

DEVELOPMENT OF DYNAMIC MODEL FOR HR-SOFC FUELLED BY VARIOUS PRIMARY FUELS

MISS SUREEWAN AREESINPITAK ID: 52910409

A THESIS SUBMITTED AS A PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN ENERGY TECHNOLOGY AND MANAGEMENT

THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT AT KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI

2ND SEMESTER 2010

COPYRIGHT OF THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT

602555824

ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

DEVELOPMENT OF DYNAMIC MODEL FOR IIR-SOFC FUELLED BY VARIOUS PRIMARY FUELS

MISS SUREEWAN AREESINPITAK ID 52910409

A THESIS SUBMITTED AS A PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN ENERGY TECHNOLOGY AND MANAGEMENT

THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT AT KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI

2nd SEMESTER 2010

COPYRIGHT OF THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT

Development of Dynamic Model for IIR-SOFC Fuelled by Various Primary Fuels

Miss Sureewan Areesinpitak ID: 52910409

A Thesis Submitted as a Part of the Requirements for the Degree of Master of Engineering in Energy Technology and Management

> The Joint Graduate School of Energy and Environment at King Mongkut's University of Technology Thonburi

> > 2nd Semester 2010

Thesis Committee

-the Zji

(Assoc. Prof. Dr. Navadol Laosiripojana)

K. Sudaprasent

(Dr.Kaokanya Sudaprasert)

SALL At.

(Prof. Dr. Suttichai Assabumrungrat)

Sult lft

(Dr. Sumittra Charojrochkul)

Jut em

(Assoc. Prof. Dr. Jarruwat Charoensuk)

Chairman

Co-Chairman

Member

Member

External Examiner

Thesis Title

Development of dynamic model for IIR-SOFC fuelled by various primary fuels

Student's name, organization and telephone/fax numbers/email

Miss Sureewan Areesinpitak

The Joint Graduate School of Energy and Environment (JGSEE) King Mongkut's University of Technology Thonburi (KMUTT) 91 Pracha Uthit Rd., Tungkru, Bangkok 10140, Thailand Tel. 080-556-5545 E-mail address: bo kolom@hotmail.com

Supervisor's name, organization and telephone/fax numbers/email Assoc. Prof. Dr. Navadol Laosiripojana The Joint Graduate School of Energy and Environment (JGSEE) King Mongkut's University of Technology Thonburi (KMUTT) 91 Pracha Uthit Rd., Tungkru, Bangkok 10140, Thailand Tel.0-2872-9014 Ext.4146 Email address: navadol_l@jgsee.kmutt.ac.th

Topic	Development of dynamic model for IIR-SOFC fuelled by various
	primary fuels
Student's name	Miss Sureewan Areesinpitak
Student ID	52910409
Advisor's name	Assoc. Prof. Dr. Navadol Laosiripojana
Co-advisor's name	Dr. Kaokanya Sudaprasert

Abstract

E 41086 Solid Oxide Fuel Cells (SOFCs) operate at high temperature and generally require the heating step for increasing system temperature from ambient to operating temperature of 1173 K. In the present work, a tubular SOFC was simulated with the aim of predicting the system temperature gradient with time during the starting-up period. Firstly, various gas compounds including nitrogen, hydrogen and synthesis gas (or syngas; the mixture of H₂ and CO) were applied as the heating media. The assumptions made include: initial temperature and pressure of 500 K and 1 bar; SOFC load voltage of 0.7 V; and a fuel utilization of 80%. During heating-up period, the characteristics of this SOFC system were predicted in terms of product gas distribution and temperature gradient (with time) along the length system. It was found that, for the case of SOFC heated by hot nitrogen, it takes around 30 hours for the system to reach its operating temperature of 1173 K. On the other hand, the SOFC fed by hydrogen, the temperature of the system reaches 1173 K after only 2 minutes due to the rapid exothermic electrochemical reaction; this extremely high heating rate (0.93K/s) could result in high thermal stress of material and subsequent damage of the SOFC system (based on the literature, the heating rates should be less than 0.5 K/s). In the case of SOFC fed by syngas, the SOFC temperature reaches 1173 K after 30 minutes. For the calculation, the heating rate of SOFC fed by syngas is 0.37 K/s and this rate is compatible with SOFC material. As the next step, the direct use of hydrocarbon fuels (i.e. methane, methanol and ethanol) as primary fuel and heating-up gas for SOFC with indirect internal reforming operation (IIR-SOFC) were investigated. It was found that the heating rates during the starting-up period for methane, methanol and ethanol were observed to be 0.31 K/s, 0.11 K/s and 0.26 K/s respectively, which is also compatible with the cell material. Among these hydrocarbon fuels, SOFC fueled by methanol was found to obtain the highest power density under steady state conditions. It should also be noted that the effect of inlet steam/carbon (S/C) ratio for IIR-SOFC fueled by these hydrocarbon fuels (i.e. methane, methanol and ethanol) was also studied by varying the S/C ratio from 2.0 to 3.0 and 4.0. It was found that the changing the inlet S/C ratio negligible effects on the heating rate during the starting-up period for all types of hydrocarbon feeds. Nevertheless, it noticeably affected the temperature of the system under steady state condition, from which the use of high S/C molar ratios (S/C ratio of 4.0) resulted in higher system temperature. Therefore, this leads to the lower power density achievement at steady state conditions. Finally, IIR-SOFC with co-flow pattern (co-flow of air and fuel steam though fuel cell) provided smoother temperature gradient along fuel cell and higher power density than that with counter-flow.

Keywords: Indirect internal reforming; heat-up period; Transient; Dynamic model; SOFC

ACHNOWLEDGMENT

I would like to express my appreciate to Assoc. Prof Dr. Navadol Laosiripojana, my supervisor and Dr. Kaokanya Sudaprasert, my co-supervisors, for the opportunity that they gave me for working with them and for their kind advice of this thesis

Sincere thanks for my committee members, Prof. Dr. Suttichai Assabumrungrat and Dr. Sumittra Charojrochkul for their value time. I also wish to thank my external examiner, Assoc. Prof. Dr. Jarruwat Charoensuk for his suggestions.

I would like to express my gratitude to The Joint Graduate School of Energy and Environment (JGSEE) and the Thailand Research Fund (TRF) for financial support throughout my study.

Finally, I wish to express my warm thanks to my family for their love, encouragement and financial support throughout my study.

CONTENTS

CHAPTER	TITLE	PAGE
	ABSTRACT	i
	CONTENTS	iii
	LIST OF TABLES	v
	LIST OF FIGURES	vi
	ABBREVIATIONS AND SYMBOLS	ix
1	INTRODUCTION	1
	1.1 Rationale	1
	1.2 Literature Review	4
	1.2.1 Kinetic Analysis and Kinetic Model of	4
	Methane Steam Reforming	
	1.2.2 Kinetic Analysis and Kinetic Model of	6
	Methanol Steam Reforming	
	1.2.3 Kinetic Analysis and Kinetic Model of	9
	Ethanol Steam Reforming	
	1.2.4 Modeling of SOFC	9
	1.3 Objective	16
2	THEORIES	18
	2.1 Fuel Cells	18
	2.2 Types of Fuel Cells	18
	2.3 Solid Oxide Fuel Cells	20
	2.3.1 Principle of SOFC Operation	20
	2.3.2 Solid Oxide Fuel Cell Stack Design	21
	2.3.3 Solid Oxide Fuel Cell Reforming Concept	21
	2.4 Autothermal operation	24
	2.5 System modeling	26
	2.5.1 Kinetic of steam reforming	26
	2.5.2 Thermal model	26
	2.5.3 Electrochemical model	27
	2.6 Heating up option	34

2.6.1 Nitrogen	34
2.6.2 Hydrogen	34
2.6.3 Methane	35
2.6.4 Methanol	36
2.6.5 Ethanol	38
METHODOLOGY	39
3.1 Mathematic model of IIR-SOFC study	39
3.1.1 Model geometry	39
3.1.2 Model assumption and equation	40
3.1.3 Model description	41
3.2 Framework study	45
3.3 Governing Equation	46
RESULTS AND DISCUSSION	47
4.1 Dynamic modeling of SOFC	47
4.1.1 SOFC heating up with nitrogen	47
4.1.2 SOFC heating up with hydrogen	49
4.1.3 SOFC heating up with syngas	49
4.1.4 IIR-SOFC heating up with methane	58
4.1.5 IIR-SOFC heating up with alcohols	65
4.2.6 Effect of inlet S/C ratio	80
4.2.7 Effect of inlet flow direction	82
5.1 Conclusions	84
5.2 Future work	85
REFERENCES	86

LIST OF TABLES

TABLES	TITLE	PAGE
1.1	Operating process	4
1.2	Summary of methane steam reforming rate expressions over Ni	5
	base-catalyst	
1.3	Summary of methanol steam reforming over different types of	8
	catalyst	
1.4	Summary of ethanol steam reforming over different types of	10
	catalyst	
2.1	Summary of different types of fuel cell technology	19
2.2	Electrochemical reactions in a SOFC	20
3.1	Dimension and constant parameter values of tubular IIR-SOFC	40
	system	
3.2	Transient 2-D dimensional model for tubular coated-wall reformer	41
3.3	Initial condition	42
3.4	Boundary condition for tubular IIR-SOFC	43

LIST OF FIGURES

FIGURI	E TITLE	PAGE
1.1	Reforming concepts for high temperature fuel cells	2
1.2	The reforming, fuel channel, and air channel temperature profiles	2
	of DIR-SOFC fueled by methane	
1.3	The reforming, fuel channel, and air channel temperature profiles	3
	of IIR-SOFC fueled by methane	
1.4	Temperature of the planar solid electrolyte for cross-flow pattern	11
1.5	Autothermal reactor schemes from the work of Ma.et.al	12
1.6	Cell Temperatures during a load change	14
1.7	Cell Temperature distribution transient response and Fuel cell	14
	output power	
1.8	Residual stresses after the first sintering process in the anode and	15
	the electrolyte	
1.9	Predicted temperature distributions for the SOFC operating at 0.7	16
	V	
1.10	Catalytic packed-bed reactor	17
1.11	Catalytic coated-wall reactor	17
2.1	SOFC operation	21
2.2	Typical designs for solid oxide fuel cell stacks	21
2.3	Basic design of external SOFCs	22
2.4	Basic design of IIR-SOFCs	24
2.5	Basic design of DIR-SOFCs	24
2.6	Analogy between fast flow reversal and countercurrent operation	26
2.7	The simplified operational fuel cell	28
2.8	The voltage of a typical air pressure fuel cell operating at about	30
	800°C	
3.1	Schematic view of IIR-SOFC with indirect internal reforming with	39
	coated-wall reformer	
3.2	Schematic model of IIR-SOFC with boundary number	42
3.3	Framework of this study	45
3.4	Flow diagram of coded procedure for COMSOL®	46

4.1	Temperature distribution of heat-up by hot nitrogen gas	48
4.2	Temperature distribution of heat-up by hydrogen	50
4.3	Concentration of H_2 along the cell for hydrogen	51
4.4	Concentration of H ₂ O along the cell for hydrogen	52
4.5	Temperature distribution of heat-up by syngas	53
4.6	Concentration of H ₂ along the cell for syngas	54
4.7	Concentration of H ₂ O along the cell for syngas	55
4.8	Concentration of CO along the cell for syngas	56
4.9	Concentration of CO_2 along the cell for syngas	57
4.10	Temperature distribution of heat-up by methane	59
4.11	Concentration of CH ₄ along the cell for methane	60
4.12	Concentration of H ₂ along the cell for methane	61
4.13	Concentration of H ₂ O along the cell for methane	62
4.14	Concentration of CO along the cell for methane	63
4.15	Concentration of CO_2 along the cell for methane	64
4.16	Temperature distribution of heat-up by methanol	66
4.17	Concentration of CH ₃ OH along the cell for methanol	67
4.18	Concentration of H_2 along the cell for methanol	68
4.19	Concentration of H_2O along the cell for methanol	69
4.20	Concentration of CO along the cell for methanol	70
4.21	Concentration of CO_2 along the cell for methanol	71
4.22	Temperature distribution of heat-up by ethanol	72
4.23	Concentration of C_2H_5OH along the cell for ethanol	73
4.24	Concentration of H_2 along the cell for ethanol	74
4.25	Concentration of H ₂ O along the cell for ethanol	75
4.26	Concentration of CO along the cell for ethanol	76
4.27	Concentration of CO_2 along the cell for ethanol	77
4.28	Temperature profile by time fueled by heat up gases during start up	78
	period	
4.29	Temperature profile by time each heat up gases in first hours	79
4.30	Power density profile by time each heat up gases in first hour	79
4.31	Temperature profile of S/C ratio of IIR-SOFC fueled by methane	80
4.32	Temperature profile of S/C ratio of IIR-SOFC fueled by methanol	81

4.33	Temperature profile of S/C ratio of IIR-SOFC fueled by ethanol	81
4.34	Power density	82
4.35	Temperature profile by time fueled by heat up gases during start up	83
	period with inlet flow pattern.	
4.36	The effect on power density of inlet flow pattern	83

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviations

DIR	Direct Internal Reforming
EMF	Electo-Motive-Force
ER	External Reforming
HHV	High Heating Value
IIR	Indirect Internal Reforming
IR	Internal Reforming
MCFC	Molten Carbonate Fuel Cell
MSR	Methane Steam Reforming
OCP	Open-Circuit Potential
PEMFC	Proton Exchange Membrane Fuel Cell
PEN	Positive electrode/Electrolyte/Negative-electrode
POX	Partial Oxidation Reaction
RWGS	Reverse Water-Gas Shift reaction
SOFC	Solid Oxide Fuel Cell
WGS	Water Gas Shift reaction

Symbols

A	Area, m ²
a_i	Activity of component 'i'
С	Total molar concentration, mol/L
C_p	Specific heat of the gas streams, kJ/molK
$D^{e}_{i,k}$	The effective molecular diffusivity, m ² /s
D_i^{ks}	The Kundsen diffusivity, m ² /s
Ε	EMF or open circuit voltage, Volts
F	Faraday's constant
F_{12}	Gray-body transfer factor from surface 1 to surface 2
ΔG_f	The change in Gibbs free energy of formation

Δg_{f}^{o}	The change in Gibbs fee energy of formation per mole (kJ/mole) at STD
ΔH	The change of heat of reaction, kJ/mol
$(-\Delta H)_{elec}$	Heat of the electrochemical reaction, kJ/mol
j_0	Exchange current density, mA/cm ²
j	Current density, mA/cm ²
$j_{\scriptscriptstyle H_2}$	Current density from hydrogen oxidation reaction, mA/cm ²
k_i	Rate constant for reaction 'i'; unit will be specific to the form of the
$k_{_{cond}}$	rate expression Thermal conductivity, W/m ² K
N_{i}^{D}	The bulk molar diffusive flux of gas component, mol/ms
n	
n P _{SOFC}	Number of electron that pass round the external circuit The local power density, W/m^2
p^{o}	Standard partial pressure, atm
p_i	Partial pressure of species i
R	Universal gas constant; 8.414 kJ/ molK
R _{elect}	The hydrogen oxidation reaction rate, mol/m ² s
R_{ohm}	Ohmic Polarization, Ωm^2
Q_{rad}	The heat flux (W) from convection
$q_{\it cond}$	The heat flux from conduction, W/m ²
q_{conv}	The heat flux from convection, W/m^2
ΔS	The change in Entropy, kJ/mol
Т	Temperature, K
$U_{\it eff}$	Fuel utilization factor
V_{call}	Voltage drop of the whole cell, Volts
V_{ohmic}	Voltage drop caused by ohmic losses, Volts
V_{act}	Voltage drop cause activation losses, Volts
x_i	The mole fraction of gas

Greek letters

$\alpha_{a,c}$	Charge transfer coefficient of anode and cathode
σ	Stefan-Boltzmann coefficient
ε	Emittance
$\eta_{\scriptscriptstyle cell}$	Cell efficiency
$\lambda_{_{air}}$	Air ratio
Superscripts	
0	Standard condition
Subscripts	
i	Component (methanol, water, hydrogen, etc.)
j	Reaction (SRM, WGS, etc.)
Act	Activation losses
Cell	Cell stack
Con	Concentration losses
ohm	Ohmic losses
ohm elec	Ohmic losses Electrochemical reactions