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Abstract

This paper derives a simple closed-form formula for the n" conditional moment of the Ornstein-Uhlenbeck (O-U)
process, for any positive integer n. The system of recursive ordinary differential equations (ODESs) associated with the nt
conditional moment of the O-U process is solved analytically. We also provide practitioners a pseudocode for an algorithm to
compute the conditional moments and discuss the efficiency of our formula compared to solving the system of recursive ODEs

using the direct method.
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1. Introduction

The Ornstein-Uhlenbeck (O-U) process is often
known as a mean-reverting process satisfying the stochastic
differential equation (SDE)

dX, =k (a— X, )dt+odW,, (1.1)
where « is the speed of adjustment of the rate towards its long
term mean q, o is the volatility control, and W is the standard
Brownian motion under a probability (2,F,P) with a filtration
(Ft)=0. The most important feature which this process exhibits
is the mean reversion, which means that if the rate X is bigger
than the long term mean q, then the coefficient x makes the
drift become negative so that the rate will be pulled down in
the equilibrium direction of a, and similarly if the rate is
smaller than a. Therefore, x is the speed of adjustment of the
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rate towards its long run mean. The solution of the SDE (1.1)
can be obtained by Ito’s lemma as

X =X, +a(l-e™)+ cre’“j'e”sdwS
0

for a given initial Xo (Karatzas and Shreve, 1991; Levy,
2016) for more details). Moreover, the O-U process is a
continuous time version of the first-order autoregressive
process in discrete time and a special case of the Schwartz
model.

The O-U process is interesting in finance because
there are also compelling economic arguments in favor of
mean reversion. When the interest rates are high, the economy
tends to slow down and borrowers require less funds.
Furthermore, the interest rates pull back to its equilibrium
value and the rates decline. On the contrary when the rates are
slow, there tends to be high demand for funds on the part of
the borrowers and rates tend to increase. This process has
been applied apparently under the title of the Vasicek (1997)
to describe quantities such as interest rates where there is
some underlying reason to ban indefinite growth and require
mean reversion.
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In some cases of pricing financial derivatives based on commodities described by Schwartz model (1997), we may

need to calculate a conditional moment in the form of
EP[ X7 IR ]=E"[ X7 X =x] (1.2)

for any positive integer n, 0<t<T and x >0 where we denote by E® [X I E]. the conditional expectation of a random variable

X with respect to the probability measure p and o -field F. For example, Weraprasertsakun and Rujivan (2017) applied the

Feynman-Kac theorem to obtain the n™ conditional moment of the O-U process in the form

EP[X_P | X, :X]:(ZAEH)(T)XJJQHW (1.3)
with Aﬂ“) (1) =1 by solving the system of recursive ordinary differential equations (ODES)

(n)
] H n H n 1. H n
== DA )+ (D AL + 5 (+D(]+ 20" AL ) (1.4)

subject to the initial conditions

A(”)(o)zoforallj=n—1,n—2,---10’ "

]

providing that Ag”)(r)zl and AE:}(T)ZO for all z=T—t>0 with n=1,2. Unfortunately, they solved the recursive ODEs (1.4)
only for n = 1,2, and used the solutions to derive a closed-form formula for pricing variance swap on a commodity. Moreover,
they did not derive explicit formulas for AE“)(T)‘ j=n-1n-2,..,0 for n >=3. Therefore, we shall complete their work by
deriving a closed-form formula for Ag“’ (r),i=n-1n-2,..,0 for n > = 3. The result obtained in this paper will be useful for the

researchers who try to find a closed-form formula for pricing skewness swaps, kurtosis swaps, or higher moment swaps.
Although solving the system of recursive ODEs (1.4) subject to the initial conditions (1.5) can be done by using the

direct method, it is a tedious task and consumes much computational time and effort due to the cumbersome nature of the

recursive ODEs. Therefore, a main contribution of the paper is to provide a simple closed-form formula for the coefficient

functions AE") (z) forall j=n-1,n-2,...,0, for any positive integer n. Furthermore, we provide practitioners a pseudocode

for an algorithm to compute the coefficient functions and so are the conditional expectation (1.3). Finally, we discuss the

efficiency of our formula compare to solving the system of recursive ODESs using the direct method.

2. Main Results

A simple formula for the coefficient functions A}") (r) forall j=n-1,n-2,...,0, for any positive integer n, can be

obtained as shown in the following theorem.

Theorem 2.1 The solution (1.4) can be written in the form
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n-j-1

2] |
A&")<r>=[H <n—°) > e o (e 1) (e 1) ol @D
=0 -0 K

for r=T —-t>0, where cr(]')j is defined using j=n—k asan index in

n,n-k
@)
C n

[c© ]
-k R LJ” 2.2)

— n

a

n,n—k

C

which is defined recursively on k as follow;

1
(0) =
_ _ [ (2.3)
_| 0 = b2 | |2
S S ERaH
4
for odd k >3,
_ 1= 1 0 (2.4
C.=—|C —| = )
n,k k[ n,k1+2|icn1k2:|Jv

= _1(|Cpu| 1] O (2.5)
il e )

Proof. It suffices to show that the solution of

d?—?— ke A", (7) = ((n—k) +1) ka AT, ., (7) +%((n —k)+1)((n-k)+2)o’ AT, () (2.6)

with conditions (1.5) when j=n—k is

o

n i 1 - KT k-l KT |
A" (7)= [H(n - r)j oo (e -1)" (e +1) ¢!, 2.7)
r=0 1=0
where Cr(1|,21—k for k =1,...,n is defined through (2.3)-(2.5).
For k =1, the equation (2.6) is reduced to
()
AL _ xA" (1) = nxa,
dr
with the solution subject to the initial condition (1.5) when j=n-1,

A" (z)=e" [—nae’”’ + na].

This can be written in the form of (2.7) when k =1 as
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: )[nmj% g (e 1) (e 1) o),

where Cr(fz_l =1. For k =2, the equation (2.6) becomes

(n)
—dg“’z =2cA" () = (n-1) ka A"\ (7) +%(n -1no?,
T

with the solution subject to the initial condition (1.5) when j-p_2,

™ () =n(n-1)e2 _azefw+1a2e72;«_io_zefzxr_'_iaz_kiaz )
AH( ) ( ) 2 vy 2 Ak

By writing in the form of (2.7) when k =2, we get

A7) =n(n-3) 2ot (e 1) + o (e 1) e 1)
|

E
:[H(n—r)J Lo (e 1) (ev 1) 0,

=0 K

)n :1. Similarly, for k =3, the equation (2.6) becomes

dA" —3kA"(z) = (n—Z)KaAE'PZ(T)+%(n—2)(n—1)o-2A£'ll(r)

with the solution in integral form
Aﬂi)g(r):e“"’J'e’S“(n—Z)mAﬂi)z(r)dr+e3”J'e’3”%(n—z)(n—l)az " (z)dz
1 1 _
:e?ﬂ(r'[e—?ﬂ(r (n—Z)Ka[[H(n— r)Jzilaz 252 (g ( _1)2 1 (e“ +1)I Cr%zjdf
r=0

1=0 K
-2l 2l (e’“ _;|_)l (e +1)I Cn Jdr

fewg(n-z)(n—l)a{[mn-f))i

a_é =

1=0

=R (7,3)+RY (7,3)+ R (7,3),

where

RM(7,3) [ﬁ(n—r)] xa'e 3”]‘6'3'“ e l) dr,
R(s3)-(
R (r,3)= [

I
o

(n- r)]%aazef‘”je*” (e -1)(e +1)dr,

:|w =

(n— r)]%ozae“’je’“’ (e -1)dz.

I
o

r

By integration, we obtain the solution

839
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R (z,3)= (H(n r)) (e -1) +RY(0,3),
r=0
RY(7,3)+R?(z,3) (H(n r)j—aa (e ~1)’ (e +1)+ R®(0,3)+ R? (0,3).
By the initial condition (1.5) when j=n-3, Rél) (0,3)+ RY (0,3)+ R (0,3)=0, and

A" (7)=R® (7,3)+[ RV (7,3)+ R?(r,3)]

=(H<n—r>j§ Lot (e a)”! (e 1) ol

where () , _l and ¢ , :l, which is in the form of (2.7) when k =3. This shows that (2.4) holds for k =3,
n,n—. 6 n,n— 4
) 1 1
Cons |_| 8|_1|| 2], 2[0
el | L] 3|L] 2Lt
4 4

For k =4, the equation (2.6) becomes
d’*ﬂ ¢ —4x A" (7) = (n-3) ke (Qg(r)%(n—3)(n—2)02A§2)2(f)
with the solution in integral form

AL (1) = [ (n-3) AL} () dr-+e% [ (n-3)(n-2) 0" A () dr
=R (r,4)+R" (7,4)+R? (7,4)+R?(7,4),

where

1

6

%azo_ze4m.[e4m err _ e +1)d

ia202e4xzje-4n (em _1)2 dr,

sz)(r,4)=(l_[(n—r)j o'e ‘mje"‘” e -1 e” +1)dr.
-0

By integration, we obtain the solution

RY(z,4) (H(n r)] : a*(e" -1)' +R® (0,4),

3
R (7,4)+R? (r,4)= [H(n - r)]siazaz (e -1)’ (™ +1)+R® (0,4)+ R (0,4),
0 K

R? (7,4)= (H(n - r)]ﬁa“ (e -1) (e +1)° +R® (0,4).

r=0

By the initial condition (1.5) when j=n-4, R® (0,4)+R®(0,4)+R{?(0,4)+R?(0,4)=0, and
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A", (r)=RP (z,4)+[RY (z,4)+ R (7,4) ]+ R? (,4)

:@(n_ r)j% a0 (e 1) (e +1) ol

where cf) — 1 c(f) :% and cff :i , Which is on the form of (2.7) when k = 4. This show that (2.5) holds for k =4,

n-4 24 1 ¥n,n-4 n-4 32
_i_ _l_
c© 24 6 0
n,n—4
0 1] 11| 1)1
Cn SR el el el B Bl e e g
(’2) 8 4114 2|2
Cona | | 1 0 1
132 ] L 4

For other K , the solution of (2.6) in integral form is

A" (7)=Q(7)+Q,(z),
where
Q(r) =€ e ( n—|<)+1);<om{n"jk L (7)de,
Q(r) =€ fe (n k)+1)((n—k)+2)o*AY, . (7)dr.
Based on the same idea, we introduce R() by splitting Ag”) in Q(z) and Q,(r) as follows. By substituting A((:}k)ﬂ(r) in

Q.(7), we have

6 g .
Ql(r):ek”"[e’k”((n—k)ﬂ)m [H (n—r)j Z%a -2 2'( ”—1)( i (e”+1) e |47,

r=0 =0

N
:[kl(n—r)j 2 Cﬁ'.’nf(kfl)%“k’z'az'ek”few(e”‘1)(%1)4 (e +1) dr,

r=0 1=0
5]
= ( (n—r)J > RP(7,k)
r=0 1=0
By substituting AY , in Q,(7), we have

Q,(r) = e“’Je’m 1((n—k)+1)((n—k)+2)a2

(21152 (o ) (e 41) o)

n,n—(k-2) dz,

VR
=
—e
(N
~~~
>
|
= N
o)
N
—
~
~
N
L
K_é =

NG
:[ | (n—r)] ZZ: Cﬁ',)nf(m%a(kim"memj e (e -y (e 4 o
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For odd k , the splitting of RI“) (z,k), for i=1,2, are combined to obtain A(:L (7) according to the case of k =3, namely, by

the shifting index of R(®,

o =
A0 =( [0 | SR+ 2R k)

r=0

:(kl (n_r)

r=0

N
—_~
N
~
SN—
+
1
e
G
—_
N
-
SN—
+
X
)
—_~
N
~
SN—
| I—

By integration subject to initial condition (1.5) for j=n—_k, the solution can be written in the form of (2.7) where the

coefficients Cr(1l,21—k satisfy (2.4). Similarly, the process follows the case of k =4, i.e.,

AL (6)=( [0 || 2RO (e 3RO (7

-1

s
MN‘X
1=

[N

~(fo-0)| re

[Rl(l)(f,k)+R|(2)(7‘k):|+ R[&J(T,k) .

By integration subject to initial condition (1.5) for j=n—k, the solution can be written in the form of (2.7) where the

coefficients ¢!} |

satisfy (2.5).

Remark 2.2 From the result, we can implement closed-form formula for the conditional moments as the following.

Table 1. Algorithm of the coefficient functions.

Input: n, x,x,a,0,t, T
Output: the n™ conditional moment
1. Set CM:{l}

Set 6“:{1‘1}
' 2 4

For k=3 tondo
If k isodd then
Compute )2.4(
else
Compute )2.5(
EndIf
EndFor
Compute )2.1(
Compute )1.3(

n

BRBoex~NoO A~ ®

o

We give the example by using (1.3) and (2.1) to derive the special cases of the conditional moments when -1 23,

Example 2.3 Set 7 =T —t. The first conditional moment is

EP[X; X, =x]=(x+AY (2))e ™,
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where

The second conditional moment is

EP[XZIX, =x]= (¢ + AP () x+ AP (2))e ™,
where
AP (7) =2a(e” -1),

AP () =237 (¢ 1) (e 1) (e 1) |

K
The third conditional moment is

E° [XT3 | X, = x] = (x3 +AY (2)x* + AY () x+ A (r))e’“’,
where

A () =3a(e™ -1),

(3) — l 2 (KT _ 2 i 2 (Kt KT
A (f)_e(za(e 1) 4o e -1)(e +1)j,
Af’(r):ﬁ(%of(e”—l)3+iaaz(e”—l)z(e”vul)}

3. Efficiency of Closed-form Formula

In this section, analytical formula (2.1) is compared
with the formula (1.4) proposed by Weraprasertsakun and
Rujivan (2017) in terms of computational time for obtaining
the conditional moments for n=5,6...,20 based on the

program Mathematica V9.0 in the form of symbolic
parameters. The computations are performed under Microsoft
Windows 10 64-bit, quad-processor Intel Core i7 3.4 GHz
machine with 32 GB main memory and the results are
displayed in Figure 1.

The formula from WR consumed more time when n
increased from 5 to 20 and increased exponentially from 0.328
to 13.906 sec with a total time of 74.563 sec (Figure 1).
However, our formula only consumed 0.016 sec for the total,

which was extremely fast at around 4,000 times faster.

843

This result simplifies the result from Werapra-
sertsakun and Rujivan (2017) by providing an analytical
formula for computing conditional moments which is easier
and faster to use without solving the system of recursive
ordinary differential equations.

u
L]

Computational time (s)

-'." - =W
. *-WR
- -=-CMR
N
.8
i
B

ol

6 8 10 12 14 16 18 20

Figure 1. Comparison of computational times between Weraprasert-
sakun and Rujivan (WR) and our formula (CMR).
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