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Abstract 
 

This paper derives a simple closed-form formula for the nth conditional moment of the Ornstein-Uhlenbeck (O-U) 

process, for any positive integer n. The system of recursive ordinary differential equations (ODEs) associated with the nth 

conditional moment of the O-U process is solved analytically. We also provide practitioners a pseudocode for an algorithm to 

compute the conditional moments and discuss the efficiency of our formula compared to solving the system of recursive ODEs 

using the direct method. 
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1. Introduction 
 
The Ornstein-Uhlenbeck (O-U) process is often 

known as a mean-reverting process satisfying the stochastic 

differential equation (SDE) 

 
   ,t t tdX X dt dW                    (1.1) 

 

where к is the speed of adjustment of the rate towards its long 

term mean ɑ, σ is the volatility control, and Wt is the standard 

Brownian motion under a probability (Ω,F,P) with a filtration 

(Ft)t≥0. The most important feature which this process exhibits 

is the mean reversion, which means that if the rate Xt is bigger 

than the long term mean ɑ, then the coefficient к makes the 

drift become negative so that the rate will be pulled down in 

the equilibrium direction of ɑ, and similarly if the rate is 

smaller than ɑ. Therefore, к is the speed of adjustment of the 

 

rate towards its long run mean. The solution of the SDE (1.1) 

can be obtained by Ito’s lemma as 
 

 0

0

1

t

t t t s

t sX X e e e e dW          
 

 

 

for a given initial X0 (Karatzas and Shreve, 1991; Levy,   

2016) for more details). Moreover, the O-U process is a 

continuous time version of the first-order autoregressive 

process in discrete time and a special case of the Schwartz 

model. 

The O-U process is interesting in finance because 

there are also compelling economic arguments in favor of 

mean reversion. When the interest rates are high, the economy 

tends to slow down and borrowers require less funds. 

Furthermore, the interest rates pull back to its equilibrium 

value and the rates decline. On the contrary when the rates are 

slow, there tends to be high demand for funds on the part of 

the borrowers and rates tend to increase. This process has 

been applied apparently under the title of the Vasicek (1997) 

to describe quantities such as interest rates where there is 

some underlying reason to ban indefinite growth and require 

mean reversion.  
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In some cases of pricing financial derivatives based on commodities described by Schwartz model (1997), we may 

need to calculate a conditional moment in the form of  

  

| | XP n P n

T t T tE X F E X x       
                      (1.2) 

 

for any positive integer ,0n t T   and 0x   where we denote by  | ,P

tE X F  the conditional expectation of a random variable 

X  with respect to the probability measure P  and  -field .tF  For example, Weraprasertsakun and Rujivan (2017) applied the 

Feynman-Kac theorem to obtain the thn  conditional moment of the O-U process in the form 

 

   
0

|
n

nP n j n

T t j

j

E X X x A x e  



 
     

 
    (1.3) 

 

with     1
n

nA    by solving the system of recursive ordinary differential equations (ODEs) 

 

( )

( ) ( ) 2 ( )

1 2

1
( ) ( ) ( 1) ( ) ( 1)( 2) ( )

2

n

j n n n

j j j

dA
n j A j A j j A

d
     


          (1.4) 

 

subject to the initial conditions 

 

   0 0 for all 1, 2, ,0,
n

jA j n n       (1.5) 

 

providing that     1
n

nA    and    1 0
n

nA    for all 0T t     with 1,2.n   Unfortunately, they solved the recursive ODEs (1.4) 

only for 1, 2,n =  and used the solutions to derive a closed-form formula for pricing variance swap on a commodity. Moreover, 

they did not derive explicit formulas for     , 1, 2,...,0
n

jA j n n     for n > = 3. Therefore, we shall complete their work by 

deriving a closed-form formula for     , 1, 2,...,0
n

jA j n n     for n > = 3. The result obtained in this paper will be useful for the 

researchers who try to find a closed-form formula for pricing skewness swaps, kurtosis swaps, or higher moment swaps.  

Although solving the system of recursive ODEs (1.4) subject to the initial conditions (1.5) can be done by using the 

direct method, it is a tedious task and consumes much computational time and effort due to the cumbersome nature of the 

recursive ODEs. Therefore, a main contribution of the paper is to provide a simple closed-form formula for the coefficient 

functions    n

jA   for all
 1, 2, ,0,j n n    for any positive integer n. Furthermore, we provide practitioners a pseudocode 

for an algorithm to compute the coefficient functions and so are the conditional expectation (1.3). Finally, we discuss the 

efficiency of our formula compare to solving the system of recursive ODEs using the direct method. 

 

2. Main Results 

 

A simple formula for the coefficient functions    n

jA   for all
 1, 2, ,0,j n n    for any positive integer n, can be 

obtained as shown in the following theorem. 

 

Theorem 2.1 The solution (1.4) can be written in the form 
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1 2

2 2

,

00
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( r) 1 1
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n j
n j l ln ln j l l

j n jl
lr

A n e e c   


 
      

 



 
    
 


  (2.1) 

 

for 0T t    , where  
,

l

n jc  is defined using j n k   as an index in 
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                                                                                                                                            (2.2) 

 

 which is defined recursively on k  as follow; 
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   (2.3) 

for odd 3k  , 

, , 1

, 2

01 1
,

2
n k n k

n k

C C
Ck





  
    

  

   (2.4) 

and for even 4k  , 

, 1

,

, 2

01 1
.

20

n k

n k

n k

C
C

Ck





   
     

    

   (2.5) 

 

Proof. It suffices to show that the solution of 
 

            

( )
( ) ( ) 2 ( )

1 2

1
( ) 1 ( ) 1 2 ( )

2

n
n n nn k

n k n k n k

dA
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d
     




    
           (2.6) 

 

with conditions (1.5) when j n k   is 

         
21

2 2

,

00

1
( r) 1 1

k

k
k l ln lk l l

n k n n kl
lr

A n e e c   


 
    



 



 
    
 

   (2.7) 

where 
 
,

l

n n kc   
for 1, ,k n  is defined through (2.3)-(2.5). 

 

For 1,k   the equation (2.6) is reduced to 

 

( )
( )1

1( ) ,
n

nn
n

dA
A n

d
  




   

 

with the solution subject to the initial condition (1.5) when 1,j n   

 

   1 .
n

nA e n e n   


    

 

 

This can be written in the form of (2.7) when 1k   as  
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1

21 1
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1 2 2
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where 
 0

, 1 1n nc   . For 2,k   the equation (2.6) becomes 

 

   
( )

( ) ( ) 22
2 1

1
2 ( ) 1 ( ) 1 ,
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with the solution subject to the initial condition (1.5) when 2j n  , 

 

      2 2 2 2 2 2 2 2

2

1 1 1 1
1 .

2 4 2 4

n
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By writing in the form of (2.7) when 2,k   we get 
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where  0

, 2

1

2
n nc    and  1

, 2

1
.

4
n nc    Similarly, for 3,k   the equation (2.6) becomes 

 

 
        ( ) 23

3 2 1

1
3 ( ) 2 ( ) 2 1 ( )

2

n
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with the solution in integral form 
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where 
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By integration, we obtain the solution 
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By the initial condition (1.5) when 3,j n              1 1 2

0 1 00,3 0,3 0,3 0,R R R    and 
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where  0

, 3

1

6
n nc    and  1

, 3

1

4
n nc   , which is in the form of (2.7) when 3.k   This shows that  (2.4) holds for 3,k   
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For 4k  , the equation (2.6) becomes 
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with the solution in integral form 

 

                

       

4 4 4 4 2

4 3 2

(1) (1) (2) (2)

0 1 0 1

1
3 3 2

2

: ,4 ,4 ,4 ,4 ,

n n n

n n nA e e n A d e e n n A d

R R R R

         

   

 

      

   

   

where 

   

     

   

   

3
3

(1) 4 4 4

0

0

3
2

(1) 2 2 4 4

1

0

3
2

(2) 2 2 4 4

0

0

3
(2) 4 4 4

1

0

1
,4 ( ) 1 ,

6

1
,4 ( ) 1 1 ,

4

1
,4 ( ) 1 ,

4

1
,4 ( ) 1

8

r

r

r

r

R n r e e e d

R n r e e e e d

R n r e e e d

R n r e e e e
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By integration, we obtain the solution 
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By the initial condition (1.5) when 4,j n          (1) (1) (2) (2)

0 1 0 10, 4 0,4 0,4 0,4 0,R R R R     and 
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For other k , the solution of (2.6) in integral form is 

 

       1 2: ,
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Based on the same idea, we introduce  i
lR  by splitting 

 n

jA  in  1Q   and  2Q   as follows. By substituting 
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For odd k , the splitting of    , ,
i

lR k  for 1,2,i   are combined to obtain    n

n kA 
 according to the case of 3k  , namely, by 

the shifting index of  2

lR ,   
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By integration subject to initial condition (1.5) for ,j n k   the solution can be written in the form of (2.7) where the 

coefficients  
,

l

n n kc 
 satisfy (2.4). Similarly, the process follows the case of 4,k   i.e., 
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By integration subject to initial condition (1.5) for ,j n k   the solution can be written in the form of (2.7) where the 

coefficients  
,

l

n n kc 
 satisfy (2.5).                                                                                          

 

Remark 2.2 From the result, we can implement closed-form formula for the conditional moments as the following. 

 

                     Table 1.     Algorithm of the coefficient functions. 
 

 

Input: , , , , , ,n x t T    

Output: the thn  conditional moment 

1. Set    ,1 1nC    

2. Set   
,2

1 1
,

2 4
nC

 
  
 

 

3. For   3k   to n do 

4.           If  k  is odd then 
5.                Compute )2.4( 

6.           else 

7.                Compute )2.5( 
8.           EndIf 

9. EndFor 

10. Compute )2.1( 
11. Compute )1.3( 

 

We give the example by using (1.3) and (2.1) to derive the special cases of the conditional moments when 1,2,3.n   

 

Example 2.3 Set .T t    The first conditional moment is 

 

      1

0| ,P

T tE X X x x A e      
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where 
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The second conditional moment is 
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The third conditional moment is 
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3. Efficiency of Closed-form Formula 

 

In this section, analytical formula (2.1) is compared 

with the formula (1.4) proposed by Weraprasertsakun and 

Rujivan (2017) in terms of computational time for obtaining 

the conditional moments for 5,6 ,20n   based on the 

program Mathematica V9.0 in the form of symbolic 

parameters. The computations are performed under Microsoft 

Windows 10 64-bit, quad-processor Intel Core i7 3.4 GHz 

machine with 32 GB main memory and the results are 

displayed in Figure 1. 

The formula from WR consumed more time when n 

increased from 5 to 20 and increased exponentially from 0.328 

to 13.906 sec with a total time of 74.563 sec (Figure 1). 

However, our formula only consumed 0.016 sec for the total, 

which was extremely fast at around 4,000 times faster. 

 

 

This result simplifies the result from Werapra-

sertsakun and Rujivan (2017) by providing an analytical 

formula for computing conditional moments which is easier 

and faster to use without solving the system of recursive 

ordinary differential equations. 

 

 
                                          

 

 

 

 

 

 

 

 
 

 

Figure 1. Comparison of computational times between Weraprasert-

sakun and Rujivan (WR) and our formula (CMR). 
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