CHAPTER 3 METHODOLOGY

3.1 Consider Variable Parameters of EWMA Control Chart

For each variable parameter, there are 2 parameters as follow:

n,,n, are the size of samples of control chart plans 1 and 2.
h,,h, are the interval of sampling of control chart plans 1 and 2.
k,,k, are the width of control region of control chart plans 1 and 2.

w,, W, are the width of warning region of control chart plan 1 and 2.
Covering regions under the condition of 7, <n,, b > hy, k; > k, andw, >W,.

The central area is (LWL,UWL) .The warning regions are (UWL,UCL) and(LCL,LWL).

When production starts, the process will be in the control region. Given the number of
sampling as 7, the interval of sampling as h, , the width of warning region asw;, and
the width of control region as k. When the samples are in the warning region, the
number of sampling must increase 1, <n,,with the higher frequent interval h > h,,
the increase warning region width W, > w;, and the narrower control regionk; > k,.In
order to inspect defect more accuracy and reduce the cost in inspection, variable
parameters (n, h,w,k, r) are used. In the case of the samples in the central line, the use

of parameters will be the same as previous. But if the sample is out of the action region,
defect inspection must perform and problem must be solved immediately.

If the size of samples is small and the sample is in the action region, the probability will
be p, . If the size of samples is large, the probability will be 1— p; .
Thus, in the chart 1, the probability will be:

po=P(|2]<w ||Z| <K )= Z((Z:;:EE:Z‘)) 3.1)

And in the chart 2, the probability will be:

©(w,) -0 (-w)
®(k2)—®(—k2)

pO:P(‘Z|<w2HZ|<k2)= (3.2)

under the condition of Z ~ N (0, 1) (assuming that the data is in normal distribution).
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3.1.1 Consider Cost Model of EWMA Control Chart

Find Expected Cost per Cycle

We develop Linderman (2000) and generat cost function of Lorenzen and Vance
(1986), then the expected cycle time and cycle cost for each of the six scenarios follows.

In this model, the expected time in sampling is assigned as h,, where each sample is
independent. During the process is in control, the expected time of sampling will be

exponentially distribution, with the mean at%. When production starts, the process will

be in statistical control, with the sample average at/{and standard deviation at

o r

Jn\2-r

results in the shift of sample mean from £, to g, +80; or u, —60 . At this stage, the

_ When defect occurs during production, the alarm will start warning. This

production process would not inspect for defect by itself. Thus to control the production
process, the symbol y, will be used. If y, =1, the production will continuingly process

during inspection for defect. But if », =0, the production process will cease during
defect inspection. And during repairing and fixing the defect, the symbol y, will be
used for continuing process or stop. If y, —1, the process will continue running. And if

7, =0, the process will stop during repairing or defect fixing. Assuming that we know

the value of 4, 0,5 and want to estimate the value of h,w.k,r,; i=12.

L)

Magalhies and Epprecht (2001) established the economic cost model based on the cost
model of Lorenzen and Vance (1986). If considering all cost per time unit, the function
will be below:

HIC
ECTU = Expected cost percycle (©)

= . 3.3
Expected time percycle E(T) 3-3)
When E (C ) is the mean of all cost occurred per production cycle.

When E (T ) is the mean of the total expected time used per production cycle.

The cost in production can be classified into 5 groups, which are:

1. The cost per production hour that does not follow the condition when the
process is in control (CI ) .
2. The cost per production hour that does not follow the condition when the

process is out of control (C, ).
3. The cost from random sampling for quality inspection(C3 )

4. The cost from random sampling for inspecting cause of alarm(C'4 )

5. The cost from defect inspection where cause of defect can be assignable and

fixed(Cs).
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The expected time of production process in here can be classified into 5 groups, which
are:

1. The expected time that production process is in control (Tl ) ; which the
process starts until the defect, which can be assignable the cause occurs (in control
period).

2. The expected time that production process is out of control (Tz) ; which the
mean of samples shifts from g4, to 4, +00; until the warning happens (out of control
period).

3. The expected time to analyze sample and chart (T3 )

4. The expected time to inspect cause (7:,) ; which cause of defect, which can
be assignable, is being inspected while the process is out of control.

5. The expected time to repair (75 ).

The means of each period compose of:

1. The mean of the expected time while production process is in the action
region, because the expected time that the process is in control is in exponential

distribution so the mean will be —.

A

tO
ARL,

When E(T;)z—;:+(l—yl)s (3.4)

7, =0, when the process is continuing during the warning

7, =1, when the process cease during the warning

ARL, is average run length while the process is in the action region
0 g p g

t, is the mean of the expected time to assignable cause of alarm

s is the mean of sample size when the sampling is performed during the process
is in control. That is:

s=Y jP(N=j)= jP(t,<T<t,,)
j=0

Jj=0
(j+1)h

=3 [ et
Jjh

j=0

E m j(e_jM_e—(jn)Ah)

~.
I}
[=)
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If the mean of samples is in the action region but in the central, we will get:

v (h =0 ) =
And if the mean of sample is in the action region but in the warning region, we will get:
i (h = h2) =1=0s
<7y

A +e ™ (l—po)
1-e* p, L P (1-p,)

Thus E(N)=s= 3.5)

f, is the mean of the expected time to assignable cause of alarm
P, s the probability of small-size samples while the process is in control

1- p, is the probability of large-size samples while the process is out of control

®(-) is the cumulative normal distribution.

2. The mean of the expected time that the process is out of the action region
p p g
E(T,); if assigned tas the mean of expected time that starts since the cause of alarm

occurs until the warning, with location between samples j and j+1

(j+1)n

A(t- jh))e *dt
;.[, &l _1-e"(1+h)
G B =T
jjhle"“'dt A1-e)

Jh

' (3.6)

The mean of the expected time since the cause of alarm occurs to the first sample to the
new shift is produced E(R) will be:

E(R)=E(E(R|4)) and E(E(R|4))=E(E((h~1)|4)),

2

E(R)=Y(h-t)-P(4=h),

i=1

1 e’“’n(1+/1h‘) 1—6_%2(1'*'/1}12) )
A(1-e™) P(A=h)+ ™) P(4=h). (3.7

E(R)=1h

As Reynolds (1988) hypothesized that P(A=h,) is proportionate to the length of the

expected time A, thus, the chance of incidence will be:
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=il Y= pohy
A VeI Ry 68

(I_Po)hz , (3.9)

ez ph+(1=po) by

E(S) is the expected time between the first sample after the shift and the next warning,

which E(S) value depends on the position of B

E(S)=E(S|B=B)P(B=B)+E(S|B=B,)P(B=B,),

E(S)=E(T,)P(B=B)+E(T,)P(B=B,). (3.10)
When E(S|B=B)=E(T), (3.11)
E(S{ESB,) E(R ). (3.12)

T, is the expected time since the first sample falls into the central region after the shift

T, is the expected time since the first sample falls into the warning region after the
shift.

When B is the position of the first sample falling after the shift; if it falls in the central
region, the symbol B, will be used; if it falls in the warning region, the symbol B, will

be used; and if it falls in the action region (out of control), the symbol B;will be used.
B value will depend on the length of the expected time /4, when shift occurs. Thus the
probability of B, will be:

P(B=B,)=P(B=B1|A=h|)P(A=h,)+P(B=BIIA=hz)P(A=hZ)

(3.13)
:PnP(A:hl)"'leP(A:hz)’
P(B=B,)=P(B=B,|4=h)P(4=h)+P(B=B,|4d=h)P(4=h) o
=pl2P(A=hl)+p22P(A=h2), ‘
and P(B=B,)=1-P(B=B)-P(B=B,), (3.15)

when p, = P(B=B|4 =h,)=1>(LWLl <U <UWIL, ‘U - N(&Jﬁ)),

P =P(B:Bl|A=}12)=P(LWL2 <U <UWL,

U~N(s nz,l)),
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p,=P(B=B,|A=h)

(
= P((LCL <U <LWL)O(UWL <U <ucL)u - N(8m.1)),
p22:P(B=Bz|A:hz)

P((LCLZ <U < LWL,)U(UWL, <U <UCL,)

- J*F““‘“szr]

'UO_W'W"Z —(p +60) )? (ﬂ0+50) X +w, \/— 2 3 —(u, +60)
o [r J #J__
\/"—, 2-r \/’ 2-r \/n_, 2—-r

~N(s nz,l))

pn:P

:P—wé'\/—zr X'u<w5\/—2
. r

\/_,. 24
=P —w,—5\/t7, 2—_—r<Z<w,—§\/n—,, 2—rJ
r r

w, — 2 L5 n,)—CD[—w,—,’zi5 n,], (3.16)
r r

(3.17)

E(T)=E(M,)E(V). (3.18)



M, is a variable parameter of sample number that falls in the central region until
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warning, where M, has geometric distribution with the parameter (I-p, ), when p, is

the probability of sample falling in the central region, so:

-

P = P +pnzp£]p2|

i=]

p
and szz P ~

1-py

when substitute p,.j's in a double.

I
E(M1)=g’
1

when substitute p, in a double, so we will get:

E(M)= 1_p22
I b
1= p,, = Py + PPy — PP

V is the length of the expected time during sample falling out of warning region,
starting from the last sample in the central region, which the probability will be:

P(V=h|)=p”+p]3=1—p|2

P(V =h+ ’hz) = PnPZ]le + Plnglpza
Plzpzzl (pZI + Py )

pupn](l pzz) Wi

J4P;
( ) hl+h21 P»

If substitute E(M,),E(V) in E(T;), we will get:

[hl (l_pzz)'*'thlzjl
1= p, = Py + PyPn — PP

B(1)=

In the same way, it will be:

l:hz (l—p”)+h,p2,]
1= py, = Pu+PuPn—PuPa

B(5,)=

E(T,)=AATS = E(T,

out

)=E(R)+E(S)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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3. The mean of the expected time to analyze sample and chart E (T3)

when » is the mean of sample during the process is in control

’

n' is the mean of sample during the process is out of control
‘n, is the small size sample number which is used in analysis

n, is the large size sample number which is used in analysis
D, is the probability that the sample size will be small
(1 - po) is the probability that the sample size will be large

G is the mean of the expected time that uses in sample and chart analysis

Do (5)=P[|Z|<w, +‘/gr—r—é'\/n/,
r

when i =1.2;s0

r

12| <k, + |2 5\/an (3.27)

(D(w,.— z_rﬁ\/;:) (I)[—w,—"z;rd n,]
F r

po(9)= - = (3.28)
(D[k, _r§\/;:]_q)[_ki_ ;"5 ni)
r r
when i =1,2
where n=mp,+n(1-p,) (3.29)
n' =np,(8)+m(1-p,(3)) (3.30)
E(T,)=n'G (3.31)

4. E (E) is the expected time to assignable cause while the process is out of

the action region;
letz, is the expected time to assignable cause, so:

E(T))=1, (3.32)

5. E(Ty) s the expected time to repair.

let 7, is the expected time to repair; so:
Efiy) =1 (3:-33)
Thus the mean of all expected time used per production cycle is:

E(T)=E(T)+E(T,)+E(T,)+E(T,)+ E(T) (3.34)
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1 t ,
E(T)=I+(1—}/I)SA1§L +AATS +0'G +1, +1, (3.35)

0

The Expected Cost per Cycle E(C) composes of:

1. The cost mean per production cycle that does not follow the condition while
the process is in control E(C,, )and out of control E(C,, ) thus:

ut
E(C,)+E(C,,)= %cl +c,[ AATS +E(Ty) + yt, + 7,15 | (3.36)

When ¢, is cost per production hour that does not follow the condition during the

process is in control.
¢, s cost per production hour that does not follow the condition during the

process is out of control.
] 3 . N
— 1s the mean of the expected time that the process is in control.

AATS is the mean time used in improving the cause of alarm.
- FE ( T3) is the mean of the expected time to analyze sample and chart.

t, isthe expected time to assign the cause.

t; is the mean of the expected time to repair.

2. The mean of the cost to inspect the warning E(C,)
E(Cy))=c,E(F) (3.37)

When c, is the cost to inspect the warning.

& (F ) is the mean number of warning which warning is independent to each other.
Thus E(F)=[ap,+a,(1- p,)]s (3.38)

When a, = P(|Z| > k) =2®(~k,) is the probability of the error type I in each chart.

p, s the probability of small size sample during the process is in control.
1- p, is the probability of large size sample during the process is in control.

s is the mean of the sample number where sampling is performed during the
process is in control.

3. The mean of the cost to assign and repair the cause of warning by using the
symbol E(C,) where:

E(C4):c4 (3.38)
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4. The mean of the cost to sampling and inspect by using the symbol E(CS)

where:
E(C5)=(a+bnf)s+(a+bn')s’ (3.40)

P AATS +n'G + yit, + 7,1,
E h' ,

when

H =hp,(8)+h(1- p,(3)).

a is the constant cost in sampling.

b 1is the variable cost per one sample.

n is the mean of the sample size which is in the action region.

n' is the mean of the sample size which is out of control.

s is the mean of sample number which is sampling during the process is in
control.

s" 1s the mean of the sample number which is sampling during the process is
out of control. Thus:

E(C) =%c, +¢,[AATS +nG' + yt, + yts |+ E(F) +¢, +(a+bn)s+(a+bn')s (3.43)

When E (C ) is the mean of all cost occurred per production cycle.

E (T) is the mean of all expected time used in production.

rcru = E©) (3.44)

E(T)

%cl +¢,[AATS +nG' + y 1, + y,ts |+ GE(F)+c, +(a+bn)s+(a+bn')s’

ECTU =

1 t
—+(1-%)s—2—+ AATS + G +1,+t
PR ARL, s

(3.45)

3.2 Consider VP MEWMA Control Chart and VPSC MEWMA
Control Chart

3.2.1 VP MEWMA Control Chart

Lowry, et al. (1992) extended the EWMA control chart to the multivariate case. The
MEWMA chart monitors p quality characteristics, through a sequence of independent

multivariate normal random p x1vector: X|,..., X, where X, has mean vector, x and

known covariance matrix, Z, , the in-control process mean vector is assumed to be 4, .
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For each of the j=1,2,3,..., p quality characteristics to be examined, we assign to past
observations exponential weighted based onr, (0<r <1) as follows:

Let R = diag (rl e, rp) denote the diagonal matrix of exponential weights.

Let the multivariate exponentially weighted moving average vectors are:
Z,=RX,+(I-R)Z_, (3.46)
where i=1,2,3,... and Z, = 4,
The VP MEWMA control chart signals that the process is out of control whenever:
=2,y Z,>UCL, UCL=k (3.47)
and VP MEWMA control chart warns when
UWL <T? <UCL, UWL=w,

where w and k are chosen to achieve a specified in-control ARL, andZ, is the

covariance matrix of Z,. Often, there is reason to apply different exponential weights to
past observations of the p different quality characteristics. In this situation, we assume
equal weights across characteristics so thatr, =r forj=1,2,3,...p

The MEWMA vectors in Equation (3.46) can thus be written (fori=1,2,...) under the
assumption of equal weights across characteristics as:

Z,=rX,+(1-r)Z_,, (3.48)

under the assumption of equal weights, Lowry, et al. (1992) have shown that the
covariance matrix of the MEWMA vectors in Equation (3.49) is:

v & {’[“2(‘_")2']}2)( . (3.49)

Note that if» =1, the MEWMA chart is equivalent to Hotelling’s 7° chart.

When the process appears likely to fail quickly, limiting our information about the in-
control state, we might proceed with a MEWMA chart based on the covariance matrix
above. Instead, we make the assumption that the expected time to failure for our process
is fairly long, so that we may use the following asymptotlc approximation to the
covariance matrix:

5, :2i 3.3 (3.50)
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A reviewer pointed out that the exact covariance matrix and the asymptotic covariance
matrix lead to two different procedures. This work is concerned solely with the
MEWMA chart using the asymptotic covariance matrix.

Suppose that we plan to use a MEWMA chart'to study the p quality characteristics
associated with a process. The process begins in the in-control state with knowing mean
vector y, and covariance matrixX,, .

3.2.2 VPSC MEWMA Control Chart

Assume that there are p characteristics to measured in a given process and denote the
measurements by X= (x,,xz,...,xp) RX ~ ( /f’z ) which a multivariate normal with
mean vector g and covariance matrix X (See Appendix A.5).

If we take a random sample of size n from the process and find Z, then we define the
statica SC MEWMA (Chen, et al. 2004-2005)

=13 (z-u) 2 (6-1)]
=13 ~:‘/f)'z;(~:‘~)]

T.+T, ) (3.51)

TZ and 7 can be used to measure the shift of the location and variability. It can easily
be shown that T; ~ Zﬁ a Chi-square distribution with “p ™ degree of freedom and

g ij_pa Chi-square distribution with “np— p” degree of freedom (See Appendix
A.6). So VPSC MEWMA control chart has a Chi-square distribution with “np™ degree
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of freedom. On an ordinary graph paper, if we let 7, be the x-axis and T, be the y-axis,

then the relation 7, :(TE +T, )defines a straight line with a slop of -1. Since both 7}

and 7 are greater than 0, the ‘Control Region” of T p 1s formed by an isosceles right

angle as shown below in Figure 3.1.

TCL

WL

WL TCL

Cal
Cx

WL UCL
In-control Out-of-control

Figure 3.1 Show Control Region, In control state and Out of control state

Hence we can determine the size of the “Control Region” as
T,=(T,+T, )<UCL (3.52)

and “Warning Region” as
Wi= Tp <UCL

where UCL =C will satisfy

P(T, <C)=P(nT, <nC)=P(1% < 12 pmy) =1-@ (3.53)

and 7, ., is the lOO(I—a)’h percentile of y, distribution, hence
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ucr = 2wl

3.2.3 The Procedure

Suppose that the process is subject to a single assignable cause which shifts the process
mean from 4 to g and let the magnitude of the process shift is reflected in the

noncentrality parameter:
1
N, \2
g~ ('u Zz A ) i

We denote in-control state with d =0.The VP MEWMA control chart and VPSC
MEWMA control chart are a modification of the traditional MEWMA control chart.

Let(nl,h,) be a pair of minimum sample size and longest sampling interval,

(3.54)

and(nz,h2) be a pair of maximum sample size and shortest sampling interval. These
pairs are chosen such thatn, <n, and h, <k . The decision to switch between

pairs (n, 5 h,) and ( n, hz) depends on the prior sample point on the control chart. That
is, the position of the prior sample points i. On the other hand, if the prior sample point
i —1 falls in the relaxing region, the pair (n,, h, ) should be used for the current sample

point i. Here the tightening region is given by (W,k ) and relaxing region is given by

(O, w) , where w is called the warning limit.

Cycle Process mean Cycle
starts shift ends
Last sample First sample Out-of —control Assignable Assignable
Before process . after process detected cause detected cause repaired
mean shift : mean shift
A
le——T1+T3 T2 < T4

Figure 3.2 Production cycle considered in the cost model

The in control period is denoted by T1.
The out-of-control period (AA4TS) is denoted by T2.

The searching period due to false alarm is denoted by T3.
The time period for identifying and correcting assignable cause is denoted by T4.
The following function defines the switch principle of the VP MEWMA control and

VPSC MEWMA control scheme:
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The Cost Models for Economic Design

The following cost model is an extension of Costa’ model (2001), which was employed
in an unvaried case. To simplify the mathematical analysis in cost, a number of
assumptions are made.

Model assumptions

1. The p—dimensional random vector X', which represents p quality
characteristics, is normal distributed with the mean vector x and known covariance
matrix X, .

2. The process assumed to start with an in-control state( 4 = 4, ) but after a

random time of in-control operation it will be disturbed by a single assignable cause that
causes a fixed shift in the process mean vector ( TE yl)

3. The process after the shift remains out-of-control until the assignable cause
is eliminated (if possible).
4. The inter-arrival time of the assignable cause disturbing the process is

: - " 1
assumed following an exponential distribution with a mean— hours.

5. For the VP MEWMA control chart, the process is stopped if the T falls

outside the action limit, and then a search starts to find the assignable cause and adjust
the process.

6. For the VPSC MEWMA control chart, the process is stopped if T , value

falls outside the action limit, and then a search starts to find the assignable cause and
adjust the process.

7. During each sampling interval, there exists at most one assignable cause
which makes the process out of control, the assignable cause will not occur at sampling
time.

8. All the process cost (including sampling costs, in-control and out-of-control
production cost, warning, false alarm and repair costs) are known.

9. n=r=..=r,=r (weight past observation similarly for the p quality

characteristics).
The cost function

The economic design of VP MEWMA control chart and VPSC MEWMA control chart
are implemented by specifying a cost function, and searching the optimal design
parameters for minimizing the hourly loss cost function over a production cycle. The
production cycle length is defined as the average time from the start (or restart) of
production until the assignable cause identified and eliminated. Once the expected cycle
length is determined, the cost over the production cycle can be converted to an index-
long run expected hourly loss cost per hour (Ross, 1970).

Figure 3.2 show the production cycle, which is divided into four time intervals of: in-
control period, out-of-control period, searching period due to false alarm, and the time
period for identifying and correcting the assignable cause. Individuals are now
illustrated before they are grouped together. The expected length of in-control period
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(T1) is% .The expected length of out-of-control period (T2) represents the average time

needed for the control chart to produce a signal after the process mean shift. This
average time is called the Adjusted Average Time to Signal (4ATS ), which is the most
widely used statistical measure for comparing the efficiencies of different adaptive
control chart. The memoryless property of the exponential distribution allows the

computation of A4TS using the Markov chain approach. The fundamental concepts used
in the following paragraphs can be found in Cinlar (1975).

Table 3.1 The states of the Markov chain

State i th sampling

Position of 7,7 or T, Process status
1 Relaxing region In-control
2 Tightening region In-control
3 Action region In-control
B Relaxing region Out-of-control
5 Tighten region Out-of-control
6 Action region Out-of-control

Let M be the average time from the cycle start to the time the chart signals after the
process shift. Then

1
AATS =M ~—. (3.55)

At each sampling time during the period M, one of the five transient states is reached
according to the status of the process ( in or out-of-control) and the position of 7, or T,

(relaxing, tightening, action region) (see Table 3.1):

State 1: the process is in-control and T.” or T, falls into the relaxing region

State 2: the process is in-control and 7 or T falls into the tightening region
State 3: the process is in-control and 7. or T, , falls into the action region

State 4: the process is out-of-control and 7, or T, falls into the relaxing region
State 5: the process is out-of -control and T?or T, falls into the tightening region

When state 3 is reached, the signal the chart produces is false alarm. If T’ or T, falls in

to the action region at some sampling time while the process status is out-of-control,
then the signal is a true alarm and the absorbing state, state 6, is reached.



The transition probability matrix is given by:

—Pn P D
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P Py P Dy
0+ 000
0 O
i 0 O
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P
P
Paa
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P
P36
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- (3.56)

where p, denotes the transition probability that i is the prior state , j is the current state

6 6 6
and ) p, =1, Y p, =1,.. D p,=1.1In what follows,7 =n,d*, 1, =n,d"and
= = =

F (x, p.n)will denote cumulative probability distribution function of a non-central chi-

square distribution with p degrees of freedom and non-centrality parameter 7.

P, S of VP MEWMA Control Chart

The p,.j's of VP MEWMA control chart, which are probabilities conditional on the prior

states are:

F w, =O -
Pp= (v Pit )xe "
F(k,p,n=0)

o F(W’p’n =O) xe‘”’z

—_"p =
P 31 F(k,p,77=0)

_F(kpn=0)-F(w,p,n=0) _,

p —_—
2 F(k,p,n=0)

_F(k,p,n=0)-F(w,p,n=0)

Pn=Py=
22 32 F(k,p,77=0)

1-F(k,p,n=0 _
P = ( = )xe .
F(k,p,n=0)
_ 1=-F(k,pn=0)_ _,,
Prn =P = F(k,p,77=0) e
P4 :F(k,p,ql)x(l—e_“")

P = Py = F(k,p,yb)x(l—e"u")

Pis :[F(k,p,m)—F(W,p,ql)]x(l_e_,lhl)

Ps = s = F (k. p.m,) = F (w, pom,) |x(1-¢7)

xXe

-MZ
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Pre :[1_F(k’ P, )]x(l —e*ih,)
P26:p36:[I_F(k’p"h)]x(l_e-lhz)
Pis = Psq =F(W,p,77,)

p45 :p55 :[F(k!panl)_F(w>paﬂl):|

Pus = Pss =1-F (k, p,m;)
p,'s of VPSC MEWMA Control Chart

The p,.j's of VPSC MEWMA control chart, which are probabilities conditional on the
prior states are:

F =0
p”= (pran )xe—,lhl
F(k,p,n=0)

- F(Wz,p,n =0) o

Pn=P3= F(kz,p,77=0)
:F(kpp,ﬂ:0)“F(W1ap,77:0)xe—/zh,
v F(kl,p,n=0)
__F(kupn=0)-F(wy,p1=0) _a,
Dy =Py = F(kz,p,77=0) ne
1-F(k,p,n=0) _
D= (Ip?_ )Xeihl
F(kl’p’”“o)
_ _1—F(k2,P,'7:0) —-Ah,
Pra=Ps~= F(kz,p,77=0) R

pM=F(w‘,p,77l)x(l—e””")

Pye = Py = F (wy, oy ) x(1-€72)
pl5:I:F(kl’p’nl)_F(Wl’p’nl)]x(l—e_MI\)

Py = Pss = [ F (ks p.,) = F (w3, 21, [ (1-¢7)
plé=[1—F(k1,p,771)]x(1-e_/“")
p26=p36=[1—F(k2,p,772):|x(1—e""2)

Pu=Psy =F(w.p.m)
P45=P55=F(k1,p,771)—F(wl,p,77])

D =p56=l—F(kl,p,r7,)



73

Once the transition probability matrix is identified, the average number of transitions in

each transient state before the true alarm signals would be calculated by B'(/ —Q)~1

S
Cinlar (1975).where B' = (b,,b,,b,,b,,b;) is a vector of initial probability, with Z b =1
i=l1

I is the identity matrix of order 5; Q is the 5x5 matrix obtained from P on deleting

the elements corresponding to the absorbing state. Finally, the product of the average
number of visiting the transient state and the corresponding sampling interval
determines M . That is:

M=B(I-0)'t, . (3.57)

where ¢ is the vector of the sampling intervals corresponding to five transient states
used for next sampling. Here we set the vector B'=(0,1,0,0,0)and ¢’ =(h,h,, h,, b, hy)

respectively (Chen, 2009). The third element in ¢’ is placed by A, in order to provide
an additional protection to prevent problems that arise during start-up.

Let ¢, denote the average amount of time exhausted searching for the assignable cause

when the process is in-control, and £ (FA) denote the expected number of false alarms
per cycle, which is given by:

E(FA)=B'(I-0)" f, (3.58)

where f’=(0,0,1,0,0)(Chen, 2009). Then the expected length of searching period due
to false alarm (T3) can be expressed by #,E(FA)

The time to identify and correct the assignable cause following an action signal (T4) is a
constant ¢, .

Aggregating the foregoing four time intervals, the expected length of a production cycle
would be expressed by:

E(T)=M +t,E(FA)+t, (3.59)

Let V, is the hourly profit earned when the process is operating in control state;
V. is the hourly profit earned when the process is operating in out-of-control state;
C, is the average search cost if the given signal is false;
C, is the average cost to discover the assignable cause and adjust the process to in-

control state;
s is the cost for each inspected item;

then the expected net profit during the a production cycle is given by:

E(C):VO[%)H/,(M—%j—COE(FA)—C, _sE(N) (3.60)
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where E (N ) is the average numbers of inspected items during production cycle, and it
is given by:

E(N)=B'(1-0)"n. (3.61)

where 7' =(n,n,,n,,n,n,)is the vector of sample sizes corresponding to the five

transient taken for next sampling.
Finally, the expected loss per hour E (L) is given by

E(L):Vo—%. (3.62)

3.3 The Economic Model of VP MEWMA Control Chart and VPSC
MEWMA Control Chart by Genetic Algorithm

The solution procedure is carried out using Genetic Algorithms (GA) with MATLAB
7.6.0 (R2008a) software (Appendix B.1) to obtain the optimal values of n,,n,,h,h, that

minimize (E(L)) VP MEWMA control chart and n,,h,h, that minimize (E(L))
VPSC MEWMA control chart.

The GA, based on the concept of natural genetics, is directed toward a random
optimization search technique. The GA solves problems using the approach inspired by
the process of Darwinian evolution. The current GA in science and engineering refers to
the models introduced and investigated by Holland (1992). In the GA, the solution of a
problem is called a *‘chromosome’’. A chromosome is composed of genes (i.e., features
or characters). Although there are several kinds of numerical optimization methods,
such as neural network, gradient-based search, GA, etc., the GA has advantages in the
following aspects:

1. The operation of GA uses the fitness function values and the stochastic way
(not deterministic rule) to guide the search direction of finding the optimal solution.
Therefore the GA can be applied for many kinds of optimization problems.

2. The GA can lead to a global optimum by mutation and crossover technique
to avoid trapping in the local optimum.

3. The GA is able to search for many possible solutions (or chromosomes) at
the same time. Hence, it can obtain the global optimal solution efficiently. Based on
these points, GA is considered as an appropriate technique for solving the problems of
combinatorial optimization and has been successfully applied in many areas to solve
optimization problems (e.g., Jensen, 2003; Chou, et al. , 2006) ; Chou and Chen, 2006).
The solution procedure for our example using the GA by MATLAB is briefly described
as follows:

Stepl. Initialization:

One hundred initial solutions that satisfy the constraint condition of each test variable
are randomly produced. Meanwhile, the constraint condition for each test variable is set

as follows: 0<r<1, h, <h and h,h,>0, 2<n <n, <100
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Step2. Evaluation:

The fitness of each solution (Appendix B) is evaluated by calculating the value of
fitness function. The fitness function for our example is the cost function shown in
Equation (3.62). :

Step3. Selection:

The survivors (i.e., 30 solutions) are selected for the next generation according to the
better fitness of chromosomes. (In the first generation, the chromosome with the highest
cost is replaced by the chromosome with the lowest cost.)

Step4. Crossover:

A pairs of survivors (from the 30 solutions) are selected randomly as the parents used
for crossover operations to produce new chromosomes (or children) for the next
generation. In this example, we apply the arithmetical crossover method with crossover
rate 0.8 as follows:

D, = 0.8R + 02M
D, =0.2R + 0.8M

where D, is the first new chromosome, D, is the second new chromosome, and R and

M are the parents chromosomes. If 30 parents are randomly selected, then there are 60
children that will be produced. Thus, the population size increases to 90 (i.e., 30 parents
+ 60 children) in this step.

StepS. Mutation:
Suppose that the mutation rate is 0.1. In this example, we use non-uniform method to

carry out the mutation operation. Since we have 90 solutions, we can randomly select
nine chromosomes (i.e., 90x0.1 = 9) to mutate some parameters (or genes).

Step6.

Repeat Step 2 to Step 5 until the stopping criteria is found. In this example, we use until
cannot be changed value as our stopping criteria.
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Figure 3.3 The solution procedure using genetic algorithm
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