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CHAPTER I

INTRODUCTION

Some background information that is necessary for understanding the relevance of the

study conducted in this dissertation, including the scope of this dissertation were given in

this chapter.

1.1 Research Rationale

Zeolites are molecular sieves that are of importance for many refinery and petrochem-

ical processes such as the separation of linear and branch alkanes, the conversion of linear to

branch hydrocarbon and so on [1]. The performance of these molecular sieves in such pro-

cesses depends critically on the match between sieve topology and the shape and size of the

adsorbate [2]. ZSM-5, a kind of zeolite whose pore sizes are of the same order of magnitude as

those of the adsorbing hydrocarbons, demonstrates selective adsorptions on its cavity. Diffu-

sion and adsorption of molecules in the pores of zeolites are fundamental attributes of many

industrial separation and also catalytic processes [3, 4, 5, 6]. To the best of our knowledge,

many hydrocarbon/zeolite potentials based on the force-field parametrization are available

[7, 8, 9, 10]. These models are different in details, e.g., some are all-atom representation,

some includes three-body interactions. Despite the potentials being expressed as functions

of energies which depend on atomic coordinates, they all were parametrized through ex-

perimental data, mostly adsorption data, which are macroscopic property. Within different

approaches and different experimental data, different parameter sets have been published.

An alternative approach for developing the function that represents interaction between pair

of molecules is to obtain the potential function from the ab initio energy points. An ad-

vantage of this approach is that the function is directly fitted to molecular interaction, i.e.,

the energy obtained from the function is one-to-one correspondence with the ab initio data.
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There are several successful cases for the ab initio fitted functions [11, 12, 13, 14, 15] in which

the structural properties were in good agreement with the experimental data. Complication

arises when dealing when intermolecular pair interactions are divided into atomic pair in-

teractions based on mathematical algorithm because ratio contribution of atomic pairs to

the molecular pair is actually unknown. The unknown ratio does not exhibit a problem in

dealing with structural properties, but can lead to serious discrepancy when thermodynamic,

perhaps also, dynamic properties are concerned [14, 16, 17]. Beside the development of the

guest/host and guest/guest potential functions using the energy data calculated from the

ab initio calculation, aim of this study extends also to figure out the optimal ratio of the

atomic pairs in the molecular pair potential.

1.2 Zeolite

Zeolites [3, 18, 19] are minerals with a nano to microporous structure. The term

was originally coined in the 18th century by a Swedish mineralogist named Axel Fredrik

Cronstedt [3] who observed, upon rapidly heating a natural mineral, that the stones began

to dance as the water evaporated. Using the Greek words which mean stone that boils. He

called this material zeolite.

More than 150 zeolite types have been synthesized and 48 naturally occurring zeolites

are known. Zeolites [18, 20] are basically hydrated aluminosilicate of the alkali or alkali

earth metals such as Na, K, Ca, Mg. These metals are rather loosely held as cations and

can readily be exchanged for others in a contact solution. Some common mineral zeolites

are: analcime, chabazite, heulandite, natrolite, phillipsite, and stilbite.

Natural zeolites form where volcanic rocks and ash layers react with alkaline ground-

water. Zeolites also crystallized in post-depositional environments over periods ranging from

thousands to millions of years in shallow marine basins. Naturally occurring zeolites are

rarely pure and are contaminated to varying degrees by other minerals, metals, quartz or

other zeolites. For this reason, naturally occurring zeolites are excluded from many impor-

tant commercial applications where uniformity and purity are essential.
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Zeolites are the aluminosilicate members of the family of microporous solids known as

molecular sieves. The term molecular sieve refers to a particular property of these materials,

i.e. the ability to selectively sort molecules based primarily on a size exclusion process. This

is due to a very regular pore structure of molecular dimensions. The maximum size of the

molecular or ionic species that can enter the pores of a zeolite is controlled by the diameters

of the tunnels. These are conventionally defined by the ring size of the aperture, where, for

example, the term 8-T ring refers to a closed loop that is built from 8 T atoms where T

stands for tetrahedral. These rings are not always perfectly flat and symmetrical due to a

variety of effects, including strain induced by the bonding between units that are needed to

produce the overall structure, or coordination of some of the oxygen atoms of the rings to

cations within the structure. Therefore, the pore openings for all rings of one size are not

identical.

1.3 MFI-type Zeolites

MFI-type zeolites are the 10-T ring systems and consist of bidirectional straight and

sinusoidal channels connected via intersections. Figure 1.1a shows an electron micrograph

of the MFI type zeolite.

Figure 1.1 MFI zeolite: (a) Electron micrograph and (b) schematic view representing the
channels in the unit cell [10].
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The size of straight and sinusoidal channel openings are approximately 5.3 Å x 5.6

Å and 5.1 Å x 5.5 Å, respectively [21]. A unit cell of the zeolite has a dimension of 20.07

Å x 19.98 Å x 13.42 Å. This contains 2 straight channels and 4 sinusoidal channels with 4

intersections between them. The length of the straight channels is equal to 19.8 Å, while the

sinusoidal channels are of 6.65 Å in size and the diameter of the intersections is 5.4 Å [22].

Silicalite–1 is an all-silica zeolite. HZSM-5 zeolite is an iso-structural framework, in

which some of the Si atoms are substituted with Al. HZSM-5 can possess acidic proper-

ties because substituted Al atoms are provided electrical neutrality by the protons. Both

Silicalite–1 and HZSM-5 belong to the most applied synthetic zeolites. They are broadly

used in the petroleum and petrochemical industries as catalysts for fluid catalytic cracking

(FCC), xylene isomerization, conversion of methanol to gasoline, and as selective sorbents

[23, 24, 25]. These zeolites have uniform pores with out large supercages or bottlenecks,

which is an important factor for the shape selective catalyst as well as for their very low coke

forming abilities as acidic catalysts.

Silicalite–1 provides numerous possibilities for the hydrocarbon separation and it is

the most studied membrane material [3]. Recently, a lot of theoretical studies have been

conducted on the application of silicalite–1 in the selective separation of mixtures of C5-C6

alkanes isomers [26, 27, 28, 29] which are the products of the hydroisomerization process,

mentioned above. The separation possibilities is based on the specific adsorption and related

micropore diffusion properties of silicalite–1 toward alkanes.

1.4 Situation on the Diffusion of Hydrocarbon in Zeolite

The diffusion of hydrocarbon molecules within the pores of a zeolite is currently of

significant interest. This is because zeolites are widely used as selective adsorbents in sepa-

ration/adsorption processes and as heterogeneous catalysts in the oil-processing and chemical

industry. The catalytic properties of zeolites, such as shape selectivity and effectiveness, are

closely related to the molecular mobility of the reactants and products within the inner voids

of the zeolite. Given the molecular dimensions of the pores (4-8 Å) a small variation in the

shape and/or geometry of the molecule usually leads to large differences in diffusion. These
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differences may in turn contribute significantly to the shape-selective effects often observed

in zeolite catalysis. Therefore, to allow a better understanding of the phenomena of diffusion

at a molecular level, detailed examinations are very helpful.

Several experimental methods are available to study translation mobility in zeolites

including uptake methods, chromatographic techniques, membrane techniques and pulsed

field gradient nuclear magnetic resonance (PFG-NMR). Each of these methods has its own

particular merits.

Alternatively, theoretical methods provide an approximative description of reality, ex-

cellently suited for investigating the absorptive/diffusive processes on a microscopic scale.

They can provide accurate data at a microscopic level under catalytic process condition.

Molecular simulation techniques, especially Monte Carlo (MC) and molecular dynamic (MD)

simulations, [30, 31] have become a powerful tool to investigate various diffusive guests in ze-

olites. In most cases, the thermodynamic results are in good agreement with those obtained

from experimental techniques [3, 4, 32, 33, 34, 35, 36].

1.5 Scope of the Dissertation

Several attempts have been made to study the adsorption and diffusion of hydrocarbons

in silicalite–1 by means of both theoretical [37, 38, 39, 40, 41, 42] and experimental [43, 44,

45, 46] investigations. Some simulations of linear and also branched hydrocarbons and even

of mixtures of them in silicalite–1 are reported in the literature [9, 10, 37, 47, 48, 49].

These simulations have been done with empirical potentials that were fitted to reproduce

thermodynamic properties. Especially, in Reference [9, 10], Dubbeldam et al. proposed

potential parameter set which was mainly fitted to adsorption isotherms. They claimed that

their potential parameters not only yield a superior description of the experimental data

that formed the basis for the fitting procedure, but also yield an excellent description of

reference systems which were not included in the calibration set. They also proposed that

parameter set should be universally applicable for all alkanes/zeolites system. Generally

those force field parameters were generated to reproduce thermodynamic properties which
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were statistical average values. As a result, different parameter sets have been published.

Despite these differences, most studies claim a good agreement with experimental data.

As mentioned in the last paragraph of Section 1.1, an alternative approach to deal with

the potential function is to fit the functional form to an ab initio data and the main problem

of this type of function is due to the ratio of the atomic pairs to the ab initio molecular pair

potential. Therefore, scope of this work was set up to

(i) Develop the ab initio fitted n-pentane/silicalite–1 and n-pentane/n-pentane intermolec-

ular potentials.

(ii) Repeat the process employing the developed potential using MD simulations and investi-

gate the structural, dynamic and thermodynamic properties of the system until the optimal

ratio of the atomic pairs was yielded validated by the experimental properties.

(iii) Apply the newly validated function to study molecular properties of the n-pentane/silicalite–

1 system by varying n-pentane concentrations and temperatures.



CHAPTER II

THEORY

2.1 Computational Quantum Mechanics

2.1.1 Introduction

Quantum mechanics (QM) is a science dealing with the behavior of matter and waves

on the scale of atoms and subatomic particles. It was accepted by physics community be-

cause it can accurately predict physical behavior of the systems where Newtonian mechanics

fails. Two equivalent formulations of QM were derived by Schrödinger and Heisenberg.

The Schrödinger form was presented here since it is the basis for nearly all computational

chemistry methods. The Schrödinger equation is

{

− h̄2

2m

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

+

}

Ψ(r, t) = ih̄
∂Ψ(r, t)

∂t
[2.1]

Equation 2.1 is the time dependent form and refers to a single particle of mass m which

is moving through space (given by a position vector r = xi+yj+zk) and time t under the

influence of an external field (which might be the electrostatic potential due to the nuclei

of a molecule). h̄ is Plank’s constant divided by 2π and i is the square root of −1. Ψ is the

wave function which characterizes the particle’s motion. Various properties can be derived

from this equation. When the external potential is independent of time, the wave function

can be written as the product of a spatial part and a time part: Ψ(r, t) = ψ(r)T (t) which

enables the time-dependent Schrödinger to be written in the time-independent form:

Ψ(r) = EΨ(r) [2.2]



8

Here, E is the energy of the particle and is the Hamiltonian operator:

=
h̄2

2m
∇2 + [2.3]

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
[2.4]

Equation 2.2 falls into the category of equations known as partial differential eigenvalue

equations in which an operator acts on a function (the eigenfunction) and returns the func-

tion multiplied by a scalar (eigenvalue). Ψ(r) and E are, thus, the eigenfunction and the

eigenvalue, respectively.

2.1.2 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is central to quantum chemistry. This approx-

imation simplifies the problem by decoupling the motion of the electrons from the motion

of the nuclei. The approximation states that masses of the nuclei are 1836 times heavier

than that of the electrons. This means that the electrons can adjust almost instantaneously

to any changes in the positions of the nuclei. Under the Born-Oppenheimer approximation,

the total wave function for the molecule Ψtotal({ri}, {RA}), which depends on coordinates

of electrons {ri} and nuclei {RA}, can be written as

Ψtotal({ri}, {RA}) = Ψelectrons({ri}; {RA})Ψnuclei({RA}) [2.5]

The electronic wave function Ψelectrons, thus, depends only on the positions of the nuclei

and not on their momenta. When this approximation is used, the motions of electrons
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are independent; the nuclei are considered to be fixed. Schrödinger equation is solved for

electrons alone for each arrangement of the nuclei. The nuclear repulsion can separately be

calculated and added to the electronic energy to obtain the total energy of the configuration.

2.1.3 Slater Determinants

A many-electron wave function termed a Hartree product which is a simple product of

spin orbital wave function of each electron reads:

Ψ(1, 2, · · · , N) = χi(1)χj(2) · · ·χk(N) [2.6]

χi(1) is a spin orbital which depends on the space and spin coordinates of the electron labeled

’1’. Hartree product does not satisfy the antisymmetry principle because exchange any two

electrons in any two spin orbitals forms a new wave function rather than the negative of the

original wave function; however, the appropriate linear combination of these Hartree products

from exchanging any two electrons can form the wave function for a system that satisfied

the antisymmetry principle. Such linear combination can be written as a determinant called

the Slater determinant, for N -electron system:

Ψ =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χi(1) χj(1) . . . χk(1)

χi(2) χj(2) . . . χk(2)
...

...
...

χi(N) χj(N) . . . χk(N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[2.7]

The factor 1/
√

N ! is a normalize factor. Exchanging any two rows of a determinant cor-

responds to exchanging two electrons. This changes the sign of the determinant and leads

to the antisymmetry property. If any two rows of a determinant are identical, then the

determinant vanishes. This can be considered as an illustration of the Pauli principle, which

states that no two electrons can have the same set of quantum numbers.
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For any considerable system, the Slater determinant is inconvenient to write out. A common

used shorthand notation is to write only the terms along the diagonal of the matrix as a

single-row determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(1) χ2(1) . . . χN (1)

χ1(2) χ2(2) . . . χN (2)
...

...
...

χ1(N) χ2(N) . . . χN (N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≡
∣

∣

∣

∣

χ1 χ2 . . . χN

〉

[2.8]

2.1.4 The Hartree-Fock Method

Given Ψ = |χ1χ2 · · ·χN 〉 the energy E = 〈Ψ∗| |Ψ〉 is a functional of the spin orbitals

{χi}. In most electronic structure calculations we are trying to calculate the spin orbitals.

The variation theorem provides us to the best approximate wave function by minimizing

the energy E [{χi}] with respect to the spin orbitals, subject to the constraint that the spin

orbitals remain orthonormal:

∫

dx1χ
∗
i (1)χj(1) = δij [2.9]

That is, the constraints are of the form:

∫

dx1χ
∗
i (1)χj(1) − δij = 0 [2.10]

where δij = 0 for i 6= j; otherwise δij = 1. Here, the label ‘1’ is used wherever there is an

integral involving the coordinates of a single electron, even though the actual electron may
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not be ‘electron 1’. Similarly, when two electrons are considered, then the labels 1 and 2 are

employed.

Using Lagrange’s method ( ) of undetermined multipliers, we can set up the following

equation:

[{χi}] = E [{χi}] −
N
∑

i=1

N
∑

j=1

ǫij(
∫

dx1χ
∗
i (1)χj(1) − δij) [2.11]

where ǫij is the Lagrange multiplier. Minimization of E, subject to the constraints, is thus

obtained by minimizing in which the first variation in equals zero:

δ [{χi}] = δE [{χi}] −
N
∑

i=1

N
∑

j=1

ǫijδ(
∫

dx1χ
∗
i (1)χj(1)) = 0 [2.12]

It should be noted that δ here is not a variable like δij , but, it means the variation by

infinitesimal amount of any variable it operates on. The energy E contains three terms:

(i) the kinetic and potential energy of electron moving in the field of M nuclei ( core(1)),

(ii) the electrostatic repulsion between pairs of electrons ( j(1)) and (iii) the exchange

interaction which arises from the motions of electrons with parallel spins ( j(1)). Equation

2.12 expanded in these three terms can be written as:

δ [{χi}] =
N
∑

i=1

∫

dx1δχ
∗
i (1)





core(1)χi(1) +
N
∑

j=1

( j(1) − j(1))χi(1) −
N
∑

j=1

ǫijχj(1)





+complex conjugate = 0 [2.13]

where

core(1) = −1

2
∇2

i −
M
∑

A=1

ZA

riA
[2.14]
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j(1) =
∫

dx2χj(2)χj(2)
1

r12
[2.15]

j(1) =
∫

dx2χj(2)
1

r12
12χj(2) [2.16]

Since δχ∗
i (1) is arbitrary, it must be the quantity in square brackets which is zero for all i.

Therefore,





core(1) +
N
∑

j=1

( j(1) − j(1))



 χi(1) =
N
∑

j=1

ǫijχj(1) [2.17]

fi(1)χi(1) =
N
∑

j=1

ǫijχj(1) [2.18]

fi(1) is called the Fock operator whose theory assumes that each electron move in a ’fixed’

field comprising the nuclei and the other electrons. Equation 2.18 is not eigenvalue form

because any single determinant wave function Ψ formed from a set of spin orbitals {χi}
retains a certain degree of flexibility in the spin orbitals. The spin orbitals can be mixed

among themselves without changing the expectation value E. Fortunately, it is possible

to manipulate Equation 2.18 with unitary transformation to obtain a standard eigenvalue

equation.

fi(1)χi(1) = ǫiχi(1) [2.19]

Let’s consider Equations 2.15-2.16. We can see that Hartree-Fock equation is non-linear.

Solving equation for one electron will affect the solutions for the other electrons in the

system. The general strategy called self-consistent field (SCF) approach is a way to solve this

equation. First, a set of trial solutions χi to the Hartree-Fock equations are obtained. These
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are used to calculate the Coulomb and exchange operators. The Hartree-Fock equations are

solved, giving a second set of solutions χi, which are used in the next iteration.

2.1.5 Roothan-Hall Equations

Numerical solutions are common in solving the Hartree-Fock equations [50] for atoms;

however, for molecules, introduction of a known set of basis functions, which was contributed

by Roothaan and Halls, converts the differential equations to a set of algebraic equations

and solved by standard matrix techniques.

The unknown molecular orbitals ψi can be expanded as a linear combination of a set

of K known basis functions {φν |ν = 1, 2, · · · , K}:

ψi =
K
∑

ν=1

cνiφν [2.20]

Basis functions are one-electron orbitals and correspond to the atomic orbitals. For a given

basis set and a given functional form of the wave function, the best set of coefficients is that

for which the energy is a minimum at which point

∂E

∂cνi
= 0 [2.21]

for all coefficients cνi. The objective is thus to determine the set of coefficients that gives

the lowest energy for the system. The corresponding Fock operator for a closed-shell system

with N electrons in N/2 orbitals is

fi(1) = core(1) +
N/2
∑

j=1

{2 j(1) − j(1)} [2.22]
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By multiplying by φµ(1) on the left and integrating, the integro-differential equation, then,

transforms into a matrix equation:

K
∑

ν=1

cν1

∫

dr1φµ(1)fi(1)φν(1) = ǫi
K
∑

ν=1

cν1

∫

dr1φµ(1)φν(1) [2.23]

K
∑

ν=1

Fµνcνi = ǫi
K
∑

ν=1

Sµνcνi [2.24]

where

Sµν =
∫

dr1φµ(1)φν(1) [2.25]

Fµν =
∫

dr1φµ(1)fi(1)φν(1) [2.26]

Sµν is the overlap integral between the basis functions φµ and φν . Although the basis

functions are normalized and linearly independent, they are not necessarily orthogonal to

each other and, hence, 0 ≤ |Sµν | ≤ 1.

The elements Fµν of the Fock matrix can be expanded by substituting Equation 2.22 for the

Fock oprerator:

Fµν =
∫

dr1φµ(1) core(1)φν(1) +
N/2
∑

i=1

∫

dr1φµ(1)[2 j(1) − j(1)]φν(1) [2.27]

= Hcore
µν +

N/2
∑

j=1

K
∑

λ=1

K
∑

σ=1

cλjcσj [2(µν|λσ) − (µλ|νσ)] [2.28]
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The shorthand notation is used for the integrals in Equation 2.28 in which

(µν|λσ) ≡
∫

dr1dr2φµ(1)φν(1)
1

r12
φλ(1)φσ(1) [2.29]

(µλ|νσ) ≡
∫

dr1dr2φµ(1)φλ(1)
1

r12
φν(1)φσ(1) [2.30]

Note that the two-electron integrals may involve up to four different centers. Thus, four

different indices µ, ν, λ, σ are used for the basis functions.

Equation 2.28 can be simplified by introducing the charge density matrix, P, whose elements

are defined as:

Pλσ = 2
N/2
∑

i=1

cλicσi [2.31]

The expression for each element Fµν of the Fock matrix element for a closed-shell system of

N electrons, thus, becomes:

Fµν = Hcore
µν +

K
∑

λ=1

K
∑

σ=1

Pλσ[(µν|λσ) − 1

2
(µλ|νσ)] [2.32]

Equation 2.32 is the standard form for the expression for the Fock matrix in the Roothaan-

Haal equations.

Equation 2.24 can be written more compactly as the single matrix equation:

FC = SCE [2.33]
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Because the Fock matrix depends on the expansion coefficients F = F (C), Equation 2.33 is

nonlinear. It, thus, must be solved iteratively. Besides, to solve the problem using standard

eigenvalue methods, an equation of the form FC = CE is required. This can be manipulated

by pre-multiplying Equation 2.33 with matrix S−1/2 and then inserting the unit matrix, in

the form S−1/2S1/2 into the left-hand side of the equation:

S−1/2F(S−1/2S1/2)C = S−1/2SCE [2.34]

(S−1/2FS−1/2)(S1/2)C) = (S1/2C)E [2.35]

F′C′ = C′E [2.36]

The basis function coefficients C can be obtained from C′ using C = S−1/2C′.

2.1.6 Basis Sets

A basis set in chemistry is a set of functions used to create the molecular orbitals, which

are expanded as a linear combination of such functions with the weights or coefficients to

be determined. There are many basis sets defined for polyatomic calculation. The basis sets

defined in a series of papers by Pople and collaborators, which have been used extensively,

are briefly mentioned here as “minimal basis sets” and “advanced basis sets”. However, a

general treatment of contraction will be presented first.

Contracted Gaussian Functions Though, Slater functions are desired as the most efficient

and accurate functions in which the fewest possible terms will be required. Gaussian func-

tions have an advantage of speed of two-electron integral evaluation, comparing to Slater

functions. Contracted Gaussian functions might be chosen to approximate Slater functions.

By using a basis set of “contracted Gaussian functions”, each basis function is a fixed linear
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combination (contraction) of Gaussian functions (primitives). Integrals involving such ba-

sis functions reduce to sums of integrals involving the primitive Gaussian functions. Even

though many primitive integrals may need to be calculated for each basis function integral,

the basis function integrals will be rapidlz calculated provided the method of computing

primitive integrals is very fast. A contraction has the form.

φCGF
µ (r − RA) =

L
∑

p=1

dpµgp(αpµ, r − Rp) [2.37]

where αpµ and dpµ are the contraction exponents and coefficients and L is the length of the

contraction. gp stands for normalized Gaussian primitive functions are of the 1s, 2p, 3d, . . .

type. The origins Rp of the primitives are almost always equal to RA. Different origins for

the primitives in a contraction are used only with Gaussian lobe basis sets. In these basis sets

s, p, d, . . . functions as combinations of spherical 1s Gaussians (lobes= placed appropiately

in space.

Minimal Basis Sets

A common naming convention for minimal basis sets is STO-XG, where X is an integer.

This X value represents the number of Gaussian primitive functions comprising a single ba-

sis function. In these basis sets, the same number of Gaussian primitives comprise core and

valence orbitals. The minimal basis sets are known for several deficiencies: (i) The atoms

at the end of a period are described using the same number of basis functions as the atoms

at the beginning of the period. (ii) The radial exponents are not allowed to vary and the

function can not expand or contract in size in accordance with the molecular environment.

(iii) They can not describe non-spherical aspects of the electronic distribution because the

same radial component are used for all functions that incorporate anisotropy.

Advanced Basis Sets
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Using more than one function for each orbital can address the problems with minimal

basis sets. For any molecular system, the valence electrons principally take part in the

bonding. In recognition of this fact, basis functions are added to valence orbitals. The

notation for these split-valence basis sets is typically X-YZg. In this case, X represents the

number primitive Gaussian functions comprising each core atomic orbital basis function. The

Y and Z indicate that the valence orbitals are composed of two basis functions each, the first

one composed of a linear combination of Y primitive Gaussian functions, the other composed

of a linear combination of Z primitive Gaussian functions. In this case, the presence of two

numbers after the hyphens implies that this basis set is a split-valence double-zeta basis

set. Split-valence triple- and quadruple-zeta basis sets are also used, denoted as X-YZWg,

X-YZWVg, etc.

Simply increasing the number of basis functions can not overcome the problems with non-

isotropic charge distribution completely. The charge distribution about an atom in a molecule

is usually perturbed in comparison with the isolated atom, for example, the electron cloud

in an isolated hydrogen atom is symmetrical, but when the hydrogen atom is present in a

molecule the electrons are attracted toward the other nuclei. The most common solution

to this problem is to introduce polarization functions into the basis set. The polarization

functions have a higher angular quantum number and correspond to p orbitals for hydrogen

and d orbitals for the first- and second-row elements. An asterisk (*) indicates the use of

polarization functions. That is 6-31G* refers to a 6-31 basis set with polarization functions

on non-hydrogen atoms. Use of polarization function on hydrogen can be denoted by adding

one more asterisk (e.g. 6-31G**).

So far the basis sets fail to deal with species such anions and molecules containing lone pairs.

The failure arises because the amplitudes of the Gaussian basis functions are rather low far

from the nuclei while such species have a significant amount of electron density away from

the nuclear centers. This deficiency can be cured by adding highly diffuse functions to the

basis set. To use these functions, a ’+’ or ’++’is added, for example, 6-31+G** contains an

additional single set of diffuse s- and p-type and 6-31++G** includes the diffuse functions

for hydrogen as well as for heavy atoms.
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2.1.7 Basis Set Superposition Error

Suppose one wishes to calculate the energy of formation of a bimolecular complex AB.

This energy could be obtained by subtracting the energy of the two isolated molecules A and

B from that of complex A-B. However, the energy difference obtained by such an approach

will overestimate of the true value. This discrepancy arises from a phenomenon known as

basis set superposition error (BSSE). As the molecules A and B approach each other, the

energy of the system falls not only because of the favorable intermolecular interactions but

also because the basis functions on each molecule that provide a better description of the

electronic structure around the other molecule. It is clear that the BSSE would be expected

to be particularly significant when small, inadequate basis sets are used. They do not provide

for an adequate representation of the electron distribution far from the nuclei, particularly

in the region where non-covalent interactions are strongest. Counterpoise correction offered

by Boys and Bernadi can be performed by including the entire basis set in all calculations:

A + B → AB [2.38]

∆E = EAB(AB) − [EA(AB) + EB(AB)] [2.39]

The calculation of the energy of the speicies A is performed in the presence of ghost orbitals

of B; that is without the nuclei or electrons of B. Similar calculation is performed for B using

the ghost orbitals on A.

2.1.8 Møller-Plesset Perturbation

Since the Hartree-Fock calculation takes into account the average affect of electron

repulsion, but, not the explicit electron-electron interaction, this method lacks electron cor-

relation. Consequently, the probability of finding an electron at some location around an
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atom is determined by the distance from the nucleus but not the distance to the other elec-

trons. This is not physically true. Correlation is important for several reasons. These include

improvement of the accuracy of computed energies and molecular geometries.

A number of types of calculations begin with a Hartree-Fock calculation and then

correct for correlation. Møller and Plesset proposed the way to tackle the problem of elec-

tron correlation based upon Rayleigh-Schrödinger perturbation theory, in which the ‘true’

Hamiltonian is expressed as the sum of the Hartree-Fock Hamiltonian as a ‘zeroth order’

Hamiltonian 0 and a perturbation .

= 0 + [2.40]

Suppose we wish to solve the eigenvalue problem

Ψi = ( 0 + )Ψi = EiΨi [2.41]

where we know the eigenfunctions and eigenvalues of 0,

0Ψ
(0)
i = E

(0)
i Ψ

(0)
i . [2.42]

If the perturbation, is small enough, it was expected Ψi and Ei to be close to Ψ
(0)
i and

E
(0)
i , respectively. A procedure which gradually improve the known eigenfunctions, Ψ

(0)
i

and eigenvalues, E
(0)
i to the eigenfunctions and eigenvalues of the true Hamiltonian, is

devised by introducing an ordering parameter λ, which will later, be set equal to unity

= 0 + λ . [2.43]
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The exact eigenfunctions and eigenvalues are now expanded in a Taylor series of λ,

Ψi = Ψ
(0)
i + λΨ

(1)
i + λ(2)Ψ2

i + ... [2.44]

Ei = E
(0)
i + λE

(1)
i + λE

(2)
i + ... [2.45]

The E
(n)
i is called the nth-order correction.

E
(0)
i =

∫

Ψ
(0)
i 0Ψ

(0)
i dτ [2.46]

E
(1)
i =

∫

Ψ
(0)
i Ψ

(0)
i dτ [2.47]

E
(2)
i =

∫

Ψ
(0)
i Ψ

(1)
i dτ [2.48]

E
(3)
i =

∫

Ψ
(0)
i Ψ

(2)
i dτ [2.49]

In Møller-Plesset perturbation theory the unperturbed Hamiltonian 0 is the sum of Fock

operators for N electrons:

0 =
N
∑

i=1

fi =
N
∑

i=1





core +
N
∑

j=1

( i + i)



 [2.50]

The Hartree-Fock wave function, Ψ
(0)
0 is an eigenfunction of 0 and the corresponding

zeroth-order energy E
(0)
0 is equal to the sum or orbital energies for the occupied molecular

orbitals:
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E
(0)
0 =

occupied
∑

i=1

ǫi [2.51]

The true Hamiltonian is equal to the sum of the nuclear attraction terms and electron

repulsion terms:

=
N
∑

i=1

( core) +
N
∑

i=1

N
∑

j=i+1

1

rij
[2.52]

Thus, the perturbation which is the difference between the true Hamiltonian and the

zeroth order Hamiltonian 0 is given by:

=
N
∑

i=1

N
∑

j=i+1

1

rij
−

N
∑

j=1

( j + j) [2.53]

Substituting Equation 2.53 in Equation 2.47, then, the first-order energy E
(1)
0 can be given

as:

E
(1)
0 = −1

2

N
∑

i=1

N
∑

j=1

[(ii|jj) − (ij|ij)] [2.54]

The sum of the zeroth-order and first-order energies corresponds to the Hartree-Fock energy

for a closed-shell system:

E
(0)
0 + E

(1)
0 =

N
∑

i=1

ǫi −
1

2

N
∑

i=1

N
∑

j=1

[(ii|jj) − (ij|ij)] [2.55]
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Therefore, it is necessary to use at least second order Møller-Plesset perturbation theory,

which is referred to as MP2, to obtain an improvement on the Hartree-Fock energy. The

higher-order wave function Ψ
(1)
0 in Equation 2.48 can be expressed as linear combinations of

solutions to the zeroth-order Hamiltonian:

Ψ
(1)
0 =

∑

j

c
(1)
j Ψ

(0)
j [2.56]

The Ψ
(0)
j in Equation 2.56 will include single, double, etc. excitations obtained by promoting

electrons into the virtual orbitals obtained from a Hartree-Fock calculation. The second-order

energy is given by:

E
(2)
0 =

∑

i

∑

j>i

∑

a

∑

b>a

∫ ∫

dx1dx2χi(1)χj(2) 1
r12

[χa(1)χb(2) − χb(1)χa(2)]

ǫa + ǫb − ǫi − ǫj
[2.57]

where i and j are indices for summations over occupied orbitals while a and b are indices for

summations over virtual orbitals.

The advantage of perturbation theory is that it is size-consistent; however, Møller-Plesset is

not variational and can give energies that are lower than the ‘exact’ energy.

2.2 Curve Fitting: Least Square Estimation

One method of building mathematic model to describe scientific phenomena is to cor-

relate between variables in the experiment as a function or an equation to explain the phe-

nomena. Estimation by a least square method would yield the best function because of the

least of a summation over all the errors in the data. Thus, when a curve of a function is

written, it will pass in the area that data are distributed around and it will intersect over



24

some points of the data. The principle of the least square method is as follows:

If there are n sets of coordinates (x, y), a given function estimating these data is G(x) in

whose form is as follows:

G(x) = a1g1(x) + a2g2(x) + . . . amgm(x) . . . [2.58]

where m ≤ n and g1(x), . . . gm(x) are functions of x which can be in forms of polynomial,

logarithm or exponential. Equation 2.58 will be complete only if values of coefficients,

a1, a2, . . . am enable the function G(x) yields the estimate values with least deviation from

the data. If a variance over all data is defined as follows:

=
n

∑

i=1

[yi − G(xi)]
2 [2.59]

Required coefficients, a1, a2, . . . am which minimize can be determined from the following

relations:

∂

∂a1
= 0

∂

∂a2
= 0

... [2.60]

∂

∂am
= 0

From the relations 2.60, m Equations are derived and coefficients a1, . . . am can be solved

using linear equation system.
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Fitting functions to estimate the data by the least square method is also called “Regression”

and if a relation of n given points is linear, the method determining the linear equation is

called “Linear Regression”:

G(y) = A + Bx [2.61]

Comparing Equation 2.61 to Equation 2.58, it can be found that g1(x) = 1, g2(x) = x and

other terms is zero. Variance over all these data is

=
n

∑

i=1

(yi − A − Bxi)
2 [2.62]

A,B are parameters we wish to find which minimize . That is

∂

∂A
= −2

n
∑

i=1

(yi − A − Bxi) = 0 [2.63]

∂

∂B
= −2

n
∑

i=1

(yi − A − Bxi)(xi) = 0 [2.64]

Rearrange Equations and :

nA + B
∑

xi =
∑

yi [2.65]

A
∑

xi + B
∑

x2
i =

∑

xiyi [2.66]

A and B, thus, can be solved

A =

∑

yi
∑

x2
i −

∑

xi
∑

xiyi

n
∑

x2
i − (

∑

xi)
2 [2.67]
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B =
n

∑

xiyi −
∑

xi
∑

yi

n
∑

x2
i − (

∑

xi)
2 [2.68]

The method of linear regression can applied to those data which their relations are not linear.

For example, a given G(x) = A+Blnx. If we give X = lnx and Y = G(x), then the equation

becomes Y = A + BX.

2.3 Statistical Mechanics

2.3.1 Introduction

Statistical mechanics [51] is the mathematical tool that provides a framework for re-

lating the microscopic properties of individual atoms and molecules to the macroscopic or

bulk properties of materials, explaining thermodynamics as a natural result of statistics and

mechanics (classical and quantum) at the microscopic level.

Suppose certain macroscopic properties of a complex system are known, they do not

characterize the system completely because there are a huge number of possible microstates

that all have the same macroscopic properties. Knowing those macroscopic properties, the

microstate of the system is still unknown.

An ensemble is defined as an idealization consisting of a huge number of mental copies of a

system, considered all at once, each of which represents a possible microstate that the real

system might be in. It is introduced into the statistical mechanics as a basic tool to obtain

explicit formulas for many of the thermodynamic quantities of interest, often in terms of the

appropriate partition function.

2.3.2 Ensembles and Thermodynamic Connection

Among many possible ensembles the most common ones are the microcanonical, the

canonical and the grand canonical ensemble that are consistent with isolated, closed and

opened systems. Only the basic knowledge of first two types, which were used in the present

study, are given here
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Microcanonical Ensemble

A microcanonical ensemble is an ensemble consisting of copies of an isolated system

and its analysis is correspondingly simple. By the assumption that the system is isolated,

each copy in the ensemble has a common fixed energy E. The system may have many

different microstates corresponding to the energy E. If Ω(E) is the number of microstates

corresponding to the same energy E, the probability that a system chosen at random from

the ensemble would be in a given microstate is simply 1
Ω . This leads to a formula for entropy:

S = kBlnΩ(E) [2.69]

where kB is the Boltzmann constant. Or, equivalently,

Ω(E) = ekBS [2.70]

The entropy S, which describes the physical situation is the characteristic function of this

ensemble.

Canonical Ensemble

A canonical ensemble is an ensemble of dynamically similar systems, each of which

can share its energy with a large heat reservoir, or heat bath. The distribution of the total

energy amongst the possible dynamical states (i.e. the members of the ensemble) is given

by the partition function. A generalization of this is the grand canonical ensemble, in which

the systems may share particles as well as energy.

In some derivations, the heat bath is considered to comprise a large number of copies of the

original system, loosely coupled to the original and to each other, so as to share the same

total energy - this then makes the combined (system+heat bath) describable by the statistics
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of a microcanonical ensemble

Given a system A and the reservoir B are in thermal equilibrium, which the total energy E∗

is a sum of the energy of the m− th state Em for the system and the energy associated with

the heat bath E′:

E∗ = E′ + Em [2.71]

Notice E is constant, since the system C which is a combination of A and B is thought

to be isolated. Therefore the probability of A being in the m − th state is proportional to

corresponding number of microstates available to the reservoir:

pm = c′Ω′(E′) [2.72]

Taking the logarithm gives

lnpm = lnc′ + lnΩ′(E′) = lnc′ + lnΩ′(E∗ − Em) [2.73]

Since Em is small compared to E∗, a Taylor series expansion can be performed on the

logarithm around the energy E′. An appropriate approximation can be obtained by keeping

the first two terms of the Taylor series expansion:

lnpm = lnc′ + lnΩ′(E∗) − 1

kBT
Em = lnc′ + lnΩ′(E∗) − βEm [2.74]
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where T is the temperature in Kelvin.

Exponentiating Equation 2.74 gives

pm = ce−βEm [2.75]

where

c = c′Ω′(E∗) [2.76]

The probabilities must sum to 1, thus

∑

m
pm = 1 =

∑

m
ce−βEm

c =
1

∑

m e−βEm

=
1

Z(β)
[2.77]

Z(β) is known as the partition function for the canonical ensemble. The partition

function can be used to find the expected value of any microscopic property of the system,

which can then be related to macroscopic variables. For instance, the expected value of

the microscopic energy E is interpreted as the microscopic definition of the thermodynamic

variable internal energy U which can be obtained by taking the derivative of the partition

function with respect to the temperature:

U =< E >=

∑

i Eie
−βEi

Z
= −dlnZ

dβ
[2.78]
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The entropy can be calculated by

S

kB
= −

∑

i

pilnpi =
∑

i

e−βEi

Z
(βEi + lnZ) = lnZ + βU [2.79]

which implies that

− lnZ

β
= U − TS = F [2.80]

is the Free energy of the system or in other words,

Z = e−βF [2.81]

The free energy F is the characteristic function for this kind of ensemble. Having micro-

scopic expressions for the basic thermodynamics potentials U , S and F is sufficient to derive

expressions for other thermodynamics quantities. For example, pressure which is a combi-

nation of known thermodynamics relation ships between U and V can be expressed in terms

of temperature, volume and the partition function:

P =
1

β

(

∂ ln Z

∂V

)

N,T

[2.82]
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2.4 Molecular Dynamics Simulations

2.4.1 Introduction

A brief concept of statistical mechanics was presented. Statistical mechanics provides a

means for determining physical properties that are associated with a macroscopic sample of

the bulk liquid, solid and so on as the net result of the properties of many molecules in many

conformations, energy states and the like. In practice, the difficulty is not the statistical

mechanics, but obtaining all the information about possible energy levels, conformations

and so on. Molecular dynamics (MD) simulations is one of two methods for obtaining this

information. (Another method is called ’Monte Carlo’ simulations whose details will be not

mentioned, except for technical details which are applied to both two simulation methods.)

MD simulation is a simulation of the time-dependent behavior of a molecular system.

It uses (in most cases classical) mechanics to calculate the trajectories of the particles that

form the system. The energy expression is used to compute the forces on the atoms for any

given geometry. To carry out the MD simulation, the program is constructed in the rule, as

following:

1. The parameters specifying the conditions of the system, e.g., initial temperature, par-

ticle number, time step, total time, are read in.

2. The system is initialized.

3. The forces for each pair of paricles in the system have been computed.

4. The Newton’s equation has been integratd. This step and the previous steps of force

calculations, the core of MD simulation, will be repeated until the total or evaluation

time is reached.

5. After the core loop is completed, either dynamic or structural quantities could be

carried out now.
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2.4.2 Newton’s Laws of Motion

In MD, successive configurations of the system are generated by integrating Newton’s

laws of motion. The result is a trajectory that specifies the positions and velocities of the

particles in the system with respect to time. Newton’s law can be stated as follows:

1. A body continues to move in a straight line at constant velocity unless a force acts

upon it.

2. Force equals the rate of change of momentum.

3. To every action there is an equal and opposite reaction.

The trajectory is obtained by solving the differential equations incorporated Newton’s second

law (F = ma):

d2xi

dt2
=

Fxi

mi
[2.83]

This equation describes the motion of a particle of mass mi along coordinate xi with the

force on the particle Fxi
.

2.4.3 Finite Difference Methods

In realistic models of intermolecular interactions, the force on each particle will change

whenever the particle changes its position, or whenever any of the other particles with which

it interacts changes position. This leads to the coupled motions of all the particles in the

system or many-body problem that can not be solved analytically. A finite different method

is introduced to integrate the equations of motion under such circumstances.

The essential idea of the finite difference method is that the integration is broken down into

many small stages, each separated in time by a fixed time δt. The net force on each particle
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at a time t is calculated as the vector sum of its interactions with other particles. From the

force the accelerations of the particles are determined. Then, they are combined with the

positions and velocities at a time t to calculate the positions and velocities at a time t + δt.

The force is assumed to be constant during the time step.

There are many algorithm for integrating the equations of motion using finite difference

methods. All algorithms assume that the positions and dynamics properties (velocities,

accelerations, etc.) can be approximated as Taylor series expansions:

r(t + δt) = r(t) + δtv(t) +
1

2
δt2a(t) +

1

6
δt3b(t) + ... [2.84]

v(t + δt) = v(t) + δta(t) +
1

2
δt2b(t) + ... [2.85]

a(t + δt) = a(t) + δtb(t) + ... [2.86]

where v is the velocity (the first derivative of the position r with respect to time), a is the

acceleration (the second derivative), b is the third derivative, and so on. The Verlet integrator

[52] is probably the most widely used algorithm for integrating the equations of motion in MD

simulations. Several variation on the Verlet integrator have been developed. The velocity

Verlet integrator developed by Swope gives positions, velocities and accelerations at the same

time and does not compromise precision:

r(t + δt) = r(t) + δtv(t) +
1

2
δt2a(t) [2.87]

v(t + δt) = v(t) +
1

2
δt[a(t) + a(t + δt)] [2.88]

Three stages have been performed. First, the positions at t + δt are calculated according to

Equation 2.87 using the velocities and the accelerations at time t. Then, the velocities at

time t + 1
2δt are then determined using:
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v(t +
1

2
δt) = v(t) +

1

2
δta(t) [2.89]

New forces are next computed from the current positions, giving a(t + δt). In the final step,

the velocities at time t + δt are determined using:

v(t +
1

2
δt) = v(t +

1

2
δt) +

1

2
δta(t + δt) [2.90]

2.4.4 Energy Expression

All of the information needed to calculate the dynamics of a system can be found from

the potential energy function U of the system. From Newton’s laws, the force on atom i in

the system can then be determined from the equation.

fi = −∇iu [2.91]

An integrator is then used to calculate the trajectories of the atoms from the forces.

Potential functions and parameter sets are derived from both experimental work and high-

level quantum mechanical calculations. Potential functions may provide parameters for every

atom in a system or may treat the hydrogen atoms and their connected atom as a single

interaction center or psudo atom.

The basic functional form of a potential function encapsulates both bonded terms relating

to atoms that are linked by covalent bonds, and non-bonded terms describing the long-

range electrostatic and van der Waals forces. The various contributions are schematically

represented in Figure 2.1
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Figure 2.1 Schematic representation of the four key contributions to potential for a molecular
system: bond strecthing, angle bending and torsional terms and non-bonded interactions

Bond Stretching

Potential energy curve for a typical bond stretching can be modeled by the Morse

potential:

u(l) = De{1 − exp[−a(l − l0]}2 [2.92]

De is the depth of the potential energy minimum and a = ω
√

µ/2De, where µ is the reduced

mass and ω is the frequency of the bond vibration. ω is related to the bond stretching

constant k by ω =
√

k/µ. l0 is the reference bond length. Though, the Morse potential is

not amenable to efficient computation and requires three parameters to be specified for each

bond. It’s useful in calculations for bonds to deviate significantly from their reference values;

the Morse curve describes a wide range of behavior from the strong equilibrium behavior to

dissociation.
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A simpler functional form is to use a Hooke’s law formula in which the energy varies with

the square of the displacement from the reference bond length l0:

u(l) =
k

2
(l − l0)

2 [2.93]

The model is reasonable approximation to the shape of the potential energy curve at the

bottom of the bottom of the potential well, at distances that correspond to bonding in

ground-state molecules. Therefore, it is usually used in molecular mechanics calculations

where bond dissociation is rare.

Angle Bending

The deviation of angles from their reference values is also often described using a

Hooke’s law or harmonic potential:

u(θ) =
k

2
(θ − θ0)

2 [2.94]

The contribution of each angle is characterized by a force constant k and a reference value

θ0. For linear molecules θ = 180 can cause problems. In this case, the harmonic cosine

potentials are more suitable for MD simulations by avoiding a factor 1/sin 1800 which will

be derived from calculating force from Equation 2.94. The general form of the harmonic

cosine potentials can be express as:

u(θ) =
k

2
(cosθ − cosθ0)

2 [2.95]

Bond Rotation (Torsional)
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Deformation from the reference value by bond-stretching and angle-bending requires

quite substantial energy. The variation in structure and relative energies is mostly due to

the complex interplay between the torsional and non-bonded contributions.

Torsional potentials are almost always expressed as a cosine series expansion:

u(ω) =
N
∑

n=0

Vn

2
[1 + cos(nω − γ)] [2.96]

ω is the torsion angle. Vn in Equation 2.96 give a qualitative indication of the relative

barriers to rotation. n is the multiplicity; its value gives the number of minimum points

in the function as the bond is rotated through 3600. γ is the phase factor that determines

where the torsion angle passes through its minimum value.

An alternative equivalent expression is:

u(ω) =
N
∑

n=0

Cncos(ω)n [2.97]

Electrostatic

Each element can attract electrons differently, giving rise to an unequal distribution of

charge in a molecule. This charge distribution can be represented in a number of ways. One

common approach is to arrange fractional point charges to the nuclear centers. These charges,

then, are often referred to as partial atomic charges or net atomic charges. The electrostatic

interaction between two molecules or between different parts of the same molecule can be

calculated as a sum of interactions between pairs of point pcharges, using Coulomb’s law:

u =
NA
∑

i=1

NB
∑

j=1

qiqj

4πǫ0rij
[2.98]
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NA and NB are the numbers of point charges in molecules A and B, respectively.

However, an accurate representation of a molecule’s electrostatic properties may require

charges to be placed at locations other than at the atomic nuclei. For example, molecular

nitrogen has a dipole moment of zero. Its total charge is also zero. But, nitrogen molecule

has a quadrupole moment. The simplest way to model this is to place three partial charges

along the bond. A charge of −q at each nucleus and +2q at the center of mass.

Van der Waals

Electrostatic interactions can not account for all of the non-bonded interactions in a

system. Noble gases are an obvious example. They are very stable and tend not to interact.

This is why it is difficult to condense them into liquids. However, the larger the atom of the

noble gas (the more electrons it has) the easier it is to condense the gas into a liquid. This

happens because, when the electron cloud surrounding the gas atom gets large, it becomes

a temporary dipole. This induces the same shift in neighboring atoms and spreads from one

atom to the next. Deviations from ideal gas behavior were famously quantitated by van der

Waals. Thus, the forces that give rise to such deviations are often referred to as van der

Waals forces.

The van der Waals interactions arise from a balance between dispersive and exchange-

repulsive interactions between atoms and molecules. An instantaneous dipole arises during

the fluctuations in the electron clouds induce a dipole in neighboring atoms, giving rise to

a long-range attractive inductive effect while, at short distance, decrease in the separation

cause a large increase in the energy. The interaction is due to electrons with the same spin,

therefore, it is often referred to as exchange force. The effect of exchange is to reduce the

electrostatic repulsion between pairs of electrons. This reduces electron density in the inter-

nuclear region and leads to repulsion between between incompletely shielded nuclei.
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Figure 2.2 The Lennard-Jones potential

The best known of the van der Waals potential functions is the Lennard-Jones 12-6 function,

which takes th following form for the interaction between two atoms:

u(r) = 4ǫ

[

(

σ

r

)12

−
(

σ

r

)6
]

[2.99]

There exist just two adjustable parameters in Equation 2.99: the collision diameter σ for

which the separation at the energy is zero and the well depth ǫ The Lennard-Jones potential

is characterized by an attractive part that varies as r−6 and a repulsive part that varies as

r−12. Different powers have also been used for the repulsive part of the potential. Lennard-

Jones potential can be written in the following general form:

u(r) = kǫ
[(

σ

r

)n

−
(

σ

r

)m]

[2.100]
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where k = n
n−m

(

n
m

)m/(n−m)
.

Several formulations have been proposed. Buckingham potential replaces the r−12 term with

exponential term:

u(r) = ǫ





6

α − 6
exp[−α(r/r∗ − 1)] − α

α − 6

(

r∗

r

)6


 [2.101]

There are three adjustable parameters in the Buckingham potential (σ, r∗ and α). It must

be noted here that this function give strongly attractive at very short distances. So the

program must check that atoms are not becoming to close.

Two main reasons for developing the functional form is to obtain a more accurate reproduc-

tion for the dispersion interaction and keep the potential finite as the interatomic potential

approach zero (unlike the Lennard-Jones function, which becomes infinite).

2.4.5 Technical Details

In this section, the important computational tricks which compromise between com-

putational time and accuracy of the results will be discussed. Actually, these useful tricks

have no deeply physical significance.

Periodic Boundary Conditions

Normally, only a small number of particles are performed in a simulation. Thus,

one must give an appropriate surroundings to the simulated particles in order to forbid

surface effect. Otherwise, the particles will behave like a tiny drop. Therefore, a trick called

periodic boundary condition [53] is employed: a cubic box containing the system particles

is replicated in all directions to give a periodic array. Replication of two-dimensional box is

shown in Figure 2.3.
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Figure 2.3 Two-dimensional periodic boundary conditions: minimum image convention is
applied when cutoff radius is as small as a half of boxlength.

An interested box is called a central box while neighbors surrounding it are called image

boxes. In the two-dimensional a central box is surrounded by eight images; in three dimen-

sions central box would have 26 nearest images. The coordinates of the particles in the image

boxes can be computed simply by adding or subtracting integral multiples of the box sides.

If a particle leave the central box during the simulation, then, an image particle will enter

the central box from the opposite side, as displayed in Figure 2.3. The number of particles

within the central box thus remains constant.

Cutoff Radius

Employing the periodic boundary condition, uncountable particles interact an inter-

ested particle. Calculating all these pairs is impractical and meaningless because the non-

bonded potential falls off very rapidly with distance. For example, at a distance of 2.5σ, the

Lennard-Jones potential has just 1% of its value at σ. Pair interactions will be calculated

within a certain distance, called cutoff radius (rC). Potential energy and force is set to be

zero for a distance larger than cutoff radius.
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Minimum Image Convention

When the range rC of the potential is as small as the half of the box length, the so

called minimum image convention is applied. Pairs of interested atom with the other closest

atoms or images that fall in the cutoff radius will be calculated for potential energies and

forces as illustrated in Figure 2.3. If the cutoff radius must be large enough to cover an

interatomic distance where potential energy becomes insignificant, it should be noted here

that box length L should not be larger than the cutoff diameter. Otherwise, an atom sees

other atoms twice.

Shifted Potential

A cutoff introduces a discontinuity in both the potential energy and the force near the

cutoff value. This creates problems in MD simulations where energy conservation is required.

There are several ways to counteract the effect of this continuity. One approach is to use a

shifted potential by adding a linear term that make the derivative zero at the cutoff.

Given the original Lennard-Jones potential uLJ(r), shifted potential u(r) can be written as

follows:

u(r) = uLJ(r) − (rC − r)∆f − uLJ(rC) [2.102]

In Equation 2.102, u(r) = 0 for r > rC.

Though, the shift improves the validity of energy conservation and numerical stability, in

some cases, it makes significant deviation from the true potential and calculated thermody-

namic properties.
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2.5 Evaluation

2.5.1 Heat of Adsorption

The isosteric heat of adsorption (Qst) is a property often used to validate fitted potential

functions. At infinite dilution it is easy to evaluate [47] by the relation

Qst = −
(

〈U〉gz − 〈U〉z − 〈U〉g
)

+ kBT [2.103]

where 〈U〉gz, 〈U〉g and 〈U〉z are the ensemble average of the potential energy of the zeolite-

guest system, the energy of an isolated hydrocarbon and the average zeolite energy, respec-

tively. For the rigid zeolite lattice at high dilution, e.g., 1 molecule per unit cell, the terms

〈U〉z can be neglected. Then, Qst in Equation 2.103 becomes

Qst = −
(

〈U〉gz − 〈U〉g
)

+ kBT. [2.104]

2.5.2 Self Diffusion

Diffusion is one type of transport phenomena. The expression “diffusion” is used for

the movement of particles from one place to another [54] by Brownian motion. In the case

of the so called transport diffusion which is often simply but unprecisely called diffusion

it causes a particle flux reducing concentration gradients. This flux must be distinguished

from other fluxes caused by pressure gradients. If there is no concentration gradient, then,

the spread of some marked particles which initially were close to each other over the total

system is called self diffusion. It is a physical process rather than a chemical reaction, which

requires no net energy expenditure. In cell biology, diffusion is often described as a form of

passive transport, by which substances cross membranes.

The different forms of diffusion can be modeled quantitatively using the diffusion equation,

which goes by different names depending on the physical situation.
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In the late 1820s Robert Brown gave the expression of a phenomenon, which is closely

related to diffusion. It is about the behavior resulting from the continuously changing inter-

action between particles of the surrounding fluid. Analogy, the individual particles undergo

a sequence and apparently random movements. This phenomenon is referred to as Brownian

motion [55].

An experimentally accessible quantity that describes Brownian motion is the time depen-

dence of the concentration distribution, starting from the assumptions that the particles do

not interfere with each other and may step with equal probability in any direction. Self dif-

fusion were elaborated from Brownian motion by Einstein [56]. The self diffusion coefficients

are calculated from the particle displacements. The process of self-diffusion was generally

related to the moments of the propagator [57, 58, 59]. The propagator P (r, t) represents the

probability density to find a particle at position r at time t.

The nth moment of the propagator is defined by the relation,[59]

〈

|r − r0|n
〉

=
∫

|r − r0|n P (r, t)dr. [2.105]

In the case of isotropic diffusion and of a homogeneous system the propagator is

P (r, t) = (4πDt)−3/2exp

{

−(r)2

4Dt

}

[2.106]

The moments of displacement yield in this case:

〈|r − r0|〉 = 4

√

Dt

π
[2.107]

〈

(r − r0)
2
〉

= 6Dt [2.108]

〈∣

∣

∣(r − r0)
3
∣

∣

∣

〉

=
32(Dt)3/2

√
π

[2.109]
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〈

(r − r0)
4
〉

= 60(Dt)2 [2.110]

...

and D can be obtained from each one of these moments.

In the case of anisotropy, the three components of the probability distribution (propagator)

are assumed to be uncorrelated and hence

P (r, t) = Px(x, t)Py(y, t)Pz(z, t)

=
(4πt)−3/2

√

DxDyDz

exp

{

− x2

4Dxt
− y2

4Dyt
− z2

4Dzt

}

[2.111]

The moments for each direction e.g. x− direction [60] are

〈|x − x0|〉 = 2

√

Dxt

π
[2.112]

〈

(x − x0)
2
〉

= 2Dxt [2.113]

〈∣

∣

∣(x − x0)
3
∣

∣

∣

〉

=
8(Dxt)3/2

√
π

[2.114]

〈

(x − x0)
4
〉

= 12(Dxt)2 [2.115]

...

The D values estimated from these moments must synchronize each other in the case of

normal diffusion for t values larger than the decay time of the velocity auto-correlation

function. The elements of the diffusion tensor, corresponding to the x−, y− and z-axes.
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2.5.3 Anisotropic Effect on Self Diffusion

It has been observed experimentally and theoretically that the diffusion of alkanes and

light gases in silicalite–1 is anisotropic [61, 62, 63, 64, 65]. To visualize this effect, a formula

for the relation between the components of the diffusivity tensor (D) proposed by Kärger et

al [65]. Equation 2.116 has been applied,

a2

Dx
+

b2

Dy
=

c2

Dz
[2.116]

where a, b and c are the unit cell parameters (see Figure 1.1b). The deviation from Equation

2.116 can be accounted by introducing a parameter [61, 66],

β =
c2/Dz

a2/Dx + b2/Dy
[2.117]

where β = 1 denotes random processing, e.g., a guest molecule passing an intersection

continues the diffusion path independent of how it gets to the intersection. A hint on

preferentially continuative diffusion path either along in one or the same channel type is

when β > 1. Vice versa, a higher diffusivity in z -direction, that is only possible by changes

between straight and sinusoidal channels, occurs if β < 1. The interchange between the two

channel types is more probable in this case.

2.5.4 Radial Distribution Function

The radial distribution function (RDF) allows a straightforward theoretical measure-

ment in a simulation to the real laboratory experiment measurements, e.g., neutron on

X-ray scattering. It is basically defined as the ratio between the average number density at

a distance from any determined atom r and the overall number density [67, 68]:
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gij(r) =
Nj(r)

ρij∆V (r)
[2.118]

where ∆V (r) is a volume of spherical shell of thickness δr at a distance r. ρij is a number

density of unrepeated pair between atom i and atom j. A number of particles of type b

around a particle i in the volume ∆V are collected as Nj(r). The evaluation of g(r) as

shown in Equation 2.118 is displayed in Figure 2.4.

Figure 2.4 Evaluation of number of particles of the type j around a particle of type i in the
volume ∆V .



CHAPTER III

METHODOLOGY

As it was written in Chapter that aim of this work is to study the structural details

of the system using MD simulation method applying intermolecular potentials which devel-

oped from the ab initio data. Content of this chapter starts with detailed development of

the ab initio fitted potentials. Then, followed by declaration of detailed modeling in MD

simulations.

3.1 Development of Ab Initio Fitted Potentials

3.1.1 Fragment Representing Silicalite-1

To develop the n-pentane/silicalite-1 potentials, it is not possible to perform quantum

chemical calculation using complete unit cell of the crystal. Therefore, a fragment consisting

of 10 oxygen and 10 silicon atoms, or 10 O-membered ring, has been used to represent the

silicalite–1. The fragment was, then, saturated with hydrogen atoms as shown in Figure

3.1b.

Figure 3.1 Schematic representation of: (a) the channel system within one unit cell of
silicalite-1; (b) a 10-oxygen membered ring-fragment of silicalite-1.
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Positions and orientations of the hydrogen atoms were optimized at the Hartree Fock (HF)

level with 6-31G(d).

3.1.2 Ab Initio Calculations

Energies representing both n-pentane/silicalite–1 fragment and n-pentane/n-pentane

interactions were calculated for the configurations which were generated as follows:

n-pentane/silicalite-1

The n-pentane molecule was first positioned at the center of the fragment in the con-

figuration shown in Figure 3.2.

Figure 3.2 Schematic representation of n-pentane/silicalite–1 complex where n-pentane was
positioned at the origin of the cartesian coordinates (hydrogen atoms connected to heavy
atoms are not displayed).

Then, 189 configurations were generated by varying coordinates of n-pentane in terms of

molecular translation and rotation along x, y and z -axes.

n-pentane/n-pentane

Similar procedures as performed for the guest/host intermolecular potential, it was also

applied to the guest/guest system. The center of mass of the first n-pentane was located at

the origin and that of the second one at 3 Å on the x -axis (Figure 3.3).

Positions and orientations of the second n-pentane were varied in terms of its translation

and rotation along the x -, y- and z -axes. The distance between the two molecules was

extended until the interaction approaches zero. In addition, flexibility of the n-pentane

was also taken into account by varying all CCCC torsional angles of both molecules. With
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Figure 3.3 Starting configuration of n-pentane/n-pentane dimer which was used to develop
the intermolecular pair potential.

this procedure, 1300 configurations of the n-pentane dimer have been generated. Quantum

chemical calculations were performed at MP2 level [17, 69]. The basis set superposition error

(BSSE) was also taken into account for all data points.

3.1.3 Analytical Form of the Fitted Functions

The calculated interaction energies, E(r), were fitted to analytical functions of the

type:

∆E(r) =
n

∑

i

n
∑

j 6=i

{

Aij

r6
ij

+
Bij

r12
ij

+
Cij

r4
ij

}

[3.1]

where Aij , Bij and Cij are fitting parameters. rij is the distance between atoms i and j, be-

longing to different molecules. Note that, the highly repulsive configurations were excluded

from the fitting procedure due to the negligible likeliness of occurrence. The n-pentane

molecule is represented by a united atom model [70], in which interaction sites of CH2 or

CH3 groups are positioned at the carbon atoms. Therefore, n in Equation 3.1 is equal to 5,

numbers of interaction site in n-pentane molecule

Only oxygen atoms of the fragment were included in the n-pentane/silicalite–1 fitted poten-

tial as it is done in most of the MD simulations for guest/zeolite systems while the quantum

calculations include, of course, also the silicon atoms.
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3.2 MD simulations

3.2.1 The Model

All details on the silicalite-1 and n-pentane models used in MD simulations with vary-

ing loadings and temperatures were given below.

The Silicalte-1 Model

Zeolite Silicalite-1 used in this study is assumed to be purely silicious. The zeolite

structure was extracted from the database of the Structure Commission of the International

Zeolite Association (IZA). The zeolite structure was furthermore assumed to be rigid to re-

duce computational requirements. However, the lack of exchange in energy due to the rigid

lattice was compensated by applying thermalization by a virtual heat bath [71]. Flexibility

of the framework is not an issue for adsorption of linear and branched alkanes [72]. The

zeolite structure, thus, was assumed to be rigid to reduce computational requirements.

The n-Pentane Model

The n-pentane molecule were modelled using united atom models, whereby the methyl

and methylene groups were treated as single interaction centers. The reference bond length

between two interaction sites, r0 is 1.54 Å and was allowed to fluctuate under the influence

of the Morse potential [73] as shown in Equation 3.2:

u(r) = D
[

1 − eβ(r−r0)
]2

[3.2]

where D = 83.9 kJ/mol, β = 1.84 Å−1.

A Harmonic potential [74] was assumed for three adjacent interaction sites:

u(θ) =
k

2
(θ − θ0)

2 [3.3]
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where reference bond angle θ0 = 1.99 rad and the force constant k = 519.398 kJ·mol−1·rad−2.

Torsion is modelled using a four-term cosine expansion in the dihedral angle [75]:

u(ω) =
3

∑

n=0

Cncosn(ω) [3.4]

where C0 = 8.4029 kJ/mol, C1 = 16.7974 kJ/mol, C2 = 1.1346 kJ/mol and C3 = −26.3349

kJ/mol.

3.2.2 Simulation Details

The general details for setting MD simulations are as follows. The simulation program

is a home made package. The temperature of the system has been controlled by a virtual

heat bath [71]. The Newton equation of motion has been solved through Verlet algorithm

[76]. Each simulation run was for 200 ns long with time step of 0.5 fs. The potential functions

was first calibrated by applying to the MD program and predicting the heat of adsorption

(Qst) at zero coverage and the diffusion coefficients (Ds). Therefore, several MD simulations

were carried out in order to valiate the newly developed functions.

the validated n-pentane/silicalite–1 and n-pentane/n-pentane potential functions, were,

then, applied to the MD program. The simulations were performed by varying number

of n-pentane and temperature range. Variation of the n-pentane for 3 concentrations from

0.5 to 8 molecules per unit cell and 4 temperatures from 200 K upto 350 K.



CHAPTER IV

RESULTS AND DISCUSSIONS: POTENTIAL DEVELOPMENT

4.1 General Remarks on the Ab Initio Fitted Potential

Some comments could be made concerning the ab initio fitted potential. The main

concept of this kind of potential function is to seek for direct relation one to one corresponding

between the ab initio data and the fitted energy. This is in contrast to the empirical force

field in which the parameters were adjusted to represent the experimental observation such

as diffusion coefficient and adsorption isotherm etc. Therefore, the following remarks could

be made. (i) in order to get the best function representing the ab initio potential surface,

the physical meaning of the analytical function as well as the fitted parameters may be

disregarded. (ii) Although, the representation of energy on each atomic pair might not

reasonable. This would be eliminated by summation over all pairs as the parametrization

of the potential function are performed on molecular base, i.e., the overall energy represents

molecular interaction that is calculated directly from the ab inito method. (iii) The potential

function developed under this method is always presented in the form of A/rm + B/rn +

C/rl + · · · instead of collision diameter (σ) and well depth (ǫ) as done in 12-6 Lennard-Jones

force-field potential (see Equation 2.99). Here A, B and C are fitting constants, r denotes

interatomic distance and m 6= n 6= l are the integers. These concepts have been a topic

on debate. Some examples are the guest-zeolite systems studied by simulations applying ab

initio fitted potential functions, e.g. water/silicalite–1 and methane/silcalite–1. The two

systems were conducted by Bussai et. al.[11, 12, 13, 14, 17]. The fitted parameters on the

term of r−12 are negative. However, such function can describe the structural properties of

the systems satisfactorily.

The remainder of this chapter is organized as follows. Section 4.2, accuracy of the

ab initio data with and without basis set supposition error (BSSE) was explained. Next,

the fitting results such as optimized potential parameters and quality of the fit, were given
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in Sections 4.3 and 4.4 for guest/host and guest/guest potentials. Then, several attempts

in refitting functions based on reproducibility of experimental heat of adsorption (Qst) at

zero coverage quantitatively and self diffusion coefficient (Ds) qualitatively were reported in

Sections 4.6-4.8.

4.2 Accuracy of the Ab Initio Data

As the analytical function was directly fitted to the ab initio data, therefore, accuracy

of the ab initio method used was concerned. Taking into account of the importance of

dispersive interaction in the alkane/silicalite–1 system, Møller-Plesset perturbation (MP2)

method was chosen [69]. The basis set superposition error (BSSE) was, then, examined.
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Figure 4.1 Interaction potential energies (∆E) obtained from the ab initio calculations at the
MP2/6-31G(d) level with and without BSSE correction. Inset shows starting configuration
which the distance was defined to be 0.00 Å.

Comparison between the MP2 energies calculated with and without BSSE was given in

Figure 4.1. At the optimal configuration, the BSSE energy of -10.40 kJ/mol is about 3.7

times higher than that of -38.18 kJ/mol without BSSE. An artifact due to an unbalance of the

basis set is very large. Thus, ab initio calculation with BSSE correction can not be neglected

and was applied for all data points for both guest/host and guest/guest interactions.
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4.3 n-Pentane/Silicalite–1 Intermolecular Potential

To compromise between the accuracy and computational time required, a 10-oxygen

membered ring shown in Figure 3.1 was chosen as a fragment representing silicalite–1 channel.

For the first attempt, the functional form shown in Equation 4.1 was given:

∆E(r) =
∑

i

∑

j

{

Aij

r6
ij

+
Bij

r12
ij

+
Cij

r4
ij

}

[4.1]

The fitting parameters were optimized and and their final values were summarized in Table

4.1.

Table 4.1 Ab initio fitted potential parameters for the n-pentane/silicalite–1 intermolecular
potential as the functional form shown in Equation 4.1.

Sort Parameters

A(kJ·Å6/mol) B(kJ·Å12/mol) C(kJ·Å4/mol)

O-CH3 -2.111·104 3.774·107 4.212·102

O-CH2 -1.149·104 1.510·107 5.212·102

Due to the use of the united atom model, the total charge of each united atom of type CH2

or CH3 is almost zero. Therefore, no Coulombic term was included in Equation 4.1. Another

argument to leave out this term is that the proposed model with the effective parameters

employed in this study already yields very good agreement between the predicted (by the

potential function) and the observed (by the ab initio calculation) interaction energies. In

addition, the CHn-Si pairs were not presented in the prepared function. The description is

that these type of pair interactions were already included into the CHn-O pairs. Furthermore,

the silicalite–1 surface was prevented by the surrounding oxygens.
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To visualize the quality of the guest/host fitted potentials, energies yielded from the ab

initio calculations (∆EMP2) were compared with those obtained from the analytical pair po-

tential. ∆EFIT. The result was shown in Figure 4.2 for numerous configurations where each

point on the symmetry line would mean 1:1 agreement of model and ab initio calculations.
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Figure 4.2 The correlation between potential energy values arising from the n-
pentane/silicalite–1 interaction calculated from ab initio method (∆EMP2) compared to those
yielded from Equation 4.1 with the optimal parameters shown in Table 4.1 (∆EFIT).

The plot shows that the n-pentane/silcalite–1 potential reproduced the ab initio data very

well, especially for the low energy configurations that would frequently appear during MD

simulations.

A comparison between the ab initio calculated energies and those from the model

for the n-pentane/silicalite–1 potential energy in the configurations where the n-pentane

molecule lied at the center of the fragment (Figure 3.2) and moved along the ±x direction

approaching the inner surface of the wall was shown in Figure 4.3, where the ± distances

correspond to those along ±x axes. The same plots for methane molecule were also given

for comparison.
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Figure 4.3 Interaction potential energies (∆E) for the n-pentane/silicalite–1 obtained from
the ab initio calculations at the MP2 level with the extended 6-31G(d) basis sets (∆EMP2)
and from the potential function (∆EFIT) according to Equation 4.1 where the n-pentane
molecule lies in the configuration shown in Figure 3.2 and moves along the ±x axes to
the inner surface of the silicalite–1. For methane/silicalite–1, the ∆EMP2 and ∆EFIT were
defined in a similar manner.

Good agreement between the two curves confirmed the reliability and quality of the fitted

potential. Rapid increase of the interaction energy indicated strong repulsion between n-

pentane and the inner wall of the silicalite–1. This is in contrast to what takes place for

methane molecules as well as water (data not shown) in the pore of silicalite–1 [17, 77].

4.4 n-Pentane/n-Pentane Intermolecular Potential

As mentioned above, the most simple species of hydrocarbon series, e.g., methane, was

investigated as a guest in zeolite silicalite–1 by Bussai et. al. Considering from a success of

Bussai’s work [14, 17, 78], the same method and basis sets 6-31G(d) used for methane was

chosen and applied for the n-pentane/n-pentane. The functional form used is the same as

that of n-pentane/silicalite–1 potential (Equation 4.1).
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The final values for the n-pentane/n-pentane were summarized in Table 4.2.

Table 4.2 Ab initio fitted potential parameters for the n-pentane/n-pentane intermolecular
potential as the functional form shown in Equation 4.1.

Sort Parameters

A(kJ·Å6/mol) B(kJ·Å12/mol) C(kJ·Å4/mol)

CH3-CH3 -5.719·103 3.956·107 0.0

CH3-CH2 -9.904·103 3.568·107 0.0

CH2-CH2 -3.856·103 2.828·106 0.0

Interestingly, the r−4 terms become zero for all pairs. The function, then, becomes a simple

12-6 Lennard-Jones form.

Quality of the fitted function in reproducing the ab initio data was first examined by the

three trajectories as given in Figure 4.4.

Figure 4.4 Orientations of the n-pentane dimer used in testing the quality of the fitted
functions.

The corresponding values calculated from the 3 empirical force fields [79, 80, 81] were also

given for comparison. The plot were displayed in Figure 4.5

According to the three sampling potential curves, our fitted potential function yields

no better reproducing ab initio data than the other 3 force fields taken from the literatures.

The all data comparison was also shown in Figure 4.6.
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Figure 4.5 Potential curves arising from moving n-pentane molecules in the configurations
shown in Figure 4.4. The distance between pentane dimer was measured from center of
mass of each pentane. MP2: 2nd-order Møller-Plesset Perturbation; FIT: fitted poten-
tials(This study); TIP: Transferable Intermolecular Potentials [79]; PPE or TraPPE-UA:
Transferable Potentials for Phase Equilibria United-Atom [81]; PRF: Poncela-Rubio-Freire
(Authors’names) [80].

Some remarks should be noted here on the three force fields taken from the literatures.

Three sampling forces fields, TIP, PPE and PRF were parametrized to reproduce specific

properties. The first one, TIP potential, was developed to determine densities and heat of

vaporization with 2% deviation for 15 liquid hydrocarbons including alkane, branced alkane,

alkene, and benzene. The second one, PPE, aims to develop as transferable potentials for

phase equilibrium. The PPE potential reproduced experimental saturated vapor pressures
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Figure 4.6 Correlation between potential energy values from the n-pentane/n-pentane inter-
action calculated using ab initio method (∆EMP2) compared to those yielded form Equation
4.1 (∆EFIT) with (a) the optimal parameters shown in Table 4.2; (b) TIP potentials; (c)
PPE potentials and (d) PRF potentials.

and densities, but overpredicted the critical temperature of the large branched alkanes. For

the PRF potential, it was developed to reproduce adequately the virial coefficient data of

linear and branched molecules. Though, these force fields were expressed in microscopic

term. They were fitted from macroscopic properties. All of them were parametrized by

varying collision parameters and well depth until results from Monte Carlo (MC) simulations

reproduce the experimental ones. In Figure 4.6, it was obvious that good agreement between
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two sources of the energy was yielded, especially in the attractive region (∆E < 0). Among

the three force fields taken, all, except for TIP, fits to the correlation line.

4.5 Validation of Ab Initio Fitted Potential

On one hand, discrepancy of the unbalance of the ratio of the atomic pairs in the

molecular pair interaction is usually exhibited through the dynamic and thermodynamic

properties and is still in debated. On the other hand, calibrating the potential function

with the experimental diffusion is complicated by large discrepancies between microscopic

and macroscopic measurement methods. The same measurement technique, there are many

disagreements between the results reported by different recent groups [36]. While adsorption

results seem to be well established and provide a more solid basis for a detailed comparison

between experiment and simulation. Moreover, a large amount of data exists on adsorption

of hydrocarbons in siliceous zeolites [10, 36]. Therefore, the fitted potential function was

chosen to calibrate with the experimental zero-coverage heat of adsorption (Qst).

The functions were applied to the MD program. Simulations was carried out and the

trajectories were collected after equilibration. The Qst was calculated and the value of -45.78

kJ/mol was yielded. It is clear that the negative value of the Qst is not possible. The error

can, surely, arise from only the n-pentane/silicalite–1 potential function since the Qst was

calculated at zero coverage of guest molecules, i.e., there is no guest/guest interaction. To

examine the ratio of the CH3-O and CH2-O atomic pairs in the total n-pentane/silicalite–1

potential pair, calculations were performed and the results were plotted in Figure 4.7. Figure

4.7 gives the information opposing the remark ii in Section 4.1 and indicates an unbalance

of the atomic pairs.

The fitted potential function can reproduce the ab initio data very well (Figures 4.2 and 4.3).

But, in Figure 4.7, no attractive part takes place on the CH2-O curve. When the CH2-O

distance gets larger, the potential energy decays to zero rapidly. This also means that CH2

groups would move through the silicalite–1 channel under the constraint due to repulsive

force from the channel.
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Figure 4.7 Potential energies with respect to CH3-O (solid line) and CH2-O distances (dash
line).

Therefore, it was necessary to refit the n-pentane/silicalite–1 potential function. Note

that, the parameters A and B of CH2-O pair are about half of those of the CH3-O while

CCH2−O is a bit larger than CCH3−O (Table 4.1). This could be source of the repulsive

contribution. Then, this term was removed from the functional form.

4.6 The 1st Revision of the n-Pentane/Silicalite–1 Potential: Re-
moving C/r4

Omitting terms CCHn−O (see Equation 3.1), the optimized parameters of the 1st refitted

potential function representing the n-pentane/silicalite–1 interaction were given in Table 4.3.

The atomic pairs were plotted separately in Figure 4.8 where the force-field function taken

from Reference [9] was also given for comparison.

Comparison between correspondence pairs, the 1st refitted potential function gives the

minimum energies at larger distances than the force-field does. A minimum energy for the

CH3-O pair of the ab initio potential of -0.64 kJ/mol is 0.13 kJ/mol higher than that of the

force-field potential. The corresponding value for the ab initio CH2-O is 0.35 kJ/mol higher

than that of the CH3-O. Though, all the atomic pair potentials decays to zero at about the
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Table 4.3 Ab initio fitted potential parameters for the n-pentane/silicalite–1 intermolecular
potential in the form of A/r6 + B/r12.

Sort Parameters

A(kJ·Å6/mol) B(kJ·Å12/mol)

CH3-O -7.584·103 2.231·107

CH2-O -2.575·103 1.084·107
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Figure 4.8 Pair potential energy with respect to CHn-O distance belonging to the 1st refitted
potential function and empirical force field [9].

same distance (about 10 Å). The atomic pair potentials of the fitted potential, especially

CH2-O pair, become repulsive faster than those of the force field. Collision distances of the

fitted potential are 3.79 and 4.02 Å for CH3-O and CH2-O pairs whereas those of the force

field is 3.48 and 3.58 Å for, respectively.

The calculated Qst obtained from this refitted function is 31.6 kJ/mol. This value

deviates from the experimental result of 57.7 kJ/mol [82] by 45.23%. It is known that
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quality of the ab initio data points depends directly on the level of theory and the basis sets

used. As the minimum of the ab initio energy (Figure 4.8) is almost 70% higher than that

obtained from the force field. Therefore, quality of data points were, then, examined. The

ab initio data with the same method (MP2) but larger basis set, changing from 6-31G(d)

to 6-31+G(d,p), leads to significantly lower energies. Here, it was decided to recalculate all

data points. Note that at the beginning of the project, computer facility could not effort the

use of MP2(FC)/6-31+G(d,p) for the investigated system size.

4.7 The 2nd Revision of the n-Pentane/Silicalite–1 Potential: Re-
calculation using MP2(FC)/6-31+G(d,p)

With the MP2 method that was approved to well represent of the dispersion force for

the hydrocarbon/zeolite system [15, 83], calculations were performed by varying the basis

sets used. The results were summarized in Table 4.4.

Table 4.4 The obtained interaction energy and CPU time needed to perform ab initio
calculations at MP2 level with different basis sets (Computing Center, University of Leipzig).

Method Interaction energy CPU time

(kJ/mol) (Hrs)

MP2/6-31G(d) -38.80

MP2/6-31G(d)(BSSE) -7.55 4.56

MP2(FC)/6-31G(d)(BSSE) -7.55 3.26

MP2(FC)/6-31G(d,p)(BSSE) -9.94 7.55

MP2(FC)/6-31+G(d)(BSSE) -14.11 14.49

MP2(FC)/6-31+G(d,p)(BSSE) -16.53 24.02

MP2(FC)/6-31++G(d,p)(BSSE) -17.02 30.10

FC stands for frozen core in which only valence orbitals are involved in correlation calculations.

As the results, some conclusions could be made: (i) there is no significant difference

between the energies obtained from the MP2 and MP2(FC). (ii) As expected, the energy
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becomes lower as the basis sets is larger. (iii) The MP2(FC)/6-31+G(d,p)(BSSE) and

MP2(FC)/6-31++G(d,p)(BSSE) give almost the same values of interaction data but the

second one consumed much CPU time. In addition the energy difference among two methods

of 0.49 kJ/mol is within the thermal fluctuation as the simulations were carried out at the

temperature range between 200 and 350 K. Therefore, the MP2(FC)/6-31+G(d,p)(BSSE)

was chosen to be used to generate the energies. The same fitting procedure and number of

data points were used. The parameters of the 2nd refitted potential function were listed in

Table 4.5.

Table 4.5 The potential parameters for the n-pentane/silicalite–1 intermolecular potential in
the form of A/r6 +B/r12 where the ab initio energies were calculated using the MP2(FC)/6-
31+G(d,p)(BSSE).

Sort Parameters

A(kJ·Å6/mol) B(kJ·Å12/mol)

CH3-O -4.292·103 1.129·107

CH2-O -5.976·103 1.555·107

To control physical meaning of the function, positive for r−12 and negative for r−6

terms, the energy points of higher than 10 kJ/mol were excluded from the fit. The correlation

plot which indicates the quality of the potential function to reproduce the ab initio data was

shown in Figure 4.9. For the low energy region, the fitted energies reproduce to the ab initio

data nicely.

This function was, then, applied for the MD simulation with 1 n-pentane molecule in

the system. The Qst was evaluated and the value of 49.79 kJ/mol was obtained. This is

13.71% deviated from the experimental value. However, regarding the details of the sim-

ulation technique, it was found that the shifted force-potential technique (Equation 2.104)

which is used to smooth the function at cut-off radius (rC) cause higher energy than that

of the original function. The difference of the potential energy between shifted and original
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Figure 4.9 The correlation between potential energy values arising from the n-
pentane/silicalite–1 interaction calculated from ab initio method (∆EMP2) and those yielded
from the 2nd refitted potential function (∆EFIT).

potentials at a certain distance, thus, would depend on the rC. Practically, calculations

of the Qst at infinite rC could not be performed. The real (if known) Qst, thus, would be

possible to be estimated by extrapolating the heat of adsorption at different cutoff radius

(Qst(rC)). Here, MD simulations were carried out for the loading of 0.5 molecules per unit

cell at rC of 12, 14, 16, 18 and 20 Å. The MD box is larger than two times of the maximum

rC (2× 2× 2 unit cells). The obtained Qst at rC = 12, 14, 16, 18 and 20 Å are 50.54, 53.76,

55.68, 56.51 and 56.59 kJ/mol, respectively. It can clearly be seen that the calculated Qst

is very sensitive against the choice of the rC. This sensitivity is, of course, a general feature

of Lennard-Jones type potentials used to describe the Qst of n-pentane in silicalite–1 and is

not related to the parameter set proposed in this study. Nevertheless, this effect is not taken

into account by many other articles, e.g. [9, 10, 45, 84, 85, 86, 87, 88]. As the system size

is restricted by computational possibilities it was decided to estimate the limiting value by

fitting the results for 5 different rC to a decay law.

The decay law used to fit the Qst at different rC can be written as:
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Qst(rC) = Q∞
st



1 − α

rβ
C



 . [4.2]

where Q∞
st is the estimated heat of adsorption at infinite rC. α and β are fitting constants.

Figure 4.10 displays fitted values according to Equation 4.2 compared to those reported Qst

obtained from simulations at different rC. The obtained Q∞
st of 58.93 kJ/mol is excellently

agreed with the experiment value of 57.7 kJ/mol [82] by 2.13% error.
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Figure 4.10 Dependency of heat of adsorption on cut-off radius from MD simulations (SIM)
and fitting simulation results to Equation 4.2 (FIT) where α = 1295.29 and β = 3.7.

The agreement between the Qst yielded from MD simulations and those fitted by Equation

4.2 (Figure 4.10) confirms the fit for the interval which is accessible.

Diffusion coefficients at the two loadings (4 and 8 molecules per unit cell) were given

in Table 4.6 in comparison with the experimental observations.

It can be seen that comparable Ds of 7.52× 10−10 and 6.99× 10−10 m2/s for MPC=4 and 8

are not reasonable, i.e., at high loading, the Ds is expected to decrease. This is in contrast

to those found from an empirical force field as well as from the PFG-NMR measurements.



68

Table 4.6 Self diffusion coefficients (Ds) from MD simulations applying 2nd refitted potential
and the force filed in Reference [9].

potential Ds (10−10 m2/s)

4 MPC at 330 K 8 MPC at 298 K

2nd refitted 7.52 6.99

force field [9] 8.98 2.20

PFG-NMR 3.90[89] 0.41[90]

MPC=molecules per unit cell.

Source of discrepancy can be, of course, due to the potential function used. The main

difference between the ab initio and the force-field functions still remain, especially at the

repulsive region where the function approaches zero for the first time (see Figure 4.11), the

collision diameter. The collision diameters of this function are 3.71 Å for both CH3-O and

CH2-O pairs which is smaller than those of the 2nd refitted potential function, but still larger

than those of the force field.

To examine this, the function was, then, refitted by keeping the collision diameter fixes.

4.8 The 3rd Revision of the n-Pentane/Silicalite–1 Potential: Fix-
ing σ

The final values of the parameters were given in Table 4.7. The collision parameters

(σ) used to fix for CH3-O and CH2-O pairs were taken from values proposed by Dubbeldam

[9].

To examine effect of the σ for the guest/guest interaction, the n-pentane/n-pentane function

was also refitted. The σ parameters for the CH2 and CH3 groups for guest/guest interaction

are in the range 3.76-4.00 Å [79, 80, 81]. Variation was done manually and the values of

4.00, 3.85 and 4.00 Å for CH3-CH3, CH3-CH2 and CH2-CH2 pairs were found to yield the
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Figure 4.11 Pair potential energy with respect to CHn-O distance belonging to the 2nd

refitted potential function and empirical force field [9]

Table 4.7 The 3rd refitted potential parameters for the (a) n-pentane/silicalite–1 and (b)
n-pentane/n-pentane intermolecular potential in the form of 12-6 Lennard-Jones potentials
(Equation 2.99) where collision parameter, σ, were kept fix.

Sort Parameters

σFix (Å) ǫ(K)

(a) Guest/Host CH3-O 3.48∗ 61.53

CH2-O 3.58∗ 58.18

(b) Guest/Guest CH3-CH3 4.00∗∗ 42.51

CH3-CH2 3.85∗∗ 14.59

CH2-CH2 4.00∗∗ 32.99

∗ from Reference [9]; ∗∗ from Reference [79, 80, 81] and manually adjusted.

best numerical fitting. The ∆EFIT and ∆EMP2 for both systems were compared in Figure

4.12.
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Figure 4.12 The correlation between potential energy values arising from the interaction
calculated from ab initio method (∆EMP2) compared to those yielded from the 3rd refitted
potential function (∆EFIT): (a) n-pentane/silicalite–1 (b) n-pentane/n-pentane.

Though, less variables in the fitting procedure cause the fitted energies deviate from the ab

initio energies. The fitted energies reproduce to the ab initio data satisfactorily for the low

energy region.

With the fix σ parameters, simulations were performed. The Qst and Ds were calcu-

lated and given in Table 4.8. Simulations were also performed using Dubbeldam’s parame-

ters. The Qst and Ds were also given in Table 4.8.
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Table 4.8 Diffusion coefficients (Ds) at the 2 loadings (4 and 8 MPC) and zero coverage
heat of adsorption (Qst) from MD simulations applying 3rd refitted potentials where “Free”
and “Fix” represent the guest/guest.

GH GG Ds(10−10 m2/s) Qst (kJ/mol)

4 MPC 8 MPC

3rd fitted potential Free 8.03 7.68 52.28

3rd fitted potential Fix 11.03 4.26 52.28

Dubbeldam’s potential [9] 8.98 2.20 50.21

PFG-NMR 3.90 [89] 0.41 [90] -

Pulse-Chromatography - - 57.7 [82]

GH denotes n-pentane/silcalite-1 fitted potential. GG represents n-pentane/n-pentane.

With the same extrapolation process used in Section 4.7, five MD simulations with

the cut-off radius of 12, 14, 16, 18 and 20 Å were performed. The extrapolated Qst is 52.28

kJ/mol, 9.39% lower than the experimental value. The Qst data in Dubbeldam’s paper is

1% less than the experimental one. However, we have performed the MD simulations using

both intra- and intermolecular potentials reported in their paper. The obtained Qst of 50.21

kJ/mol is 12.98% error. The difference might be from technical details that the authors did

not reveal.

In terms of the concentration dependence of the self diffusion coefficient, guest/host and

guest/guest intermolecular potentials with fix collision diameters yield qualitatively results

as the Ds get smaller with the higher concentrations. Though, the error in Qst produced in

this σ-fix potential function is larger than that of the 2nd refitted function. The Qst is yet

in the acceptable range and the qualitative Ds can be obtained. Therefore, the 3rd would be

best one and were used to determine the structural data with variation of loading of guest

molecule and temperature.
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By taking σ from Dubbeldam’s force field, this potential function and the force field

have one more common characteristic. That is the position of minimum energies of corre-

spondence pairs are equal (See Figure 4.13). Unlike the CH2-O pairs, the minimum CH3-O

pair energy of this potential is as -0.3 kJ/mol as higher than that of the force field.
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Figure 4.13 Pair potential energy with respect to CHn-O distance belonging to the 3rd

refitted potential function and empirical force field [9]

There could be some differences in molecular properties. Thus, comparison of structural

properties belonging to the 3rd refitted function and Dubbeldam’s force field is also available.



CHAPTER V

RESULTS AND DISCUSSIONS: MOLECULAR PROPERTIES
AS A FUNCTION OF LOADING AND TEMPERATURE

The 3rd refitted functions for n-pentane/silicalite–1 and n-pentane/n-pentane with

constant σ from Chapter IV were applied to study structure and dynamic properties of

the system. Changes of these properties as a function of temperatures and loading were

respectively investigated.

5.1 Temperature Dependence of the Molecular Properties

In order to monitor how diffusing molecules distribute in the channels of silicalite–1,

the positions of center of mass of guest molecules in the sinusoidal and straight channels

were registered during the simulations. However, arranging the registered positions with

general radial distribution function (RDF) is not sufficient to describe the distribution of

the guest molecule along the channels (See Subsection 2.5.4 for details of the RDF calcula-

tion). Because of anisotropic effect introduced by the silicalite–1, RDF would give neither

qualitative nor quantitative picture. The number density at each distance r would be the

summation overall the atoms found at this distance, even, they might align along different

channels. However, a general concept of RDF to arrange data into small intervals is useful.

To facilitate the numerical evaluation in this study, channel intersection was considered as

part of straight channel. Thus, the probability around the intersection would not appear

along the sinusoidal channel. The reference positions which have been defined to be 0.0 Å

is the center of intersection (see Figure 3.1a where positions of the centers of intersection

are b/4 and 3b/4 along y-axis). For straight channel, instead of starting at a certain atom

and find out neighbor atoms radially, residence probability along silicalite–1 channels can

be performed by separating channels into several very short cylinders and registering the

position of guest molecule in each cylinder. The temperature effect on the dilute pentane in

silicalite–1 in the term of the residence distribution are presented in Figure 5.1.
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Figure 5.1 Residence probability for very low loading of the n-pentane molecule in silicalite–1
at 200-350 K: (a)-(b) 3rd refitted potential function, (c)-(d) Dubbeldam’s force field.

Some characteristics of the residence probabilities can be concluded as follows: (i) At

low temperature, e.g., 200 K, a high peak at 6 Å in either Figures 5.1a or 5.1c indicates

the most preferential site is around the middle of sinusoidal channel. (ii) The probability at

this position decreases when temperature increases. Increment of temperature from 200 K

to 250 K, decreases the peak height dramatically while it looks decrease monotonically from

200-350 K for Dubbeldam’s potential. (iii) Though, obvious change in residence probability

along the sinusoidal channel can be detected as change in area under the curve from around

the distance 4-6.5 Å (see Figure Figures 5.1a and 5.1c). The change in residence probability

along the straight channel can be noticed from 0-3.0 Å for our function (Figure 5.1b) and
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from 0-2.5 Å for Dubbeldam’s force field (Figure 5.1d). There appears no significant change

at larger distance. (iv) Therefore, higher the temperature is, more frequency the molecule

moves toward the channel intersection. The reason for more migration of the molecule toward

the intersection when the temperature increases was firstly determined by average potential

along the channel as given in Figure 5.2.
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Figure 5.2 Average potential energy of the n-pentane molecule for zero loading of the n-
pentane molecule in silicalite–1 at 200-350 K: (a)-(b) our refitted potential function, (c)-(d)
Dubbeldam’s force field.

Patterns of average potential surfaces along either sinusoidal or straight channel are

very similar for both our and Dubbeldam‘s potentials. That is the potential energy increases
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gradually from around the middle of the channel to the intersection. The effect of temper-

ature just is to shift the potential surface to higher potential energy. Since the change in

residence probability depends on to temperature directly. It was assumed that the kinetic

energy cause the migration of the guest molecule by increasing internal or tumble move-

ment. Upon this assumption, temperature-independent probabilities along the sinusoidal at

the distance less than 4 Å and the straight channel at distance larger than 3.0 Å for our

potential and 2.5 Å for Dubbeldam’s potential can be explained as follows: (i) When the

temperature decreases, the molecule would have lower internal and/or tumble movement,

then, the potential plays a stronger role. The molecule, then, moves to the lower potential

region. Sinusoidal channel whose shape is more curvious than straight channel obstructs

the molecule to move out from the channel when it reaches to around the center of the

channel. Then, the molecule spends more time in the region. In contrast, the straight

channel’s topology lets the molecule move toward/backward the intersection easier. There’s

more competition between molecular movement and potential field exerted by host for the

distribution in this region. Even, the lowest temperature in the study (200 K), it does not

show up higher residence probability at around the middle of the channel (at distance of

about 5 Å). (ii) When the temperature increases, the molecule would have higher internal

and/or tumble movement. The molecule would prefer to move in the channel intersection

because it has more space or less confinement than in the channel. When the molecule in the

sinusoidal channel arrives the region of about 2.7-4.0 Å, they would hop to the intersection

easily.

As it has been assumed that the temperature effects the residence probability by in-

creasing or decreasing internal and/or tumble movement. Then, the next destination on

structural determination is to figure out how much each kind of movement has influenced

on the residence probability. There are 3 terms to represent the internal movement. These

are bond stretching, bond bending and bond rotation. A net movement by these terms has

been investigated in the term of the end-to-end length distribution. The end-to-end length

stands for the length measured between two CH3-groups of n-pentane molecule. While the

tumble movement has been represented by distribution of angles that are formed from y-axis
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and end-to-end vectors. Here, let’s call this angle “end-to-end angle”. Since the potential

energy gradually increase from the middle of the channel to the intersection. It can not be

partitioned the region energetically. Because of aiming to movement that is caused by the

temperature, only configurations in the peak area with obvious change in Figure 5.1 were

contributed into the end-to-end length and angle distributions. This covers the distance

range 4-6.5 Å for sinusoidal channel and the range 0-3 Å for straight channel. Since there

exists a node at about 1 Å along the straight channel. It was proposed to sub-partition

this region. Therefore, 3 regions have been investigated for the movement of the molecule.

Each region was, for simplicity named as follows: (i) Sinusoidal refers to distance along the

sinusoidal channel between 4 and 6.5 Å. (ii) Inner-intersection and (iii) outer-intersection

occupy distances along the straight channel between 0 and 1 Å and between 1 and 3 Å,

respectively. Only the trajectories belonging to the lowest (200 K) and highest (350 K)

temperatures were compared for the end-to-end length and angle distributions.

Some common characteristics found in the end-to-end length distribution in all regions

(Figure 5.3) are: (i) Each area under the curve corresponds to that of residence probability.

Comparison, thus, can be done qualitatively and quantitatively. (ii) There are 2 peaks in

each region at both temperatures. The first one has a maximum at 4.5 Å and the second

peak has the maximum at 5.1 Å. (iii) The end-to-end length of 5.1 Å corresponds to the

n-pentane in elongated conformation. The other form which is shorter by up to 0.6 Å would

correspond to the conformation which deviates from the elongated form by a bond rotation

as a main contribution of internal movement. (iv) There is no significant difference between

the distributions under both potential fields.

Starting at the sinusoidal region (Figures 5.3c and 5.3f), molecules, which arrive here,

usually contribute the conformation with end-to-end length of 5.1 Å at low temperature.

Instead of changing conformation, the molecule would spend more time in other regions

when the temperature increases. Otherwise, the peak centered at 4.5 Å should increase

to compensate the decrease of the end-to-end peak centered at 5.1 Å. While no significant

reduction in the peak centered at 5.1 Å has been found in either the inner (Figures 5.3a and

5.3d) or outer intersections (Figures 5.3b and 5.3e) when the temperature increases. Instead,
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the peaks in these two regions get boarder and their peak at 4.5 Å are, at least, 2-time higher

than those at low temperature. This would mean that the inner and outer intersection let

the molecule be more flexible or have less confinement than the sinusoidal does.

Tumble movement can be understood by the end-to-end angle distribution as given in

Figure 5.4.

Characteristics of molecular orientation through the end-to-end angle distribution due

to our and Dubbeldam’s potentials are very similar. Therefore, the following discussions

are true for both cases. (i) Maxima of the distribution take place at 100 and 900 which

would correspond to the molecular alignment parallel to the straight and sinusoidal channel,

respectively. (ii) Broadening the distribution by the temperature can be seen in both the

inner (see Figures 5.4a and 5.4d) and outer intersections (see Figures 5.4b and 5.4e), but not

in the sinusoidal region.

Like the end-to-end length distribution, tumble movement of the molecule is limited

in the sinusoidal channels. As the results, the peak at 900 decreases when the temperature

increases as the molecule would spend shorter time in this region (see Figures 5.4c and 5.4f).

Unlike the sinusoidal region, the inner and outer intersections have more space which are

large enough for tumble movement as evidenced by broadening the curve in Figures 5.4a,

5.4b, 5.4d, 5.4e when the temperature increases. It is assumed that, at high temperature,

after the molecule escapes from the sinusoidal channel, it still retains memory where it was

from or it still aligns parallel the sinusoidal channel. The assumption was confirmed by

Figures 5.4a and 5.4c. The height of the peak at 100 is comparable to that at 900 at low

temperature. The latter one becomes larger than the former at high temperature. This

would be interpreted that part of the molecule might insert in the straight channel and the

other part might stick out the channel intersection.

All the distributions presented have provided static pictures of the structural data.

Dynamic details in this study were mentioned through the diffusion coefficient (Ds) and

memory factor (β) as shown in Table 5.1 (See Subsection 2.5.3 for derivation of β).

According to Table 5.1, the following conclusions can be made: (i) All the diffusion

components increase as a function of temperature. (ii) Dy is the fastest component for all
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Table 5.1 Diffusion coefficients and memory factor at 200 and 350 K obtained from the MD
simulation using our and Dubbeldam’s potentials.

.

Potentials T Diffusion coefficient (×10−9 m2/s) β

(K) Dx Dy Dz Ds

3rd Refit 200 0.27 (0.73) 0.76 (2.06) 0.08 (0.22) 0.37 1.11

350 1.27 (0.94) 2.48 (1.84) 0.29 (0.22) 1.35 1.26

Dubbeldam’s 200 0.24 (0.49) 1.18 (2.41) 0.06 (0.12) 0.49 1.38

350 1.10 (0.75) 3.03 (2.08) 0.23 (0.16) 1.46 1.55

Each number in parenthesis is a diffusion tensor along principle axis divided average value (Ds)

temperatures. This supports the residence probability data (Figure 5.1) that the molecule

can move along the straight channel easier than the sinusoidal channels. (iii) Interest-

ingly, along the sinusoidal channel, higher relative Dx has been detected when the residence

probability decreases or temperature increases (Figures 5.1a and 5.1c). In contrast, higher

residence probability along the straight channel at high temperature (Figures 5.1b and 5.1d),

the lower relative Dy has been detected. Since the self diffusion relates directly to the molec-

ular displacement per time unit. This would mean that the molecule would spend less time

to stay in the region where the relative diffusion coefficient is higher. (iv) β are greater

than 1 for both low and high temperatures. This indicates the molecule prefers to continue

diffusing along the same channel type where it came from when it arrives the intersection. β

and end-to-end angle distribution, thus, confirm each other. Although, the molecule shows

tumble movement, this movement would hardly switch the molecule which aligns along one

type of the channel to the other type of the channel. Otherwise, other peaks between two

broad peaks could be detected in Figures 5.4a and 5.4d can be detected.

Till to now, the results are on very low loading of n-pentane. Next section, the struc-

tural investigation would include the contribution of higher loading of guest molecule.
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5.2 n-Pentane Loading Dependence on the Molecular Properties

In this section, 3 different loadings of 0.5, 2 and 4 MPC were investigated. The loading

of 4 MPC corresponds to the concentration that half of total channel space is occupied by

n-pentane molecules. Since the distribution at low and high temperatures are different as

discussed in previous section. 2 series categorized by temperature were performed in which

each series containing 3 loadings. The residence distributions with various loadings of n-

pentane at both low and high temperatures were given in Figure 5.5. Some conclusions are

(i) Loading more guest molecule causes the residence intensity increase for all regions. (ii)

Patterns of the distribution plots at higher loadings are very similar to that at low loading

of 0.5 MPC as shown in Section 5.1. (iii) As we know from the previous section that,

at low temperature (see Figures 5.5a and 5.5b), the field of the potential exerted by the

zeolites plays more important role than the molecular movement and the potential in the

channel is much lower than that in the intersection. Loading more guest molecules, then,

lets the role of the potential to be more obvious because higher intensity can be observed

around the middle of the channel (around 6 Å in Figure 5.5a). (iv) At high temperature

(see Figures 5.5c and 5.5d), molecular movements play a stronger role. Increase in intensity

of the residence distribution, thus, can be seen in the straight channel around 0-3 Å where

molecular movement can occur easier than the other place.

Though, at high temperature, the intensity at 0 Å along the straight channel (see

Figures 5.5a) increases, the maximum along the sinusoidal channel at about 6 Å (see Figure

5.5c) is still comparable.

The explanation of retaining high intensity of residence probability along sinusoidal channel

was given through the change of relative self-diffusion coefficients.

The self-diffusion coefficients, their element along principle axes and memory factors

at different loadings have been summarized in Table 5.2.

It can be seen in Table 5.2 that all components and Ds decrease when the loading increases.

At 200 K, the relative Dy increases from 2.05 to 2.46 when the loading increases from 0.5

to 4.0 MPC. This is not a case for Dx. As the results, the n-pentane molecules relatively
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Table 5.2 Diffusion coefficients and memory factor at different loadings at 200 and 350 K.

T(K) Loading Diffusion coefficient (×10−9 m2/s) β

(MPC) Dx Dy Dz Ds

200 0.5 0.27 (0.73) 0.76 (2.05) 0.08 (0.22) 0.37 1.11

2.0 0.20 (0.53) 0.93 (2.35) 0.06 (0.15) 0.40 1.24

4.0 0.12 (0.42) 0.71 (2.46) 0.36 (0.12) 0.29 1.29

350 0.5 1.27 (0.94) 2.48 (1.84) 0.29 (0.22) 1.35 1.26

2.0 1.07 (0.92) 2.24 (1.93) 0.19 (0.16) 1.16 1.70

4.0 0.56 (0.71) 1.68 (2.14) 0.11 (0.14) 0.78 1.73

Each number in parenthesis is a diffusion tensor along principle axis divided average value (Ds)

spend longer time in sinusoidal region than the other region. That is the reason why high

intensity along the sinusoidal region was obtained.

At 350 K, of course, the same explanation can be used. As the relative Dy increases from

1.84 to 2.14, the relative Dx decreases from 0.94 to 0.71.

Table 5.2, all the loadings at both low and high temperatures yields the memories

factors (β) that are greater than 1. Besides, the β is larger when the loading is higher. The

molecules would retain the same behavior by keeping diffusing along the same channel type

where they were before arriving the channel intersection.
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Figure 5.3 End-to-end length for very low loading of the n-pentane molecule in silicalite–1
at 200 and 350 K where (a)-(c) belong to 3rd refitted potential function, (d)-(f) belong to
Dubbeldam’s force field: (a) and (d) are inner intersections; (b) and (e) are outer intersec-
tions; (c) and (f) are sinusoidal regions.
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Figure 5.4 End-to-end angle for very low loading of the n-pentane molecule in silicalite–1
at 200 and 350 K where (a)-(c) belong to 3rd refitted potential function, (d)-(f) belong to
Dubbeldam’s force field: (a) and (d) are inner intersections; (b) and (e) are outer intersec-
tions; (c) and (f) are sinusoidal regions.
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Figure 5.5 Residence distribution of n-pentane molecule in silicalite–1 at 200 K (a,b) and
350 K (c,d)



CHAPTER VI

CONCLUSION

The intermolecular potential function for the system of n-petane/silicalite–1 were de-

veloped. The small fragment of silicalite–1 consisting of 20 heavy atoms in which the chemical

composition is O10Si10H20 was used to represent the silicalite–1 channel. 189 configurations

of n-pentane/silicalite–1 fragment and 1300 configurations of n-pentane/n-pentane dimer in-

teractions were calculated on the basis of ab initio at Møller Plesset levels with the 6-31G(d)

basis sets. In order to get reproducibility on experimental heat of adsorption and diffusion

coefficients, several attempts were spent to fit the obtained ab initio data to the analyti-

cal function representing n-pentane/silicalite–1. Problems were arisen and solved step by

step that can be summarized as follows. On the first attempt, the analytical fitted function

are in the form of A/r6 + B/r12 + C/r4. Though, this functional form gives the best fit

to the ab initio data, the non-reasonably partitioning energy to each pair leads to positive

interaction energies obtained from the MD simulations. With this function, no attractive

contribution was found on the CH2-O pair. This lead to the second attempt, where the C/r4

terms were excluded. Then, the problem of the repulsive contribution on the CH2-O pair

was solved. However, the obtained potential function did not yet reproduce the experimen-

tal heat of adsorption at zero coverage (Qst), the calculated and the experimental Qst are

31.6 kJ/mol and 57.7 kJ/mol, respectively. It was found, then, that energy obtained from

the MP2/6-31G(d) is significantly higher than that of the MP2/6-31+G(d,p) method. Note

that when the project started, computer facility could not report the later calculation type.

Therefore, recalculations of the n-pentane/silicalite–1 configurations with the larger basis

sets were performed.

The refitted function on the third attempt using MP2(FC)/6-31+G(d,p) method was

found to reproduce the experimental Qst very well, i.e., the calculated Qst of 58.93 kJ/mol is

2.13% higher than that obtained experimentally. Problem still remain, the function does not

represent the experimental self diffusion ceofficient, Ds. This is in contrast to that proposed
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by Dubbeldam. Among two functional types, difference was found at the repulsive region

where the function approach zero for the first time. Here, the fitted collision parameters

are significantly larger than that of the force field. Therefore, the forth attempt was made

by replacing the fitting parameter using the atomic collision constants. By applying this

function for the MD simulations, the calculated Qst of 52.28 kJ/mol is 9.39% lower than the

experimental value and change of the Ds as a function of temperature is in good agreement

with that of the experiment. Note that the collision constants were also applied to the

n-pentane/n-pentane potential function.

After the potential functions were validated. The structural and dynamical data were

investigated. Distribution of the resident probability at the low temperature shows that

molecule prefers to locate at the sinusoidal channel. This is different for high temperature

where high resident probability takes place at the intersection. The reason for the difference

were explained by the average potential energy along the channels and the distributions of

the end-to-end length and end-to-end angle. At low temperature, potential will play more

important role, comparing to molecular movement. At higher temperature, the internal and

tumble movements dominate the potential well. In addition, increasing temperature leads

to an increase of relative diffusion rate along the x -axis, i.e., molecule spends less time in

the sinusoidal channel.

The effect of concentration was investigated at two temperatures. The patterns of the

residence distribution for all concentrations are rather similar. Either temperature or loading

does not effect behavior of the diffusing molecule in the term of memory factor. That is, the

molecules prefer to the diffuse path along the same channel type.

In summary, collision constants were introduced into the ab initio fitted potential.

Here ratio of the atomic pairs in the molecular potential was reasonably partitioned. An

advantage of the approach is that the newly develop guest/host and guest/guest potential

functions were found to represent structural, dynamic and thermodynamic properties of the

simulated systems very well. This overcome an issue of currently debate where the force

field parameters can not well represent structural data while the ab initio fitted potential is

often fail to represent dynamic and thermodynamic properties of the system.
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Abstract

Ab initio fitted potentials representing n-pentane/n-pentane and n-pentane/silicalite-1 interactions were newly developed at the

second-order Møller-Plesset perturbation (MP2) level with the 6-31G* basis set. Characteristics of the functions were illustrated in

comparison with available force field models. They were, then, applied for the molecular dynamics simulation of n-pentane in

silicalite-1. The diffusion coefficients are in satisfactory agreement with the results of PFG-NMR experiments. The effect of the box

size was also examined. It was found that the components of the diffusion tensor are very sensitive to this parameter. The structure

of the n-pentane in the silicalite-1 pore was analyzed in terms of radial distribution functions. The first peak at 4.1 �A indicates the

optimal diffusion route of the n-pentane along the central line of the channel of the silicalite-1.

� 2004 Published by Elsevier B.V.

1. Introduction

Alkanes in zeolites play an important role in many

industrial applications [1] because the effectivity of the

technical processes is usually limited by the slow mi-

gration of guest molecules through the channels and

cavities of the zeolites. Numerous investigations of the
diffusive properties of alkanes in zeolites have been re-

ported using both experimental and theoretical ap-

proaches. Overviews can be found in [2–8]. Such studies

are also a challenge to fundamental research because

discrepancies between results obtained from different

experimental methods [2,5,8,9] are not yet understood.

Molecular dynamics (MD) simulations [10,11] have

become a powerful tool to investigate such phenomena
[2–8]. They provide deep insight into details of the dif-

fusion mechanisms. However, it is known that the sim-

ulation results depend strongly on the quality of the

potential functions used (see e.g. [12]).

In our earlier works, the water/silicalite-1 and meth-

ane/silicalite-1 intermolecular pair potentials were de-

veloped using ab initio data. These potentials were then

used in the MD simulations [13–15]. The obtained dif-

fusion coefficients are in reasonable agreement with
those from PFG-NMR experiments [15–17]. A great

advantage of the ab initio fitted potentials is their ability

to predict the structural property of the simulated sys-

tem. The results provide detailed structure and distri-

bution of the guest molecules in the channels. It was the

first time that changes of the methane structure as a

function of loading were described, theoretically.

In this study, n-pentane in silicalite-1 was examined.
The guest/guest and guest/host pair potentials were de-

rived from ab initio data points. n-pentane/n-pentane
parameters from the literature [18–20] were also con-

sidered and compared. Then, the diffusive behavior was

examined in terms of the components Dx, Dy , and Dz of

the diffusion tensor, their average D, and the memory

factor, b.

* Corresponding authors. Fax: +1-22-187-603.
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2. Calculation details

2.1. The ab initio fitted potentials

Silicalite-1 is a cation-free zeolite of the structure type
ZSM–5 which contains a network of interconnected

channels. The symmetry group of silicalite-1 is Pnma

with cell parameters a ¼ 20:07 �A, b ¼ 19:92 �A and

c ¼ 13:42 �A [21]. A three-dimensional network structure

of the channels in silicalite-1 contains straight and zig-

zag channels (Fig. 1a). The cross-section radii of both of

the channel types are about 4 �A.

To develop the n-pentane/silicalite-1 potential, it is
not possible to perform quantum chemical calculation

of a complete unit cell. Therefore, a fragment of the

10-oxygen membered ring consisting of 10 oxygen and

10 silicon atoms (Fig. 1b) has been used to represent the

silicalite-1. The selected fragment was, then, completed

by adding hydrogen atoms. The n-pentane molecule was

positioned at the center of the fragment in the configu-

ration shown in Fig. 2a. Then, about 100 configurations
of the dimer were generated by varying coordinates of

n-pentane in terms of molecular translation and rotation

along the three axes with steps of 0.2 �A and 20�,
respectively.

For the ab initio fitted n-pentane/n-pentane pair po-

tential, 1300 configurations of the n-pentane dimer have

been generated systematically. The center of mass of the

first n-pentane was at the origin and that of the second

one was at 3 �A on the x-axis (Fig. 2b). Positions and
orientations of the second n-pentane were varied in

terms of its translation and rotation along the three

axes. The distance between the two molecules was ex-

tended until the interaction approaches zero. In addi-

tion, flexibility of the n-pentane was also taken into

account by varying all C–C–C–C torsional angles of

both molecules.

All quantum chemical calculations were performed
for the above generated n-pentane/n-pentane and n-
pentane/silicalite-1 configurations at the MP2 level with

6-31G* basis set. The basis set superposition error

(BSSE) is also taken into account. The MP2 energies,

DEðrÞ, representing n-pentane/n-pentane and n-pentane/
silicalite-1 interactions were fitted separately to analyti-

cal functions of the type

DEðrÞ ¼
X
i

X
j

Aij

r6ij

(
þ Bij

r12ij
þ Cij

r4ij

)
; ð1Þ

where Aij, Bij, and Cij are fitting parameters and rij is the
distance between atoms i and j, belonging to different

molecules. Note that, the highly repulsive configurations

were excluded from the fitting procedure due to the
negligible likeliness of occurrence. The n-pentane mole-

cule is represented by a united atom model [22], in which

interaction sites of CH2 or CH3 groups are positioned at

the carbon atoms. In addition, only oxygen atoms of the

fragment were included in the n-pentane/silicalite-1 fit-

ted potential as it is done in most of the MD simulations

for guest/zeolite systems while the quantum calculations

include, of course, also the silicon atoms.

2.2. Molecular dynamics simulations

The simulations were performed using the velocity

Verlet algorithm with a time step of 0.5 fs. The con-

centration of n-pentane in silicalite-1 was equivalent to

the experimental density of 4 molecules per unit cell. The

effect of the box size was examined by performing sim-
ulations containing 2 and 16 unit cells of silicalite-1.

While the lattice was kept rigid for all MD runs,

n-pentane was modeled to be flexible with a dihedral

potential according to [23]. Furthermore a harmonic

potential [24] and a Morse potential [25] were intro-

duced to model the bond bending elasticity and the

stretching elasticity. The average temperature of the run

was adjusted to 330 K for 50 ps by the choice of the total
energy as described in [26]. Then, no further thermali-

zation was necessary and the evaluation of the quantities

of interest (e.g. diffusion coefficients, radial distribution

functions) could take place with unperturbed trajecto-

Fig. 1. Schematic views of: (a) the channel system within one unit cell

of silicalite-1; (b) a 10-oxygen membered ring-fragment of silicalite-1.

Fig. 2. Starting configurations of: (a) n-pentane/silicalite-1; (b) n-pen-
tane/n-pentane which were used to develop the pair potential.
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ries of an MD simulation in the microcanonical en-

semble with the predefined value of the temperature.

3. Results and discussion

3.1. The ab initio fitted potentials

For the functional form of the interaction energies

shown in Eq. (1), the fitting parameters have been op-

timized. The final values are summarized in Tables 1 and

2 for the n-pentane/silicalite-1 and n-pentane/n-pentane,
respectively.

Some comments could be made concerning the

quality of the ab initio data points and the functional

form used. In order to take into account the dispersive

interaction which is very important in the alkane/sili-

calite-1 system, the second-order Møller-Plesset pertur-

bation (MP2) level with the extended 6-31G* basis sets

which is known to represent such interaction [27] was

applied. The basis set superposition error was applied to
all data points in order to diminish an artifact due to an

unbalance of the basis set.

In Eq. (1) no coulombic term is presented. One rea-

son to neglect it is the use of the united atom model in

which the total charge of each united atom of type CH2

or CH3 is almost zero. Another argument to leave out

this term is that the proposed model with the effective

parameters employed in this study already yields very
good agreement between the predicted (by the potential

function) and the observed (by the ab initio calculation)

interaction energies. In addition, an approach of the

sorbate molecules to the Si atom on the silicalite-1 sur-

face is prevented by surrounding oxygens.

To visualize the quality of the guest/host fitted

potentials, energies (DE) yielded from the ab initio cal-

culations are compared with DE values calculated using

the analytical pair potentials. DE here means the con-

tribution of the n-pentane/silicalite-1 interactions to the

total potential energy. The comparison is shown in

Fig. 3 for numerous configurations where a point on the

symmetry line would mean an 1:1 agreement of model
and ab initio calculations for the configuration repre-

sented by that point. The plot shows that the n-pentane/
silcialite-1 potential reproduces the ab initio data very

well, especially for configurations that frequently appear

during MD simulations.

A comparison between the ab initio calculated ener-

gies and those from the model for the n-pentane/silica-
lite-1 potential energy for configurations where the
n-pentane molecule lies at the center of the fragment

(Fig. 2b) and moves along the �x direction approaching

the inner surface of the wall is shown in Fig. 4, where the

� distances correspond to those along �x axes. Good

agreement between the two curves confirms the reli-

ability and quality of the fitted potential. Rapid increase

of the interaction energy indicates strong repulsion be-

tween n-pentane and the inner wall of the silicalite-1.

Table 1

Ab initio fitted potential parameters for the n-pentane/silicalite-1 in-

termolecular potential shown in Eq. (1)

Sort Parameters

A (kJ�A6/mol) B (kJ�A12/mol) C (kJ�A4/mol)

O–CH3 )21112.16104 37738020.53015 421.23788

O–CH2 )11489.01954 15095208.21206 521.16890
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Fig. 3. The correlation between potential energy values arising from

the n-pentane/silicalite-1 interaction calculated from ab initio method

(DEab) compared to those yielded from Eq. (1) with the optimal pa-

rameters shown in Table 1 (DEfit).
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Fig. 4. Interaction potential energies (DE) for the n-pentane/silicalite-1
obtained from the ab initio calculations at the MP2 level with the

extended 6-31G* basis sets (DEnC5
ab ) and from the potential functions

(DEnC5
fit ) according to Eq. (1) where the n-pentane molecule lies in the

configuration shown in Fig. 2b and moves along the �x axes to the

inner surface of the silicalite-1. (DECH4

ab and DECH4

fit were defined in a

similar manner for the methane/silicalitte-1 system in [28].)

Table 2

Ab initio fitted potential parameters for the n-pentane/n-pentane in-

termolecular potential shown in Eq. (1)

Sort Parameters

A (kJ�A6/mol) B (kJ�A12/mol) C (kJ�A4/mol)

CH3–CH3 )5719.49861 39562056.94898 0.0

CH3–CH2 )9904.31665 35682342.74115 0.0

CH2–CH2 )3856.08455 2828267.10013 0.0
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This is in contrast to what takes place for water and

methane molecules in the pore of silicalite-1 [13,28].

The quality of the ab initio fitted n-pentane/n-pentane
function was also examined and shown in Fig. 5a. Good
agreement between the two sources of the energy was

yielded, especially in the attractive region (DE < 0).

Comparing to those extracted from the literature

[23,29,30], (see Fig. 5b–d) our model fits better to the

correlation line than the other models. A quantitative

measure of the quality of the potential functions is

presented in Table 3, in which the sum of the square

errors between DEfit and DEab was evaluated. It is clear
from these data that our function shows the best cor-

relation between the ab initio and the fitted energies

among to the available potential functions.

3.2. Molecular dynamics simulations

3.2.1. Diffusion coefficients

Diffusion coefficients i.e. the single elements of the
diffusion tensor Dx, Dy , and Dz corresponding to the

principle axes and their arithmetical average D (the trace

of the diffusion tensor divided by three) for two different

MD box sizes were evaluated from the MD simulations

according to the method proposed in [26]. The results,

for two different evaluation times, were given in Table 4.
The following conclusions can be made: (i) the aver-

age diffusion coefficients, D obtained from the simula-

tions using the newly developed potential are almost 4

times lower than that of the PFG-NMR experiment [31].

Taking into consideration the large variations in the

available experimental diffusion coefficients for zeolites

[5,9], the agreement of the simulation results with the

PFG-NMR is satisfactory. One should note that the
fitting was only done with respect to ab initio energies

and not with respect to the experimental D values. Pa-

rameters that are corrected with respect to selected ex-

perimental D values would of course be superior in

reproducing these special data. Moreover, it was shown

in our previous work that the use of ab initio derived

potential in molecular dynamics simulations have the

power to determine a proper structure of diffusive water
and methane molecules in silicalite-1 channels [13–

Table 3

Sum of the squares of the energy differences between (DEab) and (DEfit)

for the potential function presented in this Letter and those available in

the literature [23,29,30]

Potential functions
P

ðDEfit � DEabÞ2

This work 277.55

TIP [23] 4661.99

TraPPE-UA [29] 488.93

PRF [30] 644.42

Table 4

Diffusion coefficients along the x-, y-, z-axes and their average values

evaluated from MD simulations with two different MD box sizes

(number of silicalite-1 unit cells, N ), compared to that obtained from

PFG-NMR measurement [31]

t (ns) N (unit cell) D (10�11 m2/s) Total

x y z

500 2 6.60 32.80 1.13 13.50

500 16 10.70 22.10 2.01 11.60

PFG-NMR 39.00
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Fig. 5. The correlation between potential energy values arising from the n-pentane/n-pentane interaction calculated from ab initio method (DEab)

compared to those (DEfit) yielded form: (a) Eq. (1) with the optimal parameters shown in Table 1; (b) TIP potentials [23]; (c) TraPPE-UA potentials

[29]; (d) PRF potentials [30].
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15,28]. (ii) The average D does not differ significantly for

different box sizes while the single components of the

diffusion tensor are very sensitive to this parameter (the

edge length of the MD box containing 16 silicalite-1 unit

cells is two times longer than the edge length for a box
containing only two unit cells). Note that this was not

observed for small guest molecules, such as water and

methane. Therefore, a clear conclusion is that a long

n-pentane molecule needs a larger simulation box.

Therefore, further evaluation was carried out only for

the system containing 16 unit cells of silicalite-1.

Considering the diffusion through silicalite-1 as a

random walk of independent steps between the channel
intersections, the components of the diffusion tensor can

be shown to fulfill a relation proposed by K€arger [32]

a2

Dx
þ b2

Dy
¼ c2

Dz
; ð2Þ

where a, b, c are the unit cell parameters as mentioned

above. Deviations from this relation, caused by ‘mem-

ory effects’, can be characterized by a memory factor, b,
introduced in [33].

b ¼ c2=Dz

a2=Dx þ b2=Dy
: ð3Þ

The value of b calculated in this study is equal to 1.6.

As diffusion in z-direction can be realized in silicalite-1
only by alternating moves in x- and y-channels b > 1

indicates that exchanges of molecules between the dif-

ferent channel types happen not very often.

3.2.2. Radial distribution functions

To understand the structural properties of the system,

several atom–atom radial distribution functions (RDF)

have been examined. The RDF’s are defined in the fol-
lowing way: gxyðrÞ is the probability density of finding a

particle of type y in a distance r from a given particle of

type x. For the united atoms representing the CH2 and

CH3 groups the distance is measured from their C atom.

The resulting curves for their RDF’s with respect to the

lattice oxygen have been displayed in Fig. 6. The CH3–O

RDF shows a pronounced first peak centered at 4.1 �A.

As the channels in silicalite-1 form tubes with a diameter
of approximately 8.2 �A, the first peak can be clearly

assigned to molecules moving along the center of the

tube. In agreement with [34], the other peaks at 5.8 and

8.3 �A can be assigned to n-pentane molecules in the 10-

oxygen membered rings and in other adjacent rings on

the silicalite-1 surface, respectively. The peak positions

correspond to the distances from carbon atoms of the

CH3 group to the nearest oxygen atoms. These peaks
are similar to those found for water and methane mol-

ecules in silicalite-1 [28,35].

The situation is different for the CH2–O RDF, al-

though it shows also three peaks located at almost the

same positions as those of the CH3 one. Broadening of

the CH2–O peaks is due consequently to the zig-zag

conformation of the n-pentane molecules, i.e., when the

two CH3 ends were positioned along the central line, the

CH2 groups have to be shifted out of this line, closer to
the inner surface of the wall. Note that the broad peak

at 4.4 �A and the shoulder at 3.6 �A of the CH2–O RDF

are contributed by the same set of n-pentane molecules

because the sum of the two distances is almost equal to

the diameter of the tube. The same reason can be ap-

plied to describe the broadening of the second and the

third peaks of the CH2–O RDF in comparison to the

CH3–O one.

4. Conclusion

New potential functions for n-pentane/silicalite-1
have been successfully developed. They are in better

agreement with ab initio data than any other ones found

in the literature. The diffusion coefficients obtained from
simulations using these potentials are in satisfactory

agreement with the experiment values. The difference in

single diffusion components obtained from small and

large systems leads to a decision of applying MD box of

16 unit cells for further studies. The resulting potential

curves, memory factor and radial distribution functions

suggest that the n-pentane molecule moves preferentially

around the central lines of the channels and hardly
changes to diffuse to different channel types.
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The binding energies and the corresponding structures of a methane molecule on the silanol covered (010)
surface of silicalite-1 have been investigated using ab initio methods. Different levels of calculations, HF/
6-31G(d), MP2/6-31G(d) and ONIOM (MP2/6-31G(d):HF/6-31G(d)) including the correction of an error
due to an unbalance of the basis set, known as basis set super position error (BSSE), as well as the size of
the cluster representing the silicalite-1 surface, were systematically examined to validate the model used. The
ONIOM method with the BSSE correction was found to be a compromise between accuracy and computer
time required. The optimal binding site on the silicalite-1 surface was observed at the configuration where
the methane molecule points one H atom toward the O atom of the silanol group. The corresponding binding
energy is-1.71 kJ/mol. This value is significantly higher than that of-5.65 kJ/mol when the methane molecule
approaches the center of the straight channel. At this configuration, the C atom of methane was observed to
locate exactly at the center of the channel. This leads to the conclusion that the methane molecule will relatively
seldom be adsorbed on the silanol covered (010) surface of silicalite-1. Instead, the adsorption process will
take place directly at the center of the straight channel.

1. Introduction

During the past decades the economical as well as the
scientific interest in zeolites increased rapidly. These alumino-
silicates contain a regular system of nanosize pores and/or
channels and in many cases they also contain exchangeable
cations. Therefore, zeolites are used in industries as molecular
sieves, catalysts and adsorbents. However, in any one of these
applications guest molecules have to enter the zeolite crystallites
before diffusing within the pore system. They have to move
through the pore opening; i.e., they have to interact with the
external surface of the zeolite.

Only recently1-15 has the behavior of guest molecules on the
zeolite surface been studied. It is known that the surface of most
of the zeolitic and amorphous silica materials is covered by
silanol groups. Therefore, the interaction with the silanol covered
surface is crucial for all applications using the adsorption and
diffusion of guest molecules in zeolites.

Most of the information on the characteristics of silanol on
the external surface of zeolites arises from FTIR experiments.16-24

It was observed that the O-H bond of silanol groups is softened
when interacting with nitriles,17-20 alcohols,21 water,22,23,25

pyridine and even with aliphatic and aromatic hydrocarbons.19

In IR measurements, it has been found that methane molecules
are adsorbed at the surface OH groups of a silica surface in
remarkable amount only at low temperatures.26 This leads to

the assumption that these OH groups form adsorption centers
of low adsorption energy on a silica surface. A weak interaction
of methane with OH surface groups has also been found in
numerical simulations of methane on silicalite.27 These simula-
tions have been carried out using empirical classical potentials.
To our knowledge such measurements for the silicalite surfaces
or examinations of this system using ab initio calculations are
not available. Therefore, this is one of the aims of the present
paper.

Noncationic zeolites, in particular silicalite-1, are widely used
in the separation of mixtures between light hydrocarbons and
water or other polar solvents because of the hydrophobic nature
of the internal surface, whereas its external surface is hydro-
philic. The latter property can be attributed to terminal silanol
groups that are able to interact with guest molecules. However,
most of the experimental and theoretical works focus on the
internal surface, the pore or channel, whereas much less is
known about the details of the external surface. Recently, the
interaction between water molecules and the silanol covered
surface of the silicalite-1 was, theoretically, studied.28 Optimal
binding sites, binding energies and orientations of water
molecules were investigated and discussed in comparison with
the experimental data.

In this investigation, the structure and the interaction between
methane molecules and the silanol groups on the external surface
of silicalite-1 was examined. The energetic and geometric
optimizations have been performed using quantum chemical
calculations at the HF and MP2 level. A combination of both
methods, known as ONIOM (MP2:HF), was also examined to
seek an appropriate technique for the investigated system.
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2. Details of the Calculations

2.1. Surface Model of Silicalite-1.The idealized lattice of
the MFI framework was obtained from the IZA database.29 The
lattice was cut along the dashed line in Figure 1a. The obtained
(010) surface (Figure 1b), which is perpendicular to the straight
channels, was, again, cut by the circle. The resulting fragment
shown in Figure 1c was used for this study. Hydrogen atoms
were added to the broken-Si-O- bonds. The Si-OH and
Si-H bonds were optimized using quantum chemical calculation
at the HF/6-31G(d) level. The obtained Si-OH groups were
assumed to represent the silanols on the (010) surface of the
silicalite-1. For simplicity, an area perpendicular to the straight
channel, the 10 oxygen membered ring, was named as an E0
ring and the adjacent channels were labeled as Ei and Ei′ where
i ) i′ ) 1-5 (see Figure 1c).

2.2. Test of the ONIOM Method.The high accuracy level,
correlated method (MP2) that had been proven to be a feasible
method for the calculation of van der Waals complexes30,31and
was successfully used in our previous works28,32,33was again
applied in this study. On one hand, the system fragment in
Figure 1c is still too large to take into account all atoms in the
MP2 calculations. On the other hand, use of each single E0-
E5 ring will be too small to represent the silicalite-1 (010)
surface. Seeking for an optimal compromise between fragment
size vs the required computer time, MP2/6-31G(d) and ONIOM-
(MP2/6-31G(d):HF/6-31G(d)) calculations were examined. For
the quantum MP2/6-31G(d) calculations, the surface was
represented by the fragment given in Figure 2a (which is half
of the fragment shown in Figure 1c). Then, the methane
molecule was located above the centers of the E3 rings and
oriented in the configurations where one H atom points away
from the center of the ring. The distance between the C atom
of methane and the center of the ring was optimized. The
binding energy including the basis set superposition error
(BSSE) correction was calculated and analyzed.

For the ONIOM calculations, the model part (Figure 2b),
which is a subset of the real part and covers the reaction area,
the more accurate MP2/6-31G(d) method was applied. However,
the real part that covers the whole fragment shown in Figure
2a (including the real part in Figure 2b) was treated by a low
level method, HF/6-31G(d). The ONIOM interaction energy of
the system,EONIOM, is derived as

whereEreal,low is the total energy of the real system using the

low level method andEmodel,highandEmodel,low define the total
energies of the model part calculated with high and low level
methods, respectively.

2.3. Optimal Methane-Surface Binding Energy.To reduce
the scope of the calculation, the E1-E5 rings are, respectively,
assumed to be identical to the E1′-E5′ ones. With this
approximation, the methane molecule was assigned to approach
the surface only in the first half of the surface shown in Figure
2a. Therefore, the calculations were focused only on the complex
structure in the E1-E5 and center of the E0 rings. The methane
molecule in the two orientations (H-in and H-out in Figure 3b)
was positioned at several points (labeled as 1-10 in Figure 3a),
2.25 Å above the silanol covered surface. The distance from
the C atom of the methane molecule to pointi, wherei ) 1-10
labeled in Figure 3a, was optimized in the path perpendicular
to the surface. The center of mass of all Si atoms of each ring
is defined to be the origin of the coordinate frame for the
potential calculations on paths 7-10.

The binding energy,∆Ebind, is defined according to the
supermolecular approach, as shown in

whereEcpx is the total energy of the complex calculated by the
ONIOM method andEmet andEsur are the total energies of the
methane molecule and of the fragment surface, respectively.
All calculations were performed using the GAUSSIAN03
program.34

Figure 1. Side-view of the silicalite-1 lattice (a) where the (010) surface
was cut along the dashed line and circles. The obtained top-view of
the (010) surface can be seen in (b) and (c). The straight channel in (c)
was labeled as E0 and the adjacent channels are named as Ei and Ei′
wherei ) i′ ) 1-5.

EONIOM ) Ereal,low + Emodel,high- Emodel,low (1)

Figure 2. Real (a) and the model (b) parts used for examining the
ONIOM method.

Figure 3. Methane molecule initially located at 2.5 Å above and
perpendicular to the points labeled by 1-10 (a) in the two configura-
tions, H-in and H-out (b).

∆Ebind ) Ecpx - Emet - Esur (2)
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3. Results and Discussions

3.1. Validity of the Method. According to the calculation
details mentioned above where the HF, MP2 and ONIOM
interaction energies were evaluated using the partition shown
in Figure 2 and the methane molecule was located and moved
perpendicular to the E3 rings in the configuration H-in, the
results were plotted and compared in Figure 4. Note that the
BSSE corrections were taken into account for all data points.
From the plots, the following conclusions can be made: (i) The
interaction energies (dashed lines in an inset of Figures 4)
yielded from the small fragment size (model part, Figure 2b)
differ significantly from those of the surface of bigger size (real
part, Figure 2a). A clear conclusion is that the small cluster
size, such as E3 in Figure 2b, is not enough to represent the
calculated system. (ii) Interestingly, the ONIOM (MP2/6-31G-
(d):HF/6-31G(d)) interaction energies (dotted line in Figure 4)
are almost identical to those yielded from the MP2 method (solid
line in Figure 4). Note that the bigger fragment in Figure 2a
was used in the MP2 calculation.

Taking into account all the data and conclusions given above,
the ONIOM (MP2/6-31G(d):HF/6-31G(d)) calculation with the
BSSE correction was selected and used throughout to investigate
the interaction between the methane molecule and the silanol
covered (010) silicalite-1 surface. This is in good agreement
with that reported by Sauer et al.35 on the adsorption of the
NH3 and H2O molecules in acidic chabazite.

3.2. Optimal Binding Site of Methane. In Table 1, the
ONIOM binding energies representing the methane/surface
interaction in which the surface is represented by the fragment
as shown in Figures 3a (equivalent to that in Figure 2a or half
of that in Figure 1c) and methane is in the configurations H-in
and H-out (see Figure 3b) were summarized. The 10 trajectories
are classified into 3 groups where the H-in or H-out configu-
ration of the methane molecule is perpendicular to the atoms
(Si, O or H, trajectories 1-6), the center of the small rings (E2-
E4, trajectories 7-9) and the center of the 10-membered ring
(path 10) of the silicalite-1 surface.

Among the trajectories where the methane molecule points
one H atom toward/away from the atoms of the surface, the O
atom of the silanol group (path 4 in Table 1 and Figure 3a)
was found to be the most favorable binding site. The corre-
sponding binding energy in the H-in configuration is-1.71 kJ/

mol with theDopt distance (from the C atom of the methane to
the O atom of the silanol group) of 4.00 Å. Due to a very weak
interaction between the methane molecule and the hydrophilic
silanol covered surface of the silicalite-1, the potential energy
curve shows a very broad minimum. Examples are the MP2
and the ONIOM binding energies for the E3 ring shown in
Figure 4b. Therefore, a clear conclusion, in terms of the binding
energy and the optimal distance, cannot be made because the
energy of binding in different trajectories and orientations lies
within the range of the thermal fluctuation at room temperature.
Note thatkT at room temperature is about 2.5 kJ/mol whereT
denotes the temperature in Kelvin andk is Boltzmann’s constant.

For the trajectories pointing to the centers of small size
channels, E2-E4 rings, the most stable binding site is situated
at the center of the E4 ring (path 9 in Table 1) in the
configuration H-in. The corresponding binding energy and
distance are-2.54 kJ/mol and 5.40 Å, respectively.

Considering the path E0 in which the methane molecule
moves to the center of the straight channel, more details were
additionally investigated and plotted in Figure 5. In the
configuration H-in (solid line in Figure 5), the first minimum
was detected at theDopt (from C atom of methane to center of
the E0 ring) of 2.90 Å. At shorter distance, repulsion between

Figure 4. Binding energy including BSSE corrections for the real and
model systems (see Figure 2) calculated using MP2 and ONIOM
method when the methane molecule is in the configuration H-in (see
Figure 3b) and moves perpendicular to the center of the E3 ring (see
Figure 3a), whereD denotes the distance from the C atom of methane
to the center of the E3 ring. The HF calculation is also depicted for
comparison.

TABLE 1: Optimal ONIOM Distances ( Dopt in Å from the
C Atom of the Methane Molecule to Point i, Where i )
1-10 Labeled in Figure 3a) and the Corresponding Binding
Energies (∆Ebind in kJ/mol) Representing the Methane/
Surface Interaction in Which the Methane Molecule Points
One of the H Atoms toward (H-in) and Away from (H-out)
the Surface (Figure 3b)

relative orientation
H-in

relative orientation
H-out

pathi, i ) 1-10 in Figure 3a Dopt ∆Ebind Dopt ∆Ebind

H of CH4 Points toward/Away from the Atom
1. Si 5.00 -1.36 5.00 -1.15
2. O of Si-O-Si 4.90 -1.51 4.70 -1.62
3. O on the 10-membered ring 5.30 -1.36 5.30 -0.65
4. O of H-O-Si 4.00 -1.71 4.10 -0.62
5. H of H-Si 3.90 -0.74 3.60 -0.61
6. H of H-O 4.10 -0.47 3.30 -1.31

H of CH4 Points toward/Away from the Center of the Ring
7. E2 5.90 -1.94 6.30 -1.24
8. E3 4.90 -1.23 4.60 -1.68
9. E4 5.40 -2.54 5.40 -2.12

H of CH4 Points toward/Away from the Center of the 10-Membered Ring
10. E0 0.00 -4.26 0.8 -5.75

Figure 5. Binding energies∆Ebind when the methane molecule is in
the configurations H-in and H-out (Figure 3b) and moves perpendicular
to the center of the E0 ring (Figure 3a), whereDopt denotes the distance
from the C atom of methane to the center of the E0 ring.

Methane Binding on Silicalite-1 J. Phys. Chem. BC
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the H atoms of methane and the atoms of the 10-oxygen
membered ring leads to a slight increase of the binding energy.
After a broad maximum atDopt ) 1.80 Å the binding energy,
again, decreases and remains constant at-4.14 kJ/mol between
Dopt ) 0.0 and-1.50 Å (minus value of theDopt denotes the
position where the methane molecule is under the surface). Note
that atDopt ) 0.0 Å in the H-in configuration, the C atom of
methane is located at the center of the straight channel.

For the configuration where one H-atom of methane points
away from the surface, H-out, the binding energy decreases
rapidly whenDopt decreases. The minimum was found when
the three hydrogen atoms of methane are in the E0 plane; i.e.,
the distance to the C atom of methane,Dopt, is 0.60 Å and the
corresponding energy is-5.75 kJ/mol. This is the optimal
binding between the methane and the silanol covered (001)
surface based on the ONIOM (MP2/6-31G(d):HF/6-31G(d))
calculation with the BSSE correction. AtDopt < 0.60 Å, the
energy, again, increases. The H-out configuration gives a binding
energy identical to that of the H-in one,-4.15 kJ/mol, when
the C atom locates below the surfaceDopt ) -1.00 Å and one
of the H-atom lies in the silicalite-1 surface. Note, however,
that in this study we examine only the influence of the external
sheet of atoms of the lattice on the approach of the methane
molecule. Therefore, the energies obtained from this work
cannot be compared to the experimental adsorption energy
because we examine the influence of the surface only. All atoms
of the silicalite-1 lattice would contribute to the complete
adsorption process.

The calculated energies are higher than those from refs 33
and 34 where only a small fragment was used. This can be due
to the effect of the hydrogen atoms which were added to saturate
the broken terminal bonds.

4. Conclusion

Quantum chemical calculations were carried out to seek for
the optimal binding site and orientation as well as the binding
energy of a methane molecule on the silanol covered (010)
surface of silicalite-1. The ONIOM (MP2/6-31G(d):HF/6-31G-
(d)) method with the correction of the basis superposition errors
was found to be a compromise between the accuracy and
computer time required for the investigated system. The ONIOM
binding energies and distances are almost the same as those
yielded from the MP2 calculations using the same fragment size
as that of the real part of the ONIOM method. The optimal
binding site is located at the straight channel and the binding
energy is significantly lower than that of the other regions;
therefore, the methane molecule was suggested to move freely
above the surface and enter into the straight channel in the
configuration pointing one of the H-atoms to the center of the
straight channel.
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