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Abstract 
 

The Taguchi method and regression analysis were used to evaluate the machinability of aluminum A356 with 

conventional and ultrasonic-assisted milling. Experiments were carried out based on an orthogonal array L18 with three 

parameters (milling condition, spindle speed, and feed rate). According to the signal to noise ratio (S/N), the optimal surface 

roughness condition was determined at A1B3C1 (i.e., milling condition was conventional milling, spindle speed was 7000 rpm, 

and feed rate was 50 m/min). The optimal surface hardness condition was found at A2B1C3 (i.e., milling condition was 

ultrasonic-assisted milling, spindle speed was 3000 rpm, and feed rate was 400 m/min). Analysis of variance (ANOVA) was used 

to determine the effects of the machining parameters which showed that the feed rate was the main factor affecting surface 

roughness and microhardness. Linear and quadratic regression analyses were applied to predict the outcomes of the experiment. 

The predicted and measured values of surface hardness were close to each other while a large error was observed for the surface 

roughness prediction. Confirmation test results showed that the Taguchi method was successful in optimizing the machining 

parameters for minimum surface roughness and maximum microhardness in the milling of aluminum A365. 
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1. Introduction 
 

Surface integrity (SI) is one of the most relevant 

parameters used to evaluate the machined surface of a 

product. It represents the performance of material inner sur-

faces, such as surface topography, surface roughness, surface 

residual stress, and surface microhardness. Its quality

 

importantly affects the wear rate, fatigue strength, and cor-

rosion resistance of the components (Javidi, Rieger, & 

Eichlseder, 2008). 

The milling process is the most commonly used 

method to remove material in the automotive and aircraft 

industries. The cutting parameters of the milling process, such 

as cutting speed, feed rate, and depth of cut, greatly influence 

the SI (Umbrello, 2013; Jin & Liu, 2011; Sun & Guo, 2009). 

Several researchers have studied and statistically optimized 

the cutting parameters to improve the SI. Rafai, Lajis, and 

Hosni (2014) studied the effect of the machining parameters 
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on SI of AISI D2. The results indicated that a higher cutting 

speed adversely affected the microhardness value of the 

subsurface layer. Daymi, Boujelbene, Amara, Bayraktar, and 

Katundi (2011) reported that the recorded high surface 

hardness values were due to a larger contact area between the 

cutting tool and the workpiece material. The top layer of a 

titanium alloy machined surface experienced work hardening 

and, therefore, the hardness values were higher than the 

hardness of the workpiece material. Shunyao, Minghe, 

Lansheng, Zhishou, and Xinnan (2016) optimized the surface 

integrity of ultra-high-strength titanium alloy by the Taguchi-

Grey relational analysis method. The results reported that the 

preferred combination of process parameters was: milling 

speed of 100 m/min, a feed per tooth of 0.02 mm/tooth, a 

radial depth of cut of 1.5 mm, a rake angle of 18 degrees, and 

helix angle of 60°. Xiangyu et al. (2018) investigated the 

effects of cutting and feed rate on the surface integrity of 

Inconel 718 and found that although the cutting speed barely 

affected the surface roughness, the surface hardness increased 

as the cutting speed and feed rate increased. Erkan, Demetgul, 

Isik, and Tansel (2014) carried out the Taguchi method to 

evaluate the machinability of composite materials. The result 

of a ANOVA analysis was used to show that the cutting speed 

was the most significant factor affecting surface roughness. 

In addition to SI improvement by cutting parameter 

optimization on conventional milling (CM), a recent and 

efficient technique to improve milling performance is known 

as ultrasonic-assisted milling (UAM). The fundamental 

feature of UAM is the tool face is separated from the chip and 

cutting area repeatedly by using high-frequency peak-to-peak 

vibration amplitude imposed on the tool or workpiece 

(Azarhoushang & Akbari, 2007; Chern & Chang, 2006). In 

the past few decades, different researchers have reported 

significant improvements in hard-brittle materials using 

UAM. Noma, Takeda, Aoyama, Kakinuma, and Hamada 

(2014) presented a reduction of thrust force, tool wear, and 

chipping size after applying axial ultrasonic vibration-assisted 

milling of chemically strengthened glass. Suarez et al. (2016) 

investigated the effect of ultrasonic vibration-assisted milling 

on difficult to cut Ni-Alloy 718. The results showed that 

ultrasonic milling resulted in increased fatigue which was 

possibly due to surface differences from conventional milling. 

Elhami, Razfar, and Farahnakian (2015) could reduce the 

cutting force of hardened AISI 4140 machining process by 

applying two advanced machining methods: thermally 

enhanced machining and UAM to the workpiece. Uhlmann, 

Protz, Stawiszyndski, and Heidler (2017) studied the effects of 

UAM when a different cutting condition was applied to 

carbon and glass fiber reinforced plastics. The results showed 

that UAM can be advantageous on workpiece quality and dust 

concentration but a reduction of cutting force could not be 

observed. Razfar, Sarvi, and Zarchi (2011) investigated the 

effect of UAM of AISI 1020 steel in terms of depth of cut, 

cutting speed, and feed rate. The surface roughness improved 

by up to 12.9% when implementing UAM. Maurotto and 

Wickramarachchi (2016) investigated the effect on residual 

stresses in the UAM of AISI 316L reaching frequencies as 

high as 60 kHz, but they found the best results in the low-

frequency range. 

Overall, UAM is an advanced machining tech-

nology and has contributed several advantages. However, the 

literature review shows that almost no research work has been 

performed related to optimizing the ductile material surface 

integrity using the UAM technique. This research aimed to 

expand UAM research of SI into a wider variety of materials 

and applications. Therefore, this study presents the results of 

UAM cutting parameter effects on the SI of a ductile material, 

namely aluminum A356 alloy. This aluminum alloy is 

preferable because of attractive properties that include high 

strength-to-weight ratio, pressure tightness, excellence weld-

ability, high corrosion resistance, and good casting and 

machining characteristics. Furthermore, aluminum A356 is 

widely used in the automobile and aircraft industries. 

In this study, the effects of machining parameters 

were investigated on the surface roughness and microhardness 

in the milling of aluminum A356 with conventional milling 

and UAM. Taguchi’s L18 array was applied to conduct the 

experiments. Taguchi’s signal-to-noise ratio was calculated to 

identify minimum surface roughness and maximum surface 

microhardness to determine the optimal machining conditions 

(i.e., milling condition, spindle speed, and feed rate). In 

addition, linear and quadratic regression analyses were used to 

predict the measured values. Finally, the developed models 

were tested by confirmation experiments. 

 

2. Materials and Methods 
 

2.1 Material 
 

Aluminum A356 T6 was used for this experiment. 

The workpiece material was cut to the dimension of 10x50x20 

mm. The elemental compositions of the workpiece material 

are shown in Table 1. 

 
Table 1. Percentages of alloying elements used in aluminum A356 

T6. 
 

Si Mg Fe Cu Mn Zn Ti Al 

        

7.18 0.215 0.108 0.0197 0.0045 0.0089 0.112 Bal. 
        

 

2.2 Ultrasonic-assisted milling (UAM) experiments  
 

The experiments of the UAM process were per-

formed on a 3-axis UMACH LMC1020 CNC milling 

machine. An ultrasonic generator (UCE Ultrasonic) was 

employed to supply high-frequency electrical impulses into a 

1.5 kW piezoelectric transducer. These high-frequency 

electrical pulses are converted to mechanical vibrations at an 

ultrasonic frequency (19.74 kHz) and transferred to the 

aluminum A365 workpiece which is attached at the end of the 

transducer. An ultrasonic transducer body was fixed with a 

transducer holder clamped with a holder base by four hex 

head set screws. A bench vise on the CNC machine table was 

used to clamp the transducer holder base (Figure 1).  

The vibration amplitude of the workpiece was 

measured by a Keyence EV-101V eddy current sensor. The 

sensor probe was located at a distance of 1 mm from the end 

face of the workpiece (Figure 2a). Vibration frequency signal 

was transferred through the eddy current sensor and Keyence 

controller EX-V02 to output at the Hantek DSO520P Digital 

oscilloscope monitor. The output voltage value was 84mV and 

its amplitude value was 12 µm peak to peak by voltage 

calculation (Figure 2b). 
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Figure 1. Schematic of experiment set up. 
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Figure 2. (a) Set up of workpiece and sensor for vibration amplitude measurement and (b) output voltage from sensor measuring vibration 

amplitude (1 µm/7 mV) which shows the amplitude of 12 µm. 

 

2.3 Surface roughness measurement 
 

The average surface roughness (Ra) of the work-

piece was measured by a Mitutoyo portable surface roughness 

tester model SJ-201. The surface roughness was measured 

parallel to the machined surface from three different points 

and the average values of the measurements were evaluated.  

 

2.4 Microhardness measurement 
 

Microhardness (MH) after machining was measured 

parallel to feed direction using a Vickers microhardness tester 

FM-800. The test load parameter was 100 gf with 10 sec of 

dwell time. Each measurement was repeated three times at 

different locations and the average value of each output was 

calculated. 

 

2.5 Experiment design and optimization 
 

The Taguchi method is widely used in the industry 

and is a highly efficient experiment design. It has been proven 

that this systematic approach can specify the optimum cutting 

parameters and improve the process performance (Kuram & 

Ozcelik, 2013; Sayuti, Sarhan, Fadzil, & Hamdi, 2012).  

The Taguchi method uses a signal to represent the 

desirable value, and noise represents the undesirable value. 

The process parameter with the highest signal-to-noise (S/N) 

ratio (η) always yields the optimum quality with minimum 

variance (Phadke, 1989). There are three different functions of 

quality characteristics in the analysis of the S/N ratio, namely 

the lower-the-better, the higher-the-better, and the nominal-

the-best (Gupta, Singh, & Aggarwal, 2011). For each level of 

the process parameters, the S/N ratio is calculated based on 

the objective function. The aim of this study was to minimize 

surface roughness and maximize microhardness. Therefore the 

lower-the-better and higher-the-better quality characteristics 

were used as shown in Equation 1 and Equation 2, res-

pectively: 
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where yi is the observed data at the ith experiment and n is the 

number of observations of the experiment (Mandal, Doloi, 

Mondal, & Das, 2011). 

Milling conditions (Mc), spindle speed (n), and feed 

rate (f) were selected as the control factors. The levels of 

spindle speed and feed rate were determined based on the 

cutting tool manufacturer’s recommended ranges. Their 

values are presented in Table 2. The mixed orthogonal array 

L18 (21 x 32) (Table 3) was used to conduct the experiments to 

determine the optimal cutting parameters and analyze the 

effects of the machining parameters. 
 

Table 2. Milling parameters and levels. 
 

Parameter Symbol Level 1 Level 2 Level 3 

     

Milling 

conditions 

A CM UAM - 

Spindle speed 
(rev/min) 

B 3000 5000 7000 

Feed rate 

(mm/min) 

C 50 200 400 

     

 

Table 3. Full factorial design with orthogonal array of Taguchi L18 
(21 x 32). 

 

Experiment no. Factor A Factor B Factor C 

    

1 1 1 1 

2 1 1 2 

3 1 1 3 

4 1 2 1 
5 1 2 2 

6 1 2 3 

7 1 3 1 
8 1 3 2 

9 1 3 3 

10 2 1 1 
11 2 1 2 

12 2 1 3 

13 2 2 1 
14 2 2 2 

15 2 2 3 
16 2 3 1 

17 2 3 2 

18 2 3 3 
    

 

3. Results and Discussion 
 

3.1. Analysis of the signal-to-noise (S/N) ratio  
 

The Ra and MH were measured following the 

experimental design for each combination of the control 

factors using the Taguchi techniques. Table 4 shows the 

values of the S/N ratios of the surface roughness and micro-

hardness. The average values of the surface roughness and 

microhardness were calculated to be 0.64 µm and 98.79 HV, 

respectively. In the same method, the average values of S/N 

ratio for surface roughness and microhardness were calculated 

to be 6.515 dB and 39.854 dB, respectively.  

The effects of each control factor (Mc, n, f) on the 

surface roughness and microhardness were analyzed via the 

“S/N response table” (Table 5) which shows the optimal 

levels of control factors for the optimal surface roughness and 

microhardness values. The level values of control factors for 

Ra and MH in Table 5 are shown graphically in Figure 3. The 

highest S/N ratio in the levels of the control factors 

determined the best level for each control factor. Hence, the 

levels and S/N ratios for the factors giving the best Ra value 

were specified as factor A (Level 1, S/N = 6.591), factor B 

(Level 3, S/N = 10.434), and factor C (Level 1, S/N = 13.727). 

In other words, an optimum Ra value was obtained with a CM 

(A1), a spindle speed (B3) 7000 rev/min, and a feed rate (C1) 

50 mm/min (Figure 3a). With the same method, the levels and 

S/N ratios for the factors giving the best MH were determined 

as factor A (Level 2, S/N = 40.34), factor B (Level 1, S/N = 

40.44), and factor C (Level 3, S/N = 40.49). Therefore, the 

optimum MH value was obtained with a UAM (A2), a spindle 

speed of 3000 rev/min (B1), and a feed rate of 400 mm/min 

(C3) (Figure 3b). 

 
Table 5. S/N response table for Ra and MH factors. 
 

Levels 

Control factor 

Surface roughness (Ra) Microhardness (MH) 

A B C A B C 
       

Level 1 6.591 2.641 13.727 39.37 40.44 39.33 

Level 2 6.439 6.471 6.718 40.34 39.66 39.74 
Level 3 - 10.434 -0.899 - 39.46 40.49 

Delta 0.152 7.793 14.626 0.96 0.97 1.16 
       

 

 
(a) 

 

 
(b) 

 

Figure 3. Effects of process parameters on (a) average S/N ratio for 

Ra and (b) average S/N ratio for MH. 
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Table 4. Results of the experiments and S/N ratio values. 
 

Experiment 

no. 

Control factor 

Surface roughness, 

Ra (µm) 

S/N ratio for Ra 

(dB) 

Microhardness, 

MH (HV) 

S/N ratio for 

MH (dB) A 
Milling 

condition (Mc) 

B 
Spindle 

speed (n) 

C 
Feed rate 

(f) 

        

1 CM 3000 50 0.258 11.755 95.57 39.606 

2 CM 3000 200 0.834 1.576 99.10 39.921 

3 CM 3000 400 2.079 -6.358 112.80 41.046 
4 CM 5000 50 0.205 13.731 81.20 38.191 

5 CM 5000 200 0.462 6.694 88.25 38.914 

6 CM 5000 400 1.025 -0.215 101.10 40.095 
7 CM 7000 50 0.131 17.645 80.23 38.087 

8 CM 7000 200 0.267 11.461 86.70 38.760 

9 CM 7000 400 0.705 3.032 96.97 39.732 
10 UAM 3000 50 0.257 11.777 104.40 40.374 

11 UAM 3000 200 0.764 2.338 105.40 40.456 
12 UAM 3000 400 1.829 -5.244 115.10 41.221 

13 UAM 5000 50 0.249 12.049 98.93 39.906 

14 UAM 5000 200 0.481 6.357 103.50 40.298 
15 UAM 5000 400 0.976 0.207 106.63 40.557 

16 UAM 7000 50 0.169 15.402 97.90 39.815 

17 UAM 7000 200 0.254 11.877 101.07 40.092 
18 UAM 7000 400 0.693 3.185 103.53 40.301 

        

 

3.2 Experimental results 
 

The surface roughness and microhardness changes 

were obtained from the results of the experimental study as 

shown in Figure 4a and Figure 4b, respectively. Regarding the 

difference of the milling method, the average of the Ra values 

by the CM method was lower than the UAM at the low feed 

rate and high spindle speed conditions. However, when 

increasing the feed rate and decreasing the spindle speed, 

which is a high chip load per cutting tooth condition, an 

average of the Ra values by UAM trended lower than the CM. 

For the microhardness results, the UAM displayed an 

advantage over the CM. This was possibly because the UAM 

generated workpiece vibration with a high frequency of 19.74 

kHz which caused the cutting tool tips to move backward and 

forward which resulted in an increased temperature at the 

surface of the workpiece due to the tooltips and workpiece 

surface and chip contacting loads that led to work-hardening.  

 In both milling conditions, the surface roughness 

values exhibited a tendency to decrease with increasing 

spindle speed. An increase of spindle speed decreased the 

tool-chip contact area because of the high removal rate of a 

chip, and this also decreased the time to conduct the friction-

providing on the surface. In terms of microhardness, the 

increase of spindle speed decreases the contact time between 

the flank face of the cutting tool and workpiece surface, which 

further weakens the influence of cutting tool on the material 

work-hardening. In addition, mechanical loads decrease due to 

a reduction in the shearing stress caused from the increase in 

spindle speed, thus reducing the potential of plastic deforma-

tion of the surface.  

The feed rate is the most effective parameter in the 

increase of surface roughness. As the feed rate increases, it 

produces thrust forces and vibrations which act on the surface 

and increase surface roughness. Therefore, an increased feed 

rate caused a significant increase in the Ra values. Similarly, 

an increase in the feed rate has a substantial effect on the 

increase of microhardness as a result of high cutting pressure 

and plastic deformation. Extremely low spindle speeds and 

high feed rates were observed to be effective in the rise of 

microhardness caused by the high mechanical load of the 

machining condition. 

As a result, UAM significantly gained an advantage 

over CM in obtaining high MH values. The graphs showing 

the effects of the control factors obtained with the Taguchi 

Method (Figure 3a and Figure 3b) on the changes of Ra and 

MH verified the results obtained from the experimental 

studies. 

 

3.3. Analysis of variance 
 

Analysis of variance (ANOVA) is a mathematical 

assessment method to analyze the contribution percentage of 

each controllable factor in the process response. A larger 

contribution percentage indicates that the factor is more 

significant in influencing the performance characteristics. The 

ANOVA results for the surface roughness and microhardness 

are shown in Table 6. The analysis used a statistical signi-

ficance at the confidence level of 95%. The F and percentage 

value of each control factor were taken into consideration to 

identify the level of significance of the variables. The percent 

contributions of the A, B, and C factors on the surface 

roughness were found to be 0.09%, 23.98%, and 60.86%, 

respectively (Table 6). Therefore, the most critical factor 

affecting the surface roughness was feed rate (factor C, 

60.86%). According to the ANOVA results, the percent 

contributions of the A, B, and C factors on microhardness 

were found to be 31.44%, 25.70%, and 33.23%, respectively. 

Therefore, the most effective factor on microhardness was 

feed rate (factor C, 33.23%). The percent error was considered 

acceptable at 15.08% and 9.63% for Ra and MH, respectively.
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Figure 4. Effects of the cutting parameters on (a) on surface roughness and (b) microhardness. 
 

Table 6. Results of ANOVA for surface roughness and microhardness. 

 

Variance source Degree of freedom (DoF) Sum of squares (SS) Mean square (MS) F ratio Contribution rate (%) P value 

       

Ra       
A 1 0.00479 0.00479 0.07 0.09 0.792 

B 2 1.26197 0.63099 9.54 23.98 0.003 

C 2 3.20319 1.60160 24.22 60.86 0.000 
Error 12 0.79347 0.06612  15.08  

Total 17 5.26342   100  

MH       
A 1 496.7 496.7 39.17 31.44 0.000 

B 2 406.0 203.0 16.01 25.70 0.000 

C 2 525.0 262.5 20.70 33.23 0.000 
Error 12 152.2 12.68  9.63  

Total 17 1579.8   100  
       

 

The predictive equations obtained by the linear 

regression model of surface roughness and microhardness are 

defined in Equation 3 and Equation 4.  

 
                                  

       (3) 

 
                                  

        (4) 

 
Here Ral and MHl show the predictive equations of 

surface roughness and microhardness, respectively. Figure 5a 

shows the comparison of the actual test results and predicted 

values obtained from the linear regression model. The R-

square values of the equations obtained from the linear 

regression model for Ral and MHl were found to be 82.50% 

and 87.22%, respectively.  

The predictive equations for the quadratic regression 

of surface roughness and microhardness are given in Equation 

5 and Equation 6. 

 

           (5) 
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Figure 5. Comparison of regression model with experimental results for Ra and MH: (a) linear regression and (b) quadratic regression. 

 

 

            

             
       (6) 

 

Here Raq and MHq show the predictive equations for 

surface roughness and microhardness. Figure 5b shows the 

test results and the comparison of predicted values which were 

obtained by the quadratic regression model. The figure tells us 

that a good relationship exists between the predicted values 

and test results. The R-square values of the equations obtained 

by the quadratic regression model for Ra and MH were found 

to be 98.70% and 97.91%, respectively. Thus, more intensive 

predicted values were obtained by the quadratic regression 

model compared to the linear regression model. As a result, 

the quadratic regression model was shown to be successful for 

estimating surface roughness and microhardness. 

 

3.5. Estimation of optimum surface roughness and  

       microhardness 

 
Once the optimal level of the design parameters has 

been selected, the final step is to predict and validate the 

quality characteristic using the optimal level of the design 

parameter. The estimated S/N ratio using the optimal level of 

the design parameters,  can be calculated as: 

 
 

where  is the mean S/N ratio at the optimal level,  is the 

total mean S/N ratio, and  is the number of the main design 

parameters that affect the quality characteristic. The estimated 

S/N ratio using the optimal cutting parameter for surface 

roughness and microhardness can be used to estimate the 

optimum surface roughness and microhardness by Equation 8 

and Equation 9, respectively. 

 

 
 

 
 

The mean S/N ratio at the optimum level ( ) for 

surface roughness and microhardness are represented as (A1, 

B3, C1) and (A2, B1, C3), respectively, in Table 5. The total 

mean S/N ratio ( ) for surface roughness and microhardness 

can be calculated from Table 4. As a result of the calculation, 

it was estimated that =4.989 dB, =0.131 µm,  

=41.56 dB, and =119.69 HV. 
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3.6. Confirmation tests 
 

Confirmation tests for the Taguchi method and re-gression 

equations at optimum and random levels are shown in Table 

7. A comparison of the test results and the predicted values 

obtained using the Taguchi method (Equations 7–9) and 

regression equations (Equations 3–6) are given. The predicted 

values and the experimental values of micro-hardness are 

close to each other. In terms of surface roughness prediction 

using the regression equation, the results showed error values 

higher than the reliable statistical analyses criteria of 20% 

(Cetin, Ozcelik, Kuram, & Demirbas, 2011). Although the 

regression model results were not suitable for optimum 

surface roughness prediction, the Taguchi method still gave a 

good predicted value. Therefore, the results obtained from the 

confirmation tests reflected successful optimization except for 

the surface roughness prediction using the regression equa-

tions. 

 

4. Conclusions 
 

In this study, the Taguchi method was used to 

determine the optimal machining parameters in the milling of 

aluminum A356 with conventional milling and UAM under 

dry cutting conditions. The experimental results were eva-

luated using ANOVA and the following conclusions can be 

stated.  

1. The optimum levels of the control factors for 

minimizing the surface roughness and maximizing micro-

hardness using S/N rates were determined at A1B3C1 (i.e., 

milling conditions = CM, spindle speed = 7000 rev/min, and 

feed rate = 50 mm/min) and at A2B1C3 (i.e., milling condi-

tions = UAM, spindle speed = 3000 rev/min and feed rate = 

400 mm/min), respectively.  

2. The statistical analyses revealed that the feed rate 

was the most significant parameter for surface roughness and 

microhardness with percent contributions of 60.86% and 

33.23%, respectively.  

3. CM exhibited slightly better performance than 

UAM on surface roughness when milling at a low chip load 

condition, but on the other hand, UAM gave an advantage in 

surface roughness when cutting at a high chip load condition. 

The microhardness of UAM was higher than CM in several 

comparisons. Therefore the recommended milling method and 

parameter set to use in the milling of aluminum A356 depends 

on the SI requirement.  

4. Quadratic regression models demonstrated a very 

good relationship with high correlation coefficients (Ra=0.963 

and MH=0.960) between the measured and predicted values 

for surface roughness and microhardness.  

5. According to the confirmation test results, the 

Taguchi method provided an efficient measured value for the 

design optimization of the cutting parameters.  

In total, the results showed that the Taguchi method 

was a reliable methodology for parameter optimization on the 

milling of aluminum A356. The results obtained can be used 

for academic research as well as for industrial applications. 

Further studies could consider other factors that affect the SI, 

such as the depth of cut, cutting tool geometries, vibration 

frequencies, amplitudes, cutting tool materials, chip breaker, 

nose radius, and lubricants. 
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