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Abstract 
 

In applications, we often meet the problem where more than one response variable is observed at several values of 

predictor variables, and these responses are correlated with each other. The multiresponse nonparametric regression model 

approach is appropriate to model the functions which represent relationship between response and predictor variables. This 

relationship is drawn by the regression function. The principal problem of this model approach is estimating of the regression 

function of this model. The spline estimator is one of the most popular estimators used for estimating it. In this paper we discuss 

methods to obtain a smoothing spline estimator for estimating the regression function, to get a covariance matrix estimator, and 

to choose an optimum smoothing parameter. In addition, we investigate the asymptotic properties of the smoothing spline 

estimator. 
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1. Introduction 
 

Statistical analysis often involves building mathe-

matical models which examine association between response 

and predictor variables. Spline smoothing is a general class of 

powerful and flexible modeling techniques. Research on 

smoothing spline models has attracted a great deal of attention 

in recent years, and the methodology has been widely used in 

many areas. Smoothing spline estimator with its powerful and 

flexible properties is one of the most popular estimators used 

for estimating regression function of the nonparametric 

regression model. Several types of spline estimator have been 

 
considered by researchers to estimate the regression function. 

Original spline was used to estimate the regression function 

for smooth data by Kimeldorf and Wahba (1971), Craven and 

Wahba (1979), and Wahba (1990). M-type spline was 

proposed by Cox (1983), and Cox and O’Sullivan (1996) to 

overcome outliers in nonparametric regression. Construction 

of confidence interval for original spline model has been 

provided by Wahba (1983). A comparison between 

generalized cross validation and generalized maximum 

likelihood for choosing a smoothing parameter in the 

generalized spline smoothing problem was presented by 

Wahba (1985). Relaxed spline and quantile spline were 

introduced by Oehlert (1992), and Koenker, Pin, and Portnoy 

(1994), respectively. Smoothing spline for the case of 

correlated errors was discussed by Wang (1998). Reproducing 

kernel Hilbert spaces (RKHS) concept has been used by 
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Wahba (2000) to build spline statistical model. Lee (2004) 

combined smoothing spline estimates of different smoothness 

to form a final improved estimate. Cardot, Crambes, Kneip, 

and Sarda (2007) investigated the asymptotic property of 

smoothing splines in functional linear regression with errors-

in-variables. Liu, Tong, and Wang (2007) have discussed 

smoothing spline estimator for variance functions. Aydin 

(2007) compared goodness of spline and kernel in estimating 

nonparametric regression model for gross national product 

data. Aydin, Memmedhi, and Omay (2013) have studied the 

determination of an optimum smoothing parameter for non-

parametric regression using smoothing spline. But, researchers 

mentioned above just discussed spline estimators for esti-

mating regression function of single response nonparametric 

regression models. It means that they have not discussed 

spline estimators in the multiresponse nonparametric regres-

sion model.     

In many real cases, we often find cases where more 

than one response variable is observed at several values of 

predictor variables, and there are correlations between the 

response and each other. Multiresponse nonparametric 

regression model provides potential methods to model the 

functions that represent the relationship of these variables. 

Some researchers have discussed estimating methods in the 

multiresponse nonparametric models. Wegman (1981), Miller 

and Wegman (1987), and Flessler (1991) provided spline 

smoothing algorithms. Wahba (1992) used RKHS method to 

develop the theory of general smoothing splines. Gooijer, 

Gannoun, and Larramendy (1999), and Fernandez and 

Opsomer (2005) proposed methods to estimate nonparametric 

regression models with serially and spatially correlated errors, 

respectively. Wang, Guo, and Brown (2000) used spline 

smoothing for estimating biresponse nonparametric regression 

model with the same correlation of errors. Lestari, Budiantara,  

Sunaryo, and Mashuri (2009), and Lestari, Budiantara,  

Sunaryo, and Mashuri (2010) used spline to estimate the 

multiresponse nonparametric regression model in cases of 

equal correlation of errors and unequal correlation of errors, 

respectively. Chamidah, Budiantara, Sunaryo, and Zain (2012) 

applied the multiresponse nonparametric regression model to 

design child growth chart. Lestari, Budiantara,  Sunaryo, and 

Mashuri (2012) have studied spline to estimate the hetero-

scedastic multiresponse nonparametric regression model. 

Chamidah and Lestari (2016) discussed estimation of the 

homoscedastic multiresponse nonparametric regression model 

when the numbers of observations were unbalanced. Lestari, 

Fatmawati, and Budiantara (2017) estimated smoothing spline 

in the multiresponse nonparametric regression model by using 

RKHS method. Lestari, Fatmawati, Budiantara, and Chamidah 

(2018), and Lestari, Fatmawati, Budiantara, and Chamidah 

(2019) estimated regression functions and smoothing para-

meters using spline and kernel estimators. Yet, all these 

researchers assumed that the covariance matrix was known. 

When it is unknown, it has to be estimated from the data and it 

can affect the estimates of the smoothing parameters (Wang, 

1998). Also, these researchers have not discussed the esti-

mation of optimum smoothing parameter in the multiresponse 

nonparametric regression model when the variances of errors 

are not the same. In addition, none of these researchers have 

discussed the asymptotic properties of the spline estimator. 

 In nonparametric regression, we often consider 

asymptotic properties of estimator based on certain goodness 

criteria. In regression nonparametric analysis, investigating of 

the asymptotic properties of an estimator is an important step 

for obtaining convergence rate of regression function esti-

mator. There are some criteria which have often been used by 

researches to determine goodness of spline estimator ap-

proach. Eubank (1988) proposed the mean square error 

criterion. Speckman (1985), and Carter, Eagleson, and Silver 

man (1994) have studied minimax criterion, while Cox (1983) 

and Cox and O’Sullivan (1996) considered the mean square 

error criterion for M-type spline approach. Eggermont, 

Eubank, and LaRiccia (2010) have studied convergence rate 

of spline estimator in the varying coefficient model. Li and 

Zhang (2010) established strong consistency and asymptotic 

normality of penalized spline in the varying-coefficient single-

index model. Wang (2012) constructed the M-type estimator 

of regression function and has studied its asymptotic nor-

mality property. Ping and Lin (2013) discussed the asymptotic 

properties of spline estimator in the partly linear model for 

longitudinal data. Chen and Christensen (2015) have studied 

both asymptotic properties and convergence rate of some 

estimators in the nonparametric model. Although, these 

researches have discussed some asymptotic properties of some 

estimators, they discussed the asymptotic properties in single 

response nonparametric regression models only. They have 

not discussed the asymptotic properties in multiresponse 

nonparametric regression models.  

In this paper, we develop the biresponse non-

parametric regression model proposed by Wang et al. (2000) 

to the more general model, i.e., the multiresponse nonpara-

metric regression model. Note that we need the covariance 

matrix to determine a weight matrix that will be used in the 

optimization penalized weighted least-square (PWLS) to 

obtain a smoothing spline estimator which depends on the 

smoothing parameter to estimate regression function of the 

model. Therefore, in this paper we discuss methods to obtain 

the smoothing spline estimator, to get the covariance matrix 

estimator, and to choose the optimum smoothing parameter. 

We also investigate the asymptotic properties of smoothing 

spline estimators of the multiresponse nonparametric regres-

sion model based on integrated mean square error (IMSE) 

criterion. 

 

2.  Methods 
 

Firstly, we consider data ),( kiki ty , pk ,...,2,1 ; 

1, 2,..., ki n  that follow the multiresponse nonparametric 

regression model as follows: 

 

              kikikki tfy  )(                                                   (1)   

 

where 
pfff ,...,, 21

 are unknown regression functions assumed 

to be smoothed and contained in Sobolev space 
2 [ , ]m

k kW a b . 

ki  are zero-mean independent random errors with variance 

2

ki . Based on (1), we can determine the covariance matrix of 

errors. The estimated multiresponse nonparametric regression 

model based on smoothing spline estimator can be obtained 

by carrying out optimization PWLS:  
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1 2 2

1 2 2

1 1 1 1 1 1
, ,...,

1

{( ) ( ) ( )( ) ... ( ) ( )( )
p

p

k p p p p p p
f f f W

k

Min n y f W y f y f W y f 




         

1

(2) 2 (2) 2

1 1( ( )) ... ( ( )) }
k p

p

b b

p p
a a

f t dt f t dt                                     (2) 

 

Then, to get the solution of optimization PWLS in (2), we use RKHS method. Secondly, we estimate the covariance 

matrix of errors using maximum likelihood method, and estimate the optimum smoothing parameter based on the minimum value 

of generalized cross-validation (GCV). Finally, we determine the asymptotic properties of the smoothing spline estimator of 

regression function based on IMSE criterion.  

 

3.  Results and Discussion 
 

Suppose that 
1 2( , ,..., )py y y y  , 

1 2( , ,.., )pf f f f  , 
1 2( , ,..., )p     , and  

1 2( , ,..., )pt t t t   where 

1 2( , ,..., )
kk k k kny y y y  , 

1 2( ( ), ( ),..., ( ))
kk k k k k k knf f t f t f t  , 

1 2( , ,..., )
kk k k kn     , 

1 2( , ,..., )
kk k k knt t t t  , pk ,...,2,1 ; 

1,2,..., ki n . Therefore, the model (1) can be written in the following matrix notation: 

 

y f                                                                                                         (3) 

 

where ( ) 0E   , and namely 2 1( ) [ ( )]Cov W   .   

 

3.1 Covariance matrix of random errors 
 

The following theorem gives us how we determine the covariance matrix of random errors, 2 1( ) [ ( )]Cov W   , in the 

multiresponse nonparametric regression model. 

 

Theorem 1. Suppose that the data set ),( kiki ty , pk ,...,2,1 ; 1,2,..., ki n  follows the multiresponse nonparametric regression 

model given in (1): 

 

kikikki )t(fy  .       

 

If  2 1[ ( )]W    denotes the covariance matrix of errors, then  

 
2 1 2 2 2

1 1 2 2[ ( )] ( ( ), ( ),..., ( ))p pW diag W W W                             

                      

where matrix  2( )k kW   is given by: 

 

1

2

2

1 (1,2) (1, )

2

(2,1) 2 (2, )2

2

( ,1) ( ,2)

( )

k k k

k k k n

k k k n

k k

k n k n kn

W

  

  


  

 
 
 

  
 
 
 

, pk ,...,2,1 . 

 

Proof.     ( ) ( )Cov E E E          

 

                =
1 2 1 211 1 21 2 1 11 1 21 2 1[( ,..., , ,..., ,..., ,..., ) ( ,..., , ,..., ,..., ,..., )]

p pn n p pn n n p pnE                 

 

              

11 12 1

21 22 2

1 2

p

p

p p pp

W W W

W W W

W W W

 
 
 
 
 
  

 = 2 1[ ( )]W                                                                           (4) 
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where   
2 2 2

1 2

( )1 ( )2 ( )

( , ,..., ), ( 1,2,..., )

( , ,..., ),

k

k

k k kn

kl

kl kl kl n

diag k l k p
W

diag k l

  

  

  
 



. 

 

Since 
kl kl k l    and 

,

0,

k

kl

k l

k l





 



  , then we have: 
2 2 2

1 2( , ,..., ), ( 1,2,..., )

0,

kk k kn

kl

diag k l k p
W

k l

    
 



 . 

 

Therefore, we can write equation (4) as follows: 

 
2 1 2 2 2

1 1 2 2[ ( )] ( ( ), ( ),..., ( ))p pW diag W W W                        

                     

where matrix 2( )k kW  is given by: 

 

1

2

2

1 (1,2) (1, )

2

(2,1) 2 (2, )2

2

( ,1) ( ,2)

( )

k k k

k k k n

k k k n

k k

k n k n kn

W

  

  


  

 
 
 

  
 
 
 

, pk ,...,2,1 .              

 

3.2  Estimation of regression function  
 

Suppose that data set ),( kiki ty , pk ,...,2,1 , 1,2,..., ki n , follows the model given in (1). We can determine the 

smoothing spline estimator for regression function of the model given in (1) by solving the following PWLS:  

 

   

1 2 2

1 2 2

1 1 1 1 1 1
, ,...,

1

{( ) ( ) ( )( ) ... ( ) ( )( )
m

p

p

k p p p p p p
f f f W

k

Min n y f W y f y f W y f 




         

1

1

(2) 2 (2) 2

1 1( ( )) ... ( ( )) }
p

p

b b

p p
a a

f t dt f t dt                                                               (5)                       

 

where 
1 21 11 12 1 2 21 22 2 1 2( , ,..., ) , ( , ,..., ) ,..., ( , ,..., )

pn n p p p pny y y y y y y y y y y y     ;  
1 21 11 12 1 2 21 22 2 1 2( , ,..., ) , ( , ,..., ) ,..., ( , ,..., )

pn n p p p pnf f f f f f f f f f f f     

1 21 11 12 1 2 21 22 2 1 2( , ,..., ) , ( , ,..., ) ,..., ( , ,..., )
pn n p p p pnf f f f f f f f f f f f     , and 

kW , represents the thk -weight,  pk ,...,2,1  which is obtained from 

Theorem 1, and the smoothing parameter
k ( pk ,...,2,1 ) controls the trade-off between the goodness of fit and the smoothness 

of the estimate. The model given in (1) can be expressed into a general smoothing spline regression model as follows: 

 

kiktki fLy
k

  ,  pk ,...,2,1 ;  1,2,..., ki n                                             

 

where function 
kf   Fk  (Fk represents Hilbert space) is unknown and assumed to be smooth, and 

kt
L   Fk is a bounded linear 

functional.  

 

Next, suppose that Hilbert space Fk can be decomposed into direct sum of two subspaces Gk and Hk as follows: 

 

Fk = Gk   Hk     

             

where Gk  Hk . Also, suppose that 
1 2{ , ,..., }

kk k km    and 
1 2{ ,..., }

kk k kn  ,  are bases of spaces of Gk and Hk , respectively. 

Then, we can express every function 
kf   Fk ( pk ,...,2,1 ) into the following expression: 

 

kkk hgf   

 

where 
kg   Gk  and 

kh   Hk . Since 
1 2{ , ,..., }

kk k km    is basis of space Gk , and 
1 2{ ,..., }

kk k kn  ,  is basis of space Hk , 

then for every function 
kf   Fk ( pk ,...,2,1 ) follows:  
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1 1

k km n

k kv kv ki ki

v i

f c d 
 

   k k k kb c    ; pk ,...,2,1 ;  ,kv kic d R                                      (6) 

 

where 
1 2( , ,..., )

kk k k km     , 1 2( , ,..., )
kk k k kmc c c c  , 

1 2( , ,..., )
kk k k kn     , and 

1 2( , ,..., )
kk k k knd d d d  .  

Finally, since 
kitL  is the bounded linear function in  Fk , and 

kf   Fk , then we have: 

 

)( kktkt hgLfL
kiki

 )()( ktkt hLgL
kiki

 )()( kikkik thtg   )( kik tf .  

       

In the following theorem, we give a method to obtain the estimated regression function by using RKHS method, i.e., by carrying 

out the PWLS given in (5).  

 

Theorem 2. If the data set ),( kiki ty , pk ,...,2,1 ; 1,2,..., ki n  follows the multiresponse nonparametric regression model given 

in (1): 

kikikki )t(fy   

 

then the estimated regression function of model (1) based on smoothing spline estimator is given by: 

 

ˆ ˆˆ ( )f Ac Bd H y          

 

where  1 2 1 1 2 1 2( ) [ ( ) ] ( ) ( )H A A D W A A D W BD W         
1 2 1 1 2[ ( ( ) ) ( )]I A A D W A A D W     . 

 

Proof. By considering model given in (1) and applying Riesz representation theorem (Wang, 2011), and because of 
kitL  is 

bounded linear functional in Fk , then there is a representer 
ki Fk of 

kitL which follows (Wang, 2011): 

 

, ( )
kit k ki k k kiL f f f t    ,  

kf   Fk            

                                  

where .,.  represents an inner product. Based on (6) and by considering the properties of inner product, we have: 

 

( ) ,k ki ki k k k kf t c d       , ,ki k k ki k kc d          .                                             (7) 

 

Next, based on (7), for 1k  we have: 

 

1 1 1 1 1 1 1 1( ) , ,i i if t c d          , 
11,2,...,i n ; 

 

So that, for 
11, 2,3,...,i n  we have: 

 

 
11 1 1 11 1 12 1 1 1 1 1 1( ) ( ), ( ),..., ( )nf t f t f t f t A c B d


         

                                 

where:  
11 11 12 1( , ,..., )mc c c c  ,  

11 11 12 1( , ,..., )nd d d d   , 

 

1

1

1 1 1 1

11 11 11 12 11 1

12 11 12 12 12 1

1

1 11 1 12 1 1

, , ,

, , ,

, , ,

m

m

n n n m

A

     

     

     

      
 
      

  
 
       

,  

1

1

1 1 1 1

11 11 11 12 11 1

12 11 12 12 12 1

1

1 11 1 12 1 1

, , ,

, , ,

, , ,

n

n

n n n n

B

     

     

     

      
 
      

  
 
       

 . 

 

In the similar process, we obtain: 
2 2 2 2 2 2( )f t A c B d  ,…, ( )p p p p p pf t A c B d  . Therefore, the regression 

function ( )f t  can be expressed as: 
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     1 1 2 2 1 1 2 2 1 1 2 2( ) ( ), ( ),..., ( ) , ,..., , ,...,p p p p p pf t f t f t f t A c A c A c B d B d B d
  

    

        
1 2 1 2 1 2 1 2( , ,..., )( , ,..., ) ( , ,..., )( , ,..., )p p p pdiag A A A c c c diag B B B d d d Ac Bd     .             (8) 

 

In equation (8), A  is a (N M)-matrix, where 

1

p

k

k

N n


 , 

1

p

k

k

M m


 , and c  is a )1( M -vector of parameters 

that are expressed as  1 2, ,..., pA diag A A A ,  and   1 2, ,..., pc c c c
   , respectively. Also, B is (NN)-matrix, and d  is a 

(N1)-vector of  parameters which are expressed as  1 2, ,..., pB diag B B B


 , and  1 2, ,..., pd d d d
   , respectively. 

Therefore, we can write the multiresponse nonparametric regression model given in (1) or (3) as  y Ac Bd    . To obtain 

the estimation of regression function, f , we use RKHS method by solving the following optimization: 

 
2 2

1 1

2 22 2

1,2,..., 1,2,...,

( ) ( )( )
k k k kf f

k p k p

Min W Min W y f  
 
 

      
    

      
F F

,                                                 (9) 

with constraint   
k

k

b

a
kkk

m

k dttf 2)( )]([  , 0k .  The solution to (9) is equivalent to solution to the penalized weighted 

least-square (PWLS): 

 

2

1 2 ( ) 2

[ , ]
1

1,2,...,

( ) ( )( ) [ ( )]
k

m
kk k k

p
b

m

k k k k
af W a b

k
k p

Min N y f W y f f t dt 






 
   

 
 

,                                    (10) 

 

where 
k , pk ,...,2,1  are smoothing parameters that control between goodness of fit represented by 

1 2( ) ( )( )N y f W y f    and smoothness of the estimate measured by   
p

p

b

a
pp

m

pp

b

a

m dttfdttf 2)(

1

2

1

)(

11 )]([...)]([
1

1

 . To 

determine the solution to (10), we first decompose the penalty as follows: 

 

 11

2

11

2

1

)(

1 ,)]([
1

1

PfPfPfdttf
b

a

m
1 1 1 1 1 1 1 1, ,d d d d            1 1 1d B d . 

 

Therefore, the penalty in (10) is  })]([ 2)(

1




k

k

b

a
kk

m

k

p

k

k dttf d Bd  where 
11( ,..., )

pn p ndiag I I   . So, the 

goodness of fit in (10) can be written as: 

 

        1 2( ) ( )( )N y f W y f    = 1 2( ) ( )( )N y Ac Bd W y Ac Bd     . 

 

By combining the goodness of fit and penalty, we obtain optimization PWLS: 

 

 ( , )
pn

pm
c R

d R

Min Q c d




=

2

1 2

[ , ]
1,2,...,

{ ( ) ( )( )
m

k k kf W a b
k p

Min N y f W y f




   })]([ 2)(

1




k

k

b

a
kk

m

k

p

k

k dttf .             (11) 

 

Optimization PWLS in (11) gives 1 2 1 1 2ˆ [ ( ) ] ( )c A D W A A D W y      and 1 2 1 2 1 1 2ˆ ( )[ ( ( ) ) ( )]d D W I A A D W A A D W y         

1 2 1 2 1 1 2ˆ ( )[ ( ( ) ) ( )]d D W I A A D W A A D W y        , where 2( )D W B N I   . Finally, we get the estimated regression function of model given in (1):  

 

 
1 21, 2, ,

ˆ ˆ ˆ ˆ ˆˆ, ,..., ( )
ppf f f f Ac Bd H y    


                                                  (12) 

 

where  1 2 1 1 2 1 2( ) [ ( ) ] ( ) ( )H A A D W A A D W BD W         
1 2 1 1 2[ ( ( ) ) ( )]I A A D W A A D W     .                                   
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3.3 Estimation of covariance matrix of random errors 
 

Suppose that 2 1[ ( )]W    represents a estimated covariance matrix of random errors. To obtain the estimated covariance 

matrix, we consider the data set  kiki yt , , pk ,...,2,1 ;  
kni ,...,2,1  follows the model in (3). Assume that 

1 2( , ,..., )py y y y   

is random sample obtained from N-variates normally distributed population (

1

p

k

k

N n


 ) with mean f , and covariance 

2 1[ ( )]W   . Based on this distribution, we get likelihood function as follows:  

 

2 2

1
1 2 12 2

1 1
( , ( ) | ) exp ( ) [ ( )]( )

2
(2 ) [ ( )]

n

j j j jN
j

L f W y y f W y f

W

 

  

 
  

     
  

 


     

 

Since 

1

p

k

k

N n


  and  2 2 2 2

1 1 2 2( ) ( ( ), ( ),..., ( ))p pW diag W W W     then we have: 

1

2 2

1 1 1 1 1 1

12 12 2
1 1

1 1
( , ( ) | ) exp ( ) ( )( )

2
(2 ) [ ( )]

n

j j j jnn n
j

L f W y y f W y f

W

 

 


 
  

      
  

 


 

 

             

2

2

2 2 2 2 2 2

12 12 2
2 2

1 1
exp ( ) ( )( ) ...

2
(2 ) [ ( )]

n

j j j jnn n
j

y f W y f

W



 


 
  

      
  

 


 

 

              2

12 12 2

1 1
exp ( ) ( )( )

2
(2 ) [ ( )]

p

n

pj pj p p pj pjnn n
j

p p

y f W y f

W



 


 
  

    
  

 


. 

 

Next, estimated covariance matrix of random error can be obtained by carrying out the following optimization:  

 

2 1
1 1

2 2

1 1 1 1 1 1
( )

12 12 2
1 1

1 1
( , ( ) | ) exp ( ) ( )( )

2
(2 ) [ ( )]

n

j j j jnn n
W

j

L f W y Max y f W y f

W


 

 


  
   

       
   

  


  

 

              

2 2
2 2

2

2 2 2 2 2 2
( )

12 12 2
2 2

1 1
exp ( ) ( )( ) ...

2
(2 ) [ ( )]

n

j j j jnn n
W

j

Max y f W y f

W




 


  
   

       
   

  


 

 

              

2

2

( )
12 12 2

1 1
exp ( ) ( )( )

2
(2 ) [ ( )]

p
p p

n

pj pj p p pj pjnn nW
j

p p

Max y f W y f

W




 


  
   

     
   

   


.                (13) 

 

Determining of value 2( , ( ) | )L f W y  in (13) is equivalent to determining of maximum value of each component in 

(13) (Johnson & Wichern, 1982). It means that the maximum value of each component in (13) can be determined by giving the 

following equations:  

 

1 11 1, 1 1,2 1 1
1 1

ˆ ˆ( )( )ˆ ˆ
ˆ[ ( )]

y f y f
W

n n

  


 
  , ... ,  
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, ,2

ˆ ˆ( )( )ˆ ˆ
ˆ[ ( )]

p pp p p pp p

p p

y f y f
W

n n

  


 
    

 

where 
,

ˆ
kf 

 ( pk ,...,2,1 ) is regression function estimator given in (12). Therefore, the maximum likelihood estimator for 

2[ ( )]W  is given by: 

 
2 2 2 2

1 1 2 2
ˆ ˆ ˆ ˆ[ ( )] ([ ( )],[ ( )],...,[ ( )])p pW diag W W W     

 

               1 1 2 2
, ,1 1, 1 1, 2 2, 2 2,

ˆ ˆˆ ˆ ˆ ˆ ( )( )( )( ) ( )( )
, ,...,

p pp p p py f y fy f y f y f y f
diag

n n n

    
       
 
 
 

  

 

Since  2

,
ˆ ˆ;

kk k k kf H y   ,  pk ,...,2,1  then for 1,2,...,k p  we have: 

 

1 11 1, 1 1,
ˆ ˆ( )( )y f y f

n

 
 

1 1

2 2

1 1 1 1 1 1
ˆ ˆ( ( ; )) ( ( ; ))n nI H y y I H

n

     
  , ... ,  

 

, ,
ˆ ˆ( )( )

p pp p p py f y f

n

 
  2 2ˆ ˆ( ( ; )) ( ( ; ))

p pn p p p p n p pI H y y I H

n

     
 .                  

 

Therefore, the maximum likelihood estimator for covariance matrix is given by: 

    

1 1

11

, ,1 1, 1 1,2 1

ˆ ˆˆ ˆ ( )( )( )( )
[ ( )] ,...,

p pp p p py f y fy f y f
W diag

n n

  






          
        

 

 

          2 1 2 1 2 1

1 1 2 2
ˆ ˆ ˆ([ ( )] ,[ ( )] ,...,[ ( )] )p pdiag W W W     .         

                     

where: 

1

2 2

1 1 1 1 1 12

1 1

ˆ ˆ[ ( ; )] [ ( ; )]
ˆ[ ( )]

n nI H y y I H
W

n

   


  
 , ... , 

2 2

2
ˆ ˆ[ ( ; )] [ ( ; )]

ˆ[ ( )]
p pn p p p p n p p

p p

I H y y I H
W

n

   


  
 .            

 

3.4 Estimation of optimum smoothing parameter 
 

Selecting an optimum (suitable) smoothing parameter value   is crucial to good regression function fitting. There are a 

number of ways to choose  , including minimizing Mallows’s Cp , cross-validation (CV) score, generalized cross-validation 

(GCV) score, and Akaike’s information criterion (AIC) (Li & Zhang, 2010). Ruppert and Carrol (1997) pointed out that 

Mallows’s Cp and GCV were satisfactory for good regression function fitting based on spline estimator. Moreover, GCV 

approximating CV is a computationally expedient criterion, so it is popular in spline literature.   

In this section we establish the estimation of optimum smoothing parameter to good function regression fitting. For this 

goal, we may express the estimated regression function given in (12) as follows: 

 
2

1 2
ˆ ( ) ( , ,..., ; )pf t H y                                                                       (14)                                     

 

where 2 2 2 2

1 2( , ,..., )p     .  The mean square error (MSE) of  the smoothing spline estimator given in (14) is: 

 
2

2

1 2

1

ˆ ˆ( ( )) ( )( ( ))
( , ,..., ; )p p

k

k

y f t W y f t
MSE

n
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2 2 2

1 2 1 2

1

[( ( , ,..., ; )) ] ( )[( ( , ,..., ; )) ]p p

p

k

k

I H y W I H y

n

        



 




 

 
2

1

2 22
1 2

1

[ ( )] [( ( , ,..., ; )]p

p

k

k

W I H y

n

    









.           

                   

Next, we define the following quantity: 

 

1

21 1

2 22
1 2

12

1 2 2

2

1 2

1

[ ( )] [( ( , ,..., ; )]

( , ,..., ; )

1
( , ,..., ; )p

k

k

p

k p

k

p

pp
n

k

k

n W I H y

G

trace I H

n

    

   

   









 
 

 


  
   
    
    
   

  





                              (15)                      

 

Therefore, based on (15), the optimum smoothing parameter, 
1( ) 2( ) ( )( , ,..., )opt opt opt p opt     , is obtained by  solving the 

following optimization: 

 

 
1 2

2 2

1( ) 2( ) ( ) 1 2
, ,...,

( , ,..., ; ) ( , ,..., ; )
p

opt opt opt p opt p
R R R

G Min G
  

       
    

  

                             

1 2

1

21 1

2 22
1 2

1

2
, ,...,

2

1 2

1

[ ( )] [( ( , ,..., ; )]

1
( , ,..., ; )

p

p

k

k

p

k p

k

R R R

pp
n

k

k

n W I H y

Min

trace I H

n

  

    

   

  







  



 
 
 
  

  
  

  
   

    
    
    
       





,      

 

where norm 2 2 2

1 2 ... pv v v v      for a  p-dimension vector  
1 2( , ,..., )pv v v v  . 

 

3.5  Asymptotic properties of spline estimator 
 

In this section, we investigate the assymptotic properties of spline estimator f̂  of the multiresponse nonparametric 

regression model. Our goal is to investigate asymptotic properties of spline estimator f̂  and we will judge the quantity of spline 

estimator f̂  by weighted integrated mean square error (IMSE).        

                                                                       

 Firstly, we decompose ( )IMSE   into two components as follows: 

 

2ˆ ˆ( ) [( ( ) ( )) ( )( ( ) ( ))]
b

a
IMSE E f t f t W f t f t dt    

2( ) ( )bias Var                                                               

 

where   2 2ˆ ˆ[( ( ) ( ( )) ( )( ( ) ( ( ))]
b

a
bias E f t E f t W f t E f t dt    ,  and  2ˆ ˆ ˆ ˆ( ) [( ( ) ( )) ( )( ( ) ( ))]

b

a
Var E Ef t f t W Ef t f t dt       .  

Next, to investigate the asymptotic property of 2 ( )bias  , we first establish the solution of PWLS optimization in the folowing 

Theorem. 
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Theorem 3. If  ˆ ( )f t
 is solution which minimize the following PWLS: 

 

  
2

1 2 ( )

1 1

( ) ( ( )) ( )( ( )) ( )
p p

b
m

k k k k k
a

k k

n y g t W y g t g t dt 

 

      

 

then  the solution which minimize the following PWLS: 

 

  
2

1 2 ( )

1 1

( ) ( ( ) ( )) ( )( ( ) ( )) ( )
p p

b
m

k k k k k
a

k k

n f t g t W f t g t g t dt 

 

      is   * ˆˆ ( ) ( )g t Ef t  . 

 

Proof. Theorem 2 has given the solution which minimize the following PWLS: 

  

  
2

1 2 ( )

1 1

( ) ( ( )) ( )( ( )) ( )
p p

b
m

k k k k k
a

k k

n y g t W y g t g t dt 

 

     .                          

 

The solution is: 

 

 1 2 1 1 2 1 2 1 2 1 1 2ˆ ( ) { [ ( ) ] ( ) ( )[ ( ( ) ) ( )]}f t A A D W A A D W BD W I A A D W A A D W y                  

 

Next, by taking ( )f t y ,  then the value that minimize: 

 

  
2

1 2 ( )

1 1

( ) ( ( ) ( )) ( )( ( ) ( )) ( )
p p

b
m

k k k k k
a

k k

n f t g t W f t g t g t dt 

 

      can be writen as: 

  

 * 1 2 1 1 2 1 2 1 2 1 1ˆ ( ) { [ ( ) ] ( ) ( )[ ( ( ) ) ]} ( )g t A A D W A A D W BD W I A A D W A A D W f t                ˆ ( )Ef t .       

 

Furthermore, we investigate the asymptotic property of 2 ( )bias  . For this goal, we first give the following assumption. 

 

Assumption. (A0).   For every k  ( 1,2,...,k p ),   2 1

2
ki

i
t

n


 , 1,2,..., .i n                             

The asymptotic property of 2 ( )bias   can be established in Theorem 4 under assumption (A0). 

 

Theorem 4. If assumption (A0) hold, then 2( ) ( )bias O   as n  

where ( )O   represents “big oh” (Sen & Singer, 1993, and Wand & Jones, 1995).  

 

Proof. Suppose ˆ ( )g t
 is value which minimize: 

 

 2 ( ) 2

1

( ( ) ( )) ( )( ( ) ( )) [ ( )]
p

b b
m

k k k k
a a

k

f t g t W f t g t dt g t dt 


    .             

 

Since assumption (A0) then, as n , 

 

 1 2 2

1

( ) ( ( ) ( )) ( )( ( ) ( )) ( ( ) ( )) ( )( ( ) ( ))
p

b

k
a

k

n f t g t W f t g t f t g t W f t g t dt 



        

 

It implies   * ˆˆ ˆ( ) ( ) ( )g t Ef t g t                                                                                       (16) 

 

So, for every 
2 [ , ]mg W a b , we have 2 2ˆ ˆ( ) ( ( ) ( )) ( )( ( ) ( ))

b

a
bias E f t Ef t W f t Ef t dt     
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  2 ( )

1

ˆ ˆ ˆ( ( ) ( )) ( )( ( ) ( )) ( )
p

b b
m

k k k k
a a

k

E f t Ef t W f t Ef t dt g t dt   


    
 

 

By considering  ˆ ˆ( ) ( )Ef t g t    as given in (16), we obtain: 

 

  2 2 ( )

1

ˆ ˆ ˆ( ) ( ( ) ( )) ( )( ( ) ( )) ( )
p

b b
m

k k k k
a a

k

bias E f t g t W f t g t dt g t dt    


     .     

 

Thus, for every 
2 [ , ]mg W a b , we have the following relationship: 

 

  2 2 ( )

1

( ) ( ( ) ( )) ( )( ( ) ( )) ( )
p

b b
m

k k k k
a a

k

bias E f t g t W f t g t dt g t dt  


     .                              (17) 

 

Since (17) hold for every 
2 [ , ]mg W a b , then by taking ( ) ( )g t f t we get: 

  

 2 ( ) 2

1

( ) [ ( )] ( )
p

b
m

k k k k
a

k

bias g t dt O  


   ,    as n .             

 

Next, to determine the asymptotic property of ( )Var   we first define:  

 

 

1

ˆ ˆ ˆ( , , ) ( ) ( )
p

k k

k

f h R f h J f h     


     ,   R  , and 
2 [ , ]mh W a b    

 

where 1 2

1

( ) ( ) ( ( )) ( )( ( ))
p

k

k

R g n y g t W y g t



   , and ( ) 2( ) [ ( )]
b

m

k k k k
a

J g g t dt  . 

 

For any 
2, [ , ]mf g W a b , we have 

 

 1 2

1

( , , ) ( ) ( ( ) ( )) ( )( ( ) ( ))
p

k

k

f g n y f t g t W y f t g t   



      
( ) ( ) 2

1

( ( ) ( ))
p

b
m m

k k k k k k
a

k

f t g t dt 


                                 

 

By carrying out  ( , , ) 0d f g d     and  0  , it will give: 

  

 1 2 ( ) ( )

1 1

( ) ( ( )) ( ) ( ) ( ) ( )
p p

b
m m

k k k k k k k
a

k k

n y f t W g t f t g t dt 

 

    .           

 

Suppose 
1 2, ,..., n    are basis of natural splines and 

1

( ) ( )
n

j j

j

f t t 


 , then according to Eubank (1988), it will give: 

 

 2

0 1 1 1

( ) ( )( ( )) ( 1) (2 1)! ( )
n n n n

m

i i i j j i i j ij

i j i j

W g t y t n m g t d    
   

       .                       (18) 

 

Since (18) is hold for every 2 [ , ]mg W a b , then equation (23) is equivalent to determine j  which  helds: 

 

 1 2

1

( ( 1) (2 1)! ( ) ( ))
n

m

i i ij j i j

j

y n m W d t   



     ,  1,2,...,i n .                             (19) 

 

We can express (19) in the following matrix notation:  
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 1 2( ( 1) (2 1)! ( ) )my n m W K        

 

where { }ijK d ,  , 1,2,...,i j n , and  { ( )}j it  ,  , 1,2,...,i j n .  So, we obtain: 

 

 1 2 1 1 2( ( ) ( ) )y n W FB F W          ,  where  B F VF .                       (20) 

 

If we multiply equation (20) from the leaft side with  , then we will have: 

 

     1 2 1 1 2( ( ) ( ) )y n W FB F W              . 

 

So, we get the estimator ˆ
 of   as follows: 

 

  1 1

1
ˆ (1 ) ,..., (1 )ndiag n n y         .    

 

Thus, we can express the estimator ˆ ( )f t
as follows: 

 

 

1

1ˆ ˆ( ) ( ) ( )
1

n

j j

j j

f t t y t
n

    


 


                                                            (21) 

 

The asymptotic properties of ( )Var  can be established in Theorem 5 under assumption (A0). 

 

Theorem 5. If assumption (A0) hold, then for 1,2,...,k p , 
1

2

1
( )

m
k

k

Var O
n




 
  

 
 

,  as n . 

 

Proof. For 1,2,...,k p , the equation (21) gives: 

 

 

1

1ˆ ( ) ( )
1k

n

j j

j k j

f t y t
n

  
 




  

                                 

It implies:  
2

1 2 2

2
1 1

( )
ˆ( ( )) { ( )}

(1 )k

n
j

i
i n j k j

t
Var f t Max W

n



 

 



  

 
  

 
     

 

So, we have:   
2

1 2 2 2 2

2
1 1

( )
( ) { ( )} ( ) ( )

(1 )

n bj

k i j
a

i n j k j

t
Var Max W t W dt

n


    

 



  

 
  

 
  .             

    

Speckman (1985), and Eubank(1988) have given the following approximation:  

 

1 1 2 2 2 2

1

( ) ( ) ( ) ( )
p

b

r j r k
a

r

n n W t t W dt    



    and 1 2 2 1

2
1 1

1
( ) { ( )}

(1 )

n

k i
i n j k j

Var Max W n  
 

 

  

 
  

 
   as n . 

 

Furthermore, Eubank (1988) has given:  

 

 1 2 2 1

2 2
1 1

1
( ) { ( )}

[(1 ( ) ]

n

k i m
i n j k

Var Max W n
j

  
 

 

  

 
  

 
  

 

By integral approximation, we obtain: 
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2

1 2

1 2 2
1

2

( ) { ( )}
(1 )

b

k i ma
i n

m
k

dt
Var Max W

t
n


 

 



 

 
  

 
 1

2

1
( , )

m
k

K m

n






  

1

2

1

m
k

O

n

 
 


 
 
 

 

 

where  
2

1 2

2 2
1

( , ) { ( )}
(1 )

b

i ma
i n

dt
K m Max W

t


 





 

 
  

 
 .         

 

 Finally, based on Theorem 4 and Theorem 5, we obtain the asymptotic property of spline estimator based on IMSE 

criterion as follows: 

 

 2( ) ( ) ( ) ( ) ( )IMSE bias Var O O s                                                        (22) 

where  
1 1 1

2 2 2
1 2

1 1 1

m m m
p

s

n n n  

 
 

  
 
 

. 

 

 

3.6 Numerical example 
 

In this section we give a numerical example of 

estimation of the multiresponse nonparametric regression 

model based on smoothing spline method where performance 

of this method depends on the selection of smoothing 

parameters. For this example, we generate data for 100n  , 

correlations 
12 0.6  , 

13 0.7  , 
23 0.8  , and  variances 

2

1 2  , 2

2 3  , 2

3 4  . The underlying multiresponse 

nonparametric regression model is: 

 
2

1 1 1

2

2 2 2

2

3 3 3

5 3sin(2 ) , 1, 2,...

3 3sin(2 ) , 1, 2,...

1 3sin(2 ) , 1, 2,...

i i i

i i i

i i i

y t i n

y t i n

y t i n

 

 

 

   


    
    

.      (23) 

 

In this example, we conduct simulation to compare three 

different smoothing parameters ( ), i.e., 1 09e   (small 

lambda), 2.27 07e   (optimum lambda), and 1 05e    

(great lambda). A plot of GCV versus lambda ( ) that gives 

minimum GCV value at lambda, 2.27 07optimum e   is 

given in Figure 1. 

Next, a plot of the estimated regression function of 

the model in (23) for optimum lambda, 2.27 07optimum e   , 

is given in Figure 2. A plot of the estimated regression 

function of the model in (23) for small lambda, 1 09e   , is 

given in Figure 3. Also, a plot of the estimated regression 

function of the model in (23) for great lambda, 1 05e   ,   

is given in Figure 4. Figures 2, 3, and 4 show that         

selection smoothing parameters, i.e., optimum lambda 

( 2.27 07optimum e   ), small lambda ( 1 09e   ), and great 

lambda ( 1 05e   ) give a good regression function fitting, a 

too rough regression function fitting, and a too smooth 

regression function fitting, respectively.  

In the following Table 1, we give the comparison of 

three different smoothing parameters ( ) in estimating the 

regression function of the multiresponse nonparametric 

regression model.  
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Figure 1. Plot of GCV versus lambda ( ) that gives minimum GCV 

value at lambda, 2.27 07optimum e   . 

 
Table 1 shows that the optimum smoothing para-

meter ( 2.27 07optimum e   ) gives the most minimum GCV 

value compared with both small smoothing parameter 

( 1 09e   ) and great smoothing parameter ( 1 05e   ).     

It means that the selection of optimum smoothing parameter 

gives the best regression function fitting of the multiresponse 

nonparametric regression model. 

 
Table 1. Results of estimation for three different smoothing para-

meters. 
 

Smoothing 

parameters 

Minimum 

GCV values 
Results of estimation 

   

1 09e    

(small lambda) 

5.687333 A too rought regression 

function fitting. 

2.27 07e    

(optimum lambda) 

3.79075 A good regression function 
fitting. 

1 05e    

(great lambda) 

5.470145 A too smooth regression 

function fitting. 
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Figure 2. Plots of estimation of the first response (above), the second response (central), and the third response (below) of model (23) for 

optimum lambda, 2.27 07optimum e   . 
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Figure 3. Plots of estimation of the first response (above), the second response (central), and the third response (below) of model (23) for small 

lambda, 1 09e   . 

 

4.  Conclusion 
 

By assuming that the distribution of response 

variable is known, we can get the estimation of covariance 

matrix by using maximum likelihood method. The optimum 

smoothing parameter ( ) is obtained by minimizing the 

generalized cross validation (GCV). Optimum lambda ( ) 

gives a good regression function fitting. In estimating of the 

regression function of the multiresponse nonparametric 

regression model based on smoothing spline estimator, we use 

all observation points as knots. Smoothing spline estimate of 

the functions f  arises as a solution to the minimization 

problem, i.e., find f̂  that minimizes the penalized weighted 

least-square (PWLS). The result shows that smoothing spline 
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Figure 4. Plots of estimation of the first response (above), the second response (central), and the third response (below) of model (23) for great 

lambda, 1 05e   . 

 

estimator, f̂  , is an estimator which is linear in observations, 

and by taking expectation, ˆ( )E f
, it is a bias estimator for f . 

We can investigate the asymptotic properties of spline 

estimator ( f̂ ) of regression functon ( f ) by decomposing 

( )IMSE   into two components, i.e., 2 ( )bias   and ( )Var  , 

and the result has been given in (22). 
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