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Abstract 
 

It is generally known that blocking can reduce unexplained variation, and in response surface designs block sizes can 

be pre-specified. This paper proposes a novel way of weighting D-optimality criteria obtained from all possible models to 

construct robust designs with blocking factors and addresses the challenge of uncertainty as to whether a first-order model, an 

interaction model, or a second-order model is the most appropriate choice. Weighted D-optimal designs having 2 and 3 variables 

with 2, 3, and 4 blocks are compared with corresponding standard D-optimal designs in terms of the DN
-efficiencies. Effects of 

blocking schemes are also investigated. Both an exchange algorithm (EA) and a genetic algorithm (GA) are employed to generate 

the model-robust designs. The results show that the proposed Dw
-optimality criterion can be a good alternative for researchers as 

it can create robust designs across the set of potential models. 
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1. Introduction 
 

Many real-life situations exist whereby experimental 

designs can help solve a research question. Experimentation is 

a scientific approach to learn how a system or process works, 

and experimental design is an essential tool for improving the 

performance of an industrial manufacturing process. Response 

surface designs are considered a class of experimental designs 

that are useful for developing, improving and optimizing a 

process (Myers, Montgomery, & Anderson-Cook, 2016). 

Response surface methodology (RSM) involves both 

statistical and mathematical techniques and is useful for three 

purposes: (i) fitting a response surface model over a specific 

region of interest, (ii) finding the optimal response, and (iii) 

selection of operating conditions to achieve some specifi- 

 
cations or customer requirements. RSM is primarily 

concerned with approximating a complicated unknown 

function with a low-order polynomial, usually either a first-

order model, an interaction model, or a second-order model.  

If data for every combination of factor levels cannot 

be collected under identical experimental conditions, then 

blocks should be formed. A second-order response surface 

model with k design variables and b blocks can be expressed 

as;  
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where 

1 2( , ,..., , )ky x x x l  is an observed response, given 

1 2, ,..., kx x x  are the k design variables, and l  is the block 

identifier with ( )I m  being a block indicator function. The ’s  

and the ’s correspond to the second-order model and block 
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effect parameter coefficients to be estimated, and   is a  and 

variance 2 .  This second-order model is commonly used for 

describing a process of interest. Generally, a proposed model 

has many choices of design; therefore, selecting a “good” 

design is very important. To generate a design, many criteria 

and desired characteristics such as the number of design 

points, the number of blocks, and block sizes are required to 

be predetermined. One approach to select a design involves 

using optimality criteria, which strongly depend on the 

proposed ‘prior’ approximating the response surface model, 

e.g. equation (1). If a different model space is assumed, then 

the efficiency of the design changes. After the data are 

collected and parameters corresponding to terms of the 

proposed model are fitted, insignificant terms are removed so 

that the reduced ‘posterior’ model retains only ‘significant’ 

terms (Borkowski & Valeroso, 2001). 

The design optimality criteria focused on in this 

research are based on D-optimality proposed by Wald (1943). 

The goal of D-optimality is to find a design that minimizes the 

value of 1( )
 
or the generalized variance ˆvar(θ)  where θ̂  

is the vector of parameter estimates and   is the model 

matrix in the linear model. For the model in equation (1), θ̂  is 

the vector containing all ̂  estimates for the second-order 

model and ̂  estimates for the block effects. Thus, also the 

block effects will be estimated. Because | |   equals 

11 ( ) , minimizing 1( )  is equivalent to maximizing 

| |  . The simplest and most common efficiency measure 

for D-optimality is the following: 

 

1
1

( ) ( )
D -efficiency 100 100,

p
p

N pN N

    
    
 

             (2) 

 

where p is the number of the model parameters. The 

D -efficiencyN
 in (2) is the typical measure calculated by 

various software packages (e.g., by PROC OPTEX in the SAS 

software package). D -efficiencyN
 can be interpreted as the 

relative efficiency of a design compared to an optimal 

hypothetical orthogonal design in the hypercube (Mitchell, 

1974b). Note that DN
-efficiencies can be used to compare 

designs of different sizes. For additional details and examples 

of design optimality criteria see Atkinson, Donev, and Tobias 

(2007). 

Many different strategies have been developed to 

examine a set of potential reduced models. Chipman (1996) 

presented two classes of reduced models based on weak 

heredity (WH) and strong heredity (SH) principles. A model 

can be summarized by vector   containing ‘1’ and ‘0’ where 

‘1’ indicates that a term is included in the model and ‘0’ that it 

is not in the model. The notations  and  represent 

the indicator function values of the thi  first-order effect, the 

thii  second-order effect, and the thij  interaction effect, 

respectively. Weak heredity (WH) requires that if the  

term is in the model, then either the  or  term is (or 

both of them are) contained in the model, and if the 
 
term 

is in the model, then the
 

term must also be in the model. 

For 2k  , the second-order model (without blocks) has 6 

parameters, and there are 17 WH reduced models corres-

ponding to vectors 
0 1 2 11 22 12( , , , , , )       . For 3k  , 

there are 185 reduced models where the second-order model 

has 10 parameters (without blocks).  

Because of experimental uncertainty with the 

reduced response surface model prior to data collection, the 

researcher should consider robust experimental designs with 

respect to a design optimality criterion over a set of potential 

posterior models. Thus, the purpose of this paper is to find a 

response surface design that has a good optimality criterion 

evaluated across the set of reduced models.  

Many publications have used a weighted criterion 

based on the arithmetic mean, for example, Chomtee and 

Borkowski (2005) developed D, A, G, and IV optimality 

criteria using prior probability assignments to model effects. 

Three design variables ( 3)k   were considered in a spherical 

design region and over sets of reduced models based on weak 

and strong heredity. The spherical response surface designs 

compared were central composite designs (CCDs), Box-

Behnken designs (BBDs), small composite designs (SCDs), 

uniform shell designs (Doehlert, 1970; Doehlert & Klee, 

1972), and hybrid designs (Roquemore, 1976). Chairojwatta-
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na, Chaimongkol, and Borkowski (2017) studied the weighted 

D- and G-optimality criteria ( Dw
 and Gw

) for second-order 

response surface designs using prior probability assignments 

to model effects and developed a genetic algorithm (GA) to 

generate designs that optimize Dw
 and Gw

.  

In our paper, D-optimality is used to define a 

weighted criterion to generate designs that are robust to a set 

of potential models. That is, the weighted D-optimality 

criterion (D )w
 is used to evaluate designs. The goal of 

weighted D-optimality criterion (D )w
 is to maximize the 

weighted average of DN
-efficiencies in the design region 

over a set of reduced models. The weights must be supplied 

by experimenters. One approach is to assign weights based on 

the number of parameters in each model.  

Again, if experimental runs cannot be collected 

under identical experimental conditions, blocks should be 

formed.  When observations can be recorded in blocks of 

homogeneous units, the blocking scheme depends on the 

nature of the experiment. Blocks introduce extra parameters 

into the model, considered nuisance parameters, while 

appropriate blocking of experimental designs can produce 

desirable experimental run features. The blocks may not 

necessarily have the same number of experimental runs; 

therefore, the novelty of this research involves introducing a 

weighted optimality across a set of reduced models in 

experiments that require blocking. Moreover, both an 

exchange algorithm and a genetic algorithm are implemented 

to generate optimal designs. 

 

2. Materials and Methods 

 

2.1 Weighted D-optimality criterion ( Dw
)    

 

Let ( )

( ( ))
i

p

p i
w

N m p i




 as the weight for model i, where

( )m p  is the number of models having  p  parameters, ( )p i  is 

the difference between the number of parameters in model i

and the number of blocks, and 
2

2

1

k

p p
N p

 
 
 


 . Here, the model 

with more parameters has more weight and 
1

1
M

i

i

w


  for a set 

of model weights  1 2, ,..., Mw w w  where M is the number of 

reduced models for a given full model. Based on the authors’ 

experience and knowledge, they believe that each of the terms 

in the full model has a reasonably high probability of being 

significant. For this reason, the full model must have the 

highest probability or the largest weight. It is clearly seen that 

one term not being in the model will lead to a model with a 

slightly lower weight than the full model. And, as more terms 

are absent from the model, the weight will constantly 

decrease. This is the justification for why we require several 

distinct levels of weighting. The second-order model given in 

equation (1) stands for the full model in this study. These 

weights are used to calculate the weighted D-optimality 

criterion ( Dw
). For 2k  , the second-order model (without 

blocks) has 6 parameters and 
6

1

21p

p

N p


  . For 3,k   

10

1

55p

p

N p


   where the second-order model (without blocks) 

has 10 parameters. 

Let   be the set of all possible exact designs on 

design space  , then the newly-proposed Dw
-optimality 

criterion seeks a design *  satisfying 

 

1

* arg max ( ) ,iw
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( ) ( )i i i N    is a moment matrix, for 
( )i  

which is the model matrix with columns corresponding to the 

terms in model i , and N  is the design size. Therefore, the 

Dw
-efficiency as a weighted optimality criterion can be 

defined as  
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reduced model. Thus, the use of geometric mean is considered 

for defining the Dw
-optimality criterion. The design must be 

robust to model reduction and should be able to fit all 

parameters for all reduced models. Note that in the geometric 

mean if any D 0i  , then D 0w  . Also, if D 0i  , then 

D 0w   implying that not all reduced model parameters can 

be fitted by that design. In particular, if D 0w  , then the full 

model cannot be fitted. Thus, Dw
 addresses the robustness 

problem better than a weighted optimality criterion based on 

the arithmetic mean 
1

D D
M

A i i

i

w


 . With DA
, there is no 

guarantee that all reduced models can be fitted, which is 

contrary to the goal of finding a model-robust design. Note 

that Dw
, as defined in (4), can be used for any assignment of 

iw  weights that sum to 1. This gives the experimenter the 

flexibility to use a weighting scheme different than the one 

used in this research. 

 

2.2 Exchange and genetic algorithms 

 

             This research includes an exchange algorithm (EA) 

and a genetic algorithm (GA) to generate designs that 

optimize the Dw
-optimality criterion. 

 

2.2.1 Exchange algorithm 

 

  Originally, exchange algorithms (EAs) were 

created by starting with a randomly chosen n-run design and 

then exchanging design points with points in a candidate set of 

points such that the initial set of n runs was improved by (i) 

adding an ( n  + 1)st run, chosen to achieve the maximum 

possible increase in  , and then (ii) subtracting (re-

moving) the run in the resulting design to obtain the minimum 

possible decrease in  . Variations of EAs were developed 

by Fedorov (1972), Wynn (1972), Mitchell (1974a), and Cook 

and Nachtsheim (1980). For example, the original design was 

improved by subtracting a point first and then adding a point 

(Mitchell, 1974). 

The methodology for generating designs that 

optimize the Dw
 -criterion using an EA is as follows: 

1) Specify the number of design variables (k = 2 or k =3) 

and number of blocks (b = 2, 3, or 4) for N design points 

where N   p, p+1, p+2,…, p+9 and p is the number of 

model parameters in equation (1). 

2) Generate a candidate set C  with 
CN  points, and then 

randomly generate a starting design point matrix of size 

N k  from points in C . In this research, 21k

CN   for 

2k   or 3k  . The 21 values are  1, 0.9,...,0.9,1ix    . 

3) Replace a point in the starting design with a point in C  

and calculate Dw
 . Do this for all N 

CN  exchanges. 

4) Keep the exchange and the design that has the largest Dw
 

value .This is the new best design . 

5) Iterate steps 3 and 4 until no further improvement is found 

in the Dw
 value . 

6) Repeat steps 1 to 5 for 20 starting design. Keep the best 

designs resulting from these 20 starting designs. 

 

2.2.2 Genetic algorithm 

 

  Basic genetic algorithms (GAs) were developed by 

Holland (1975) and applied to find solutions for complex 

problems in optimization, machine learning, programming, 

and job scheduling. GAs have recently been applied to 

generate optimal response surface designs based on the 

survival of the fittest biological imperative. That is, 

individuals (designs) adapt to their environment and then 

evolve into more desirable forms (Sivanandam & Deepa, 

2008).  

GAs have been extensively used in research. For 

example, Borkowski (2003) developed a GA to generate near-

optimal D, A, G, and IV small exact N-point response surface 

designs in the hypercube. Designs were assessed for 1, 2, and 

3 factors and performances of exact optimal designs were 

compared with classical responses having the same design 

size. Heredia-Langner, Carlyle, Montgomery, Borror, and 

Runger (2003) developed GAs to create D-optimal designs. 

Their results showed that GAs can be maintained at a level of 
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performance comparable to coordinate exchange, k-exchange 

and modified Fedorov exchange algorithms. Thongsook, 

Borkowski, and Budsaba (2014) proposed and developed a 

GA to generate optimal designs for constrained mixture 

regions when quadratic terms are of primary interest. 

Limmun, Borkowski, and Chomtee (2018a) developed a GA 

to create a weighted A-optimality criterion to generate robust 

mixture designs. Limmun, Chomtee, and Borkowski (2018b) 

also developed a GA to generate weighted IV-optimal mixture 

designs and the results showed that their GA-generated 

designs were robust across a set of potential mixture models. 

A primary benefit of using a GA is that it does not limit the 

selection of design points from a finite candidate set, allowing 

points to be selected throughout a continuous region in the 

selection and reproduction processes.  Mahachaichanakul and 

Srisuradetchai (2019) used the GA to construct robust 

response surface designs against missing data. 

A gene can be defined as one row of a chromosome 

(design), and a genetic variable can be any of the k design 

variables in a gene (or row). Let 
ijx be the thj  genetic design 

variable in thi  row of a chromosome. The methodology for 

generating designs that optimize the Dw
-optimality criterion 

with a GA is as follows: 

1) Specify the number of design variables (k = 2 or k =3), 

number of blocks (b = 2, 3, or 4), design size N where 

N   p, p+1, p+2,…, p+9, and the number of 

chromosomes (designs) M  which is an odd number in the 

GA population.  

2) Randomly generate M chromosomes representing the 

population of design matrices for a hypercube design 

region. 

3) Calculate the objective function Dw
 for each chromo-

some . 

4) Select the elite chromosome giving the largest Dw
 value .

The remaining 1M   chromosomes are randomly 

partitioned into ( 1) / 2M   pairs of parent chromosomes. 

5) Apply 7 operators to each of these parental pairs in the 

reproduction process .The reproduction process operates 

on the genes to produce offspring chromosomes. Six of 

the operators are :swap rows, swap cut point pieces, swap 

coordinates, zero gene, extreme gene, and creep 

reproduction. Furthermore, a new operator called swap 

blocks is also used in this step. An operator is applied if a 

probability test is passed (PTIP). A PTIP happens if a 

random u is less than or equal to a value of 
i  where 

 ~ Uniform 0,1u  and the 
i  values are specified by the 

experimenter. 

6)  After the reproduction processes, we calculate Dw
 for 

each of the parent chromosomes and each of the offspring 

chromosomes . There are 1 elite, 1M   parents, and 1M   

offspring chromosomes giving a total of 2 1M   

chromosomes at the end of a reproduction process. 

7) Compare the objective function values for each parent and 

its corresponding offspring .The chromosome in that 

parent/offspring pair that produces the larger Dw
 value 

survives as a future parent, while the other chromosome is 

removed from the population .At the end of each 

generation, M chromosomes plus an elite chromosome 

exist to form the next generation .The chromosome with 

the best objective function values becomes the elite 

chromosome for the next generation. 

8) Steps 6 and 7 are iterated until the GA cannot evolve a 

larger Dw
value. 

9) Take the best Dw
 design generated when the GA termi-

nates. 

A brief description of the reproduction operators 

used in step 5 is shown in Figure 1. Let A and B be the two 

parent designs paired in the reproduction process. For each 

operator, a probability test is performed on each row of A and 

B. For the swap rows gene operator, if a PTIP occurs  for  row 

aA  of A, the operator exchanges 
aA  with a random row 

bB  of 

B.  For  the  swap cut point gene operator, if a PTIP occurs for  

 

 

Figure 1.     Diagram of GA reproduction operators. 
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row 
aA  of A, the operator changes the last two decimal digits 

of the k genetic design variables of 
aA  with the last 2 decimal 

digits of the k genetic design variables for a random row 
bB  

of B. For the swap block gene operator, if a PTIP occurs for 

row l  in block b (in either A or B), the operator exchanges 

row l  in block b with a random row from another block.  The 

remaining operators are applied to genetic variables in rows of 

either A or B. For the swap coordinates gene operator, if a 

PTIP occurs for 
ijx  of A, the operator exchanges 

ijx  of A 

with a random 
klx  of B. For the zero gene operator, if a PTIP 

occurs for an 
ijx , then 

ijx  is changed to 0. For the extreme 

gene operator, if a PTIP occurs for an 
ijx , the 

ijx  is randomly 

set to either ±1. For the creep operator, if a PTIP occurs for an 

ijx , then a random variate ~ 2(0, )N   is added to 
ijx  to 

create a new *

ij ijx x . The variance 2  is set by the 

researcher. If the creep operator takes *

ijx  > 1 or *

ijx < 1 , the 

value of *

ijx  is set to 1 or 1 , respectively. The α values, 

which are Bernoulli parameters, for swap rows, swap cut point 

pieces, swap coordinates, zero gene, extreme gene, swap 

blocks, and creep are 
sr , 

scp ,
sc ,

z ,
e , 

sb , and 
c , 

respectively. The set of i  values are constrained as follows: 

0.002 , , 0.02sr sc sb    , 0.005 0.02scp  , 0.01 0.05z  , 

0.01 0.10e  , and 0.025 0.10c  . 

 

3. Results and Discussion 

 

Comparisons are divided into 2 parts for algorithms 

and for criteria. 

 

3.1 Comparing algorithms 

 

The resulting Dw
-efficiencies for robust designs 

using EA and GA and their properties are shown in Tables 1 

and 2. The 
(EA)Dw

 and 
(GA)Dw

 maximizing the Dw
-opti-

mality criterion are the Dw
 values of the designs generated by 

EA and GA, respectively. Design efficiencies tend to increase 

as design size, N, increases, and as the number of blocks 

increases, Dw
-efficiencies tend to decrease for both designs 

generated by EA and GA for all choices of N.  

Dw
-efficiencies of GA designs are always greater 

than Dw
-efficiencies of EA designs for all choices of k, b, and 

N, although the differences are only in the decimals. For 

example, in Table 1, 7N   when sample sizes in the 1st and 

2nd blocks are 3 and 4, respectively while the corresponding 

Dw
-efficiencies of EA and GA designs are equal to 45.3186 

and 45.3299, respectively.  This happens because a GA uses 

all of the design space while an EA uses only a finite 

candidate set. With a larger candidate set, the Dw
 of an EA 

design would be closer to that of a GA design. Furthermore, 

for 3k   compared to the case of 2k  , difference between 

the Dw
-efficiencies of EA and GA increased. For example, in 

Table 2, designs with 3k  , 4b  , 13N   for sample sizes in 

the 1st, 2nd, 3rd, and 4th blocks are 3, 3, 3, and 4, respectively, 

while Dw
-efficiency of the GA design is equal to 33.1626 and 

greater than that of the EA design, which is 32.9659. These 

results are confirmed in Figure 2 where the boxplots of the 

differences of Dw
-efficiencies between GA and EA designs 

are greater than zero for all cases. Thus, the GA designs are 

more efficient than the EA designs. 

 

3.2 Comparing criteria 

 

A comparison of DN
-efficiency for each best 

design under a first-order model (FOM), interaction model 

(INT), and second-order model (SOM) having 2,k  and 3  

variables and 2, 3,b  and 4 blocks is shown in Tables 3 to 8. 

The “all models” columns correspond to designs generated by 

an EA or GA that maximize the Dw
-efficiency and refers to 

robust designs obtained from weighting all WH reduced 

models (or “all models” in short) and the “full model only” 

columns correspond to designs generated by an EA or GA to 

maximize the DN
-efficiency for only the full second-order 



 

 

                                     Table 1.      Summary of 
wD -efficiencies for EA and GA designs having k = 2 variables and b = 2, 3, and 4 blocks. 

 

   

𝑁 
 

            

𝑘  𝑏 7 8 9 10 11 12 13 14 15 16 

2 2 (3,4) (4,4) (4,5) (5,5) (5,6) (6,6) (6,7) (7,7) (7,8) (8,8) 

( )Dw EA
 45.3186 45.9035 46.2679 47.1559 47.1615 47.2751 47.5404 47.5576 47.7073 47.8090 

( )Dw GA
 45.3299 45.9092 46.2759 47.1619 47.1672 47.2860 47.5532 47.5731 47.7264 47.8163 

𝑘 𝑏 8 9 10 11 12 13 14 15 16 17 

2 3 (2,3,3) (3,3,3) (3,3,4) (3,4,4) (4,4,4) (4,4,5) (4,5,5) (5,5,5) (5,5,6) (5,6,6) 

( )Dw EA
 35.6210 36.9209 37.2597 37.5597 38.1380 38.7030 38.8167 39.0539 38.9044 38.8806 

( )Dw GA
 35.6314 36.9380 37.2632 37.5632 38.1458 38.7045 38.8252 39.0642 38.9153 38.8849 

𝑘 𝑏 9 10 11 12 13 14 15 16 17 18 

2 4 (2,2,2,3) (2,2,3,3) (2,3,3,3) (3,3,3,3) (3,3,3,4) (3,3,4,4) (3,4,4,4) (4,4,4,4) (4,4,4,5) (4,4,5,5) 

( )Dw EA
 28.3263 29.1803 30.0590 30.8923 31.3364 31.3622 31.4973 31.7441 31.9341 32.1744 

( )Dw GA
 28.3322 29.1855 30.0625 30.8942 31.3382 31.4776 31.5582 31.7458 31.9396 32.1782 

           

 

 

                   Table 2.      Summary of 
wD -efficiencies for EA and GA designs having k = 3 variables and   and 4 blocks. 

 

  
𝑁 

            

𝑘 𝑏 11 12 13 14 15 16 17 18 19 20 

3 2 (5,6) (6,6) (6,7) (7,7) (7,8) (8,8) (8,9) (9,9) (9,10) (10,10) 

( )Dw EA  
47.4978 47.8026 47.8895 48.1629 48.4414 48.3310 48.4012 48.5206 48.7078 48.8252 

( )Dw GA  
47.5341 47.8063 47.9011 48.1754 48.4627 48.3637 48.4159 48.7449 48.7496 48.8372 

𝑘 𝑏 12 13 14 15 16 17 18 19 20 21 

3 3 (4,4,4) (4,4,5) (4,5,5) (5,5,5) (5,5,6) (5,6,6) (6,6,6) (6,6,7) (6,7,7) (7,7,7) 

( )Dw EA  
39.5462 40.2678 40.8071 41.1888 41.4746 41.4849 41.6035 41.6806 41.7261 41.8125 

( )Dw GA  
39.5726 40.2773 40.8126 41.2111 41.4806 41.5194 41.6355 41.6917 41.7445 41.8219 

𝑘 𝑏 13 14 15 16 17 18 19 20 21 22 

3 4 (3,3,3,4) (3,3,4,4) (3,4,4,4) (4,4,4,4) (4,4,4,5) (4,4,5,5) (4,5,5,5) (5,5,5,5) (5,5,5,6) (5,5,6,6) 

( )Dw EA  
32.9659 33.8070 34.2087 34.7366 35.1474 35.2465 35.6855 35.9687 35.9227 35.9383 

( )Dw GA  
33.1626 33.8767 34.2710 34.7740 35.1614 35.3555 35.7272 35.9708 35.9282 35.9716 
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                                                    Figure 2.     Boxplots of differences in Dw
 for GA and EA designs. 

 

model with blocks.  

Based on DN
-efficiencies, calculated for FOM and 

INT, designs from the Dw
-optimality criterion are better than 

those  obtained  from  the  DN
-optimality  criterion.   This   is  

because the best Dw
 designs provided higher DN

 values than 

designs from the “full model only” for all choices of k, b, and

N . This confirms that the Dw
-optimality criterion can 

support all possible reduced models better than the DN
-

optimality criterion. For example, in Table 3, for 2k  , 2b   

and 8N   when both block sizes are 4, DN
-efficiencies of the 

“all models” design and the “full model only” design for FOM 

of EA are equal to 59.1628 and 56.7554, respectively. For 

INT, they are 57.3188 and 55.3854, respectively. Similarly, 

DN
-efficiencies of the “all models” design and the “full 

model only” design for FOM of GA are equal to 59.2947 and 

56.8460, respectively, while for INT, they are 57.4589 and 

55.4381, respectively. Thus, the “all models” designs are more 

robust to model-misspecification than the “full model only” 

designs for all choices of N. 

For EAs, DN
-efficiencies of designs generated for 

the “full model only” of SOM are greater than DN
-

efficiencies of designs generated for the “all models” (best 

Dw
 designs) of SOM for all choices of k, b, and N  because 

the goal of the “full model only” designs is to optimize the full 

second-order model with blocks. However, DN
-efficiency 

values for “all models” (best Dw
 designs) are close to optimal 

DN
-efficiency for the “full model only”. Similar patterns are 

true for GAs. In situations where the full second-order model 

is fitted, results show that use of the Dw
-optimality criterion 

provides a design which also has a DN
 close to that of the full 

second-order model.  

Boxplots of the differences in DN
 values between 

“all models” designs and “full  model  only”  designs  for  

FOM, INT, and SOM are shown in Figure 3. For the FOM 

and INT, the boxplots are greater than zero. This indicates that 

the D -N
efficiencies of “all models” designs are, in general, 

better than those of “full model only” designs for FOM and 

INT. 
 

For SOM, the boxplots are less than, but close to, 

zero. That is, the D -N
efficiencies of “all models” designs are 

slightly less than those of “full model only” designs, and the 

range of differences for SOM is smaller than the ranges for 

FOM and INT. This suggests that the D -N
efficiency values 

for SOM of the “all models” designs are close to those of the 

“full model only” designs.  



 

 

            Table 3.     Summary of 
ND -efficiencies of the “all models” and “full model only” designs having k = 2 variables and b = 2 blocks for a first-order model, interaction model, and  

                              second-order model.  
 

 EA GA 

    FOM INT SOM FOM INT SOM 

𝑘 𝑏 𝑁  
All 

models 

Full 

model 

only 

All 

models 

Full 

model 

only 

All 

models 

Full 

model 

only 

All 

models 

Full 

model 

only 

All 

models 

Full 

model 

only 

All 

models 

Full 

model 

only 

                

2 2 7 (3,4) 58.7275 58.2751 56.6176 56.1919 39.9212 39.9337 58.5489 58.4685 56.6156 56.3704 39.9288 39.9494 
  8 (4,4) 59.1628 56.7554 57.3188 55.3854 40.6651 40.7807 59.2947 56.8460 57.4589 55.4381 40.6464 40.8015 

  9 (4,5) 61.1598 55.7252 61.0524 53.3313 40.1475 41.0263 61.2440 55.8305 61.1820 53.4133 40.1220 41.0411 

  10 (5,5) 63.1529 61.2563 63.8663 60.5069 40.8423 41.3772 63.1452 61.1764 63.8934 60.3778 40.8399 41.3868 
  11 (5,6) 63.2283 59.6267 65.0232 58.1888 40.8300 41.9482 63.2332 59.5643 65.0273 58.0788 40.8421 41.9572 

  12 (6,6) 62.0589 60.5134 62.9543 59.5791 41.6696 42.0731 62.0998 60.5704 62.9914 59.6843 41.6748 42.0909 

  13 (6,7) 61.4406 60.9440 61.4601 61.0624 42.4615 42.5602 61.5100 61.0341 61.5196 61.1391 42.4603 42.5770 
  14 (7,7) 62.3148 59.1194 62.3092 58.7189 42.2303 42.7400 62.2758 59.0199 62.2733 58.6414 42.2600 42.7642 

  15 (7,8) 62.8407 59.9977 63.3266 59.6361 42.2093 42.6294 62.8184 60.1480 63.2955 58.7252 42.2427 42.6416 

  16 (8,8) 61.0093 60.8075 61.1568 60.8335 42.6336 42.6574 60.9429 60.8815 61.0474 60.9486 42.6671 42.6779 
                

 

 

              Table 4.     Summary of 
ND -efficiencies of the “all models” and “full model only” designs having k = 2 variables and b = 3 blocks for a first-order model, interaction model, and  

                               second-order model.  
 

 EA GA 

    FOM INT SOM FOM INT SOM 

𝑘 𝑏 𝑁  
All 

models 

Full 

model 
only 

All 

models 

Full 

model 
only 

All 

models 

Full 

model 
only 

All 

models 

Full 

model 
only 

All 

models 

Full 

model 
only 

All 

models 

Full 

model 
only 

                

2 3 8 (2,3,3) 44.1623 42.1153 43.8433 41.9220 33.1459 33.5021 44.2519 42.2463 43.9198 41.9298 33.1352 33.5112 

  9 (3,3,3) 45.7636 43.3963 46.5666 43.2675 34.3039 34.7871 45.7765 43.3539 46.7459 43.1732 34.3233 34.7883 

  10 (3,3,4) 44.2395 44.1811 43.9253 43.6973 35.6013 35.6366 44.2330 44.0927 43.8906 43.5156 35.6171 35.6504 
  11 (3,4,4) 44.6205 44.3695 45.1566 44.7487 35.9030 35.9908 44.5817 44.3552 45.0801 44.7001 35.9294 35.9978 

  12 (4,4,4) 44.8219 44.5060 46.6128 46.1726 36.5458 36.5723 44.8910 44.6013 46.6635 46.3034 36.5432 36.5882 

  13 (4,4,5) 45.6773 45.5774 48.0436 47.9312 37.1931 37.2087 45.6555 45.5470 48.0171 47.8977 37.2054 37.2295 
  14 (4,5,5) 46.4584 46.3793 48.8013 48.6610 37.0995 37.1065 46.4405 46.3940 48.7671 48.6879 37.1184 37.1274 

  15 (5,5,5) 47.1664 47.0453 49.7850 49.5215 37.1277 37.1489 47.1147 47.0905 49.6720 49.6193 37.1648 37.1690 

  16 (5,5,6) 47.2648 45.8050 50.0711 47.9918 36.9059 37.1144 47.2380 45.7985 50.0415 47.9785 36.9292 37.1390 
  17 (5,6,6) 47.2954 44.8725 50.5597 45.9577 36.8375 37.1238 47.3197 44.8705 50.5835 45.9484 36.8354 37.1409 
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  Table 5.     Summary of 
ND -efficiencies of the “all models” and “full model only” designs having k = 2 ariables and b = 4  blocks for a first-order model, interaction model, and  

                           second-order model.  
 

 EA GA 

    FOM INT SOM FOM INT SOM 

𝑘 𝑏 𝑁  
All 

models 

Full 

model 

only 

All 
models 

Full 

model 

only 

All 
models 

Full 

model 

only 

All 
models 

Full 

model 

only 

All 
models 

Full 

model 

only 

All 
models 

Full 

model 

only 
                

2 4 9 (2,2,2,3) 32.2993 31.9228 32.7652 32.4634 27.6857 27.7442 32.4172 31.8614 32.8563 32.4762 27.6634 27.7506 
  10 (2,2,3,3) 33.7574 32.0701 34.1264 31.6522 28.5535 28.8527 33.6174 32.0741 34.0644 31.7263 28.5941 28.8664 

  11 (2,3,3,3) 34.3593 32.6362 35.8542 33.1442 29.6293 29.6839 34.3904 32.6506 35.9025 33.1951 29.6227 29.6891 

  12 (3,3,3,3) 35.5543 33.2052 36.6957 35.1373 30.4610 30.6839 35.5461 33.3092 36.7112 35.1513 30.4629 30.6883 
  13 (3,3,3,4) 35.5181 35.4428 38.0984 38.0226 31.1666 31.1680 35.5121 35.4798 38.0798 38.0273 31.1734 31.1815 

  14 (3,3,4,4) 35.1509 35.0827 37.3672 37.2561 31.4241 31.4325 34.8690 34.8218 36.8275 36.7839 31.6513 31.6607 

  15 (3,4,4,4) 35.1278 34.9845 37.1339 36.8742 31.6662 31.7255 34.9730 34.9443 37.2766 36.8545 31.6542 31.7296 
  16 (4,4,4,4) 35.2993 35.1939 37.8703 37.4186 31.7452 31.8402 35.3049 35.1982 37.8858 37.4237 31.7456 31.8491 

  17 (4,4,4,5) 35.5308 35.4935 38.5721 38.5201 31.9370 31.9506 35.5574 35.5353 38.6006 38.0430 31.9412 32.0220 

  18 (4,4,5,5) 36.0036 35.8990 39.3347 39.2181 32.1524 32.1789 35.9647 35.9334 39.2875 39.2526 32.1805 32.1884 
                

 
 

         Table 6.     Summary of 
ND -efficiencies of the “all models” and “full model only” designs having k = 3  variables and b = 2  blocks for a first-order model, interaction model,  

                           and second-order model.  
 

 EA GA 

    FOM INT SOM FOM INT SOM 

𝑘 𝑏 𝑁  
All 

models 

Full 

model 

only 

All 
models 

Full 

model 

only 

All 
models 

Full 

model 

only 

All 
models 

Full 

model 

only 

All 
models 

Full 

model 

only 

All 
models 

Full 

model 

only 

                

3 2 11 (5,6) 65.6560 65.4735 66.9441 66.3697 41.6184 41.6663 66.2231 65.3883 68.1986 66.0825 41.0993 41.6721 

  12 (6,6) 65.3052 65.3052 66.5030 66.5030 42.1235 42.1235 65.3064 65.2554 66.5043 66.4792 42.1279 42.1348 

  13 (6,7) 64.1127 64.0260 62.9689 62.8619 43.0104 43.0223 64.0728 63.7236 62.8969 62.7178 43.0462 43.1165 
  14 (7,7) 64.9174 64.8318 63.9515 63.7522 43.1592 43.1686 64.9070 60.9477 63.9327 59.4993 43.1841 43.4424 

  15 (7,8) 65.5188 65.3767 65.0632 64.9091 43.3036 43.3093 65.4707 65.3680 65.0055 64.8934 43.3293 43.3407 

  16 (8,8) 65.7976 64.9951 65.7313 63.9174 43.0484 43.1733 65.8623 65.0351 65.8291 63.9875 43.0748 43.1924 
  17 (8,9) 66.7618 64.6088 66.5468 63.0253 42.9037 43.2504 66.6493 64.6757 67.2171 63.1342 42.9584 43.2857 

  18 (9,9) 67.5481 64.4086 67.9130 62.3645 42.9017 43.4297 67.6246 64.4191 68.4274 62.4006 43.1979 43.4564 

  19 (9,10) 68.0320 65.2857 69.3543 63.8900 42.9720 43.6777 67.8893 65.3451 69.2534 63.9834 43.0922 43.6995 
  20 (10,10) 67.0066 66.1520 67.0238 65.0845 43.6216 43.7963 67.0017 65.8811 67.0099 64.9516 43.6394 43.8042 
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Table 7.     Summary of 
ND -efficiencies of the “all models” and “full model only” designs having k = 3 variables and b = 3  blocks for a first-order model, interaction model, and  

                  second-order model.  
 

 EA GA 

    FOM INT SOM FOM INT SOM 

𝑘 𝑏 𝑁  
All 

models 

Full 

model 

only 

All 

models 

Full 

model 

only 

All 

models 

Full 

model 

only 

All 

models 

Full 

model 

only 

All 

models 

Full 

model 

only 

All 

models 

Full 

model 

only 
                

3 3 12 (4,4,4) 50.4961 49.6227 54.0767 53.0097 36.2050 36.5300 50.5354 49.5135 54.0454 53.0482 36.2527 36.5520 
  13 (4,4,5) 49.0352 48.9430 51.6922 51.6590 38.2677 38.2888 49.0672 48.8100 51.7618 51.3131 38.2682 38.3253 

  14 (4,5,5) 50.1578 50.1578 53.4958 53.4958 38.6039 38.6039 50.2145 49.9632 53.5262 53.1264 38.5891 38.6363 

  15 (5,5,5) 51.2576 50.1544 54.4945 52.8524 38.8155 39.0469 51.3358 50.1700 54.7352 52.9346 38.8307 39.0924 
  16 (5,5,6) 51.2571 51.1749 55.2485 55.1203 39.1810 39.2018 51.1989 51.1635 55.1525 55.0977 39.2053 39.2118 

  17 (5,6,6) 51.3682 50.3556 55.8527 53.3218 39.1514 39.2786 51.4423 50.4333 56.0163 53.4644 39.1849 39.3093 
  18 (6,6,6) 51.7243 51.1298 56.8056 55.5703 39.2259 39.2485 51.8104 51.7664 56.9718 56.9095 39.2550 39.2622 

  19 (6,6,7) 52.0195 50.5110 57.7519 54.2435 39.2442 39.5382 52.0294 50.5234 57.7736 54.2452 39.2531 39.5514 

  20 (6,7,7) 52.8406 49.9526 58.3980 53.3348 39.1203 39.5954 52.8326 50.5143 58.3907 53.7663 39.1552 39.6011 
  21 (7,7,7) 53.4591 49.9804 59.0642 52.1625 39.0981 39.7354 53.4576 50.0112 59.0568 52.1936 39.1160 39.7463 
                

 

 

              Table 8.    Summary of 
ND -efficiencies of the “all models” and “full model only” designs having k = 3  variables and b = 4  blocks for a first-order model, interaction model, and  

                               second-order model.  
 
 

 EA GA 

    FOM INT SOM FOM INT SOM 

𝑘 𝑏 𝑁  
All 

models 

Full 

model 
only 

All 

models 

Full 

model 
only 

All 

models 

Full 

model only 

All 

models 

Full 

model 
only 

All 

models 

Full 

model 
only 

All 

models 

Full 

model 
only 

                

3 4 13 (3,3,3,4) 38.8204 37.6505 41.5291 41.3500 32.1731 32.5088 39.5544 37.6500 42.7989 41.3162 32.2210 32.5239 
  14 (3,3,4,4) 40.3330 37.9658 43.8197 42.3023 32.9742 33.0313 40.1186 38.1870 43.6834 42.6792 33.1077 33.1405 

  15 (3,4,4,4) 40.0763 38.7343 45.1438 43.0287 33.2981 33.7047 40.1973 38.7956 44.4618 43.1025 33.6177 33.7277 

  16 (4,4,4,4) 40.2027 39.3495 46.5870 43.5209 33.7907 34.4044 40.2531 39.3799 46.6239 43.5423 33.8397 34.4316 
  17 (4,4,4,5) 40.9673 38.3802 47.8787 43.1813 34.1343 34.6087 40.9785 39.4357 47.8910 43.0890 34.1510 34.7060 

  18 (4,4,5,5) 40.8019 39.5144 46.5129 44.2007 34.7388 35.0960 41.2621 39.6185 47.8480 44.4039 34.7029 35.1483 

  19 (4,5,5,5) 41.4162 40.4536 47.7441 45.6817 35.2346 35.3951 41.4666 40.5061 47.9739 45.9082 35.2816 35.4552 
  20 (5,5,5,5) 40.8877 40.8478 47.5606 47.4701 35.5162 35.5175 40.8879 40.8516 47.5527 47.4480 35.5160 35.5301 

  21 (5,5,5,6) 41.1485 41.1401 47.0077 46.9355 35.8498 35.8528 41.1447 41.1330 46.9919 46.9371 35.8597 35.8638 
  22 (5,5,6,6) 41.1525 40.7412 48.2304 47.0885 35.3963 35.8294 41.1544 40.7389 48.3499 47.1024 35.4426 35.8340 
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Figure 3. Boxplots for comparing differences in DN
-efficiencies for 

“all model” and “full model only” designs. 

 

4. Conclusions 
 

Our results show that GA designs are equally or 

more efficient and robust than EA designs for the Dw
-

optimality criterion with respect to all tested combinations of 

k  variables and  b  blocks. The approximately optimal 

designs for the second-order model with blocks may be 

inefficient. We cannot pass over the uncertainty of possible 

reduced models prior to data collection; therefore, the 

researcher should consider using criteria that can create robust 

designs across the set of potential models. Our proposed Dw
-

optimality criterion can be a good alternative. It is not 

necessary to use the DN
-optimality criterion assuming a 

second-order model, because even if a second-order model is 

the correct model, its DN
-efficiency will be very close to the 

corresponding DN
-efficiency of the robust design generated 

using the Dw
 criterion. 

 
References 
 

Atkinson, A. C., Donev, A. N., & Tobias, R. D. (2007). 

Optimum experimental designs with SAS. Oxford, 

England: Clarendon. 

Borkowski, J. J. (2003). Using a genetic algorithm to generate 

small exact response surface designs. Journal of 

Probability and Statistical Science, 1(1), 69-92. 

Borkowski, J. J., & Valeroso, E. S. (2001). Comparison of 

design optimality criteria of response surface 

designs in the hypercube. Technometrics, 43(4), 

468-477. 

Chairojwattana, A., Chaimongkol, S., & Borkowski, J. J. 

(2017). Using genetic algorithms to generate Dw and 

Gw-optimal response surface designs in the hyper-

cube. Thailand Statistician, July 2017, 15(2), 157-

166. 

Chipman, H. A. (1996). Bayesian variable selection with re-

lated predictors. The Canadian Journal of Statistics, 

24(1), 17-36. 

Chomtee, B., & Borkowski, J. J. (2005). Weighted design 

optimality criteria for spherical response surface 

designs. KMITL Science Journal Issue, Proceedings 

of the 2nd International Symposium on Mathema-

tical, Statistical and Computer Sciences, 5, 226-238.  

Cook, R. D., & Nachtsheim, C. J. (1980). A comparison of 

algorithms for constructing exact d-optimal designs. 

Technometrics, 22(3), 315-324. 

Doehlert, D. H. (1970). Uniform shell designs. Journal of the 

Royal Statistical Society, Series C, 19(3), 231-239. 

Doehlert, D. H., & Klee, V. L. (1972). Experimental designs 

through level reduction of the d-dimensional 

cuboctahedron. Discrete Mathematics, 2(4), 309-

334.  

Fedorov, V. V. (1972). Theory of optimal experiments. New 

York, NY: Academic Press 

Heredia-Langner, A., Carlyle, W. M., Montgomery, D. C., 

Borror, C. M., & Runger, G. C. (2003). Genetic 

algorithms for the construction of D-optimal 

designs. Journal of Quality Technology, 35(1), 28-

46. 

Holland, J. H. (1975). Adaptation in natural and artificial 

system: An introductory analysis with applications 

to biology control, and artificial intelligence. 

Oxford, England: University of Michigan Press. 

Limmun, W., Borkowski, J. J., & Chomtee, B. (2018a).  

Weighted A-optimality criterion for generating 

robust mixture designs. Computers and Industrial 

Engineering, 125, 348-356. doi:10.1016/j.cie.2018 

.09.002 

Limmun, W., Chomtee, B., & Borkowski, J.J. (2018b). The 

construction of a model-robust IV-optimal mixture 

designs using a genetic algorithm. Mathematical 

and Computational Application, 23(2), 25. doi:10 

.3390/mca23020025 

Mahachaichanakul, S., & Srisuradetchai, P. (2019). Applying 

the median and genetic algorithm to construct D- 

and G-optimality robust designs against missing 

data. Applied Science and Engineering Process, 

12(1), 3-13. 

Mitchell, T. J. (1974a). An algorithm for construction of “D-

optimal” experimental designs. Technometrics, 

16(2), 203-210. 

Mitchell, T. J. (1974b). Computer construction of “D-Opti-

mal” for first-order designs. Technometrics, 16(2), 

211-220. 

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. 

(2016). Response surface methodology: Process and 

product optimization using designed experiments 

(4th ed.). Hoboken, NJ: John Wiley and Sons. 

Roquemore K. G. (1976). Hybrid designs for quadratic res-

ponse surfaces. Technometrics, 18(4), 419-423 

Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to 

genetic algorithms. Berlin, Germany: Springer. 

Thongsook, S., Borkowski, J. J., & Budsaba, K. (2014). Using 

a genetic algorithm to generate Ds-optimal designs 

with bounded D-efficiencies for mixture experi-

ments. Thailand Statistician, 12(2), 191-205. 



P. Yeesa et al. / Songklanakarin J. Sci. Technol. 42 (6), 1259-1271, 2020   1271 

 

Wald, A. (1943). On the efficient design of statistical investi-

gations. The Annals of Mathematical Statistics, 

14(2), 134-140. 

Wynn, H. P. (1972). Results in the theory and construction of 

D-optimum experimental designs. Journal of Royal 

Statistical Society, Series B, 34(2), 133-147. 

 

 

 


