CHAPTER 3 PROPOSED METHOD
This chapter describes about the adaptive algorithm. It was introduced to use in the
retrieval process to enhance the exiting image watermarking scheme [8]. Also, the

development of adaptive algorithm was described.

3.1 Adaptive Algorithm Version 1

To analyze the factors that influence the watermark retrieval performance, the equation

(2.3) is rewritten by

w'(i, J) = B(, J) +w(i, j)sL' (i,))
-

—é(> Y B(i+m,j+n)-B(m,n) (3.1)

m=-1n=-1
1 1
—-l(> Y w(i+m,j+n)sL'(i+m,j+n)—w(m,n)sL'(m,n))

8 m=—1n=-1

Reasonably, from the equation (2.3), it is that large variation in pixels around (7, j) can
cause a bias in the original pixel prediction process, which results in an erroneous
original pixel value. However, we can minimize this bias by removing all surrounding
pixels around (7, j) that most differs from the remaining. For instance, in case of having
two extreme pixel values within the eight surrounding pixels, those two pixels should be
removed from the prediction process. Based on the first assumption previously made,
the prediction accuracy of an original pixel depends mainly on its nearby pixel values.
In other words, it can be said that a small difference in variance (o”) between the
original surrounding pixels and the watermarked surrounding pixels gives a higher
accuracy of the original pixel prediction than a large one. Therefore, if the variance of

eight pixels around B(i, j), op ?_is much more different than that of eight pixels around

12

B(i, j), o3, one pixel around B'(i, Jj) that affects the variance most should be removed in
order to make the new variance close to 0'32 . Based on this concept, 0'32 is thus referred
to as a prediction threshold in the original pixel prediction process. Since in the
watermark retrieval, the blind detection is considered and the real value of o3 cannot
be determined. In this thesis, we hence used the variance of the watermarked image as
o3 . It should be noted that in nature the variance of the entire image is usually much
higher than the variance of the small image area. The practical threshold is then derived
in accordance with the variance of the entire watermarked image. From the above
discussions, we propose a new watermark retrieval method based on the removal of
surrounding pixel(s) that most affects its variance, compared to the threshold derived
from the watermarked image’s variance. If one surrounding pixel around (i, j) is already
removed and the resultant variance of the remaining pixels around (i, j) is still much
different from the threshold, we will remove another surrounding pixel thaf most affects
its variance again. The process continues until the resultant variance of the remaining
pixels around (7, j) is close enough to the threshold. However, the maximum number of
the pixel removal is limited to 4 pixels to sustain the numbers of surrounding pixels left
for the prediction process. The steps of our proposed watermark retrieval method are as

follows:

1. Predict an original pixel from the watermarked image at coordinate (i, j), the eight
surrounding pixels around (7, j) are stored in the temp array.

2. Sort out the pixel values in the temp array in order from the smallest value to the
largest one.

3. Compare the variance of femp to the variance of the watermarked image. If the
temp variance is higher, remove one pixel at the first or last position in the temp

array. The pixel to be removed depends on the new variance obtained after

13

removing it. That is, if removing the pixel at the first position gives the new
variance less than removing the pixel at the last position, the pixel at the last
position is removed.

4. Repeat step three until o is lower than the threshold, or four surrounding pixels
are removed.

The pseudo code to implement our proposed watermark retrieval method is given

below.

Function adaptive original pixel prediction at coordinate (i,j)
optimum threshold - suitable value derived from image variance
neighbor(] - array of surrounding pixels sorted in order from the smallest value to the largest one
neighbor size - number of surrounding pixels used for the prediction
criterionl - (size of neighbor[] >= neighbor size)

criterion2 - variance of neighbor[] > optimum threshold

vl - variance of neighbor([] after removing one pixel at first position

v2 - variance of neighbor(] after removing one pixel at last position

While (criterionl and criterion2)

If (vI>v2)

temp(] = neighbor[]*the one without the pixel at first position

Else

temp[] = neighbor(] *the one without the pixel at last position

End if

neighbor(] = temp[]

The National Reseaich Council of Thailand

' Resea-ch b
End while i1 2. ?SRE)V

Date..itvaininiit EY UFTIVCIS GO TRRRTeY
Return (sum(neighbor(]) / size of neighbor[]) 4 100 4

RecOrd NO. sevecsesaitornsneiteisrornosnssenssnsane

Call NO. covisnisinsinsnieninssnn TITTTTTIeY

14

Detail, algorithm decision can be precise with suitable threshold. More detail about

analysis of threshold and results will be described in chapter 4.

3.2 Adaptive Algorithm Version 2

To analyze the adaptive algorithm version 1, there are some conflictions about an
assumption of the retrieval process that is the retrieval process can be achieved by the
assumption that a pixel value at a given coordinate (i, j) can be estimated by the average
of its nearby pixel values and the summation of w around (i, j) is close to zero. In case
the number of the removal pixel is odd, it is impossible that the summation of w around

(1, j) is close to zero.

To hold the summation, the number of the removal pixel will be couple. Moreover, the
standard deviation will be replaced with variance because variance value is greater than
pixel value for more. The standard deviation can represent the appearance of the

extreme pixel value.

The pseudo code to implement the adaptive algorithm version 2 is given below.

Function adaptive original pixel prediction at coordinate (i,j)

threshold - suitable value

sd — Standard deviation of neighbor array
neighbor[] = neighbor[]*remove the one couple extreme pixels(min and max of neighbor array)
calculate sd for neighbor
If (sd> threshold)
neighbor[] = neighbor[]*the one couple extreme pixels(min and max of neighbor array)
End if

Return (sum(neighbor(]) / size of neighbor(])

neighbor(] - array of surrounding pixels sorted in order from the smallest value to the largest one

15

3.3 Adaptive Algorithm Version 3

To support the original adaptive concept, the adaptive algorithm version 3 can be

produced by combination between the adaptive algorithms versions 1 and 2.

The pseudo code to implement the adaptive algorithm version 3 is given below.

Function adaptive original pixel prediction at coordinate (i,j)

threshold - suitable value
neighbor(] - array of surrounding pixels sorted in order from the smallest value to the largest one
sd — Standard deviation of neighbor array
If (sd> threshold)
neighbor([] = neighbor[]*the one couple extreme pixels(min and max of neighbor array)
calculate sd for neighbor
If (sd> threshold)
neighbor[] = neighbor[]*the one couple extreme pixels(min and max of neighbor array)
calculate sd for neighbor
If (sd> threshold)
neighbor [] = neighbor []*the one couple extreme pixels(min and max of neighbor array)
End if
End if
End if

Return (sum (neighbor []) / size of neighbor [])

