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Abstract . E 4 7 2 3 2

Many steady-state models of direct methanol fuel cell have been developed to study
the performance of the fuel cells. The transient behaviors, however, are also
important and need to be investigated since the operating conditions in the fuel cell,
such as, start-up, shut down, or sudden changes in the power level, sometimes
change. Furthermore, the two-phase mass transport is interesting since the reactant
and the product are in different phases. Therefore, a transient two-dimension two-
phase model of direct methanol fuel cell is developed. The model consists of multi-
phase, and multi-component transport and electrochemical reactions. The simulation
results of polarization curves agree well with the experimental data. The dynamic
behaviors of direct methanol fuel cell are studied in various current density step
changes. The simulation results show that the cathode overpotential represents the
undershoot behavior, whereas the cell voltage does not show the overshooting. Since
the magnitude of the cathode overpotential undershoot is small, the fuel cell is not
affected. Furthermore, the dynamic response of methanol mass transport is rather
slow. Therefore, one of the key factors that affects the cell voltage is the slow
response in the mass transport of methanol.

Keywords: COMSOL/ Direct Methanol Fuel Cell/ Dynamic Behavior/ Mass
Transport/ Overpotential/
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