matrix directly. However, when

L is greater than zero, Strassen+AVX-Tiling is utilized with L

recursive call levels.

We compared the performance of our algorithm

utilizing equation (2) with the two latest versions of the open-

source libraries, Eigen (version 3.3.7) and OpenBLAS

(version 0.3.5). These libraries were compiled on our test

machine, with /O2 optimization, multithreaded support, and

other optimizations for the Haswell microarchitecture, and

Figure 11 shows their GFLOPS performance. Our algorithm

N. Z. Oo & P. Chaikan / Songklanakarin J. Sci. Technol. 42 (6), 1368-1376, 2020 1375

0

20

40

60

80

100

120

140

160

0 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264 12288 13312 14336 15360 16384

Matrix Dimension

P
e
r
fo

r
m

a
n

c
e
 (

G
F

L
O

P
S

)

Strassen+AVX-Tiling

Eigen

OpenBLAS

Figure 11. Performance comparison of our AVX-based Strassen algorithm versus the Eigen and the OpenBLAS libraries.

is, on average, 1.52 and 1.87 times faster than Eigen and

OpenBLAS respectively.

8. Conclusions

We have proposed an effective implementation of

Strassen’s algorithm for matrix-matrix multiplication that

utilizes AVX instructions and OpenMP on a multi-core

architecture. The results show that our algorithm is, on

average, 1.52 and 1.87 times faster than the latest versions of

the Eigen and the OpenBLAS libraries, respectively. In

addition, the performance of our algorithm increases as the

matrix size becomes larger, while the performance of both the

open-source libraries remains flat.

Even though Strassen requires less multiplications

compared to conventional matrix multiplication, it does

require additional additions and subtractions, and comes with

the overhead of memory copying between the current source

matrix and its sub-matrices. Therefore, too many recursive

calls in Strassen’s algorithm may reduce performance. We

have proposed a systematic method for determining an

optimum number of recursive levels to obtain the best

performance for each matrix size. It ensures that sub-matrix

size does not exceed the size of the L2 cache.

Acknowledgements

This work was supported by the Higher Education

Research Promotion and the Thailand’s Education Hub for

Southern Region of ASEAN Countries Project Office of the

Higher Education Commission. The authors are grateful to Dr.

Andrew Davison for his kind help in polishing the language of

this paper.

References

Advanced Micro Devices, Inc. (2019). AMD64 architecture

programmer’s manual volume 4: 128-Bit and 256-

Bit media instructions. Retrieved from https://

www.amd.com/system/files/TechDocs/26568.pdf.

Al Hasib, A., Cebrian, J. M., & Natvig, L. (2018). A vecto-

rized k-means algorithm for compressed datasets:

Design and experimental analysis. Journal of Super-

computing, 74(6), 2705-2728. doi:10.1007/s11227-

018-2310-0

Bramas, B. (2017). A novel hybrid quicksort algorithm vec-

torized using AVX-512 on intel skylake. Interna-

tional Journal of Advanced Computer Science and

Applications, 8(10), 337-344. doi:10.14569/IJACS

A.2017.081044

Bramas, B., & Kus, P. (2018). Computing the sparse matrix

vector product using block-based kernels without

zero padding on processors with AVX-512 in-

structions. PEERJ Computer Science, e151. doi:

10.7717/peerj-cs.151

Barash, L. Y., Guskova, M. S., & Shchur, L. N. (2017).

Employing AVX vectorization to improve the

performance of random number generators. Pro-

gramming and Computer Software, 43(3), 145-160.

doi:10.1134/S0361768817030033

Coppersmith, D., & Winograd, S. (1990). Matrix Multipli-

cation via Arithmetic Progressions. Journal of

Symbolic Computation, 9(3), 251-280. doi:10.1016/

S0747-7171(08)80013-2

Davie, A. M., & Stothers, A. J. (2013). Improved bound for

complexity of matrix multiplication. Proceedings of

1376 N. Z. Oo & P. Chaikan / Songklanakarin J. Sci. Technol. 42 (6), 1368-1376, 2020

the Royal Society of Edinburgh, 351-369. doi:10.

1017/S0308210511001648

Hassana, S. A., Hemeida, A. M., & Mahmoud, M. M. (2016).

Performance evaluation of matrix-matrix multipli-

cations using Intel’s advanced vector extensions

(AVX). Microprocessors and Microsystems, 47(SI),

369-374. doi:10.1016/ j.micpro.2016. 10.002

Hassan, S. A., Mahmoud, M. M., Hemeida, A. M., & Saber,

M. A. (2018). Effective implementation of matrix-

vector multiplication on Intel’s AVX multicore

processor. Computer Languages Systems and

Structures, 51, 158-175. doi:10.1016/j.cl.2017.06.

003

Intel Corporation. (1997). Using the RDTSC instruction for

performance monitoring. Retrieved from http://

developer.intel.com/drg/pentiumII/appnotes/RDTSC

PM1.HTM.

Intel Corporation. (2011). Intel® 64 and IA-32 Architectures

Software Developer’s Manual. Retrieved from https:

//software.intel.com/sites/default/files/managed/ 39/

c5/325462-sdm-vol-1-2abcd-3abcd.pdf.

Intel Corporation. (2019). Intel® 64 and IA-32 Architectures

Software Developer’s Manual Volume 1: Basic

Architecture. Retrieved from https://software.intel.

com/ sites/default/files/managed/a4/60/253665-sdm-

vol-1.pdf.

Kye, H., Lee, S. H., & Lee, J. (2018). CPU-based real-time

maximum intensity projection via fast matrix

transposition using parallelization operations with

AVX instruction set. Multimedia Tools and Appli-

cations, 77(12), 15971-15994. doi:10.1007/s11042-

017-5171-2

Le Gall, F. (2012). Faster algorithms for rectangular matrix

multiplication. Proceedings of the 53rd Annual IEEE

Symposium on Foundations of Computer Science,

514-523. doi:10.1109/FOCS.2012.80

Le Gall, F. (2014). Powers of tensors and fast matrix

multiplication. Proceedings of the 39th International

Symposium on Symbolic and Algebraic Compu-

tation, 296-303. doi:10.1145/2608628.2608664

Mitra, G., Johnston, B., Rendell, A. P., McCreath, E., & Zhou,

J. (2013). Use of SIMD vector operations to

accelerate application code performance on low-

powered ARM and Intel platforms. IEEE 27th

International Parallel and Distributed Processing

Symposium Workshops and PhD Forum, 1107-1116.

doi:10.1109/IPDPSW.2013.207

Stothers, A. J. (2010). On the Complexity of Matrix Multi-

plication (Doctoral thesis, University of Edinburgh,

Edinburgh, Scotland). Retrieved from https://www.

era.lib.ed.ac.uk/bitstream/handle/1842/4734/Stothers

2010.pdf.

http://developer.intel.com/drg/pentiumII/appnotes/
http://developer.intel.com/drg/pentiumII/appnotes/
https://software.intel.com/
https://software.intel.com/

