CHAPTER 2 REVIEW AND THEORETICAL OF
BACKGROUND

2.1 Theoretical Background
2.1.1 Normal Distribution

Normal distribution is the most important probability distribution for statistical analysis
because the occurrence of most events fit to this distribution pattern. The normal
probability distribution of any random variable X can be defined as followed:

L pelafat la .
f(x)~o_mexp 2( ] < .1

Standard normal distribution is normal distribution that has z =0, 6*> =1 and can be
written by using the probability density function as:

f(x)=\/;_ﬂexp[—x7j —0 <X <0

and the cumulative probability function:

1 :
F(x) = ﬁ I exp(—%]du. (2.2)

2.1.2 Exponential Distribution

The probability distribution of the exponential random variable is:

f(x)=2e* x20 (2.3)
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Figure 2.1 Exponential distribution.



where A>0 is a constant. A graph of the exponential distribution is shown in Figure 2.1
The mean and variance of the exponential distribution are:

1
= 2.4
S~ (2.4)
and
1
g = = (2.5)
respectively.
The cumulative exponential distribution is:
E@ay=P{x=<a}
= [Ae*ar (2.6)

0
=l-e* a>0

Figure 2.2 depicts the exponential cumulative distribution function.
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Figure 2.2 The exponential cumulative distribution functions.

In these applications, the parameter A is called the failure rate of the system, and the

. g . 5
mean of the distribution Z 1s called the mean time to failure.

2.1.3 Principle of Quality Control Chart

The quality -control chart is a graph representing quality measurement within certain
time intervals. The quality measurements are computed from sets of samples.
Coordinates in the quality control chart may be either sample means or sample ranges.
Once all the coordinates are plotted, they will be joined by straight lines to reveal the
quality pattern of the process. Three control limits, calculated from random samples, are



also included in the chart. They are the Upper Control Limit(UCL) , the Center Limit
(CL), and the Lower Control Limit(ZCL). If all the points fall between the upper

control limit and the lower control limit, the process is said to be in-control; otherwise,
it is out-of-control. Figure 2.3 shows the typical control chart. The control limits are
. chosen and if the plotted points are within the control limits, the process is assumed to
be in-control, and no action is required. However, if plotted points are not within the
control limits, the process is assumed to be out-of-control, and the process required the
investigation and corrective action. In this way the assignable cause or causes
responsible for such a behavior are eliminated.
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Figure 2.3 Typical control chart

During the procedure of detecting out-of-control states, it may be type I or type II
errors. The probability of committing Type II error (f)is the indication that we

assumed the process is in-control when it is really not in control. Similarly the
probability of committing Type I error () is the indication of identifying process as
out-of-control where it is really in-control.

A general model for a control chart is represented as follows:

Let X be a sample statistics that measures some quality characteristic of interest, and

K is the mean and O; is the standard deviation of X, then the centerline, the upper
control limit, and the lower control limit become:

UCL =% Lo,
Center Line = 2.7
ICL=p, - Lo,

where L is the distance of the control limits from the centerline, expressed in standard
deviation units. If the system of chance causes a variation in a quality characteristic that
follows the normal distribution, then*3o control limits indicates a possible 3 out of
1000 defective items. Whether the quality characteristic is normally distributed it is



customary to base the control limits on a multiple is 3 and these outer limits are called
3-sigma limits or action limits. The inner limits, usually at2o, are called warning
limits. When probability limits are used, the action limits are generally 0.001 limits and
the warning limits are 0.025 limits.

If one or more points fall between the warning limits and the control limits, or very
close to the warning limit, we should be suspicious that the process may not be
operating properly. One possible action to take when this occurs is to increase the
sampling frequency and /or the sample size so that more information about the process
can be obtained quickly. Process control schemes that change the sample size and/or the
sampling frequency depending on the position of the current sample value are call
adaptive or variable sampling interval (or variable sample size, etc.) schemes.

The construction of a quality control chart is as follows:

1. Specify the control quality of the product: This is the initial step of making
a control chart. The type of quality control chart that would be best matches the product
being determined.

2. Limit the amount of data collection: The amount of data required depends on
various factors: types of control charts, products, costs, and control methods. Example,
using range and standard deviation to measure the distribution of 4-5 samples yields
little difference, but the range varies more significantly when the sample size increases
to more than 10.

3. Specify the time intervals for data collection: In general, the data might be
collected once every 30 minutes, to once every hour. Alternatively, the data collection
might be scheduled to be at certain time, e.g. during 10-11 a.m. every day. The
frequency of data collection depends on the product manufacturing time and the number
of samples being considered. There is no fixed rule. The more often we collect the
data, the higher cost we have to pay. But more data allows better analysis of the
manufacturing process.

4. Calculate the control bounds: If the deviation of the manufacturing process
is average, 3-sigma control bound is typically used, which results in small number of
defects. However in the case of more strict control or when the cost of defective
products is high, the bound may be changed to 2.5-sigma, 2-sigma (warning), or
1-sigma.

5. Plot the control chart: Data points plotted in the control chart are connected
by lines. Abnormality or outliner that represents an out-of-control condition can be
observed if at least one of the followings occurs:



- One or more points lies outside the 3-sigma control bounds.

Figure 2.4 One or more points outside the control limits

- Seven or more consecutive points on one side of the centerline

Figure 2.5 Seven or more consecutive points on one side of the centerline

- Six points in a row steadily increasing or decreasing.

Figure 2.6 Six points in a row steadily increasing or decreasing
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Fourteen points alternating up and down.

Figure 2.7 Fourteen points alternating up and down

- Two out of three consecutive points in the outer third of the control region.

Figure 2.8 Two out of three consecutive points in the outer third of the control region

- Fifteen points in a row within the center third of the control region.

Figure 2.9 Fifteen points in a row within the center third of the control region
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Eight points on both sides of the centerline with none in the center third of
the control region.

Figure 2.10 Eight points on both sides of the centerline with none in the center third of
the control region

Two out of three consecutive points lie outside 2-sigma warning bounds.

Four out of five consecutive points lie outside 1-sigma or more from the
middle bound ‘

In all of these situations, only one side of middle bound is considered. Thus, a
point above the warning sigma followed by a point below the warning sigma
does not make an out-of-control phenomenon.

6. Develop the control chart and use it to improve the manufacturing process:
when an out-of-control event happens, we need to adjust the control bounds. First, the
causes of the out-of-control points are analyzed. Once a cause is identified, the
corresponding point is deleted and new control bounds are re-located. A new control
chart is then re-constructed using all the other points. (There may be new out-of-control
points since the new bounds are thinner) This process is repeated until all the points are
inside the control bounds. Then we may use these bounds to control the manufacturing
process now and in the near future.

2.1.4 X Chart

The observations for the process variable X are assumed to be independent and
normally distributed. When the process is in control, the mean and variance of X is
H,and O 02 respectively. The lower and upper control limits associated with the

Shewhart X chart, (Montgomery, 2001) are:

LCL = 4, — L( %0
X 0 \/‘;
o

Ju

(2.8)
UCL 5 = 4, + L(
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Where L is the control limit parameter and » is the sample size. At any sampling
instant ¢ , the sample average X ,1s compared against these limits, and if it is outside
the limit, a search for an assignable cause is started. The rough guidelines for setting the
X chart limits in practice are n=4 or 5, and L =3

LWL. = i—w[ﬁ]

Jn

where w is the warning limit coefficient of the X control chart.

Consider type I error of X control chart (See Appendix A.1)

a= P()?<LCLly:ﬂo) + P(X>UCL|p=p1,)

2.10
=2[(-1)] i
where @(x) is the cumulative distribution function of normal distribution
a is Type I error probability
Consider type II error of X control chart (See Appendix A.2)
i =P()?<UCL’,u=,uo +g)—P()?<LCL‘y=yO +e)
(2.11)

=0 L_i () _L_i

gy Oy

Jn Jn

p is Type II error probability

2.1.5 Shewhart’s Variable Parameter X Control Chart

The average control chart by the Shewhart controls chart are likely to be use
extensively, but it is convenient for only the data that has the normal distribution. So,

for Shewhart’s Variable Parameter X Control Chart when i =1,2 is given by

~

(o}

Jn,

(o}

=

Upper Control Limit UCL, = y, +k,

o~

Upper Warning Limit UWL, = y, +w, =_ (2.12)
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Lower Warning Limit LWL, = p, —w Le.

’
g
i
Y nl
O_r

Lower Control Limit LCL, = p, -k,

where g, is the parameter of process average.

o’ s the parameter of process variation.

G
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The estimator value parameter assessment of the equation (2.12) for each sample size n,

where i =1,2 can be as follows:

k
Q¥

14, have the estimator, which is given by X, =L

o have the estimator, which is given by o' =

SR

d, is the constant value, depending on subgroup.

k
_ 2R
Where R =~

1

m

A, 1s the constant value, depending on the sample size for each subgroup.

Substituting all estimators in equation (2.12) would yield

UCL,=)?,.+k,.%“,
UWL, = =,+w,%“,
by 5
3
LCL,=):(,—k,%IE

2.1.6 Exponentially Weighted Moving-Average (EWMA) Chart

(2.13)

Mitra (1998) found that a geometric moving-average control chart, also known as an
exponentially weighted moving-average (EWMA) chart, is based on this premise. One
of the advantages of a exponential moving-average chart over X chart is that the former
is more effective in detecting small changes in process parameters. The exponentially

weighted moving-average at time step ¢ is given by

Z=rX,+(1-nNZ_, , t=123,..

Where r is a weight constant (0 <r <1)and Z,is X

(2.14)
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By using equation (2.14) repeatedly, we get:

Zt :r)?t —{-(1—}")21_l +I‘(1—r)2Z[_2

- < 2.15
=X +(1-1)Z,_ +r(-r)Z_ +-+(=r)Z; )
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Figure 2.11 Exponentially weighted moving-average (EWMA) charts

The upper and lower control limits (denoted by LCL,,, andUCL respectively) for

the EWMA chart are

UCL = X+ Lo,

= (2.16)
LCL=X-Lo,

where X is the in-control value of the process mean and is usually identical to X’ o

is the control limit coefficient of the EWMA chart that determines the size of the critical
region of the chart, and o, is the asymptotic standard deviation of the sample statistic

equal to:

—_— o r
Z \/’; s (2.17)

where o is the standard deviation of the process characteristic and # is the sample size.
The upper and lower warning limits (denoted by UWL and LWL , respectively) for the
EWMA chart are:

UWL = X +wo,

» (2.18)
LWL = X -wo,
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where w is the warning limit coefficient of the EWMA chart. If the last sample point
falls in the safe region (i.e., LWL < X < UWL), then take the next sample at the next

fixed sampling time point(hl). If the last sample point falls in the warning region (i.e.,

UWL <X <UCL or LCL< X < LWL ), then take the next sample using the short
sampling time point (hz) A search for the assignable cause is under taken when the
sample point falls outside the control limits.

Consider type I error of EWMA control chart (see Appendix A.3)

e P()?<LCL‘,u:yO) + P(X >UCL|u=p,)

(2.19)
=2 [@(—L)]
where ®@(x) is cumulative distribution function of normal distribution
a is Type I error probability
Consider type II error of EWMA control chart (See Appendix A.4)
Vi :P(/\:’<UCL‘,u=,uo +g)—P()?<LCL]ﬂ:yO +£)
€ £ (2.20)

L AR
73 r

i, s § S
\/; 2—r Jn\2-r

B is Type II error probability

2.1.7 Multivariate EWMA (MEWMA) Chart

Lowry, et al. (1992) developed a multivariate extension of the univariate EWMA
control chart introduced by Roberts (1959). The statistic of the multivariate EWMA
control chart is defined as:

Z,=RX, +(1-BR)Z_, ,t=123,... (2.21)

where Z, = E()?), X’z(xl,xz,...,xn)
and R= diag(q,rz,...,rp), i<r SN | Sill...,p

When n#n#..#r,,
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r, 0 ] 1 = 0 ]
= (¥ r = 0  1-p -
Z =|. X s ! e, 121
7_0 0 O, i3 a 0 0 0 l—rp_
If n =r, =..=r, =r, the statistic can be simplified as:
Z0= rX MYz,  LGell 2.22)
The chart gives an out-of-control signal when:
_~’ _l -
/= Z!Zz, Z >h (2.23)

where / is the upper control limit and 27 is the covariance matrix of Z,. Note that
there is no lower limit and the statistic O, is nonnegative since ZZ‘ 1S semi-positive

definite matrix. The control limit /# can be chosen by statistical design based on ARL,

requirement or economic design of the control chart. Prabhu and Runger (1997)

modified the Markov chain approach to study the average run length performance of the
MEWMA control chart.

Table 2.1 Average Run Length (4RL) of MEWMA (p =2)
(Prabhu and Runger, 1997)

-
d 0.2 0.4 0.6 0.8
0.0 201.00 199.00 200.00 200.00
0.5 35.10 51.90 73.60 95,5
1.0 10.10 13.20 19.30 28.1
1.3 5.50 5.74 7.24 10.30
2.0 3.80 3.54 3.86 4.75
25 291 2,59 2.53 2.75
3.0 242 2.04 1.88 9l
h

9.65 10.29 10.53 10.58
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2.1.8 Expected Value

The expectation or mean of the random variable X , denoted by E[X], Ross (1996) is
defined by:

S o}

E[X]= fxdF(x) : L (2.24)

—a0

E [X ]: J xf (x)dx if X is continuous

—o0

= j xP{X =x}dx if Xis discrete

Provided the above integral exists.

2.1.9 Conditional Expectation

If x and Y are discrete random variables, the conditional probability mass function
of x, givenY = y | is defined, for all y such that P{Y = y} > 0 Ross (1996) is defined
by:

Plge=x,Y =y}

P{X=x|Y=y} =

The conditional distribution function of X givenY =y is defined by:

F(x|y) = P{X <x|Y = y} (2.26)
and the conditional expectation of X given ¥ =y, by:

E[X|Y=y] = [xdF(x|y) = j xdP{X =x|V = y}. 2.27)

If X and Y have a joint probability density function f(x,y), the conditional probability
density function of X, given Y =y, is defined for all y such that f, (y)> 0 by:

)
T= 028)

and the conditional probability distribution function of X, given Y =y, by:

f(x|y) =

F(x|y) = PLX <x|Y =y} = [ f(x|p)ax. (2.29)

The conditional expectation of X, given ¥ =y, is deﬁned_, in this case, by:



19

[¢]

E[X|Y=y]= [ xf(x|y)x. (2.30)

—o0

Thus all definitions are exactly as in the unconditional case, expected that all
probabilities are now conditional on the event thatY = y .

Let us denote by E[X|Y]that function of the random variable ¥ whose value at

Y=yis E[X | Y = y]. An extremely useful property of conditional expectation is that
for all random variables X and Y.

E[X] = E[E[X|Y]] = [ E[X|Y = y}F, (¥) (231
when the expectation exist.

If Y is a discrete random variable, then equation (2.31) states:
E[X]=Y EX|Y=ylP{Y=y} , (232)

while, if Y is continuous with density f (y) , then equation (2.31) says:
E[X]= [ ELX|Y=y]f(»)dy (2.33)

2.1.10 Mean and Variance

Assume that there are k characteristics to be measured in a given process and denote the
{/

measurements beZ(x,,xz,...,xp) ,)~(~Np (,u,z ) which is a multivariate
normal with mean vector & and covariance Z

S is sample standard deviation

S = (x,-X)(x,-X), (2.34)

s
n—1,=| i i

D, is the shift of X

D, =(X~#o)’ Z;l()?‘ﬂo)’ (2.35)

(2.36)
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2.1.11 Absorbing State; Absorbing Markov Chains (Ross, 1996)

Let {X,,n=0,1,2,..} is a stochastic process or Markov chain.
If X, =i, then the process is said to be in state i at time .
Suppose that whenever the process is in state, there is a fixed probability P
That it will next be in state ;.
Suppose that,

Pl X RS (5] ., X, X EgiRsl (2.37)

iy

For all states iy,i,...,i, ,i,jand all n>0.Such a stochastic process is known as a

Markov chain. Equation (2.37) may be interpreted as stating that, for a Markov chain,
the conditional distribution of any future state X, ,given the past states

n+l1?
Xy, X,,....X, ,, and the present state X, ,is independent of the past states and depends
only on the present state. The value F, represents the probability that the process will,

when in state 7, next make a transition into state .

PRED, 0, PSS Ui

J=0

Let P denote the matrix of one-step transition probabilities P, , so that

Fo Fu By

Ro B By
P=| :

L, B B,

For any state i and jdefine f to be the probability that, starting ini, the first

transition into j occurs at time ». Formally,

f =
Es { =j, X, # jk=1,..,n-1X, =i}.
Let f, = if”

L)

n=

Then f,, denotes the probability of ever making a transition into state j, given that the
process starts ini. (Note that for i # j, i is positive if, and only if, jis accessible
from i.) State jis said to be recurrent if £, =1, and transient otherwise (State j 1S

recurrent if, and only if, Z p=).

n=l|
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Consider now a finite state Markov Chain and suppose that the states are numbered so
that 7 = {1,2,...,¢} denotes the set of transient states. Let

Q

Il
v v 2u
e Iy
+u dof =

N~
= =

Q is specifies only the transition probabilities from transient states into transient states,
some of its row sums are less than 1 (for otherwise, 7 would be a closed class of states).

For transient states i and j, let m, ,denote the expected total number of time periods

spent in state jgiven that the chain starts in state /. Conditioning on the initial
transition yields:

my; = 6(i,j)+ZP,km,‘j
" (2.38)
=5(i’j)+ F,my

Y
k=1

L i=j
where o(i,j)= >
(5.7) {O ; otherwise
and where the final equality follows from the fact that m,; =0 when £ is recurrent state

Let M denote the matrix of values m, ,i, j =1,...,7, that is,

m, my - m,
M = mll mi2 . mn
m, m, - m,

In matrix notation, equation (2.38) can be written as
M=1+0OM
where [ is the identity matrix of size f. As the preceding equation is equivalent to
(I-9)M =1
We obtain, upon multiplying both sides by (1 + Q)_] , that

(1-9)" (1-Q)M=(1-0)"1

| (2.39)
M=(I1-Q)
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That is, the quantities m

I ieT,jeT,can be obtained by inverting the matrix

(1 - Q). (The existence of the inverse is easily established.)

For ieT, j eT,the quantity £ , equal to the probability of ever making a transition into

state j given that the chain starts i, is easily determined from M.

m,=FE [number of transitions into state j| start in i]

R

where m,; is the expected number of time periods spent in state j given that it is

eventually entered from state i. Thus, we get:

2.1.12 Control Chart Interpretation

The objective of performing multivariate SPC is to monitor process performance over
time in order to detect any unusual events. It is essential to be able to track the cause of
an out-of-control signal to maintain acceptable levels of quality and to allow for process
improvements. However, the complexity of multivariate control charts and cross-
correlation among variables makes it difficult to analyze assignable causes leading to
the out-of-control signals. Several techniques have been developed that assist in the
interpretation of out-of-control signals. Following the same sensitivity of the
Shewhart X control chart, the Hotelling 77 is more efficient in detecting larger process

shifts. Mason and Young (1999) introduced a modification procedure for the T control
charts in order to enhance sensitivity toward detecting a small process shift.

A T’control chart is used primarily to monitor the mean vector of quality
characteristics of a process. There are two versions of the 7 chart, one for sub grouped
data and the other for individual observations. They can be used not only in achieving a

state of statistical control (Phase I) but also in maintaining control over the process
(Phase II).

In some cases, the multivariate data can be grouped into rational subgroups, relying on
properties of the production process that creates homogeneity within subgroups. When
rational subgroups are present, a shift in the mean vector is presumed to be more likely
to take place between subgroups (variability in the process over time) than within a
subgroup (instantaneous process variability at a given time). This can be used to
advantage by forming the sample covariance matrix for each subgroup, then averaging
them to get an estimate of the process covariance matrix. The mean vectors for each
subgroup can be examined for a shift, thus detecting assignable causes for the shift in
the mean vector (Sullivan and Woodall, 1996).

Mason and Young (2001) studied the effectiveness of using the T control charts for
batch (sub grouped) processes. His study recommended that when the batch data are
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collected from the same multivariate normal distribution, 7" statistic is recommended
for detecting out-of-control signals. When the batch data are collected from multivariate
normal distributions with different mean vectors, the translation of the different batches
to a common origin again allows the usage.of T’ statistic to identify out-of-control
signals. Translation to a common origin involves the subtraction of individual batch
mean vectors from the corresponding batch observations.

However, sometimes the rational subgroup size is one, that is, data are structured only
as individual observations, and process characteristics do not necessarily produce
homogeneous subgroups of large size. In the case of individual observations, Sullivan
and Woodall (1996) recommended using the sample mean vector and covariance matrix

if any value of the T statistic exceeds an upper control limit resulting in an out-of-
control signal generated. In some industrial situations, such as chemical and process
industries, it is either impractical or difficult to obtain a subgroup size of more than one
unit, since these industries frequently have multiple quality characteristics that must be

monitored. Therefore, the 77 control chart with n =1 would be appropriate to use.

Mason, et al. (1997) presented a multivariate profile chart by superimposing an X chart

of univariate statistics on top of the 7 chart. By performing discrimination analysis,
this allows the distinguishing of in-control conditions from out-of-control conditions to
determine where assignable causes of variation are occurring. This analysis works by
partitioning the multivariate control chart based on the contribution of each variable.

There are also graphical solutions to interpretation difficulty. Lowry and Montgomery
(1995) proposed poly plots and multivariate control webs to superimpose univariate
statistics on multivariate statistics in order for the user to test trends in individual
statistics and realize how they affect other variables.

Jackson (1956) suggested that the multivariate control region be displayed as an ellipse
for two variables(p =2). However, when Jackson’s control ellipse is used, the time

sequence of the plotted points is lost. The results obtained from Jackson’s control

ellipse are exactly the same as those obtained from using the 7° control chart. If an
observation is outside the ellipse, it will also be above the control limit specified on the

T? control chart. On the other hand, if an observation is inside the control ellipse, it will

be below the control limit specified on the 7 control chart. However, if an observation
is exactly on the parameter of the ellipse, it will be exactly on the control limit line of

the 7 control chart. The results obtained by both methods are identical. Nevertheless,

the 7 control chart retains the time scale and summarizes the process condition by one
value, while use of the control ellipse indicates pictorially the nature of the out-of-
control conditions.

Figure 2.12 presents the control region for two variables with different levels of
correlations. Here, it can be seen that when (r = +O.8) , the control ellipse is tilted to the

right from the horizontal axis; on the other hand, when (r = —0.8) , the ellipse becomes

tilted to the left from the horizontal axis. However, when (r = O) , the ellipse becomes a

circle.
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Jackson (1959) considered the case of investigating two or more( p- 1) related variables

to analyze a multivariate process. The basic concept of the technique is to break up the
T? statistic into a sum of its principal components, the linear portions of the original
variables. Principal Component Analysis (PCA) is a reliable technique to interpret out-
of-control signals, whereby components can be examined to understand why the process

is out-of-control. This could be accomplished by expressing the T’ statistic as the
normalized principal component of the multi normal variables. Hence, when an out-of-
control signal is received, components with abnormally high values are detected. Plots
of these variables can be used to determine exactly what occurred in the original sets of

data that contributed to the signal in the multivariate set of T’ statistics (Mason, et al.,
1997).

Control Elipse Control Ellipse
125P T T T -

-t ' A A
45 65 85 105 125

r=0 r=+038

Figure 2.12 Ellipse control region (Source: Montgomery, 2001)

2.1.13 Average Run Length (ARL)

Mitra (1998) found that the average run length (ARL)is a measure of the expected

number of consecutive samples taken until the sample statistic falls outside the control
limits, and it is a function of the current process characteristics. To reduce the total cost,
the ARL should be large when the process is in control, and it should be small when the
process is out of control. The in-control ARL can be increased by widening the interval
between the upper and lower control limits, but this would also cause the out-of-control
ARL to increase, unless the sample size is increased as a counter-measure.

It can be shown that the in-control ARL for the Shewhart X chart is:
ARL, : The average run length during in-control period:

1
hppl —— L G (2.40)
" e

and ARL, : The average run length during out-of-control period:
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ARL, = : (2.41)

=L —— )+ D=t
(o4 z

X O-,\

where @(-) is the cumulative probability distribution function (cdf) for a standard
normal variable. '

ARL for the EWMA Control chart is:
ARL, : The average run length during in-control period

|

RLy= ——— 2.42
2[@(-1)] G

and ARL, : The average run length during out-of-control period:

ARL, = 1 . (2.43)

- (L gr)+q>(—L-—g )

E /_ RN T
LN 1-r

2.1.14 Economic Model of Production Process Model (Magalhdes and
Epprecht, 2001: 191-200)

Existing expenditure function is in every single production hour. It bases on selection of
optimum economic model value for parameters n,n,, h, h,, w,, w,,k,,k, when

developing expenditure function. The production process assumptions, utilized in
expenditure function development, are as following:

Process Model

The following assumptions are the in-process product characteristic assumptions to be
analyzed. The samples are assumed to be independent from each other and the initial

production process will be under statistical control in which the X control chart equals
to X and standard deviation equals too.. Once a warning cause or nonconformity is
existed, the mean value will shift from g, to y, +3d0. or u,—o6c.. While the process
is still under control, the population is exponentially distributed with the mean value of

7 and not self reversible if any process change is existed. During process investigation,

the probability of process continuation ability is an index variable &, (J, =1 if process
is able to continue; 6, =0 if otherwise). The probability of process continuation ability
during process repair or improvement is an index variable &, (6, =2 if process is able
to continue; &, =0 if otherwise). The yx, ¢’ and § are assumed to be known in order

to define parametersn,, n,, h, h,, w,, w,,k and k, of control chart.
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The five production process expenditures caused by implementing economic model are
as the following:

1. Expenditure caused by population control and sampling (C,,,)

2. Expenditure caused by inspecting failure warning signal (Cﬁ,)

3. Expenditure caused by investigatihg for identiﬁable éause of nonconformity
()

4. Expenditure caused by producing goods that is not conform to specifications
while process is under control (C,,)

5. Expenditure caused by producing goods that is not conform to specifications
while process is not under control (C,,, )

Production Cycle

The production cycle is defined as production duration. Controlling of the production
process is assumed to be constant at the beginning. Production cycle composes of two
time periods which are: Under Control Period and Not Under Control Period. The
details are described below:

1. Time period where production process is still under control(7,,): The time
duration started from the beginning to the point where the warning cause is obviously
identifiable.

2. Time period where production process is not under control(7,, ) : The time
duration started from when the process starts changing until the failure warning is
developed.

3. Analyzing period(Ta): Time period contributed to sample analysis and
control chart result analysis.

4. Inspecting period (7,

5SS

): Time period contributed to investigation of

identifiable cause, once the production process is not under control.
5. Repairing period (7} ) : Time period contributed to process repairing.

The Burdened Expenditure per One Production Cycle

The expenditure function is economically considered as per time unit expenditure
function. E(T) is expected value of production period duration and E(C)is expected

value of total expenses burdened in one production cycle. Hence, the expected value of
total expenses per one time unit is:

ECTE :m (2.44)

E(T)
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The expected value of total expenses per one production cycle composes of the
summation of all existed expenses while production process is both under and out of

control. Hence, E(C) composes of:

1. The expected value of expenditure per one production cycle due to the
production of goods that is not conforms to specification while the production process is

under control E(C,) and out of control E(C,,, ). Hence,

E(C,)+E(C,,)= G)CO +C,[4ATS + E(T,)+ 5,1 +5,T.. | (2.45)

Given C, and C, are hourly expenditure due to the production of goods that is not

conform to specification while the production process is under control and out of
control respectively. The mean value of time period while production process is under

control is % The Adjusted Average Time to Signal (A4ATS) is the expected value of
time period since the production process starts changing until the failure warning
signalE(Yj,) equals to #n'G, where G is sampling time interval specified by control

chart, »" is sample size while process is out of control, 7, is average time interval where

the warning cause is detected and T..is average time for process repairing.

2. The expected value of failure warning signal detection E ( C ﬁ,)

E(C,)=YE(F) (2.46)

where ¥ is expense caused by failure warning signal detection.
E(F) is average number of independent failure warning signal.

Hence, expected number of failure warning signal (E (F )) is

E(F)=[a1po+a2 (I_Po)]s (2.47)
Where a,=P(X, <LCL)+P(X,>UCL) (2.48)

a,=P(Z<-k)+P(Z>k)

a,=20(-k,)

whereq, is type I error
p, 1s the probability of small-size samples while the process is in control
1- p, is the probability of large-size samples while the process is out of control
@(-) is the cumulative normal distribution.
From equation (2.49), the probability determination of p,, which is a conditional
probability could be as the following:
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py=P(LWL, < X, <UWL|LCL, < X, <UCL,) (249)

P(#O_W:%<Xz<ﬂo+wl%]
P(/Io_kr%<i,<ﬂo+k:\7n;J

P( w, <Z<w,
P(-k, <Z<k

)
)
®(w)-P(-w)
O (k) -® (k)

3. The expected value of expenses contributed to investing and repairing the
cause of warning signal E (C,) is constant w

Py =

(2.50)

E(C)=w _ (2.51)

4. The expected value of expenses contributed to sampling and controlling

E(C.n)

E(C,,)=(a+bn)s+(a+bn")s' (2.52)

cam

wherea is the fixed expense (direct) per one sample.
b is the variable expense (indirect) per one sample.
n is the average sample size while process is in control .
n' is the average sample size while process is out of control.

s is the average number of sample specified by the control chart while process
is in control.

s' isthe average number of sample specified by the control chart while process
is out of control.

N is a number of sample before process start changing.

Given s=F (N ) as average sampling point while process is under control.

Hence, warning cause existed between samples jand j+1 means the process average
drifted from g todo’. When jis utilized prior to process change, which means
N = jsimilar to the existence of warning cause which is identifiable during the
sampling interval ¢ and?

Hence:

ZJP(N 7 =Z FPIREL<te) (2.53)

In this case, T is exponentially distributed with parameter A. From the exponential
distribution characteristics, we obtained:
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Hence, the expected value of total expenditu;e per one production cycle is obtained by

integrating all equations from (2.45) to (2.53) which are:

E(C) :%C0 +C,[ 44TS+E(T,)+ 1. +8,T. |+Y E(F)+w+(a+bn)s+(a+bn')s
(2.54)

The means of each period £ (T) compose of:

1. The mean of the expected time that the process is in under control E (T ) is

in

1

E(Z”)=I+(1—§,)E(Tfu) (2.55)

where (1-6, )E(Tfa) is part of E(Tm)
6, =0, when the process is continuing during the warning

0, =1, when the process cease during the warning

2. The mean of the expected time that the process is out of the action region
E(T,,); where

E(T,,)=AATS = E(R)+E(S) (2.56)

AATS is adjusted average time to signal.

If assigned ¢ as the mean of expected time that starts since the cause of alarm occurs
until the warning, with location between samples j and j +1

(j+1)h
A(t=jh)e ™ at
NER - (14.24) 2o
r= (j+1)h - l(l—e_lh) ( )

j Ae *dt
Jh

The mean of the expected time since the cause of alarm occurs to the first sample to the
new shift is produced £(R) will be:

E(R)=E(E(R|4)) and E(E(R|4))=E(E((h~1)|4)).
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B(R)=3(h-1)-P(4=h).

E(R)z{hl_l—e"“’n (1+/1h1)}P(A:hl)+{hl_1_elhz (1+lhz)}P(A=h2). (2.58)

™) ™)

As Reynolds (1988) hypothesized that P(A=h,) is proportionate to the length of the

expected time A, thus, the chance of incidence will be:

=Y P
) o 30 w

(1‘]70)}5 .
Pohy +(1—po)hz

P(A=h)= (2.60)

E (S ) is the expected time between the first sample after the shift and the next warning,

which E(S) value depends on the position of B

E(S)=E(S|B=B)P(B=B)+E(S|B= B,)P(B=B,),

E(S)=E(T,)P(B=B)+E(T,)P(B=B,). (2.61)
When E(S|B=B)=E(T), (2.62)
E(S|B=B,)=E(L,). (2.63)

T, is the expected time since the first sample falls into the central region after the shift.

T, is the expected time since the first sample falls into the warning region after the
shift.

When B is the position of the first sample falling after the shift; if it falls in the central
region, the symbol B, will be used; if it falls in the warning region, the symbol B, will

be used; and if it falls in the action region (out of control), the symbol B, will be used.
B value will depend on the length of the expected time / when shift occurs. Thus the
probability of B, will be:

P( 4= By=P(B= B, |A4=h)P(A=h)+P(B=B|4=h)P(4=h,)

(2.64)
=p”P(A=h|)+p2]P(A=f12),

P(B=BZ)=P(B=B,_|A=hl)P(A=hl)+P(B=B2|A=hZ)P(A=hZ)

(2.65)
:P|2P(A:hl)+p22P(A=h2)’ .
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and P(B=B,)=1-P(B=B)-P(B=B,), (2.66)
when p, =P(B=B|d=h)= P(|U| <w ‘U 2 N(5ﬁ,1)), 2.67)
p,=P(B=B,|4=h) : " (2.68)

P, = P((LCL, <U < LWL)O(UWL, <U < UCL,)\U . N(J\/Z,l)), W)

E(T,)=E(M,)E(V). (2.69)

M, is a variable parameter of sample number that falls in the central region until

warning, where M, has geometric distribution with the parameter (1 el ) , when p,is
the probability of sample falling in the central region, so:

P =Pa it plZZ P;;lpzl (2.70)

i=1

Py
1-

and szz Py = (2.71)

22

when substitute p,.j's in a double.
1
E(M,)=——mo,
( 1) 1-p,

when substitute p, in a double ,so we will get

E(M,)= I-py , 2.72)
1= py = Py + P\ \Pp — PPy

V is the length of the expected time during sample falling out of warning region,
starting from the last sample in the central region, which the probability will be:

P(V=hl)=p”+pl3=1—pn

P(V = h +ih, ) = p12p£1p21 + Plzl’;;lpzs
= PPy (Pa + Py) 2.73)
zplzp;;l (1‘P22) ;i=1,2,...

E(V)= hl+hzlp; (2.74)
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If substitute E(M,),E(V) in E(T;), we will get:

|:hl(1 pzz +th12:|

E (Tl ) = (2.75)
1-p,—py+ Pnpzz PP
In the same way, it will be:
+
E(Tz): I:hz p]l hlPZl] (276)

1= p,y — Py + PPy — P2 D

3. The mean of the expected time to analyze sample and chart E(T})

when » is the mean of sample during the process is in control

’

n' is the mean of sample during the process is out of control
n, is the small size sample number which is used in analysis

n, is the large size sample number which is used in analysis
P, s the probability that the sample size will be small
(1-p,) is the probability that the sample size will be large

G is the mean of the expected time that uses in sample and chart analysis

=P(|z|<w -8, |Z|<k-on) =12 2.77)

where n=np,+m(1-p,) (2.78)
n' =mp,(8)+n,(1-p,(5)) (2.79)

E(T,)=n'G (2.80)

4. E (T ) is the expected time to assignable cause while the process is out of

ass

the action region; given
EfiE ) 7, (2.81)

5. E(T,)is the expected time to repair; given
E(T,)=T. (2.82)

The Expected Cycle Time is the summation of average time periods of each sub cycle
time, which is:

E(T)=E(T,)+ E(T,.)+ E(T,)+ E(T, )+ E(T,)

(2.83)
:z+(1—51)E(Tfa)+AATS+n’G+T. 1
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7. and T.. are independent to each other or independent to process status (halted or

continuing).
Hence, from equation (2.44), we obtained:

P

,1_C0+CI [AATS+E(7;)+5|T. +52T..]+YE(F)+W+(a+bn)s+(a+bn’)s'
ECTU =4 — (2.84)
2+(1—51)E(Tfa)+AATS+n’G+T.+T“

2.1.15 Use of Quality Loss Function in the Optimization Model

Serel (2008) found that the traditional formulation of economic design models, the
costs due to nonconformities when the process is in control (C, )and out of control(C, )

have been treated as constants. In recent years, influenced in part by the popularity of
Taguchi methods in product design, the quality loss function concept has been
incorporated into various statistical decision models where the cost due to poor quality
needs to be estimated. In the traditional approach, the upper and lower specification
limits are used to classify the quality of the process output as either acceptable or non-
acceptable, and products falling outside the specification limits are considered to result
in quality costs. In the loss function approach, the probability distribution describing the
observations for the quality characteristic is explicitly taken into account in computing
the costs, resulting from variation of the quality characteristic round its target. It is
considered that cost of poor quality is incurred whenever the quality characteristic is not
on its target; hence, products that are not produced on target incur cost, even though,
they may conform to specification limits. Several researchers have applied the loss

function approach in the economic design of X control charts.

2.1.16 Principle Genetic Algorithm

Genetic Algorithm (GA) is a search algorithm developed by Holland (1975) which is
based on the mechanics of natural selection and genetics to search through decision
space for optimal solutions. The metaphor underlying genetic algorithm is natural
selection. In evolution, the problem that each species face is to search for beneficial
adaptations to the complicated and changing environment. In other words, each species
has to change its chromosome combination to survive in the living world. In Genetic
Algorithm, a string represents a set of decisions (chromosome combination), that is a
potential solution to a problem. Each string is evaluated on its performance with respect
to the fitness function (objective function). The ones with better performance (fitness
value) are more likely to survive than the ones with worse performance. Then the
genetic information is exchanged between strings by crossover and perturbed by
mutation. The result is a new generation with (usually) better survival abilities. This
process is repeated until the strings in the new generation are identical, or certain
termination conditions are met. A generic flow of Genetic Algorithm is given in Fig.
2.13. This algorithm is continued since the stopping criterion is reached. Genetic
Algorithm is used in forming models to solve optimization problems. Readers can find
more details of genetic algorithm in Goldberg (1989); Gen and Cheng (2000); Kaya
(2009). Genetic Algorithm is different from other search procedures in the following
ways (Chen, 2004):
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1. Genetic Algorithm considers many points in the search space simultaneously,
rather than a single point;

2. Genetic Algorithm works directly with strings of characters representing the
parameter set, not the parameters themselves;

3. Genetic Algorithm uses probabilistic rules to guide their search, not
deterministic rules. Because genetic algorithm considers many points in the search
space simultaneously there is a reduced chance of converging to local optima.

In a conventional search, based on a decision rule, a single point is considered and that
is unreliable in multimodal space. Genetic Algorithm consists of four main sections,
Encoding, Selection, Reproduction, and Termination (Gen and Cheng, 2000; Goldberg,
1989; Mitchell, 1996).

r Initial Population Crossover

110010301¢
1100101010

O 0 0

Encoding Strings

1100101010
) 1011101110
Solution | —————> inooxo;oxo_

Selection

New Mutation
Population
1100101010
Roulente J
Wheel
/ offsprin; \
> g

01100100

lw

\ Fitoess Computation/

v

Figure 2.13 The fundamental cycle and operations of basic Genetic Algorithm
(Gen and Cheng, 2000)

e Encoding

While using Genetic Algorithm, encoding a solution of a problem into a chromosome is
very important. Various encoding methods have been created for particular problems to
provide effective implementation of Genetic Algorithm for the last 10 years. According
to what kind of symbol is used as the alleles of a gene, the encoding methods can be
classified as follows (Gen and Cheng, 2000):

-Binary encoding,

-Real number encoding,

-Integer or literal permutation encoding,
-General data structure encoding

Kaya and Engin (2007) used ‘‘binary encoding” structure to determine the best
parameters for Genetic Algorithm in their model. But, Kaya (2009) used ‘‘real number



35

encoding” structure on the same model. And additionally a new chromosome
representation was suggested to increase the effectiveness of Genetic Algorithm in that
paper. This chromosome contained values on one gene, although the chromosome
structure proposed by Kaya and Engin (2007)‘contained values on many genes.

e Selection

The fundamental idea behind Genetic Algorithm is mainly Darwinian natural selection.
The selection leads the genetic search towards encouraging regions in the search space.
During study work, many selection methods have been compared and examined.
Common types of them are as follows (Gen and Cheng, 2000):

-Roulette wheel selection,
- (k+1)-selection,
-Tournament selection,
-Steady-state reproduction,
-Ranking and scaling,
-Sharing.

In this paper, ‘‘Roulette wheel selection” structure is used as it is a well-known and the
most used selection method.

e Recombination

Recombination operator is the most important tool for Genetic Algorithm. It makes the
exchange of information acquired by the individuals and its broadcast to the next
generation possible. The main two section of recombination is explained briefly as
follows:

e Crossover

In Genetic Algorithm, crossover is a genetic operator used to vary the programming of a
chromosome or chromosomes from one generation to the next. It is an analogy to
reproduction and biological crossover, upon which Genetic Algorithm are based. In this
study, five different crossover mechanisms are used and their performances are
compared with each other. These are as follows (Kaya and Engin, 2007; Kaya, 2009):

-One-Point Crossover (OPX)
-Position Based Crossover (PBX)
-Order Crossover (OX)
-Partial-Mapped Crossover (PMX)
-Linear Order Crossover (LOX)

e Mutation operator

The premature convergence of a new generation can be prevented by the mutation
operator. In this study, five different mutation mechanisms are used and their

performances are compared with each other. These are as follows (Kaya and Engin,
2007; Kaya, 2009):
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-Inversion Mutation
-Neighbor Exchange Mutation
-Reciprocal Exchange Mutation

2.1.17 Basic Concept in Design of Experiments (DOE) (Nutek, Inc.)

DOE is an experimental strategy in which effects of multiple factors are studied
simultaneously by running tests at various levels of the factors. What levels should we
take, how to combine them, and how many experiments should we run, are subjects of
discussions in DOE.

Factors are variables (also think of as ingredients or parameters) that have direct
influence on the performance of the product or process under investigation. Factors are
of two types:

Discrete - assumes known values or status for the level.
Continuous - can assume any workable value for the factor levels.

Levels are the values or descriptions that define the condition of the factor held while
performing the experiments.

If a factor is tested at two levels, you are forced to assume that the influence of the
factor on the result is linear. When three or four levels of a factor are tested, it can
indicate whether the factor has non-linear response or not. Factor behavior, that is
whether it is linear or non-linear, plays important role in deciding whether to study three
or four levels of the factor when the factor is of continuous type. The number of levels
of a factor is limited to 2, 3, or 4 in our discussion.

« Mirgmam TWO levels
= THREE leveb desirable

» FOUR lewels in rave cases

Remlt/Resporse/ QC

: i i N = Nonlineartty dictates Jevels for
& A, contiraous fictors only

Reault/Rasponse/QC

Figure 2.14 Levels of factors (Nutek, Inc.)
Desirable levels of factors for study (Figure 2.14)

- Minimum TWO levels

- THREE levels desirable

- FOUR levels in rare cases

- Nonlinearity dictates levels for continuous factors only
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Consider two factors, A and B, at two levels each. They can be tested at four

combinations
l A1 Ao A=>Aq A
B1] " * B=>B4 By
By | - .

Figure 2.15 Four Experiments (Nutek, Inc.)

Figure 2.15 shows four experiments are: A,B, AB, A,B, A,B,

Likewise three factors A, B and C tested at 2-levels each requires 8 experiments

Factors™ AlstAgAS =B, B, G5 CC
8 Experiments:

ABC, ABC, AB,C, AB,C,
ABiC. VALB,C, #B:@ A B.C,

NOTATIONS
A(A1A2)or A represent2-level factor

ONE 2-level factor offer TWO test conditions (AA )
TWO 2-level factors create FOUR (2° = 4)

test conditions (A;B1.A;B;,A.B,,A.B,) [<@[A B C
1 1 1 1
THREE 2-level factors create
3 apuediss 2 whid® 1A
EIGHT (2 =8) possibilities.
' 3_MEal” 1
ABC, ABC, ~
AB,C, AB,C, s 12 1
A.BC, A,BC, 5 )
A,B,C, A,B,C, N .
ghid ks 2

Figure 2.16 Notation and table shown here is a good way to express the full factorials
conditions for a given set of factors included in the study (Nutek, Inc.)

From Figure 2.16 shows that:

1. 2-level factor offers TWO test conditions(A,,A,).
2. 2-level factors create FOUR (2 = 4 test conditions: A,B, A,B, A,B,

A,B,).

3. 2-level factors create EIGHT (2’ = 8 test conditions: A,B,C, AB,C,
ABC, ABC, ABC, A,BC, AB,C, A,B,C,)possibilities.

The total number of possible combinations (known as the full factorial) from a given
number of factors all at 2-level can be calculated using the following formulas. The
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industrial practitioners, Taguchi constructed a set of special orthogonal arrays.
Orthogonal arrays are a set of tables of numbers designated asL,,L,,L,,L,,,L ¢, etc. The

smallest of the table, L,, is used to design an experiment to study three 2-level factors

2.1.18 Principle Standard Orthogonal Arrays

Mitra (1998) found that a product can be designed and manufactured based on a set of
specifications demanded by the customer. Each specification has a required parameter
value or values, which the manufactured product must be able to satisfy. Thus, the
manufacturing process must be capable of producing the designed parameters, which is
termed as the targeted value, according to the customer's specifications. Unfortunately
in reality, manufacturing processes are far from ideal. Products manufactured tend to
give a distribution that has a mean value slightly different from the targeted value. Thus,
one of the main techniques used in Taguchi's quality control is to reduce the variation
around the targeted value. According to Taguchi, the quality of a group of products can
be improved by achieving its end product specifications distribution as close to the
target value as possible. This concept can be realized by designing and building the
quality into the product itself. Hence, Taguchi employs design experiments using
specially constructed table, known as “Orthogonal Arrays (OA)” to treat the design
process, such that the quality is build into the product during the product design stage.
Discussions of the various aspects of Orthogonal Arrays (OA) can be found in the
following:

2.1.18.1 The Approach of Orthogonal Arrays

Mitra (1998) found that an experiment during the product design stages, involves the
materials used in manufacturing the experimental product which affects the final quality
outcome. Factors such as variations in the chemical ratio, the level of ingredients used,
and how the product is formed together, will contribute to the variation in the targeted
value of the final product.
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Use this array (L-8) to design experiments with
Seven 2-level factors

Trial #t A B C D E F G Results

1ol g TH J e 1n i

2 s 1 i 2 2 2 2 XX

4 1 2 2 2 2 1 1 XX
5 2 1 2 1 2 1 2 XX
6 2 1 2 2 1 2 1 XX
7 2 2 1 1 2 2 1 XX

No.of rows
inthe
amay

2-Level Arrays L-4 Orthogonal Array
Trial# 1 2 3
B2’
4 1 i 1
L, 2" 2 1 2l 2
Ly 21‘\ 3 2 -
L,(2") 4 p =y |
3-Level Arrays
Ls{3). L (297 ]
4-Level Arravs
D)

Figure 2.17 Orthogonal arrays used to design experiments (Nutek, Inc.)
This Figure 2.17 describes that:

~ The L-4 orthogonal array is intended to be used to design experiments with two
or 2-level factors.

~ There are a number of arrays available to design experiments with factors at 2, 3,
and 4-level.

- The notations of the arrays indicate the size of the table (rows & columns) and
the nature of its columns.

Orthogonal Arrays (OA) are a special set of, Completely Randomized Design
constructed by Taguchi to lay out the product design experiments. By using this table,
an orthogonal array of standard procedure can be used for a number of experimental
situations. Consider Standard Orthogonal arrays by general table. ‘



Standard Orthogonal Arrays (Mitra, 1998)

Table 2.2 General form orthogonal arrays

40

Orthogonal | Number | Maximum Maximum Number of Columns at These
Array of Rows Number Levels
of Factors
2 3 4 5
L4 4 3 3 - - -
Lg 7 - - -
Lo - 4 X ¢
L2 12 11 11 - - -
Lis 16 15 ] - - -
L6 16 5 - L 5 i
Lis 18 8 1 7 . }
Las 25 6 . = f G
L7 2% 13 - 13 - -
L3 82 31 31 - - -
s 32 10 1 - 9 -
Lse 36 23 11 12 - -
Liig 36 16 3 13 - -
Lso 50 12 1 - - 11
Lsa 54 26 1 25 - -
Les 64 63 63 - - -
| 64 21 - - 21 -
Lsi 81 40 - 40 - -
Table 2.3 Orthogonal array of Ly (2°)
L4 (2*) Orthogonal Array
Experiment Variable Settings

Number 1 o) 3

1 1 1 1

2 1 2 2

3 2 1 2

4 P 2 1




Table 2.4 Orthogonal array of Lg 2"
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Lai20 Orthogonal Array
Experiment Variable Settings
Number 1 2 B ——— 5 6 i
1 # 1 1 1 ] 1 1 1
2 1 1 1 2 2 2 2
3 1 g 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 ) 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2
Table 2.5 Orthogonal array of Lo (3%
Lo (3*) Orthogonal Array
Experiment Variable Settings
Number 1 5 b 4
1 1 1 1 1
2 1 2 2 2
3 1 3 8 3
4 2 1 2 3
5 2 2 3 1
6 P 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1
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Table 2.6 Orthogonal array of L» 2"

Variable Settings

11

10

1

L (2'") Orthogonal Array

Experiment

Number

10
11

12

Table 2.7 Orthogonal array of Ly (2'°)

Variable Settings

SN0 1EaM2 13 14 15

8

Lis (2"°) Orthogonal Array

Experiment

Number

10
11
12
13
14
15
16
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Table 2.8 Orthogonal array of L’ ;6 (4°)

v — (N [en <t = [N
ot NN | — [N — | |en
g
B
5
70]

o ™ <t |— N[N [
ire)
<
=
<
N AN en [F [— | |en |
=
.M — enjenjen (<t <k | (<
=)
&
=
IR
Ome
5\).nb ol—|a|en|< | |©
—

Table 2.9 Orthogonal array of Lig (2" x 37)

> 6

Variable Settings
4

3

1

Lis (2l X 37) Orthogonal Array

Experiment
Number

10

11

12
13
14
15
16
17
18
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Table 2.10 Orthogonal array of Ljs (5%

Lys (56) Orthogonal Array

Experiment Variable Settings

Number 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 3 3 3 3
4 1 4 4 4 4 4
5 1 5 5 5 5 5
6 p 1 D 3 4 5
7 2 2 3 4 5 1
8 2 3 4 5 1 p
9 2 4 5 1 2 3
10 2 9 1 2 3 4
11 3 1 3 5 2 4
12 3 2 4 1 3 5
13 3 K 5 2 4 1
14 3 4 1 3 5 2
15 3 5 2 4 1 3
16 4 1 4 2 5 3
17 4 2 5 3 1 4
18 4 3 1 4 2 5
19 4 4 2 i 1
20 4 5 3 1 4 2
21 5 1 5 4 3 2
22 5 2 1 3 4 3
23 5 3 2 1 5 4
24 5 4 3 2 1 5
25 5 5 4 3 2 1

2.1.19 Principle of Multiple Linear Regressions

Walpole (2007) in most research problems where regression analysis is applied,
more than one independent variable is needed in the regression model. The complexity
of most scientific mechanisms is such that in order to be able to predict an important
response, a multiple regression model is needed. When this model is linear in the
coefficients, it is called a multiple regression analysis model. For the case of p

independent variables x,, x,,...,x,,, the mean of Y |x,,x2,...,xp is given by the multiple

linear regression model
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,Uy XX Xp = ﬂO + llel + -+ ﬂpxp (285)

and the estimated response is obtained from the sample regression equation:
V= ﬂ0+,81xl+---+,3pxp (2.86)

where each regression coefficient f, is estimated by ,B, from the sample data using the

method of least squares. As in the case of a single independent variable, the multiple
linear regression models can often be an adequate representation of a more complicated
structure within certain ranges of the independent variable.

Multiple linear regression models, particularly when the number of variable exceeds
two, knowledge of matrix theory can facilitate the mathematical manipulations
considerably. Suppose that the experimenter has p independent variable x,, x,.,...,x, and

nobservations y,, y,,..., y, , €ach of which can be expressed by the equation

=6+ Bx + Bxy+e- + ﬂpxlp T &

N=F + Bxy + Bxp+-- + ﬁpx2p * &,

(2.87)
Yu= By + Bxy + BpXpp -+ Bx,+ &,
Where the error terms are assumed to have the following properties:
1. E(5)=0
2. Var(,)=o0"(constant); and (2.88)

35 Cov(gj,sk)z 0, j#k

In matrix notation, equation (2.87) becomes

32 1 x, x;, - %, || 6 &
V| |l x5 xp o X, || B &

N = . - . i 5|l
yn 1 xnl xn2 o xnp ﬂr gn

And the specifications in equation (2.88) become

1. EfE)=0
2. Cov(c)=E(eg)=0"1

The errors of the estimation y, by p are y, —J, =e, (by using the method of least
squares) (see Appendix A.7)
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2.1.20 Analysis of Data

Mitra (1998) found that the statistical procedure used most often to analyze data is
known as the analysis of variance (ANOVA). This technique determines the effects of
the treatments, as reflected by their means,“through an analysis of their variability.
Details of this procedure are found in the listed reference (Box, et al., 1978). The total
variability in the observation is partitioned into two components: the variation among
the treatment means (also known as the treatment sum of squares) and the variation
among the experimental units within treatments (also known as the error sum of
squares). We have

Total sum of square (SST) = Treatment sum of square (SSTR)

+ Error sum of square (SSE)

The mean squares for treatments and for error are obtained by dividing the
corresponding sum of squares by the appropriate number of degree of freedom. This
number is 1 less than the number of observations in each source of variation. For a
balanced design with p treatments, each with r replications, the total number of

observations is rep. The total variability, therefore, has (rep —1)degree of freedom.
The number of degree of freedom for the treatments is (p —1). For each treatment, there
are r observations, so (re—1)degrees of freedom apply toward the experimental error.

The total number of degrees of freedom for the experimental error is, therefore,
p(re—1). We have the following notation:

p = Number of treatments

re = Number of replications for each treatment
¥, = Response variable value of the j t experimental unit that is assigned

treatment £, 1 =1,2,5,00 0 5 e LsLsSsmnagle

¥, = Sum of the responses for the ith treatment; that is, Z Y,
j=1

¥, = Mean response of the ith treatment; that is,&
re
p r
¥y = Grand total of all observations; that is, ZZ Y,
i=1 j=1
i = Grand mean of all observations; that is, P/
rep

The notation, consisting of re observations for each of the p treatments, is shown in

Table 2.11. The computations of the sum of squares are as follows. A correction factor
C is first computed as:

C S (2.89)
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The total sum of square is:

SST=Y Yy, -C (2.90)

i=l j=1
The treatment sum of squares is determined form:
£ 2
2V
SSTR ==—-C ©.91)

r

Finally, the error sum of square is:
SSE =ISST —SSTR (2.92)

Next, the mean squares are found by dividing the sum of squares by the corresponding
number of degree of freedom. So, the mean squares for treatment are:

MSTR = SR (2193)
p-1
The mean square error is given by:
MSE = S0 (2.94)
p(re-1)

Test for Differences among Treatment Means

It is desirable to test the null hypothesis that the treatment means are equal against the
alternative hypothesis that at least one treatment mean is different from the others.
Denoting the treatment means by 4, 4,,..., 4, , we have the hypothesis

Hy:py=p=-=p,
H,: Atleast one g, is different from the others

The test procedure involves the F —Statistic , which is the ratio of the mean squares for
treatment to the mean squares for error. The mean square error (MSE) is an unbiased

estimate of o, the variance of the experimental error. The test statistic is:

_ MSTR

e 295
MSE e
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Table 2.11 Notation for the Completely Design

Replication
Treatment 1 2 .- re Sum Mean
1 I Y2 s Vire % iz
2 Yai Y2 Vire Y2 »
' Vi p Nire . Y,
y. y

with (p —1) degrees of freedom in the numerator and p(re—1)degrees of freedom in the
denominator. For a chosen level of significance « , the critical value of F', which is

found from the table value of F, is denoted by F, ,, .. - If the computed test

statistic F>F,  \ e)»

treatment means are not all equal at the chosen level significance. This computational
procedure is known as analysis of variance; it is shown in tabular format in Table 2.12.

the null hypothesis is rejected, and we conclude that the

Table 2.12 The analysis of variance (ANOVA) table

Source of Hegroes Sum of Mean
Variation of Squares Square F
Freedom q q
MSTR = SSTR = MSTR
Treatments | SSTR p=l MSE
1 _SiE
Error p(re-1) SSE plre-1)
Total rep—1 SST

2.1 Literature reviews

The general purpose of SPC is useful in establishing and maintaining a state of
statistical control and identifying special cause of variation. Two terms frequently used
in SPC are Common cause and Special cause variations. In general terms, Common
cause variation refers to the inherent natural variability in a process. Special cause
variation is attributable to some assignable cause or change to the process which
manifests itself in form of outliers, shifts or trends of some sort in data stream. Woodall
(2000) states that differences in opinion exist about the purpose and scope of SPC
strategy due to diversity of those working in quality field, including quality gurus and
their followers, consultants, quality engineers, industrial engineers, professional
practitioners, statisticians, managers, and others. In this section, the overall purpose and
scope of SPC strategy are- reviewed. Shewhart and his associates developed the
Shewhart control charts during 1920’s at Bell Telephone Laboratories. Shewhart (1931)
defined maximum control as “condition reached when the chance cause fluctuations in a
phenomenon produced by constant system of large number of chance causes in which
no cause produces a predominating effect”. He states that the primary purpose of control
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chart is to distinguish between two types of variation, Common cause and Special
cause, in order to prevent over reaction or under reaction to the process. He considered
Common cause of variation as set of causes attributable to inherent nature of the process
that cannot be altered without changing the process itself, and also assignable cause of
variation as unusual shocks and disruptions to process the causes of which can and
should be removed. Some authors including Juran (1999) believed that control chart
and test of hypothesis are very closely related. In this context there is an accept/reject
decision based on the value of charted statistical and decision regions. Thus, a process is
said to be in statistical control if the probability distribution representing quality
characteristic is constant over time. The control chart is a useful tool for distinguishing
between “in control” (stable) and “out of control” (unstable) operation in a case of an
identically independently distributed (iid) data stream. Woodall (2000) stated that
control charts are used to check process stability. In this context, a process is said to be
in state of “statistical control” if the probability distribution representing the quality
characteristic is constant over time. If there are some changes in the distribution, the
process is said to be “out of control”. Deming (1986) saw possibility of long term
process improvement as being far more important than detection of changes. Deming
clearly stated that meeting specification limits is not sufficient to ensure good quality
and the variability of quality characteristic should be reduced such that “specifications
are lost beyond horizon”. Thus, for his goal of statistical process control corresponds to
centering quality characteristic at target and continuously reducing variability. Deming
strongly advocated the use of control charts but argued empathetically against
hypothesis testing. Montgomery (2001) stated that SPC is a powerful collection of
problem solving tools and useful in achieving process stability and improving capability
through reduction of variability. Accordingly, the fundamental use of control chart is
reduction of process variability, monitoring and surveillance of a process, estimation of
product and process parameters. He stated that most important use of control chart is to
improve the process by reducing variability. The process improvement activity using
control chart is illustrated in Figure 2.18

Input Output
Process
Measurement
System
- Detect assignable
Venfy and £
s cause
follow up
Implement
corrective action Identify root cause

of the problem

Figure 2.18 Process improvement using control chart (Montgomery, 2001)
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Steiner and Mackay (2000) stated that there are three main uses of control charts:

1. To reduce the variation in an output characteristic by establishing a control
chart to signal the change of an unidentified process input. The occurrence of
the signal sets effort to identify this input.

2. To determine by when and by how much a process should be adjusted.

A control chart is setup and adjustments are made only when a signal occurs.

3. To demonstrate process being stable and capable. The purpose here is to
provide information to make decision regarding the receiving inspection.

Box and Luceno (1997) states that during a successful implementation of a control
chart, practitioner needs to address three important decisions:

1. Is control chart an appropriate tool for application?
2. Which type of control chart to use?
3. Where should control limits be placed?

They indicated that the answer to the first question depends upon whether or not stable
periods without changes in process mean or variance exist. If there is a stable variance
but the process mean drifts, then automatic process control strategy should be
considered as a means of reducing variability. They pointed out that answers to the
second and third questions will depend on how these charts will be used; i.e. real time
process monitoring, problem solving, assessment of process stability, nature of
disturbance to be detected.

Control charts have been widely used for monitoring process stability and capability.
Control charts are based on data, representing one or several quality-related
characteristics of the product or service. If these characteristics are measurable on
numerical scales, then variable control charts are used. On the often work, if the quality-
related characteristics cannot be easily represented in numerical form, then attribute
control charts are useful (Gulbay and Kahraman, 2006). Generally, they concentrated on
if the process is ‘‘under control” or ‘‘out of control”. However other quality constraints
like quality cost, rate of errors, acceptance probability, consumer and producer risks,
etc. must also be taken into account.

The quality chart that is averaged by exponential weighted method (Robert, 1959) is
suitable for the data that has an average changed or slightly shifted. This shift could not
be observed if Walter Shewhart’s quality graph (Shewhart, 1942) is used in the
estimation (Crowder, 1989; Lucus and Saccucci, 1990). Few studies attempted to
establish the model in selection of parameters for using in the EWMA chart. Girschick
and Rubin (1952) studied the selection of parameters for Shewhart X chart using the
Duncan’s model (1956). For Grant and Leavenworth (1996), they designed the selection
of parameters using the DS EWMA charts (double sampling chart) for the EWMA

control chart by considering with average run length(ARL) . When the process is in the

control region withr =0.75, the DS EWMA chart will have more efficiency in
defective detection than the normal EWMA chart. But if r=0.5 or r=0.25, the
EWMA chart will be suitable to detect small shifts (a small change of mean) and the DS
EWMA chart is good for large shift detection.
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Estimation of ARLdepended on r value using Simulation was studied by Roberts
(1959). Robinson and Ho (1978) derived function of ARL value and established the table
of ARL value. Later, Crowder (1987a) developed a method to convert ARL value into
general term. Crowder (1987b, 1987c) and Saccucci, et al. (1990) calculated average run

length (ARL)and property of the EWMA chart, and established the ARL value table

for the EWMA chart. Montgomery and Mastrangelo (1991), -Mastragelo ~and -
Montgomery (1995), and Mastrangelo and Brown (2000) studied the application of the
moving centerline EWMA. Reynolds (1996a, 1996b) studied the EWMA chart by

varying sampling number (n)and the width of control limit(k). Selection of quality

control chart and fixation of parameters for the chart needs to concern the cost in
process. Moreover, utilization of economic methodology together with the quality
control chart would yield the lowest cost in production. For example, Magalhdes and

Epprecht (2001) used the economic design together with variable parameters for X chart
and revealed that this results in lower cost than the use of constant parameters.

Lorenzen and Vance (1986) proposed a general method for determining the economic
design of control charts. This method can be applied regardless of the statistic used. It is
necessary to calculate only the average run-length of the statistics when assuming that
the process is in-control and also assuming that the process is out-of-control in some
specified manner. Alexander, et al. (1995) combined Duncan’s cost model with the
Taguchi loss function to develop a loss model for determining the three test parameters.
This loss model explicitly considers the quality. Montgomery (2001) and Ho and Case
(1994b) considered economic design of control charts for monitoring the process mean,
which has been investigated extensively in the literature. Ho and Case (1994a)
presented literature on control charts employing an EWMA type statistic. Several
authors have explored the economic design of EWMA control charts to monitor the
process mean. Park and Reynolds (1994) extended the traditional economic design of an
EWMA chart to the case where the sampling interval and sample size may vary
depending on the current chart statistic. Park and Reynolds (2008) considered IPC
monitoring schemes by using an economic design approach under the inherent
wandered of the process. It can be represented as an ARIMA (0,1,1) model. They
consider a combination of two EWMA charts, with one EWMA statistic using the
observed deviations from target, and the other EWMA statistic using the squared
deviations from the target. They found that, if it is desirable to use only one control
chart for simplicity, then the two EWMA control chart provides very good performance
and would be preferable to using the EWMA chart. It is interesting to note that the
EWMA chart is the standard. It would usually be considered for monitoring a process in
the current setting, but the two EWMA control chart, actually have much better
performances. Serel (2008) considered the case where the assignable cause changes only
the process mean or dispersion. The economic design of EWMA mean charts was extended
to the case where quality related costs are computed based on a loss function. They used the
loss function to estimate. Serel and Moskowitz (2008) considered when the assignable
causes lead to changes in both process mean and variance, simultaneous use of mean
and dispersion charts is important for detecting the changes quickly. Joint economic
design of EWMA charts for process mean and dispersion have been explored.

The use of a control chart requires the user to select several design parameters. For the
fixed parameter control chart, these design parameters requiring predetermined, include
the fixed sample size, control limits, and sampling interval length. One method of
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designing control chart based on an economic criterion is said the economic design. The
usual approach to the economic design is to develop a cost model for a particular type of
manufacturing process, and then derive the optimal parameters by minimizing the long-
run expected cost per hour. The cost models have been widely used in determining the
design parameters. The EWMA control chart design methods specify the optimal .

selection of variable parameters (sample size(n), the interval between samples (),
exponential weight used for each quality characteristic(r), the control limit for the

EWMA process (k)in the chart. These decisions were based on statistical criteria,

through restriction the probability of Type I or Type II errors. Using control charts is in
fact economically motivated though the selection of design parameters did not original
use cost information to motivate. The operator can control the cost of running and
monitoring a process by ad hoc basis though cost tradeoffs are not explicitly used to
choose chart parameters. So control charts became increasingly popularity, the idea of
designing charts on the basis of cost tradeoffs, leading to economic design. To use the
economic design and statistic criteria, the purpose is to minimize the average cost when
a single out-of-control state (assignable cause) occurs. Duncan’s cost model includes the
cost of sampling and inspection, the cost of defective products, the cost of false alarms,
the cost of searching for assignable caused, and the cost of process correction.

Stoumbos, et al. (2000) used the theory of a Variable Sampling Interval (VSI) and
economic model to reduce the cost in production. For Chou, et al. (2008), they
developed economic design of EMMA by Varying Sampling Intervals with sampling at

Fixed Times (VSIFT) to estimate warning limit coefficient value(w), the control limit

coefﬁcient(k), and the exponential weight constant(r) for the lowest cost using the

expense model of Lorenzen and Vance (1986). From the study, it was found that if the
mean of the process has largely shifted from the target mean, in general this will reduce
the sample size, resulting in a decreased number of sampling in each fixed interval and
wider control limits. The increased frequent alarm will result in an increased sampling
number and a wider control limits. The production cost of the defective products will
increase when the production is out of the control limits, leading to a decreased
sampling time. But if the cost per sampling unit is higher, this would lengthen the fixed
sampling interval. Moreover, both the production cost of the defective products when
the products are either in control limits or out of control limits, and the increased
frequent alarm are a cause of higher total expenses. Fixation of parameters

(n, h, w,k,r)for quality control chart is also as important as selection of the chart. This

is because parameter value has effect on average run length(ARL), which is the mean

of the points locating within the action region. Therefore, ARL value of the in control
process and the cost in quality inspection will be higher than those of out of control.

There are several researchers studied for optimal parameter fixation. For example,
Stoumbos and Reynolds (2001) used variable time intervals (4) and size of samples as

parameters in the mix chart between EWMA chart and X chart. The results showed that
the production cost was reduced. Besides, Marcela and Costa (2008) used double
sampling for the EWMA chart and found that the number of warning was reduced when
the average was changed without an increase of warning rate.
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In this latter case a variable parameter sampling interval (VPSI) was considered by
Runger and Pignatiello (1991); Amin and Miller (1993); Runger and Montgomery
(1993); Reynold, et al. (1988, 1990) and Reynolds (1996a, 1996b). The variable
sampling interval feather was extended to Cusum and EWMA charts (see Reynolds, et
al., 1988, 1990 and Saccucci, et al., 1990). Recently, Baxley (1995) presented an
application of EWMA chart with VPSI for Monsanto’s nylon fiber plant in Pensacola,
Florida. The size of samples was the second design parameter to be considered variable
(see Prabhu, et al., 1993 ; Costa, 2008), subsequently, both parameters (sample size and
sampling interval) were made variable (see Prabhu, et al., 1993; Costa, 1994; Rendtel,
1990) consider Cusum schemes with variable sampling intervals and sample size.
Finally all design variable parameters were considered variable the economic design X
chart with VSS was studied by Flaig (1991) and Park and Reynolds (1994), Park and
Reynolds proposed an economic model for X chart with VSS when the process is
subject to the occurrence of several assignable causes. Das, et al. (1997) developed a
cost model for optimal dual sampling interval (DSI) policies with and without run rules.
Also, Das, et al. (1997) proposed a further generalization of VSI policy for X chart in
which the sampling intervals are treated as random variables and the sample sizes are
considered a function of the sampling intervals. Magalhdes and Epprecht (2001)
proposed an economic design of a variable parameters X chart. Recently,
Pongpullponsak and Charongrattanasakul (2009) proposed minimizing the cost of
integrate systems approach to process control and maintenance model by EWMA
control chart using genetic algorithm.

Generally there are two groups of SPC, ie. Univariate Statistical Process Control
(USPC) and Multivariate Statistical Process Control (MSPC) which are used for
different scenarios. The univariate control chart has only one process output variable or
quality characteristic measured and tested. One of the disadvantages of the USPC is that
for a single process, there are many variables simultaneously. But there are many
situations where control chart of two or more correlated quality characteristics are
important, so the univariate quality control chart is not always the best method for
monitoring correlated characteristics. This is because the correlations between variables
result in degrading the statistics performance of these charts and the advancement in
technology, complexity in product’ process, customers’ demand of higher quality, and
competition in market , so it is necessary to use multivariate statistical process control.
One common method of constructing multivariate control charts is based on Hotelling’s
statistics (Hotelling, 1974; Alt, 1985). This T?chart can be considered as the
multivariate extension of the univariate Shewhart control charts, based on the
monitoring of the means in independent samples. Multivariate CUSUM charts have
been proposed by Woodall and Ncubed (1985) and Croisier (1988).

The first reference on MEWMA control charts corresponds to Lowry, et al. (1992) who
define MEWMA as an extension of the univariate, only takes into account current
process data, whereas MEWMA chart also includes past data, thereby it being more
powerful to detect small changes in the process. Univariate systems only controlled one
quality variable or characteristic. In multivariate systems a set of p interrelated variable
will be controlled. Although MEWMA is more sensitive to small shifts than Hotelling,
Hotelling 77 is more sensitive in detecting a sudden change in the parameters, to take

advantage of the power of control chart. Murphy (1987) proposed a method to identify
the “out-of-control” variables based on discriminating between the process of being “in
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control” or “out-of-control”. Murphy divided the complete set of variables into two
subsets and then tried to determine which one of the subsets caused the “out-of-control”
signal.

An extension -of Murphy’s work is Chua aiid Montgomery (1992). They proposed a
three steps quality control process by using a MEWMA control chart, a backward
selection algorithm a hyper plane method. A Multivariate Exponential Weighted
Moving Average (MEWMA) control chart is established after every new observation a
continuous basis until an out-of-control signal appears. If an out-of-control signal
appears, then the backward selection algorithm and the hyper plane method are used to
diagnose it. Linderman and Love (2000) presented the economic and economic
statistical design procedure for MEWMA control chart based on Lorenzen-Vance cost

function, with a lower bound on the in-control average run length (ARLO) and upper

bound for the out-of-control average run length(ARL1 ) .They solved this model by the

Hooke and Jeeves’s algorithm (1961) in which the ARL .was estimated by simulation.
By changing the method of ARL estimation from simulation to Markov chain approach,
Molnau, et al. (1997) later used the same model and presented the results based on an
experimental design.

Van Nuland (1992-1993) proposed a circle chart, this circle chart is only approximate
and our simulations show that for 7, the subgroup size, as large as 20, its actual false-
alarm rate is 0.018 when the nominal rate is 0.05. This is very conservative and the
resulting chart is therefore less sensitive in detecting shifts. Chao and Cheng (1996)
developed a control chart, the Semicircle (SC) chart. This chart can jointly combine the
detection of the mean shift and variability change into one single chart, and is simple to
use and easy to understand. One of the most impressive features of the Semicircle chart
is that it is easy to attribute an out-of-control signal to the cause of the mean shift or/and
variability change. However, the SC chart is insensitive to small changes within a
process. Combining the features of the Semicircle chart with the EWMA technique, the
EWMA technique is directly applied to the static employed in the SC chart. Chen, et al.
(2004) proposed a new EWMA Control Chart for Monitoring Both Location and
Dispersion. This chart is very sensitive in detecting small changes within a process
when a mean shift accompanies an increased variability change. It can simultaneously
monitor both the process mean and the increased process variability, and detect the
source and the direction of an out-of-control signal.

In this work, we develop an economic model of EWMA control chart with variable
parameters by Lorenzen and Vance (1986). We used Costa Model to design variable
parameters which vary in real time, based on current sample information. This model is
developed, providing a cost function which represents the cost per time unit or
controlling the quality of a process through a MEWMA control chart and Semi-circle
MEWMA control chart. As the cost function is a function of the design parameters of
the control chart, it provided a device for optimal selection of design parameters. So, we
will consider the cost function of MEWMA control charts having all design parameters
variable.



