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Abstract 
 

It is well known that the study of many processes of the natural sciences can be reduced to solving Volterra integro-

differential equations. Recent studies on certain problems of the environment such as the HIV virus, bird flu virus, and diseases 

associated with mutations of viruses have become relevant. A solution to such problems is associated with finding 

solutions of VIDEs. There are several classes of methods for solving IDEs. In contrast to the known methods, this paper developed 

the finite difference hybrid method by a combination of power series and the shifted Legendre polynomial through a block method 

which is self-starting and helped in eliminating the problem inherent with finding special predictors to estimate 𝑦′ in the 

integrators. The method was analyzed and the result revealed that the method is consistent, zero stable and convergent. Some test 

examples were considered and the results compared favorably with some existing methods. 

 

Keywords: Volterra integro differential equations, finite difference method, hybrid method, shifted legendre polynomials,  

                 trapezoidal rule 

 

 

1. Introduction 
 

There has been growing interest in recent times in the 

field of integro-differential equations; these equations which 

involve both differential and integral operators of an unknown 

function contained in the same equation are classified into 

Fredholm and Volterra integral equation. Volterra integro-

differential equations (VIDEs) contain the unknown function 

𝑦(𝑥) and one of its derivatives   𝑦(𝑛)(𝑥),  𝑛 ≥ 1 inside and 

outside the integral sign respectively with at least one of the 

limits of integration being a variable, while it is a fixed point 

number for that of Fredholm type. 

Integro-differential equations play an important role in 

many branches of linear and non-linear functional analysis and

 

their applications are found in the theory of engineering, 

mechanics, physics, chemistry, biology, economics, and 

electrostatics. The mentioned integro-differential equations are 

usually difficult to solve analytically, so approximation 

methods are required to obtain the solution for both the linear 

and nonlinear integro-differential equations (Gherjalar & 

Mohammadikia, 2012; Huesin et al., 2008; Mehdiyeva et al., 

2013). 

Many researchers have studied and discussed different 

methods for obtaining the numerical solution of VIDEs of 

various order. Day (1967) used the trapezoidal and Euler’s rules 

for the solution of first order VIDEs, Linz (1969) developed a 

linear multistep method for the solution of first order VIDEs 

and the application of orthonormal Bernstein polynomials to 

construct an efficient scheme for solving fractional stochastic 

integro-differential equation was discussed by Farshid and 

Nasrin (2017). Farshid, Saeed, and Emran (2015) developed a 

method for solving nonlinear fractional integro-differential 

equations of the Volterra type using novel mathematical 
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matrices. The spectral method for Volterra functional integro-

differential equations of neutral type was treated in Sedaghat, 

Ordokhani, and Dehghan (2014). The mixed interpolation and 

collocation methods for first and second order VIDEs with 

periodic solution were introduced in Brunner, Makroglou, and 

Miller (1997). The numerical solution of a non-linear Volterra 

integro-differential equation via Runge-Kutta-Verner method 

was developed by Filiz (2013). The Legendre spectral 

collocation method for neutral and high-order VIDE was 

investigated by Wei and Chen (2014). A numerical framework 

for solving high-order pantograph-delay VIDEs and the 

numerical solution of optimal control problem of the non-linear 

Volterra integral equations via generalized hat functions were 

respectively discussed by Farshid, Saeed, and Emran (2016) 

and Farshid and Elham (2016). Similarly, an improved method 

based on Haar wavelets for the numerical solution of nonlinear 

integral and integro-differential equations of first and higher 

orders was developed by Siraj-ul-Islam, Aziz, and Al-Fhaid 

(2014). The improved method resulted in computational 

efficiency and simple applicability of the earlier methods. In 

addition to this, the new approach was extended from IDEs of 

first order to IDEs of higher orders with initial and boundary 

conditions. Unlike the earlier methods where the kernel 

function was approximated by two-dimensional Haar wavelets, 

the kernel function in the present case is approximated by one-

dimensional Haar wavelets. The modified approach is easily 

extendable to higher order IDEs. Farshid et al. (2015) 

introduced the numerical solution of integro-differential 

equations by using rationalized Haar functions methods. 

Though these methods have the advantage of being simple in 

implementation, they have the disadvantage of not being 

continuous at all interior points of the integration interval.  

This paper proposes a continuous method which 

allows evaluation at all interior points of the integration interval 

which recently appeared in Kamoh, Aboiyar, and Kimbir 

(2017).  Techniques for the derivation of continuous linear 

multistep methods (LMMs) for direct solution of initial value 

problems of ordinary differential equations as discussed in the 

literature include collocation and interpolation using different 

basis functions among which are radial basis function, power 

series, Chebyshev polynomials, Legendre polynomials, 

Hermite polynomials and many others.  

In this study, the Volterra type integro-differential 

equations considered with all the algorithms developed from 

the idea of interpolation and collocation suggested in ordinary 

differential equations by many scholars with some 

modifications, which include the introduction of the integral 

part 𝑧(𝑥) into (𝑦′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) for the construction of an 

approximate solution to the initial value problems of the 

Volterra type integro-differential equations of the form  

 

                    (1) 

                   

where  

                                                           

 

There are various techniques for solving (1), 

e.g. Adomian decomposition method, Galerkin method, 

rationalized Haar functions method, He’s homotopy 

perturbation method and Variational iteration method. The 

Adomian decomposition method is an analytical technique that 

evaluates the solution in the form of Adomian polynomials. 

This technique does not simplify or discretized the given 

problem and can be applied to both linear and non-linear 

problems. The Galerkin and rationalized Haar functions 

methods are numerical techniques which are not continuous 

and there are numerous different approaches for the solution of 

integro-differential equations based on these methods. The 

Variational iteration method is an analytical method that can be 

applied to various types of linear and nonlinear problems. In 

this method, a correction functional is constructed by a general 

Lagrange multiplier that can be identified optimally via the 

Variational theory.  

Equation (1) has been studied by many scholars such as Shaw 

(1996, 2000), Tari, Saeedi, and Momeni-Masuleh (2013), 

Volterra (1959), Shaw and Garey (1997), Wazwaz (2011), 

Yalcinbas and Sezer (2000).  

Suppose equation (1) has a unique solution on the 

segment [a, b] and satisfies the initial conditions  

 

                                                                                               (2) 

 

the numerical solution of (1) and (2) is then investigated by 

means of the constant step size ℎ defined on the segment [a, b] 

divided into 𝑁 equal parts by  𝑥𝑖 = 𝑥0 + 𝑖ℎ (𝑖 =
0,1,2,3, … , 𝑁). 

 

2. Methodology  
 

The linear multistep methods of solution for second 

order initial value problems for ordinary differential equations 

is of the following form 

 

 

                                                                                 

(3) 

 

 

as discussed by scholars such as Fatunla (1991), Awoyemi and 

Kayode (2005), Adesanya, Anake, Bishop, and Osilagun 

(2009), Jator (2007), Jator and Li (2009), Yahaya and Badmus 

(2009), Awoyemi, Adebile, Adesanya, and Anake (2011), Gear 

(1964), Adeyeye and Omar (2016, 2017, 2018), and 

Alkasassbeh and Omar (2016, 2017) among others. It is 

adopted to solve systems of equations arising from the 

discretization of the second order initial value problems of the 

Volterra type (1). The idea adopted in approximating the exact 

solution 𝑦(𝑥) of (1) in the partition 𝐼𝑛 = 𝑎 < x0 < x1 < ⋯ <
xn = b of the integration interval [𝑎, 𝑏] with a constant step 

size  ℎ is the combination of the power series and the shifted 

Legendre polynomials, which widely used for their smooth 

properties in the approximation of functions (Higham, 2004). 

The shifted Legendre polynomial is used because of its 

flexibility in the choice of interval while the Legendre 

polynomials are restricted within the interval of [−1, 1] as basis 

functions. 

Consider the approximate solution of (1) given by the 

combination of power series 𝑞𝑖(𝑡) and the shifted Legendre 

polynomial 𝑝𝑖(𝑡) of the following form  

 

                                                                                                                                                            

               (4)     
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where 𝑐𝑖 ∈ ℝ, 𝑦 ∈ 𝐶2(𝑎, 𝑏), 𝑚 and 𝑠 are collocation and interpolation points respectively. 

The second derivative of (4) is then substituted in (1) to obtain a differential system of the form 

 

                                                                                                                            

           (5)    

 

 

Evaluating (5) at the collocation points 𝑥𝑛+𝑟 , 𝑟 = 0,
1

5
,

2

5
,   

3

5
,

4

5
, 1 and evaluating (4) at the interpolation points 𝑥𝑛 and 𝑥

𝑛+
4

5

 

respectively; gives a system of nonlinear algebraic equations of the following form 

 

                                                                                                                                         (6) 

 

where 

 

 

 

 

                                                                                                                                                        

 

 

 

            (7)    

 

 

 

 

 

 

 

 

Solving for 𝑐𝑖 ′𝑠,  𝑖 = 0(1)7 in (6) using inverse of a matrix method which are then substituted into (4), gives a continuous implicit 

method; 

 

                                                                                                                           

           (8) 

 

 

Evaluating  (8) at    𝑡 =
1

5
ℎ,

2

5
ℎ,   

3

5
ℎ and ℎ with its first derivative evaluated at𝑡 = 0,

1

5
ℎ,

2

5
ℎ,   

3

5
ℎ and ℎ  with 𝑡 = ( 𝑥𝑛 − 𝑥) and 

the results substituted in (8) to obtain the following discrete schemes 

 

                                                                                                                                                     

           (9)       

 

 

 

                                                                                                                                                                               (10) 

 

 

 

 

         (11) 

 

    

                                                                                                                                                     

         (12) 

 

 

 

                                                                                                                                                                (13) 
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3. Analysis of the Method 
 

3.1 Order and error constant 
 

Expanding (9-18) in Taylor’s series and collecting 

like terms in powers of ℎ,  the order and error constant are 

respectively obtained as follows; 

 

 

 

 

 

 

𝐶̌0 = 𝐶̌1 = ⋯ = 𝐶̌7 =          and    𝐶̌8 = 

 

 

 

 

 

 

 

Hence the block method has order 𝜌̌ = 6 and error constant  𝐶̌8 

 

3.2 Consistency 
 

The linear multistep method (9-18) is said to be 

consistent if the following conditions hold: 

 

(i) has order  𝑝̌ ≥ 1, 

 

(ii) ∑ 𝛼̌𝑗
𝑘
𝑗=0 = 0, 

 

(iii) ∑ 𝑗𝛼̌𝑗
𝑘
𝑗=0 = ∑ 𝛽̌𝑗

𝑘
𝑗=0 , 

 

(iv) 𝜌(1) = 0 and 𝜌′(1) = 𝜎(1) 

 

Following Lambert (1973) and Fatunla (1991), a necessary and 

sufficient condition for a linear multistep method to be 

consistent is to satisfy condition (i) above. Based on this 

condition, the block method is consistent since   𝑝̌ = 6 > 1. 

 

3.3 Zero stability 
 

The block method (9-18) is said to be zero stable if 

the roots 𝑧𝑟;  𝑟 = 1, … , 𝑛 of the first characteristic 

polynomial  𝑝(𝑧), defined by 

 

𝑝(𝑧) = 𝑑𝑒𝑡|𝑧𝑄 − 𝑇| 
 

satisfies |𝑧𝑟| ≤ 1and every root with |𝑧𝑟| = 1 has multiplicity 

not exceeding the order of the differential equation in the limit 

as ℎ → 0. From the block method, we have 𝑧8(𝑧2 − 1) = 0 

and 𝑧 = (−1,1), showing that the method is zero stable. 

 

3.4 Convergence 
 

According to Lambert (1973) and Fatunla (1991), the 

block method is convergent since it is consistent and zero stable 

 

4. Numerical Illustration 
 

To achieve the validity of the proposed method, some 

standard test examples contained in the literature are 

considered. 

 

Example 1. Consider a second order nonlinear Volterra integro 

differential equation  

 

𝑦′′(𝑥) = 𝑦(𝑥)(4𝑥2 + 2) − 𝑥 ((1 − 𝑒
𝑥2

2 )

− ∫ 𝑥𝑡
𝑥

0

(𝑦′(𝑥)

+ 𝑦(𝑡)(1 − 2𝑡)
1
2) 𝑑𝑡,   0 ≤ 𝑥

≤ 1 

𝑦(0) = 1, 𝑦′(0) = 0 
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The exact solution is  𝑦(𝑥) = 𝑒𝑥2
. The nonlinear example was 

solved by the proposed method. Table 1 summarizes the results. 

 

Example 2. Consider a second order nonlinear Volterra integro 

differential equation  

 

𝑦′′(𝑥) + ∫ (𝑦(𝑠))2𝑑𝑠
𝑥

0

+ (
𝑥

2
− 𝑠𝑖𝑛ℎ(𝑥) −

1

4
𝑠𝑖𝑛ℎ(2𝑥))

= 0,   0 ≤ 𝑥 ≤ 1 

𝑦(0) = 0, 𝑦′(0) = 1 

 

The exact solution is  𝑦(𝑥) = 𝑠𝑖𝑛ℎ (𝑥). This example was 

solved using the proposed method. Table 2 summarizes the 

results. 

 

Example 3. Consider a second order nonlinear Volterra integro 

differential equation  
 

𝑦′′(𝑥) − ∫ 𝑒−𝑠𝑠𝑖𝑛𝑥𝑦′(𝑠)𝑑𝑠
𝑥

0

+ 𝑦(𝑠)

= (
1

2
𝑒−𝑥𝑠𝑖𝑛(2𝑥)

− 𝑠𝑖𝑛(𝑥)) ,   0 ≤ 𝑥 ≤ 1 

𝑦(0) = −1, 𝑦′(0) = 1 
 

The exact solution is  𝑦(𝑥) = 𝑠𝑖𝑛(𝑥) − 𝑐𝑜𝑠(𝑥). This example 

was solved using the proposed method.  Table 3 summarizes 

the results. 

 

5. Conclusions 
 

In this paper, a finite difference hybrid method was 

developed for solving initial value problems for the Volterra-

type intgro-differential equations of the second order by 

modifying the idea discussed for ordinary differential equations 

via interpolation and collocation techniques. The block method 

approach used in this study is self-starting it does not require 

finding special predictor to estimate 𝑦′ in the integrators. The 

numerical results of some practical problems contained in the 

literature demonstrated the validity of the proposed method and 

the results compared favorably with some existing methods.

Table 3. Accuracy comparison of example 3 for 𝑛 = 100. 
 

Exact value 

 𝑦(𝑥𝑛) 

Proposed 

Method 𝑒𝑛 

AL-Smadi  et al. 

(2013) 𝑒𝑛 
   

-0.895170748631198 7.19322 × 10−7 4.76286 × 10−7 
-0.398157023286170 8.34389 × 10−5 7.11599 × 10−7 
0.301168678939757 5.44122 × 10−6 6.14195 × 10−8 

  𝑒𝑛 = |𝑦𝑛 − 𝑦(𝑥𝑛)| 
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