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Abstract

Eqmas

Solid Oxide Fuel Cells (SOFCs) operate at high temperature and generally require
the heating step for increasing system temperature from ambient to operating temperature
of 1173 K. In the present work, a tubular SOFC was simulated with the aim of predicting
the system temperature gradient with time during the starting-up period. Firstly, various
gas compounds including nitrogen, hydrogen and synthesis gas (or syngas; the mixture of
H, and CO) were applied as the heating media. The assumptions made include: initial
temperature and pressure of 500 K and 1 bar; SOFC load voltage of 0.7 V; and a fuel
utilization of 80%. During heating-up period, the characteristics of this SOFC system were
predicted in terms of product gas distribution and temperature gradient (with time) along
the length system. It was found that, for the case of SOFC heated by hot nitrogen, it takes
around 30 hours for the system to reach its operating temperature of 1173 K. On the other
hand, the SOFC fed by hydrogen, the temperature of the system reaches 1173 K after only
2 minutes due to the rapid exothermic electrochemical reaction; this extremely high
heating rate (0.93K/s) could result in high thermal stress of material and subsequent
damage of the SOFC system (based on the literature, the heating rates should be less than
0.5 K/s). In the case of SOFC fed by syngas. the SOFC temperature reaches 1173 K after
30 minutes. For the calculation, the heating rate of SOFC fed by syngas is 0.37 K/s and this
rate is compatible with SOFC material. As the next step, the direct use of hydrocarbon
fuels (i.e. methane, methanol and ethanol) as primary fuel and heating-up gas for SOFC
with indirect internal reforming operation (IIR-SOFC) were investigated. It was found that
the heating rates during the starting-up period for methane, methanol and ethanol were
observed to be 0.31 K/s, 0.11 K/s and 0.26 K/s respectively, which is also compatible with
the cell material. Among these hydrocarbon fuels, SOFC fueled by methanol was found to

obtain the highest power density under steady state conditions. It should also be noted that
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the effect of inlet steam/carbon (S/C) ratio for [IR-SOFC fueled by these hydrocarbon fuels
(i.e. methane, methanol and ethanol) was also studied by varying the S/C ratio from 2.0 to
3.0 and 4.0. It was found that the changing the inlet S/C ratio negligible effects on the
heating rate during the starting-up period for all types of hydrocarbon feeds. Nevertheless,
it noticeably affected the temperature of the system under steady state condition, from
which the use of high S/C molar ratios (S/C ratio of 4.0) resulted in higher system
temperature. Therefore, this leads to the lower power density achievement at steady state
conditions. Finally, [IR-SOFC with co-flow pattern (co-flow of air and fuel steam though
fuel cell) provided smoother temperature gradient along fuel cell and higher power density

than that with counter-flow.

Keywords: Indirect internal reforming; heat-up period: Transient; Dynamic model; SOFC
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