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Abstract

In applications, we often meet the problem where more than one response variable is observed at several values of
predictor variables, and these responses are correlated with each other. The multiresponse nonparametric regression model
approach is appropriate to model the functions which represent relationship between response and predictor variables. This
relationship is drawn by the regression function. The principal problem of this model approach is estimating of the regression
function of this model. The spline estimator is one of the most popular estimators used for estimating it. In this paper we discuss
methods to obtain a smoothing spline estimator for estimating the regression function, to get a covariance matrix estimator, and
to choose an optimum smoothing parameter. In addition, we investigate the asymptotic properties of the smoothing spline

estimator.
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1. Introduction

Statistical analysis often involves building mathe-
matical models which examine association between response
and predictor variables. Spline smoothing is a general class of
powerful and flexible modeling techniques. Research on
smoothing spline models has attracted a great deal of attention
in recent years, and the methodology has been widely used in
many areas. Smoothing spline estimator with its powerful and
flexible properties is one of the most popular estimators used
for estimating regression function of the nonparametric
regression model. Several types of spline estimator have been
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considered by researchers to estimate the regression function.
Original spline was used to estimate the regression function
for smooth data by Kimeldorf and Wahba (1971), Craven and
Wahba (1979), and Wahba (1990). M-type spline was
proposed by Cox (1983), and Cox and O’Sullivan (1996) to
overcome outliers in nonparametric regression. Construction
of confidence interval for original spline model has been
provided by Wahba (1983). A comparison between
generalized cross validation and generalized maximum
likelihood for choosing a smoothing parameter in the
generalized spline smoothing problem was presented by
Wahba (1985). Relaxed spline and quantile spline were
introduced by Oehlert (1992), and Koenker, Pin, and Portnoy
(1994), respectively. Smoothing spline for the case of
correlated errors was discussed by Wang (1998). Reproducing
kernel Hilbert spaces (RKHS) concept has been used by
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Wahba (2000) to build spline statistical model. Lee (2004)
combined smoothing spline estimates of different smoothness
to form a final improved estimate. Cardot, Crambes, Kneip,
and Sarda (2007) investigated the asymptotic property of
smoothing splines in functional linear regression with errors-
in-variables. Liu, Tong, and Wang (2007) have discussed
smoothing spline estimator for variance functions. Aydin
(2007) compared goodness of spline and kernel in estimating
nonparametric regression model for gross national product
data. Aydin, Memmedhi, and Omay (2013) have studied the
determination of an optimum smoothing parameter for non-
parametric regression using smoothing spline. But, researchers
mentioned above just discussed spline estimators for esti-
mating regression function of single response nonparametric
regression models. It means that they have not discussed
spline estimators in the multiresponse nonparametric regres-
sion model.

In many real cases, we often find cases where more
than one response variable is observed at several values of
predictor variables, and there are correlations between the
response and each other. Multiresponse nonparametric
regression model provides potential methods to model the
functions that represent the relationship of these variables.
Some researchers have discussed estimating methods in the
multiresponse nonparametric models. Wegman (1981), Miller
and Wegman (1987), and Flessler (1991) provided spline
smoothing algorithms. Wahba (1992) used RKHS method to
develop the theory of general smoothing splines. Gooijer,
Gannoun, and Larramendy (1999), and Fernandez and
Opsomer (2005) proposed methods to estimate nonparametric
regression models with serially and spatially correlated errors,
respectively. Wang, Guo, and Brown (2000) used spline
smoothing for estimating biresponse nonparametric regression
model with the same correlation of errors. Lestari, Budiantara,
Sunaryo, and Mashuri (2009), and Lestari, Budiantara,
Sunaryo, and Mashuri (2010) used spline to estimate the
multiresponse nonparametric regression model in cases of
equal correlation of errors and unequal correlation of errors,
respectively. Chamidah, Budiantara, Sunaryo, and Zain (2012)
applied the multiresponse nonparametric regression model to
design child growth chart. Lestari, Budiantara, Sunaryo, and
Mashuri (2012) have studied spline to estimate the hetero-
scedastic multiresponse nonparametric regression model.
Chamidah and Lestari (2016) discussed estimation of the
homoscedastic multiresponse nonparametric regression model
when the numbers of observations were unbalanced. Lestari,
Fatmawati, and Budiantara (2017) estimated smoothing spline
in the multiresponse nonparametric regression model by using
RKHS method. Lestari, Fatmawati, Budiantara, and Chamidah
(2018), and Lestari, Fatmawati, Budiantara, and Chamidah
(2019) estimated regression functions and smoothing para-
meters using spline and kernel estimators. Yet, all these
researchers assumed that the covariance matrix was known.
When it is unknown, it has to be estimated from the data and it
can affect the estimates of the smoothing parameters (Wang,
1998). Also, these researchers have not discussed the esti-
mation of optimum smoothing parameter in the multiresponse
nonparametric regression model when the variances of errors
are not the same. In addition, none of these researchers have
discussed the asymptotic properties of the spline estimator.

In nonparametric regression, we often consider
asymptotic properties of estimator based on certain goodness

criteria. In regression nonparametric analysis, investigating of
the asymptotic properties of an estimator is an important step
for obtaining convergence rate of regression function esti-
mator. There are some criteria which have often been used by
researches to determine goodness of spline estimator ap-
proach. Eubank (1988) proposed the mean square error
criterion. Speckman (1985), and Carter, Eagleson, and Silver
man (1994) have studied minimax criterion, while Cox (1983)
and Cox and O’Sullivan (1996) considered the mean square
error criterion for M-type spline approach. Eggermont,
Eubank, and LaRiccia (2010) have studied convergence rate
of spline estimator in the varying coefficient model. Li and
Zhang (2010) established strong consistency and asymptotic
normality of penalized spline in the varying-coefficient single-
index model. Wang (2012) constructed the M-type estimator
of regression function and has studied its asymptotic nor-
mality property. Ping and Lin (2013) discussed the asymptotic
properties of spline estimator in the partly linear model for
longitudinal data. Chen and Christensen (2015) have studied
both asymptotic properties and convergence rate of some
estimators in the nonparametric model. Although, these
researches have discussed some asymptotic properties of some
estimators, they discussed the asymptotic properties in single
response nonparametric regression models only. They have
not discussed the asymptotic properties in multiresponse
nonparametric regression models.

In this paper, we develop the biresponse non-
parametric regression model proposed by Wang et al. (2000)
to the more general model, i.e., the multiresponse nonpara-
metric regression model. Note that we need the covariance
matrix to determine a weight matrix that will be used in the
optimization penalized weighted least-square (PWLS) to
obtain a smoothing spline estimator which depends on the
smoothing parameter to estimate regression function of the
model. Therefore, in this paper we discuss methods to obtain
the smoothing spline estimator, to get the covariance matrix
estimator, and to choose the optimum smoothing parameter.
We also investigate the asymptotic properties of smoothing
spline estimators of the multiresponse nonparametric regres-
sion model based on integrated mean square error (IMSE)
criterion.

2. Methods

Firstly, we consider data (y,t;), k=12...p;
i=12,..,n that follow the multiresponse nonparametric
regression model as follows:

Yii = T (ti) + & ()]

where f, f,,...f, are unknown regression functions assumed

P
to be smoothed and contained in Sobolev space w,"[a, ,b,]-
& are zero-mean independent random errors with variance
o'lfi . Based on (1), we can determine the covariance matrix of

errors. The estimated multiresponse nonparametric regression
model based on smoothing spline estimator can be obtained
by carrying out optimization PWLS:
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Min {(ink)*l(yl— WL (@)Y~ 1)+t (¥, = FIW,(02)(y, ~ F,)+

£, fp e Fp €W,

A j: (2 M) dt+.+ 4, jb (2 ()% dt} @

Then, to get the solution of optimization PWLS in (2), we use RKHS method. Secondly, we estimate the covariance
matrix of errors using maximum likelihood method, and estimate the optimum smoothing parameter based on the minimum value
of generalized cross-validation (GCV). Finally, we determine the asymptotic properties of the smoothing spline estimator of
regression function based on IMSE criterion.

3. Results and Discussion

Suppose that y=(y,Y,...Y,)" f=(f,f 1) £=(&.6mg) and  t=(t,L,...t,)" where
D

Y = Vi Yizroos Yoo ) fio = (Fe)s feto)sons f(t D) &= (G Ezrmrbin ) & = (trtiprnt ) k=12, p;
i=1,2,...,n, . Therefore, the model (1) can be written in the following matrix notation:

y="f+¢ @

where E(g) =0, and namely Cov(g) = [\N(gz)]-l.

3.1 Covariance matrix of random errors

The following theorem gives us how we determine the covariance matrix of random errors, Cov(g) =[W (c?)]™*, in the
multiresponse nonparametric regression model.

Theorem 1. Suppose that the data set (Yerta) k=12,....p; i=12,...,n, follows the multiresponse nonparametric regression
model given in (1):

Vi = f (i) + &g
If [W(c?)]™" denotes the covariance matrix of errors, then
W (g*)]™ = diag(W,(a7),W,(a3),.... W, (a3))

where matrix W, (g?) is given by:

2
Ou Okay 7 Gkan
2
W(gf)=| T T e L
“oe 2
Ok Oxn.2 O,

Proof. Cov(g) = E (g -E(g))(£ - E(e))

—_ ’
= E[(gu,...,glnl,eﬂ,...,gmz,...,gpl,...,gpnp) (811""’81n1’821""’anz""’gpl""’gpnp )]

W11 le Wlp
= Wy Wy, oo Wo | = W (g™ “)
W, W W

p2 o
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where Wﬁ{ diag(cl, 00,00 ) k=I(k=12,.,p)

diag(a(k,)l,a(k,)z,...,O'(kl)nk), k=1

P
0,

diag(o%,, 0%, 0%,), k=1(k=12,...p)

Since Oy = P00 and P :{ . -
, #

, then we have: W, :{

Therefore, we can write equation (4) as follows:
W (™)™ = diagW,(g7), W, (g7),-. W, (g7))

where matrix W, (g?) is given by:

2
Ca  Okaz 7 %kan
2
o, o, <o O k=12 p.
2y | Ok k2 k(2ny) | 1 Lyenny
W, (gy) = . . . o
e 2
Oy k.2 On,

3.2 Estimation of regression function

Suppose that data set Yo ta)» k=12,...,p> i=12,..,n. follows the model given in (1). We can determine the
smoothing spline estimator for regression function of the model given in (1) by solving the following PWLS:

p

Min {3 n)™ (i~ fIWi(a)(yy = B+t (Y, = W, (gp)(y, = o) +

£y, v £ €W

P k=1
A j: (F2 )2t +...+ zpj:P (2 () dt} ®)
where Y, = (Vig, Yoo Yin ) Yo = (Vaur Yoo Yan,)'veees Yo = (Vs Yiparoos Yo, )’ fi=(fiy, g fiy))'s T, =

(foys Foprerns o )oesy fp =(fpl, fpz,,__, fpn )', and W, , represents the k™ -weight, k=12,...,p which is obtained from
2 ~ P

Theorem 1, and the smoothing parameter 4, (k =1,2,..., p) controls the trade-off between the goodness of fit and the smoothness
of the estimate. The model given in (1) can be expressed into a general smoothing spline regression model as follows:

Yo=L, fiteq. k=12...,p; i=12..n

where function f, € Fk (Fk represents Hilbert space) is unknown and assumed to be smooth, and L[k e F« is a bounded linear

functional.

Next, suppose that Hilbert space Fk can be decomposed into direct sum of two subspaces Gk and Hk as follows:
Fi=Gk @ H

where G L Hk. Also, suppose that {&,;, Gy 5.+, gkmk} and {3, 8, .9knk} are bases of spaces of Gk and Hx, respectively.

Then, we can express every function f, € Fk(k =1,2,..., p) into the following expression:
fo=0c+h

where g, € Gk and h e Hk. Since {G1,Gyy 11 Gy, J i basis of space Gk, and {&,,, ;... &, } is basis of space Hx ,
then for every function f, e Fk(k =1,2,..., p) follows:
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fi :Zk:Ckvgkv +zk:dki'9ki = g‘ibk +'9':9k; k=12,..,p; €y dy R ©)
vl i1

where gk:(gkl!gkw'“igkmk),’ Qk:(Ckl,Ckz,---,Ckmk)’, 4 =S 3a) s and dy =(dy,dyy,.0dy, )

Finally, since L is the bounded linear function in Fk, and fk € F«, then we have:

L, fo = L, (9 +hy) = L., (9¢)+ L., (h) =g, () +h () = f (L)

In the following theorem, we give a method to obtain the estimated regression function by using RKHS method, i.e., by carrying
out the PWLS given in (5).

Theorem 2. If the data set (yki,tki) v k=12,..,p;i=12,..,n, follows the multiresponse nonparametric regression model given
in (1):
Y = f (i) + &g

then the estimated regression function of model (1) based on smoothing spline estimator is given by:
f,=Ac+Bd=H(4)y
where H(2) = AAD W (g?) Al AD W (g®) + BD"W(g?)x [| - A(AD W (g*)A) " AD W(g?)]-

Proof. By considering model given in (1) and applying Riesz representation theorem (Wang, 2011), and because of L, is

bounded linear functional in Fi, then there is a representer &,; e Fk of Ltk. which follows (Wang, 2011):

L, fe = fo = £ (te) f € Fx
where <,> represents an inner product. Based on (6) and by considering the properties of inner product, we have:

fie(ta) = (0 GG + Ldi) = (S 5uc) +(J, Fd) - ™
Next, based on (7), for k =1 we have:

f(t) = (G616 + (5 &) 1 =125

So that, for i =1,2,3,...,n, we have:

£,6) = (£,t). i) £i,)) = Ag +Bd,

where: ¢, =(Cyy,Cipres Cipy ) gl:(dll’dlZ""’dlnl),’

' Mimy

<511’ §11> <5111 §12> o <5111 glml> <5111 ‘911> <5111 l912> o <511’ ‘91n1>

A = (016110 (O21612) = <§12'g1ml> "B = G (%) <512’191n1>
- . . . . 1™ . . . .

<51n1 1611 <§1n1 1G) <§1n1 | §1m1> <51n1 ) <51n1 ) <51n1 ’ ‘91nl>

In the similar process, we obtain: f,(t,) = A,c, +B,d,..... f (t,)=Ac,+B,d, . Therefore, the regression

function f (t) can be expressed as:
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O =(H0) L) 1,0)) =(AG AC . AL, ) +(Bd, B, B, )
= diag (A, Ay A)(C1,Cprorn €)'+ diaG (B, By o B)(dy, e d,) = Ac+ B - ®)

P p
In equation (8), A isa (N X M)-matrix, where N = znk ' M =ka ,and C isa (M x1)-vector of parameters
k=1 k=1

!/
that are expressed as A=diag(A1,A2,...,Ap), and ¢ :(91’,9;,...,0' ) , respectively. Also, B is (N X N)-matrix, and q is a

<p
(N X 1)-vector of parameters which are expressed as B = diag (Bll B,,..., Bp)’, and d= (gl',géy,__,g;)l, respectively.
Therefore, we can write the multiresponse nonparametric regression model given in (1) or (3) as y = Ac+ Bd + ¢ - To obtain

the estimation of regression function, f , we use RKHS method by solving the following optimization:

1 g 1 2
Min {W(«z% }= Min {MZ(qZ)(y—f) } ©)
IIK:?%,, p lzka ----- p ) )

b
with constraint J TEM™ @t )Pdt, <y, . 7, >0. The solution to (9) is equivalent to solution to the penalized weighted
a

least-square (PWLS):

Min {Nl(y— FYW(g*)(y - f )+iﬂf‘[fk‘m>(tk>]2dtk}v (10)

where  2,, k=12,..,p are smoothing parameters that control between goodness of fit represented by
N7 (y—f)W(s?)(y—f) and smoothness of the estimate measured by %J‘q[ fl(m)(tl)]zdtl+...+/”ijb"[frfm’(tp)]2dtp- To
Z - ~ L. 3 ap

determine the solution to (10), we first decompose the penalty as follows:

by m ’, / ' U !
[IE™ @ dt, = [PE[" = (PE,PE) = (dd, 4d) = (G, d, = 4By

p
Therefore, the penalty in (10) is Zﬂkjbk[fk(m)(tk)]zdtk}:g’ﬂBg where 2 = diag(1, ... 4,1, )- So. the
P ’

goodness of fit in (10) can be written as:
N7 (y—FYW(g*)(y-f) = N7 (y—Ac—-Bd)W(g*)(y—Ac-Bd)-

By combining the goodness of fit and penalty, we obtain optimization PWLS:

. = : -1 2 P Der ¢ (m) 2 . (11)
Min{Q(e.d)}=, Min IN(y= HYW(g")y— )+ LA [ TR W i}
deR™™ K2 PG

Optimization PWLS in (11) gives ¢=[A'D"W(c?)A]*ADW(g?)y and (j: D W (a?)[I - A(ADW (c?)A)™
ADW (qz)]y , Where D :W(QZ)B + NI . Finally, we get the estimated regression function of model given in (1):

fo=(fn fo f ) = AC+Bd = H(A)y (12)

o T

where ' H () = AAD W (g?) AT AD W (g?) + BD W (g?) x [I - ACXD "W (g?)A)* AD W (c?)].
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3.3 Estimation of covariance matrix of random errors

Suppose that [W ()] represents a estimated covariance matrix of random errors. To obtain the estimated covariance
matrix, we consider the data set (tki, yki), k=12,..,p: i =12,...,n, follows the model in (3). Assume that y= (Yl' Yyroe Yp)r

p

is random sample obtained from N-variates normally distributed population (N :znk) with mean f , and covariance
k=1 -

[W (c?)]™*. Based on this distribution, we get likelihood function as follows:

Lt W@ =T1 %exp(—%(yj — YW@y, - 5-))

7 @n)F Wi

p
Since N ="n, and W(g?) = diag(W,(g;"),W,(a3), W, (g})) then we have:

k=1

L(F W (@) ) =| —— nexp{—;i(y“—tu)WAqf)(y”—t“)}x
(27) 7 [W, (g1’

e ; "eXp{_; _n (YZJ'_fzj)wz(gzz)(yz,-—fzj)} X...X
(27) % [W, (@[

: n eXp{_;i(ij - tpi)wp(gi)(ypj - fpi)} .

(27) % W, (@12

Next, estimated covariance matrix of random error can be obtained by carrying out the following optimization:

1 13
L(I,W(Q'z)ul): \M?ZX) iy nexp{_ZZ(yu_Elj)wl(Q-lz)(Ylj_Ilj)} X
e W@
1 1 ,
VD/I(‘}X) i, ,-,exp{_zz(yzj_Izj)WZ(Q-Z)(YZj_IZj)} XX
) W @1
1 1 (13)
\A',VI(% m, n eXp{—Z(ij — W, (@), - fpj)}
NCORN ACH) Rk

Determining of value L(f ,W(g2)| y) in (13) is equivalent to determining of maximum value of each component in

(13) (Johnson & Wichern, 1982). It means that the maximum value of each component in (13) can be determined by giving the
following equations:

&8 _(i-f)0-1,)
n n

[\Nl (5:712 )] =

g seey
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[VV (6_2)] — épé; — (YP - [p’}‘p )(YP - fp'lp),
p\=p

n n

where f“ (k=212,...,p) is regression function estimator given in (12). Therefore, the maximum likelihood estimator for

W (¢?)] s given by:
[W (6°)] = diag (W, (67)1. W, (67)]. . [W, (&3)D)

ding| BB BY (m B )= 0= 0=,
n ’ n n

Since fm =H (ﬂ«:éf)yk' k=12,...,p thenfor k=12,..., p we have:

(n= )0 =) Oy ~HE SRy, -H(AE)
n n

(o= Foi )0 = f) (o —Hi80)Y,Y, (1, —H (4, 62))

n n

Therefore, the maximum likelihood estimator for covariance matrix is given by:

n n

oot T [0 -t
M@WﬂmF%HM%mw“1%~%prq

= diag (W, ()1 W, (G)1 7 W, (G)17) -

where:

I, —H ,"12 l]iln_H ':12 ' ~2 In —-H ﬂ’p’:é p ;J In -H ﬂ’p':s '
0 MG 1y ooy U MO BN LD, HEET

[\Nl (0:-12 )] =

3.4 Estimation of optimum smoothing parameter

Selecting an optimum (suitable) smoothing parameter value £ is crucial to good regression function fitting. There are a
number of ways to choose 4, including minimizing Mallows’s Cp , cross-validation (CV) score, generalized cross-validation
(GCV) score, and Akaike’s information criterion (AIC) (Li & Zhang, 2010). Ruppert and Carrol (1997) pointed out that
Mallows’s Cp and GCV were satisfactory for good regression function fitting based on spline estimator. Moreover, GCV
approximating CV is a computationally expedient criterion, so it is popular in spline literature.

In this section we establish the estimation of optimum smoothing parameter to good function regression fitting. For this
goal, we may express the estimated regression function given in (12) as follows:

f,(0)0=H(4 4, ... 4; %)y (14)

where Q-Z = (012 , 0—22 yeens 05)’ . The mean square error (MSE) of the smoothing spline estimator given in (14) is:

_(y-LowE)y-f,0)

P
2N
k=1

MSE(4, Ay Ay 07)
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U =HA A A, @)YIW (@) - H (4, 4y, 453 07)) Y]
- p
20
k=1

2

W (@*)P[(1 = H (A 2, Ay )]y

[im} W (@)L = H (A s 25y (15)

Gy v Ay 62) = ’

trace| I, —H(4, 4. 4,;07)

p
2 2

Therefore, based on (15), the optimum smoothing parameter, Zopt :(Ai(opt),ﬂq(opt),,__,ﬂp(opt))’, is obtained by solving the
following optimization:

Gopt (Al(opr)’ﬂ?(opt) LR ﬂ’p(opt) ; Q_Z) = G(Al’ A‘Z’ R ﬂ’p’ qZ)}

2

[ink] W (@)L~ H (A Ay Ay )y

= Min

}neR’,}QeR’,...,lpeR*

k
k=1

1 2
trace[lin -H(4, 4 Ayia )J

where norm H\~/H = /vlz +V2 +___+v‘2) fora p-dimension vector v =(v;,V,,...,v,)"-

3.5 Asymptotic properties of spline estimator

In this section, we investigate the assymptotic properties of spline estimator fAﬂ of the multiresponse nonparametric
regression model. Our goal is to investigate asymptotic properties of spline estimator f”l and we will judge the quantity of spline

estimator fAA by weighted integrated mean square error (IMSE).
Firstly, we decompose IMSE(4) into two components as follows:

IMSE(2) =E [ [(f (©) - £, ()W (2*)(f (©) - f, (0)]dt =bias® (2)+Var(2)

where bias® = [" E[(f (t) - E(, ()W (¢*)(f (©) - E(F, )]t nd var(a) = ["EL(EF, (0 - F, ()W (@)(EF, (0 - £, (0)dt -
Next, to investigate the asymptotic property of bias®(4), we first establish the solution of PWLS optimization in the folowing
Theorem.
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Theorem 3. If f‘l(l) is solution which minimize the following PWLS:

(an) (Y=gO)W(g*)(y - g(t))+2/1kj (9.7)) )
then the solution which minimize the following PWLS:

(an) (F©O-gO)W () (f ()~ g(t))+zﬂkf (9™t ) dt is §;(t)=Ef, (1)

Proof. Theorem 2 has given the solution which minimize the following PWLS:

Zn ) (Y- g®)W(g*)(y - g(t))+2/1kj ‘m)(t)

The solution is:
f,(t) ={AIAD"W(g*) Al "AD "W (g*) + BD W (g*)[I - A(AD W (¢?)A) *AD W (g*)I}y

Next, by taking f ®=y. then the value that minimize:

(Z n) " (F (O -gW(e*)(f (1) -g(t) + Zﬂkf < (t)) " dt, can be writen as:
§;(t) ={ALAD W (¢*)A]*AD"W (g*) + BD W (¢*)[I - A(AD "W (¢*)A) *AD W} (1) = Ef, (1)
Furthermore, we investigate the asymptotic property of biasz(,j) . For this goal, we first give the following assumption.

Assumption. (A0). For every k (k=12,...,p) t, = 2i- =, i=12,..
' 2n
The asymptotic property of bias? (4) can be established in Theorem 4 under assumption (A0).

Theorem 4. If assumption (A0) hold, then bias®(4) <O(1) as N —>
where O(4) represents “big oh” (Sen & Singer, 1993, and Wand & Jones, 1995).

Proof. Suppose @, (t) is value which minimize:

[[(t®-gWE)f® —g(z»dﬁiﬂk [RERE

Since assumption (AQ) then, as n — oo,
(ﬁ n)(F (- gW (@) ®-g®) = [ (F () - gW () () - g(D)dt
Itimplies g (t) = Ef, (t) ~ g, (1) (16)

So, for every g <W,"[a,b], we have bias’(2) = [ E(f (1)~ Ef ()W (a*)(f (1) - Ef (D)t
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b - 3 D b m
< [TE(F O -Ef, @)W (2*)(f (©-Ef (0)dt+ Y 4 [ 67 (t)dt,
k=1
By considering Ef} ®~§,t) as given in (16), we obtain:
. b ~ A £ b o (m
bias®(2) < [ E(f (1) -4, ®)W(@)(f () -4, ®)dt+ >4 [ 67 t)dt,
k=1
Thus, for every g eWZ"‘[a,b] , we have the following relationship:
p
bias?(2) < [ E(f(®) - g)W(a?)(F (1) -g(®)dt + > 4 [ gl (t,)dk, (a7
a ~ = ~ =~ =y a
Since (17) hold for every g e W,"[a,b], then by taking g(t) = f (t) we get:
p
bias? () < Y 4, [ [0 ¢, P, =0(2): 3 N—>.
k=1
Next, to determine the asymptotic property of Var(4) we first define:

~ ~ P ~
o(f,,h,y)=R(f, +7h)+ > 43, (f, +yh). 7 €R.and heW,"[a,b]
! ! 2 !

where R(g) = (3"n,)"(y - g(OYW (2®)(y - g(0)- nd J, (@) = [ To{™ (¢, et

Forany f,geW,"[a,b], we have

p P b
O(f.9.7)=(X0) (y= FO-7gOWEy- T O -790)+ L A[, (" €)+7a" €)'

By carrying out dq)(f,g,;/)/dyzo and y =0, itwill give:

)y fOWEIIO =3 A 7€) €)dt,

Suppose ¢, ¢,,..., @, are basis of natural splines and f (t) = Zn:ﬁ-(o- (t)  then according to Eubank (1988), it will give:
17
j=1

Zw (@)at)(y, —iﬂj(p,- t)= nz(—l)m<2m—1)!ig(ti)iﬂjdi,- : (18)

i=1
Since (18) is hold for every g € W,"[a,b], then equation (23) is equivalent to determine B; which helds:

Y= X (A" 2m-)W, (@), + (), + 1=120n (19

=1

We can express (19) in the following matrix notation:
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y= (M=) (2m-)W H(a?)K + ?)p
where K ={d, }, i,j=12,..,n,and o={p,t)} i,j=12,...,n. So, we obtain:
y =MW" (g*)FB"FW™(g*)p+¢)S . where B=F'F.
If we multiply equation (20) from the leaft side with ¢, then we will have:
¢’y =(2pW™(g*)FBFW ™ (c*)p+9'p) -
So, we get the estimator éz of g as follows:
B, =diag ((1+n16)*,...,(1+n16,) ")y

Thus, we can express the estimator f , (1) as follows:

LO=008 =315 v ®

The asymptotic properties of Var (1) can be established in Theorem 5 under assumption (A0).

nik 2m

Theorem 5. If assumption (A0) hold, then for k =1,2,..., p. var(4,) < O{ 1 ] as N —oo.

Proof. For k =1,2,..., p, the equation (21) gives:

;ﬂ(() z j’kg (/71'}/401’(2)
So.wehave: Var(4,) < Max, (o)} o aﬁm(:;) P oW ()it

Speckman (1985), and Eubank(1988) have given the following approximation:

0T @07 = Lo N ()t 9 Var (i) <[ Mt ()}

ke j = W+ 47, m,)

Furthermore, Eubank (1988) has given:

n 1
v <| MaxW,*(g*)} |0’ n 'Y ———————
ar(ﬂk)<( ax{\]/lli,gn(q )})O- " ,-Z:;[(“ﬂ«(”j)zm]z

By integral approximation, we obtain:

(20)

(21)

as N —»oo.
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Var(3,) = Maxt (¢}~ [ s K mo) 0| L
N4

1

niz2m na 2"

e K (m,0) - 2| Ma (o[- %

7Z' i s (L+12")?

Finally, based on Theorem 4 and Theorem 5, we obtain the asymptotic property of spline estimator based on IMSE
criterion as follows:

IMSE(Z) = bias®(1) +Var(1) <O(4) +0(s) (22)
where S= 1 1 1
~ 1 1 1
nﬂ12m nAZZm nlpZm

3.6 Numerical example

In this section we give a numerical example of
estimation of the multiresponse nonparametric regression
model based on smoothing spline method where performance
of this method depends on the selection of smoothing
parameters. For this example, we generate data for n=100,
correlations pp =06, p,=0.7, p,, =08, and variances

3.79090

GCcv
3.79085
|

ol =2, ol =3, 0-32 =4. The underlying multiresponse

3.79080
|

nonparametric regression model is:

Yy, =5+3sin2zt}) +&;, i=12,..n
Y, =3+3sin(2zt}) +&,, 1=12,.n¢
Vg =1+3sin(27t}) + &5, 1=12,..n Lamda
Figure 1. Plot of GCV versus lambda (A ) that gives minimum GCV
In this example, we conduct simulation to compare three value at lambda, 4 .~ =2.27e-07.
different smoothing parameters (A), i.e., A =1e—09 (small
lambda), A =2.27e—07 (optimum lambda), and 1 =1e—05
(great lambda). A plot of GCV versus lambda ( A ) that gives meter ( 4

minimum GCV value at lambda, 4 . —~=2.27e—07Is optimum ] )
P value compared with both small smoothing parameter

. . . (1=1e-09) and great smoothing parameter (1 =1e—05).
NEXt’ a plot of_the estimated regression function of It means that the selection of optimum smoothing parameter
the model in (23) for optimum lambda, ;.. =2.27€=07.  giyes the best regression function fitting of the multiresponse
is given in Figure 2. A plot of the estimated regression  nonparametric regression model.
function of the model in (23) for small lambda, 1 =1e—09, is
given in Figure 3. Also, a plot of the estimated regression  Table 1. Results of estimation for three different smoothing para-

3.79075
1

T T T T
2.20e-07 2.25e-07 2.30e-07 2.35e-07

(23)

Table 1 shows that the optimum smoothing para-
=2.27e—07) gives the most minimum GCV

given in Figure 1.

function of the model in (23) for great lambda, A =1e-05, meters.

is given in Figure 4. Figures 2, 3, and 4 show that

selection smoothing parameters, i.e., optimum lambda Smoothing Minimum Results of estimation

(iop“mum =2.27e-07), small lambda (1 =1e—09), and great parameters GCV values

lambda ( A4 =1e—05) give a good regression function fitting, a A1=1e—09 5.687333 A too rought regression

too rough regression function fitting, and a too smooth (small lambda) function fitting.

regression function fitting, respectively. A1=227e—-07 3.79075 A good regression function
In the following Table 1, we give the comparison of (optimum lambda) fitting.

three different smoothing parameters (A) in estimating the A=1e-05 5.470145 A too smooth regression

regression function of the multiresponse nonparametric (great lambda) function fitting.

regression model.
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Plotting T1 versus Y1

t
Point:Observation Point dan Solid Line: Fitted Curve

Plotting T2 versus Y2

5

y2
3

1

-1

2
Point:Observation Point dan Solid Line: Fitted Curve

Plotting T3 versus Y3

3
Point:Observation Point dan Solid Line: Fitted Curve

Figure 2. Plots of estimation of the first response (above), the second response (central), and the third response (below) of model (23) for

optimum lambda, ﬂomimum

=2.27e-07.

Plotting T1 versus Y1

1
Point:Observation Point dan Solid Line: Fitted Curve

Plotting T2 versus Y2

y2
L

-2 0 2 4 6 8

2
Point:Observation Point dan Solid Line: Fitted Curve

Plotting T3 versus Y3

%
0246

-4

3
Point:Observation Point dan Solid Line: Fitted Curve

Figure 3. Plots of estimation of the first response (above), the second response (central), and the third response (below) of model (23) for small

lambda, 1 =1e—09.

4. Conclusion

By assuming that the distribution of response
variable is known, we can get the estimation of covariance
matrix by using maximum likelihood method. The optimum
smoothing parameter (A) is obtained by minimizing the
generalized cross validation (GCV). Optimum lambda (A)
gives a good regression function fitting. In estimating of the

regression function of the multiresponse nonparametric
regression model based on smoothing spline estimator, we use
all observation points as knots. Smoothing spline estimate of
the functions f arises as a solution to the minimization

problem, i.e., find { that minimizes the penalized weighted

least-square (PWLS). The result shows that smoothing spline
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Plotting T1 versus Y1

%

Point:Observation Point dan Solid Line: Fitted Curve

Plotting T2 versus Y2

2
Point:Observation Point dan Solid Line: Fitted Curve

Plotting T3 versus Y3

y3
1
!

Point:Observation Point dan Solid Line: Fitted Curve

Figure 4. Plots of estimation of the first response (above), the second response (central), and the third response (below) of model (23) for great

lambda, A =1e—05.

estimator, fﬂ , is an estimator which is linear in observations,
and by taking expectation, E( fA)), it is a bias estimator for f .

We can investigate the asymptotic properties of spline
estimator (f}) of regression functon ( f ) by decomposing

IMSE(4) into two components, i.e., biasz(,j) and Var(4),
and the result has been given in (22).
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