

Songklanakarin J. Sci. Technol. 42 (6), 1259-1273, Nov. - Dec. 2020

Original Article

A weighted D-optimality criterion for constructing model-robust designs in the presence of block effects

Peang-or Yeesa¹, Patchanok Srisuradetchai^{1*}, and John J. Borkowski²

¹ Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121 Thailand

² Department of Mathematical Sciences, Montana State University, Bozeman, Montana, 59717-2400 United States of America

Received: 30 March 2019; Revised: 22 July 2019; Accepted: 2 September 2019

Abstract

It is generally known that blocking can reduce unexplained variation, and in response surface designs block sizes can be pre-specified. This paper proposes a novel way of weighting D-optimality criteria obtained from all possible models to construct robust designs with blocking factors and addresses the challenge of uncertainty as to whether a first-order model, an interaction model, or a second-order model is the most appropriate choice. Weighted D-optimal designs having 2 and 3 variables with 2, 3, and 4 blocks are compared with corresponding standard D-optimal designs in terms of the D_N -efficiencies. Effects of

blocking schemes are also investigated. Both an exchange algorithm (EA) and a genetic algorithm (GA) are employed to generate the model-robust designs. The results show that the proposed D_w -optimality criterion can be a good alternative for researchers as it can create robust designs across the set of potential models.

Keywords: experimental design, D-optimality, weak heredity, genetic algorithm

1. Introduction

Many real-life situations exist whereby experimental designs can help solve a research question. Experimentation is a scientific approach to learn how a system or process works, and experimental design is an essential tool for improving the performance of an industrial manufacturing process. Response surface designs are considered a class of experimental designs that are useful for developing, improving and optimizing a process (Myers, Montgomery, & Anderson-Cook, 2016). Response surface methodology (RSM) involves both statistical and mathematical techniques and is useful for three purposes: (i) fitting a response surface model over a specific region of interest, (ii) finding the optimal response, and (iii) selection of operating conditions to achieve some specifi-

*Corresponding author

cations or customer requirements. RSM is primarily concerned with approximating a complicated unknown function with a low-order polynomial, usually either a firstorder model, an interaction model, or a second-order model.

If data for every combination of factor levels cannot be collected under identical experimental conditions, then blocks should be formed. A second-order response surface model with k design variables and b blocks can be expressed as;

$$y(x_1, x_2, ..., x_k, l) = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i=1}^{k-1} \sum_{j=i+1}^k \beta_{ij} x_i x_j + \sum_{m=1}^{b-1} \delta_j I(m) + \varepsilon,$$
(1)

where $y(x_1, x_2, ..., x_k, l)$ is an observed response, given $x_1, x_2, ..., x_k$ are the *k* design variables, and *l* is the block identifier with I(m) being a block indicator function. The β 's and the δ 's correspond to the second-order model and block

Email address: spatchan@tu.ac.th

1260

effect parameter coefficients to be estimated, and ε is a and variance σ^2 . This second-order model is commonly used for describing a process of interest. Generally, a proposed model has many choices of design; therefore, selecting a "good" design is very important. To generate a design, many criteria and desired characteristics such as the number of design points, the number of blocks, and block sizes are required to be predetermined. One approach to select a design involves using optimality criteria, which strongly depend on the proposed 'prior' approximating the response surface model, e.g. equation (1). If a different model space is assumed, then the efficiency of the design changes. After the data are collected and parameters corresponding to terms of the proposed model are fitted, insignificant terms are removed so that the reduced 'posterior' model retains only 'significant' terms (Borkowski & Valeroso, 2001).

The design optimality criteria focused on in this research are based on D-optimality proposed by Wald (1943). The goal of D-optimality is to find a design that minimizes the value of $|(X'X)^{-1}|$ or the generalized variance $|var(\hat{\theta})|$ where $\hat{\theta}$ is the vector of parameter estimates and X is the model matrix in the linear model. For the model in equation (1), $\hat{\theta}$ is the vector containing all $\hat{\beta}$ estimates for the second-order model and $\hat{\delta}$ estimates for the block effects. Thus, also the block effects will be estimated. Because |X'X| equals $1/|(X'X)^{-1}|$, minimizing $|(X'X)^{-1}|$ is equivalent to maximizing |X'X|. The simplest and most common efficiency measure for D-optimality is the following:

$$\mathbf{D}_{N} \text{-efficiency} = \left(\frac{\left|(\mathbf{X}'\mathbf{X})\right|}{N^{p}}\right)^{\frac{1}{p}} \times 100 = \frac{\left|(\mathbf{X}'\mathbf{X})\right|^{\frac{1}{p}}}{N} \times 100, \tag{2}$$

where p is the number of the model parameters. The D_N -efficiency in (2) is the typical measure calculated by various software packages (e.g., by PROC OPTEX in the SAS software package). D_N -efficiency can be interpreted as the relative efficiency of a design compared to an optimal hypothetical orthogonal design in the hypercube (Mitchell, 1974b). Note that D_N -efficiencies can be used to compare

designs of different sizes. For additional details and examples of design optimality criteria see Atkinson, Donev, and Tobias (2007).

Many different strategies have been developed to examine a set of potential reduced models. Chipman (1996) presented two classes of reduced models based on weak heredity (WH) and strong heredity (SH) principles. A model can be summarized by vector Δ containing '1' and '0' where '1' indicates that a term is included in the model and '0' that it is not in the model. The notations Δ_i , Δ_{ii} , and Δ_{ii} represent the indicator function values of the i^{th} first-order effect, the ii^{th} second-order effect, and the ij^{th} interaction effect, respectively. Weak heredity (WH) requires that if the β_{XX} . term is in the model, then either the $\beta_i x_i$ or $\beta_i x_i$ term is (or both of them are) contained in the model, and if the $\beta_{ii} x_i^2$ term is in the model, then the $\beta_i x_i$ term must also be in the model. For k=2, the second-order model (without blocks) has 6 parameters, and there are 17 WH reduced models corresponding to vectors $\Delta = (\Delta_0, \Delta_1, \Delta_2, \Delta_{11}, \Delta_{22}, \Delta_{12})$. For k = 3, there are 185 reduced models where the second-order model has 10 parameters (without blocks).

Because of experimental uncertainty with the reduced response surface model prior to data collection, the researcher should consider robust experimental designs with respect to a design optimality criterion over a set of potential posterior models. Thus, the purpose of this paper is to find a response surface design that has a good optimality criterion evaluated across the set of reduced models.

Many publications have used a weighted criterion based on the arithmetic mean, for example, Chomtee and Borkowski (2005) developed D, A, G, and IV optimality criteria using prior probability assignments to model effects. Three design variables (k = 3) were considered in a spherical design region and over sets of reduced models based on weak and strong heredity. The spherical response surface designs compared were central composite designs (CCDs), Box-Behnken designs (BBDs), small composite designs (SCDs), uniform shell designs (Doehlert, 1970; Doehlert & Klee, 1972), and hybrid designs (Roquemore, 1976). Chairojwattana, Chaimongkol, and Borkowski (2017) studied the weighted D- and G-optimality criteria (D_w and G_w) for second-order response surface designs using prior probability assignments to model effects and developed a genetic algorithm (GA) to generate designs that optimize D_w and G_w .

In our paper, D-optimality is used to define a weighted criterion to generate designs that are robust to a set of potential models. That is, the weighted D-optimality criterion (D_w) is used to evaluate designs. The goal of weighted D-optimality criterion (D_w) is to maximize the weighted average of D_N -efficiencies in the design region over a set of reduced models. The weights must be supplied by experimenters. One approach is to assign weights based on the number of parameters in each model.

Again, if experimental runs cannot be collected under identical experimental conditions, blocks should be formed. When observations can be recorded in blocks of homogeneous units, the blocking scheme depends on the nature of the experiment. Blocks introduce extra parameters into the model, considered nuisance parameters, while appropriate blocking of experimental designs can produce desirable experimental run features. The blocks may not necessarily have the same number of experimental runs; therefore, the novelty of this research involves introducing a weighted optimality across a set of reduced models in experiments that require blocking. Moreover, both an exchange algorithm and a genetic algorithm are implemented to generate optimal designs.

2. Materials and Methods

2.1 Weighted D-optimality criterion (D_w)

Let
$$w_i = \frac{p(i)}{N_p \times m(p(i))}$$
 as the weight for model *i*, where

m(p) is the number of models having p parameters, p(i) is the difference between the number of parameters in model i and the number of blocks, and $N_p = \sum_{p=1}^{\binom{k+2}{2}} p$. Here, the model

with more parameters has more weight and $\sum_{i=1}^{M} w_i = 1$ for a set

of model weights $\{w_1, w_2, ..., w_M\}$ where *M* is the number of reduced models for a given full model. Based on the authors' experience and knowledge, they believe that each of the terms in the full model has a reasonably high probability of being significant. For this reason, the full model must have the highest probability or the largest weight. It is clearly seen that one term not being in the model will lead to a model with a slightly lower weight than the full model. And, as more terms are absent from the model, the weight will constantly decrease. This is the justification for why we require several distinct levels of weighting. The second-order model given in equation (1) stands for the full model in this study. These weights are used to calculate the weighted D-optimality criterion (D_w). For k=2, the second-order model (without blocks) has 6 parameters and $N_p = \sum_{p=1}^{6} p = 21$. For k=3,

 $N_p = \sum_{p=1}^{10} p = 55$ where the second-order model (without blocks) has 10 parameters.

Let Ξ be the set of all possible exact designs on design space χ , then the newly-proposed D_w -optimality criterion seeks a design ξ^* satisfying

$$\xi^* = \arg \max_{\xi \in \Xi} \left(\prod_{i=1}^{M} \left| \mathbf{M}_i(\xi) \right|^{w_i} \right), \tag{3}$$

where $\mathbf{M}_{i}(\xi) = \mathbf{X}'_{(i)} \mathbf{X}_{(i)} / N$ is a moment matrix, for $\mathbf{X}_{(i)}$

which is the model matrix with columns corresponding to the terms in model i, and N is the design size. Therefore, the D_w -efficiency as a weighted optimality criterion can be defined as

$$\mathbf{D}_{w} = \prod_{i=1}^{M} \mathbf{D}_{i}^{w_{i}} \quad , \tag{4}$$

where $\mathbf{D}_i = \frac{100 \left| \mathbf{X}'_{(i)} \mathbf{X}_{(i)} \right|^{1/p}}{N}$ is the \mathbf{D}_N -efficiency of the *i*th

reduced model. Thus, the use of geometric mean is considered for defining the D_w -optimality criterion. The design must be robust to model reduction and should be able to fit all parameters for all reduced models. Note that in the geometric mean if any $D_i \approx 0$, then $D_w \approx 0$. Also, if $D_i = 0$, then $D_w = 0$ implying that not all reduced model parameters can be fitted by that design. In particular, if $D_w = 0$, then the full model cannot be fitted. Thus, D_w addresses the robustness problem better than a weighted optimality criterion based on the arithmetic mean $D_A = \sum_{i=1}^M w_i D_i$. With D_A , there is no

guarantee that all reduced models can be fitted, which is contrary to the goal of finding a model-robust design. Note that D_w , as defined in (4), can be used for any assignment of w_i weights that sum to 1. This gives the experimenter the flexibility to use a weighting scheme different than the one used in this research.

2.2 Exchange and genetic algorithms

This research includes an exchange algorithm (EA) and a genetic algorithm (GA) to generate designs that optimize the D_w -optimality criterion.

2.2.1 Exchange algorithm

Originally, exchange algorithms (EAs) were created by starting with a randomly chosen *n*-run design and then exchanging design points with points in a candidate set of points such that the initial set of *n* runs was improved by (i) adding an (n + 1)st run, chosen to achieve the maximum possible increase in |X'X|, and then (ii) subtracting (removing) the run in the resulting design to obtain the minimum possible decrease in |X'X|. Variations of EAs were developed by Fedorov (1972), Wynn (1972), Mitchell (1974a), and Cook and Nachtsheim (1980). For example, the original design was improved by subtracting a point first and then adding a point (Mitchell, 1974).

The methodology for generating designs that optimize the D_w -criterion using an EA is as follows:

- Specify the number of design variables (k = 2 or k =3) and number of blocks (b = 2, 3, or 4) for N design points where N = p, p+1, p+2,..., p+9 and p is the number of model parameters in equation (1).
- 2) Generate a candidate set C with N_c points, and then randomly generate a starting design point matrix of size N×k from points in C. In this research, N_c = 21^k for k = 2 or k = 3. The 21 values are x_i ∈ {-1, -0.9,...,0.9,1}.
- Replace a point in the starting design with a point in C and calculate D_w. Do this for all N × N_C exchanges.
- Keep the exchange and the design that has the largest D_w value .This is the *new best design*.
- Iterate steps 3 and 4 until no further improvement is found in the D_w value.
- Repeat steps 1 to 5 for 20 starting design. Keep the best designs resulting from these 20 starting designs.

2.2.2 Genetic algorithm

Basic genetic algorithms (GAs) were developed by Holland (1975) and applied to find solutions for complex problems in optimization, machine learning, programming, and job scheduling. GAs have recently been applied to generate optimal response surface designs based on the survival of the fittest biological imperative. That is, individuals (designs) adapt to their environment and then evolve into more desirable forms (Sivanandam & Deepa, 2008).

GAs have been extensively used in research. For example, Borkowski (2003) developed a GA to generate nearoptimal D, A, G, and IV small exact *N*-point response surface designs in the hypercube. Designs were assessed for 1, 2, and 3 factors and performances of exact optimal designs were compared with classical responses having the same design size. Heredia-Langner, Carlyle, Montgomery, Borror, and Runger (2003) developed GAs to create D-optimal designs. Their results showed that GAs can be maintained at a level of

performance comparable to coordinate exchange, k-exchange and modified Fedorov exchange algorithms. Thongsook, Borkowski, and Budsaba (2014) proposed and developed a GA to generate optimal designs for constrained mixture regions when quadratic terms are of primary interest. Limmun, Borkowski, and Chomtee (2018a) developed a GA to create a weighted A-optimality criterion to generate robust mixture designs. Limmun, Chomtee, and Borkowski (2018b) also developed a GA to generate weighted IV-optimal mixture designs and the results showed that their GA-generated designs were robust across a set of potential mixture models. A primary benefit of using a GA is that it does not limit the selection of design points from a finite candidate set, allowing points to be selected throughout a continuous region in the selection and reproduction processes. Mahachaichanakul and Srisuradetchai (2019) used the GA to construct robust response surface designs against missing data.

A gene can be defined as one row of a chromosome (design), and a genetic variable can be any of the *k* design variables in a gene (or row). Let x_{ij} be the j^{th} genetic design variable in i^{th} row of a chromosome. The methodology for generating designs that optimize the D_w -optimality criterion with a GA is as follows:

- Specify the number of design variables (k = 2 or k =3), number of blocks (b = 2, 3, or 4), design size N where N = p, p+1, p+2,..., p+9, and the number of chromosomes (designs) M which is an odd number in the GA population.
- 2) Randomly generate M chromosomes representing the population of design matrices for a hypercube design region.
- Calculate the objective function D_w for each chromosome.
- 4) Select the elite chromosome giving the largest D_w value. The remaining M-1 chromosomes are randomly partitioned into (M-1)/2 pairs of parent chromosomes.
- 5) Apply 7 operators to each of these parental pairs in the reproduction process .The reproduction process operates on the genes to produce offspring chromosomes. Six of

the operators are :swap rows, swap cut point pieces, swap coordinates, zero gene, extreme gene, and creep reproduction. Furthermore, a new operator called swap blocks is also used in this step. An operator is applied if a probability test is passed (PTIP). A PTIP happens if a random u is less than or equal to a value of α_i where $u \sim \text{Uniform } [0,1]$ and the α_i values are specified by the experimenter.

- 6) After the reproduction processes, we calculate D_w for each of the parent chromosomes and each of the offspring chromosomes. There are 1 elite, M-1 parents, and M-1 offspring chromosomes giving a total of 2M-1 chromosomes at the end of a reproduction process.
- 7) Compare the objective function values for each parent and its corresponding offspring .The chromosome in that parent/offspring pair that produces the larger D_w value survives as a future parent, while the other chromosome is removed from the population .At the end of each generation, *M* chromosomes plus an elite chromosome with the best objective function values becomes the elite chromosome for the next generation.
- Steps 6 and 7 are iterated until the GA cannot evolve a larger D_w value.
- 9) Take the best D_w design generated when the GA terminates.

A brief description of the reproduction operators used in step 5 is shown in Figure 1. Let A and B be the two parent designs paired in the reproduction process. For each operator, a probability test is performed on each row of A and B. For the swap rows gene operator, if a PTIP occurs for row A_a of A, the operator exchanges A_a with a random row B_b of B. For the swap cut point gene operator, if a PTIP occurs for

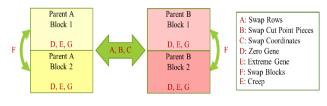


Figure 1. Diagram of GA reproduction operators.

1264

row A_{a} of A, the operator changes the last two decimal digits of the k genetic design variables of A_a with the last 2 decimal digits of the k genetic design variables for a random row B_{h} of B. For the swap block gene operator, if a PTIP occurs for row l in block b (in either A or B), the operator exchanges row *l* in block *b* with a random row from another block. The remaining operators are applied to genetic variables in rows of either A or B. For the swap coordinates gene operator, if a PTIP occurs for χ_{ij} of A, the operator exchanges χ_{ij} of A with a random x_{kl} of B. For the zero gene operator, if a PTIP occurs for an x_{ii} , then x_{ii} is changed to 0. For the extreme gene operator, if a PTIP occurs for an χ_{ii} , the χ_{ii} is randomly set to either ±1. For the creep operator, if a PTIP occurs for an x_{ii} , then a random variate $\in N(0, \sigma^2)$ is added to x_{ii} to create a new $x_{ij}^* = x_{ij} + \in$. The variance σ^2 is set by the researcher. If the creep operator takes $x_{ii}^* > 1$ or $x_{ii}^* < -1$, the value of χ^*_{ii} is set to 1 or -1, respectively. The α values, which are Bernoulli parameters, for swap rows, swap cut point pieces, swap coordinates, zero gene, extreme gene, swap blocks, and creep are α_{sr} , α_{scp} , α_{sc} , α_{z} , α_{e} , α_{sb} , and α_{c} , respectively. The set of α_i values are constrained as follows: $0.002 \le \alpha_{sr}, \alpha_{sc}, \alpha_{sb} \le 0.02, \quad 0.005 \le \alpha_{srr} \le 0.02, \quad 0.01 \le \alpha_z \le 0.05,$ $0.01 \le \alpha_e \le 0.10$, and $0.025 \le \alpha_e \le 0.10$.

3. Results and Discussion

Comparisons are divided into 2 parts for algorithms and for criteria.

3.1 Comparing algorithms

The resulting D_w -efficiencies for robust designs using EA and GA and their properties are shown in Tables 1 and 2. The $D_{w(EA)}$ and $D_{w(GA)}$ maximizing the D_w -optimality criterion are the D_w values of the designs generated by EA and GA, respectively. Design efficiencies tend to increase as design size, N, increases, and as the number of blocks increases, D_w -efficiencies tend to decrease for both designs generated by EA and GA for all choices of N.

D_w-efficiencies of GA designs are always greater than D_w -efficiencies of EA designs for all choices of k, b, and N, although the differences are only in the decimals. For example, in Table 1, N = 7 when sample sizes in the 1st and 2nd blocks are 3 and 4, respectively while the corresponding D, -efficiencies of EA and GA designs are equal to 45.3186 and 45.3299, respectively. This happens because a GA uses all of the design space while an EA uses only a finite candidate set. With a larger candidate set, the D_w of an EA design would be closer to that of a GA design. Furthermore, for k=3 compared to the case of k=2, difference between the D_w -efficiencies of EA and GA increased. For example, in Table 2, designs with k=3, b=4, N=13 for sample sizes in the 1st, 2nd, 3rd, and 4th blocks are 3, 3, 3, and 4, respectively, while D_w-efficiency of the GA design is equal to 33.1626 and greater than that of the EA design, which is 32.9659. These results are confirmed in Figure 2 where the boxplots of the differences of D_w-efficiencies between GA and EA designs are greater than zero for all cases. Thus, the GA designs are more efficient than the EA designs.

3.2 Comparing criteria

A comparison of D_N -efficiency for each best design under a first-order model (FOM), interaction model (INT), and second-order model (SOM) having k = 2, and 3 variables and b=2,3, and 4 blocks is shown in Tables 3 to 8. The "all models" columns correspond to designs generated by an EA or GA that maximize the D_w -efficiency and refers to robust designs obtained from weighting all WH reduced models (or "all models" in short) and the "full model only" columns correspond to designs generated by an EA or GA to maximize the D_N -efficiency for only the full second-order

	-	- w												
	Ν													
k b 2 2	7 (3,4)	8 (4,4)	9 (4,5)	10 (5,5)	11 (5,6)	12 (6,6)	13 (6,7)	14 (7,7)	15 (7,8)	16 (8,8)				
$D_{w(EA)}$	45.3186	45.9035	46.2679	47.1559	47.1615	47.2751	47.5404	47.5576	47.7073	47.8090				
$D_{w(GA)}$	45.3299	45.9092	46.2759	47.1619	47.1672	47.2860	47.5532	47.5731	47.7264	47.8163				
$\begin{array}{c} k & b \\ 2 & 3 \\ D_{w(EA)} \end{array}$	8 (2,3,3) 35.6210	9 (3,3,3) 36.9209	10 (3,3,4) 37.2597	11 (3,4,4) 37.5597	12 (4,4,4) 38.1380	13 (4,4,5) 38.7030	14 (4,5,5) 38.8167	15 (5,5,5) 39.0539	16 (5,5,6) 38.9044	17 (5,6,6) 38.8806				
$\mathbf{D}_{w(GA)}$	35.6314	36.9380	37.2632	37.5632	38.1458	38.7045	38.8252	39.0642	38.9153	38.8849				
$\begin{array}{cc} k & b \\ 2 & 4 \end{array}$	9 (2,2,2,3)	10 (2,2,3,3)	11 (2,3,3,3)	12 (3,3,3,3)	13 (3,3,3,4)	14 (3,3,4,4)	15 (3,4,4,4)	16 (4,4,4,4)	17 (4,4,4,5)	18 (4,4,5,5)				
D _{w(EA)}	28.3263	29.1803	30.0590	30.8923	31.3364	31.3622	31.4973	31.7441	31.9341	32.1744				
$\mathbf{D}_{w(GA)}$	28.3322	29.1855	30.0625	30.8942	31.3382	31.4776	31.5582	31.7458	31.9396	32.1782				

Table 1. Summary of \mathbf{D}_{w} -efficiencies for EA and GA designs having k = 2 variables and b = 2, 3, and 4 blocks.

Table 2. Summary of \mathbf{D}_{w} -efficiencies for EA and GA designs having k = 3 variables and and 4 blocks.

	Ν													
k b 3 2	11	12	13	14	15	16	17	18	19	20				
	(5,6)	(6,6)	(6,7)	(7,7)	(7,8)	(8,8)	(8,9)	(9,9)	(9,10)	(10,10)				
$\mathbf{D}_{w(EA)}$	47.4978	47.8026	47.8895	48.1629	48.4414	48.3310	48.4012	48.5206	48.7078	48.8252				
$D_{w(GA)}$	47.5341	47.8063	47.9011	48.1754	48.4627	48.3637	48.4159	48.7449	48.7496	48.8372				
k b	12	13	14	15	16	17	18	19	20	21				
3 3	(4,4,4)	(4,4,5)	(4,5,5)	(5,5,5)	(5,5,6)	(5,6,6)	(6,6,6)	(6,6,7)	(6,7,7)	(7,7,7)				
$D_{w(EA)}$	39.5462	40.2678	40.8071	41.1888	41.4746	41.4849	41.6035	41.6806	41.7261	41.8125				
$D_{w(GA)}$	39.5726	40.2773	40.8126	41.2111	41.4806	41.5194	41.6355	41.6917	41.7445	41.8219				
k b	13	14	15	16	17	18	19	20	21	22				
3 4	(3,3,3,4)	(3,3,4,4)	(3,4,4,4)	(4,4,4,4)	(4,4,4,5)	(4,4,5,5)	(4,5,5,5)	(5,5,5,5)	(5,5,5,6)	(5,5,6,6)				
$D_{w(EA)}$	32.9659	33.8070	34.2087	34.7366	35.1474	35.2465	35.6855	35.9687	35.9227	35.9383				
$D_{w(GA)}$	33.1626	33.8767	34.2710	34.7740	35.1614	35.3555	35.7272	35.9708	35.9282	35.9716				

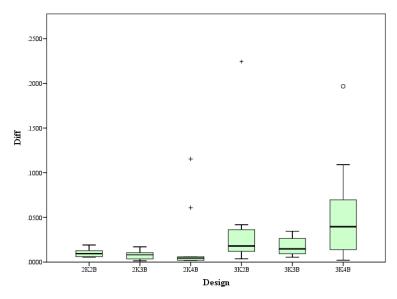


Figure 2. Boxplots of differences in D_{w} for GA and EA designs.

model with blocks.

Based on D_N -efficiencies, calculated for FOM and INT, designs from the D_w -optimality criterion are better than those obtained from the D_N -optimality criterion. This is because the best D_w designs provided higher D_N values than designs from the "full model only" for all choices of k, b, and N. This confirms that the D_w -optimality criterion can support all possible reduced models better than the D_{M} optimality criterion. For example, in Table 3, for k=2, b=2and N=8 when both block sizes are 4, D_N -efficiencies of the "all models" design and the "full model only" design for FOM of EA are equal to 59.1628 and 56.7554, respectively. For INT, they are 57.3188 and 55.3854, respectively. Similarly, D_N -efficiencies of the "all models" design and the "full model only" design for FOM of GA are equal to 59.2947 and 56.8460, respectively, while for INT, they are 57.4589 and 55.4381, respectively. Thus, the "all models" designs are more robust to model-misspecification than the "full model only" designs for all choices of N.

For EAs, D_N -efficiencies of designs generated for the "full model only" of SOM are greater than D_N efficiencies of designs generated for the "all models" (best D_w designs) of SOM for all choices of *k*, *b*, and *N* because the goal of the "full model only" designs is to optimize the full second-order model with blocks. However, D_N -efficiency values for "all models" (best D_w designs) are close to optimal D_N -efficiency for the "full model only". Similar patterns are true for GAs. In situations where the full second-order model is fitted, results show that use of the D_w -optimality criterion provides a design which also has a D_N close to that of the full second-order model.

Boxplots of the differences in D_N values between "all models" designs and "full model only" designs for FOM, INT, and SOM are shown in Figure 3. For the FOM and INT, the boxplots are greater than zero. This indicates that the D_N - efficiencies of "all models" designs are, in general, better than those of "full model only" designs for FOM and INT.

For SOM, the boxplots are less than, but close to, zero. That is, the D_N - efficiencies of "all models" designs are slightly less than those of "full model only" designs, and the range of differences for SOM is smaller than the ranges for FOM and INT. This suggests that the D_N - efficiency values for SOM of the "all models" designs are close to those of the "full model only" designs.

						Η	ĒΑ	GA								
				FO	ОМ	Π	NT	S	ОМ	F	ОМ	Γ	NT	SOM		
k	b	N		All models	Full model only											
2	2	7 8 9 10 11 12 13 14 15 16	(3,4) (4,4) (4,5) (5,5) (5,6) (6,6) (6,7) (7,7) (7,8) (8,8)	58.7275 59.1628 61.1598 63.1529 63.2283 62.0589 61.4406 62.3148 62.8407 61.0093	58.2751 56.7554 55.7252 61.2563 59.6267 60.5134 60.9440 59.1194 59.9977 60.8075	56.6176 57.3188 61.0524 63.8663 65.0232 62.9543 61.4601 62.3092 63.3266 61.1568	56.1919 55.3854 53.3313 60.5069 58.1888 59.5791 61.0624 58.7189 59.6361 60.8335	39.9212 40.6651 40.1475 40.8423 40.8300 41.6696 42.4615 42.2303 42.2093 42.6336	39.9337 40.7807 41.0263 41.3772 41.9482 42.0731 42.5602 42.7400 42.6294 42.6574	58.5489 59.2947 61.2440 63.1452 63.2332 62.0998 61.5100 62.2758 62.8184 60.9429	58.4685 56.8460 55.8305 61.1764 59.5643 60.5704 61.0341 59.0199 60.1480 60.8815	56.6156 57.4589 61.1820 63.8934 65.0273 62.9914 61.5196 62.2733 63.2955 61.0474	56.3704 55.4381 53.4133 60.3778 58.0788 59.6843 61.1391 58.6414 58.7252 60.9486	39.9288 40.6464 40.1220 40.8399 40.8421 41.6748 42.4603 42.2600 42.2427 42.6671	39.9494 40.8015 41.0411 41.3868 41.9572 42.0909 42.5770 42.7642 42.6416 42.6779	

Table 3. Summary of \mathbf{D}_N -efficiencies of the "all models" and "full model only" designs having k = 2 variables and b = 2 blocks for a first-order model, interaction model, and second-order model.

Table 4. Summary of \mathbf{D}_N -efficiencies of the "all models" and "full model only" designs having k = 2 variables and b = 3 blocks for a first-order model, interaction model, and second-order model.

						EA	Ą			GA						
				FC	ЭM	INT SOM			ЭM	FO	DM	IN	Τ	SOM		
k	b	N		All models	Full model only											
2	3	8	(2,3,3)	44.1623	42.1153	43.8433	41.9220	33.1459	33.5021	44.2519	42.2463	43.9198	41.9298	33.1352	33.5112	
		9	(3,3,3)	45.7636	43.3963	46.5666	43.2675	34.3039	34.7871	45.7765	43.3539	46.7459	43.1732	34.3233	34.7883	
		10	(3,3,4)	44.2395	44.1811	43.9253	43.6973	35.6013	35.6366	44.2330	44.0927	43.8906	43.5156	35.6171	35.6504	
		11	(3,4,4)	44.6205	44.3695	45.1566	44.7487	35.9030	35.9908	44.5817	44.3552	45.0801	44.7001	35.9294	35.9978	
		12	(4,4,4)	44.8219	44.5060	46.6128	46.1726	36.5458	36.5723	44.8910	44.6013	46.6635	46.3034	36.5432	36.5882	
		13	(4,4,5)	45.6773	45.5774	48.0436	47.9312	37.1931	37.2087	45.6555	45.5470	48.0171	47.8977	37.2054	37.2295	
		14	(4,5,5)	46.4584	46.3793	48.8013	48.6610	37.0995	37.1065	46.4405	46.3940	48.7671	48.6879	37.1184	37.1274	
		15	(5,5,5)	47.1664	47.0453	49.7850	49.5215	37.1277	37.1489	47.1147	47.0905	49.6720	49.6193	37.1648	37.1690	
		16	(5,5,6)	47.2648	45.8050	50.0711	47.9918	36.9059	37.1144	47.2380	45.7985	50.0415	47.9785	36.9292	37.1390	
		17	(5,6,6)	47.2954	44.8725	50.5597	45.9577	36.8375	37.1238	47.3197	44.8705	50.5835	45.9484	36.8354	37.1409	

						F	EA		GA							
				F	ОМ	I	NT	SC	DM	FO	OM I		NT	SOM		
k	b	N		All models	Full model only	All models	Full model only	All models	Full model only	All models	Full model only	All models	Full model only	All models	Full model only	
2	4	9 10 11 12 13 14 15 16 17 18	$\begin{array}{c} (2,2,2,3)\\ (2,2,3,3)\\ (2,3,3,3)\\ (3,3,3,3)\\ (3,3,3,4)\\ (3,4,4)\\ (3,4,4,4)\\ (4,4,4,4)\\ (4,4,4,5)\\ (4,4,5,5)\end{array}$	32.2993 33.7574 34.3593 35.5543 35.5181 35.1509 35.1278 35.2993 35.5308 36.0036	31.9228 32.0701 32.6362 33.2052 35.4428 35.0827 34.9845 35.1939 35.4935 35.8990	32.7652 34.1264 35.8542 36.6957 38.0984 37.3672 37.1339 37.8703 38.5721 39.3347	32.4634 31.6522 33.1442 35.1373 38.0226 37.2561 36.8742 37.4186 38.5201 39.2181	27.6857 28.5535 29.6293 30.4610 31.1666 31.4241 31.6662 31.7452 31.7452 31.9370 32.1524	27.7442 28.8527 29.6839 30.6839 31.1680 31.4325 31.7255 31.8402 31.9506 32.1789	32.4172 33.6174 34.3904 35.5461 35.5121 34.8690 34.9730 35.3049 35.5574 35.9647	31.8614 32.0741 32.6506 33.3092 35.4798 34.8218 34.9443 35.1982 35.5353 35.9334	32.8563 34.0644 35.9025 36.7112 38.0798 36.8275 37.2766 37.8858 38.6006 39.2875	32.4762 31.7263 33.1951 35.1513 36.7839 36.8545 37.4237 38.0430 39.2526	27.6634 28.5941 29.6227 30.4629 31.1734 31.6513 31.6542 31.7456 31.9412 32.1805	27.7506 28.8664 29.6891 30.6883 31.1815 31.6607 31.7296 31.8491 32.0220 32.1884	

Table 5. Summary of \mathbf{D}_N -efficiencies of the "all models" and "full model only" designs having k = 2 ariables and b = 4 blocks for a first-order model, interaction model, and second-order model.

Table 6. Summary of \mathbf{D}_N -efficiencies of the "all models" and "full model only" designs having k = 3 variables and b = 2 blocks for a first-order model, interaction model, and second-order model.

						EA	A		GA							
				FC	DM	IN	IΤ	SO	М	FOM		INT		SOM		
k	b	Ν		All models	Full model only											
3	2	11 12 13 14 15 16 17 18 19 20	$(5,6) \\ (6,6) \\ (6,7) \\ (7,7) \\ (7,8) \\ (8,8) \\ (8,9) \\ (9,9) \\ (9,10) \\ (10,10) \\ (5,6) \\ (10,10) \\ (10$	65.6560 65.3052 64.1127 64.9174 65.5188 65.7976 66.7618 67.5481 68.0320 67.0066	65.4735 65.3052 64.0260 64.8318 65.3767 64.9951 64.6088 64.4086 65.2857 66.1520	66.9441 66.5030 62.9689 63.9515 65.0632 65.7313 66.5468 67.9130 69.3543 67.0238	66.3697 66.5030 62.8619 63.7522 64.9091 63.9174 63.0253 62.3645 63.8900 65.0845	41.6184 42.1235 43.0104 43.1592 43.3036 43.0484 42.9037 42.9017 42.9720 43.6216	41.6663 42.1235 43.0223 43.1686 43.3093 43.1733 43.2504 43.4297 43.6777 43.7963	66.2231 65.3064 64.0728 64.9070 65.4707 65.8623 66.6493 67.6246 67.8893 67.0017	65.3883 65.2554 63.7236 60.9477 65.3680 65.0351 64.6757 64.4191 65.3451 65.8811	68.1986 66.5043 62.8969 63.9327 65.0055 65.8291 67.2171 68.4274 69.2534 67.0099	66.0825 66.4792 62.7178 59.4993 64.8934 63.9875 63.1342 62.4006 63.9834 64.9516	41.0993 42.1279 43.0462 43.1841 43.3293 43.0748 42.9584 43.1979 43.0922 43.6394	41.6721 42.1348 43.1165 43.4424 43.3407 43.1924 43.2857 43.4564 43.6995 43.8042	

						E	А			GA							
				FOM		INT		SOM		FOM		INT		SOM			
k	b	N		All models	Full model only	All models	Full model only	All models	Full model only	All models	Full model only	All models	Full model only	All models	Full model only		
3	3	12 13 14 15 16 17 18 19 20 21	$\begin{array}{c} (4,4,4)\\ (4,4,5)\\ (4,5,5)\\ (5,5,5)\\ (5,5,6)\\ (5,6,6)\\ (6,6,7)\\ (6,6,7)\\ (6,7,7)\\ (7,7,7)\end{array}$	50.4961 49.0352 50.1578 51.2576 51.2571 51.3682 51.7243 52.0195 52.8406 53.4591	49.6227 48.9430 50.1578 50.1574 51.1749 50.3556 51.1298 50.5110 49.9526 49.9804	54.0767 51.6922 53.4958 54.4945 55.2485 55.8527 56.8056 57.7519 58.3980 59.0642	53.0097 51.6590 53.4958 52.8524 55.1203 53.3218 55.5703 54.2435 53.3348 52.1625	36.2050 38.2677 38.6039 38.8155 39.1810 39.1514 39.2259 39.2442 39.1203 39.0981	36.5300 38.2888 38.6039 39.0469 39.2018 39.2786 39.2485 39.5382 39.5382 39.5954 39.7354	50.5354 49.0672 50.2145 51.3358 51.1989 51.4423 51.8104 52.0294 52.8326 53.4576	49.5135 48.8100 49.9632 50.1700 51.1635 50.4333 51.7664 50.5234 50.5143 50.0112	54.0454 51.7618 53.5262 54.7352 55.1525 56.0163 56.9718 57.7736 58.3907 59.0568	53.0482 51.3131 53.1264 52.9346 55.0977 53.4644 56.9095 54.2452 53.7663 52.1936	36.2527 38.2682 38.5891 38.8307 39.2053 39.1849 39.2550 39.2551 39.1552 39.1160	36.5520 38.3253 38.6363 39.0924 39.2118 39.3093 39.2622 39.5514 39.6011 39.7463		

Table 7. Summary of \mathbf{D}_N -efficiencies of the "all models" and "full model only" designs having k = 3 variables and b = 3 blocks for a first-order model, interaction model, and second-order model.

Table 8. Summary of \mathbf{D}_N -efficiencies of the "all models" and "full model only" designs having k = 3 variables and b = 4 blocks for a first-order model, interaction model, and second-order model.

						Ε	EA			GA							
				FO	M	IN	ЛТ	S	SOM	FOM		INT		SOM			
k	b	Ν		All models	Full model only	All models	Full model only	All models	Full model only	All models	Full model only	All models	Full model only	All models	Full model only		
3	4	13 14 15 16 17 18 19 20 21 22	$\begin{array}{c} (3,3,3,4)\\ (3,3,4,4)\\ (3,4,4,4)\\ (4,4,4,4,5)\\ (4,4,5,5)\\ (4,5,5,5)\\ (5,5,5,5)\\ (5,5,5,6)\\ (5,5,6,6)\end{array}$	38.8204 40.3330 40.0763 40.2027 40.9673 40.8019 41.4162 40.8877 41.1485 41.1525	37.6505 37.9658 38.7343 39.3495 38.3802 39.5144 40.4536 40.8478 41.1401 40.7412	41.5291 43.8197 45.1438 46.5870 47.8787 46.5129 47.7441 47.5606 47.0077 48.2304	41.3500 42.3023 43.0287 43.5209 43.1813 44.2007 45.6817 47.4701 46.9355 47.0885	32.1731 32.9742 33.2981 33.7907 34.1343 34.7388 35.2346 35.5162 35.8498 35.3963	32.5088 33.0313 33.7047 34.4044 34.6087 35.0960 35.3951 35.5175 35.8528 35.8294	39.5544 40.1186 40.1973 40.2531 40.9785 41.2621 41.4666 40.8879 41.1447 41.1544	37.6500 38.1870 38.7956 39.3799 39.4357 39.6185 40.5061 40.8516 41.1330 40.7389	42.7989 43.6834 44.4618 46.6239 47.8910 47.8480 47.9739 47.5527 46.9919 48.3499	41.3162 42.6792 43.1025 43.5423 43.0890 44.4039 45.9082 47.4480 46.9371 47.1024	32.2210 33.1077 33.6177 33.8397 34.1510 34.7029 35.2816 35.5160 35.8597 35.4426	32.5239 33.1405 33.7277 34.4316 34.7060 35.1483 35.4552 35.5301 35.8638 35.8340		

1269

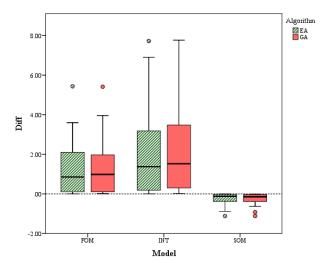


Figure 3. Boxplots for comparing differences in D_N -efficiencies for "all model" and "full model only" designs.

4. Conclusions

Our results show that GA designs are equally or more efficient and robust than EA designs for the D_w optimality criterion with respect to all tested combinations of k variables and b blocks. The approximately optimal designs for the second-order model with blocks may be inefficient. We cannot pass over the uncertainty of possible reduced models prior to data collection; therefore, the researcher should consider using criteria that can create robust designs across the set of potential models. Our proposed D_w optimality criterion can be a good alternative. It is not necessary to use the D_N -optimality criterion assuming a second-order model, because even if a second-order model is the correct model, its D_N -efficiency will be very close to the corresponding D_N -efficiency of the robust design generated using the D_w criterion.

References

- Atkinson, A. C., Donev, A. N., & Tobias, R. D. (2007). Optimum experimental designs with SAS. Oxford, England: Clarendon.
- Borkowski, J. J. (2003). Using a genetic algorithm to generate small exact response surface designs. *Journal of Probability and Statistical Science*, 1(1), 69-92.
- Borkowski, J. J., & Valeroso, E. S. (2001). Comparison of design optimality criteria of response surface designs in the hypercube. *Technometrics*, 43(4), 468-477.
- Chairojwattana, A., Chaimongkol, S., & Borkowski, J. J. (2017). Using genetic algorithms to generate D_w and G_w-optimal response surface designs in the hypercube. *Thailand Statistician*, July 2017, 15(2), 157-166.

- Chipman, H. A. (1996). Bayesian variable selection with related predictors. *The Canadian Journal of Statistics*, 24(1), 17-36.
- Chomtee, B., & Borkowski, J. J. (2005). Weighted design optimality criteria for spherical response surface designs. KMITL Science Journal Issue, Proceedings of the 2nd International Symposium on Mathematical, Statistical and Computer Sciences, 5, 226-238.
- Cook, R. D., & Nachtsheim, C. J. (1980). A comparison of algorithms for constructing exact d-optimal designs. *Technometrics*, 22(3), 315-324.
- Doehlert, D. H. (1970). Uniform shell designs. Journal of the Royal Statistical Society, Series C, 19(3), 231-239.
- Doehlert, D. H., & Klee, V. L. (1972). Experimental designs through level reduction of the d-dimensional cuboctahedron. *Discrete Mathematics*, 2(4), 309-334.
- Fedorov, V. V. (1972). *Theory of optimal experiments*. New York, NY: Academic Press
- Heredia-Langner, A., Carlyle, W. M., Montgomery, D. C., Borror, C. M., & Runger, G. C. (2003). Genetic algorithms for the construction of D-optimal designs. *Journal of Quality Technology*, 35(1), 28-46.
- Holland, J. H. (1975). Adaptation in natural and artificial system: An introductory analysis with applications to biology control, and artificial intelligence. Oxford, England: University of Michigan Press.
- Limmun, W., Borkowski, J. J., & Chomtee, B. (2018a). Weighted A-optimality criterion for generating robust mixture designs. *Computers and Industrial Engineering*, 125, 348-356. doi:10.1016/j.cie.2018 .09.002
- Limmun, W., Chomtee, B., & Borkowski, J.J. (2018b). The construction of a model-robust IV-optimal mixture designs using a genetic algorithm. *Mathematical* and Computational Application, 23(2), 25. doi:10 .3390/mca23020025
- Mahachaichanakul, S., & Srisuradetchai, P. (2019). Applying the median and genetic algorithm to construct *D*and *G*-optimality robust designs against missing data. *Applied Science and Engineering Process*, 12(1), 3-13.
- Mitchell, T. J. (1974a). An algorithm for construction of "Doptimal" experimental designs. *Technometrics*, 16(2), 203-210.
- Mitchell, T. J. (1974b). Computer construction of "D-Optimal" for first-order designs. *Technometrics*, 16(2), 211-220.
- Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: Process and product optimization using designed experiments (4th ed.). Hoboken, NJ: John Wiley and Sons.
- Roquemore K. G. (1976). Hybrid designs for quadratic response surfaces. *Technometrics*, 18(4), 419-423
- Sivanandam, S. N., & Deepa, S. N. (2008). *Introduction to genetic algorithms*. Berlin, Germany: Springer.
- Thongsook, S., Borkowski, J. J., & Budsaba, K. (2014). Using a genetic algorithm to generate Ds-optimal designs with bounded D-efficiencies for mixture experiments. *Thailand Statistician*, 12(2), 191-205.

1270

- Wald, A. (1943). On the efficient design of statistical investigations. *The Annals of Mathematical Statistics*, 14(2), 134-140.
- Wynn, H. P. (1972). Results in the theory and construction of D-optimum experimental designs. *Journal of Royal Statistical Society, Series B*, *34*(2), 133-147.