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31Uy Abstract (1B¥139N7 )

Project Code : TRG5680051

Project Title : Integration of steam/carbon dioxide electrolysis and hydrogen separation
membrane using reversed reaction of proton-conducting solid oxide fuel cell for efficient

hydrogen and syngas productions

Investigator : Asst. Prof. Dr. Pattaraporn Kim
Department of Chemical Engineering, Faculty of Engineering, Mahidol

University

E-mail Address : pattaraporn.kim@mahidol.ac.th

Project Period : 2 years

The objective of this research is to synthesis syngas (H,+CO) from CO, and steam
through a solid oxide electrolysis cell (SOEC). The work has been divided into two parts: 1)
Development of proton conducting SOEC’s performance and 2) Development of cell fabrication

method.

In the first part, BaysCeSry,O; (BCS) and BaCeygZr, 4,05 were synthesized using a
conventional solid state reaction method. The effect of parameters (Precursor, calcination time
and temperature) on %Perovskite and crystallite size was studied. It was found that the
precursor had a significant impact on %Perovskite. When BaCl; was replaced by BaCOs, the %
Pervoskite increased (BCS: from 41% to 100% and BCZ: from 33% to 55%). Calcination
temperature and time also affected %Perovskite and crystallite significantly. When the materials
were tested with Reverse water gas shift reaction, it was found that BCZ exhibits the highest
%CO, conversion between 600-750 °C and BCSY and BCSG exhibit the highest %CO,

conversion above 750 OC.



Development of cell fabrication method is divided into two parts: in the first part,
increasing cell’s relative density by ultrasonic assisted precipitation. It was found that the
crystallite size of product decreases when using ultrasonic during precipitation and relative
density increases from 62% to 68%. The ultrasonic precipitation method not only help decrease
crystallite size of product but decrease calcination temperature to 900°C, comparing to solid

state reaction that calcination temperature between 1097-1591°C is required.

The second part is to increase cell’s relative density by using sintering additives. The
effect of sintering additives on cell's relative density is determined. Addition of 1%wt. of NiO,
Co0,03, and ZnO into Gd doped BaCeO; (BCG), the relative density obtained is 88%, 97% and
98%, respectively, comparing to pure BCG (68%). When the effect of Gd and Y doping is
studied, it is found that there is no significant impact on cell’s relative density. The BCG with
sintering additives are tested under Reverse water gas shift reaction. It was found that
NiO/BCG exhibits the highest %Yeild and CO, conversion when operating temperature is below
650°C (at 650°C 35%Yeild and 65%CO, conversion). At temperature 800°C, Co,04/BCG
exhibits 60%Yeild and 75% CO, conversion. The Ni/BCG shows low yield and high CO,
conversion at high temperature. This can be caused by carbon deposition on the catalyst,
confirmed by Temperature program of oxidation (TPO). The steam electrolysis reaction is also
studied. It was found that ZnO/BCG exhibits lowest activation energy of conduction at 52.46

kd/mol.

Keywords : Solid oxide electrolysis cell; Hydrogen; Syngas; Sintering additive; Ultrasonic

assisted precipitation
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1.5.4.1 MIFIANzAMBITYJAenan1uzwasudy (Solid state reaction)

AP NIFILATIZANUANG NI NUEINA LARITNRAA THNN LA R AN RINIIOLANGIINY LA 8LRNIE
qm%{}mumsé’aLmﬁ:ﬁﬁl,mﬂ@mﬁ'uﬁfu NﬁﬂLLa:mgmﬂmaamsﬁé%'aLﬂiﬁ:ﬂ@?ﬁﬁﬂwmumn@mﬁ‘u
Aad o <4 ) wna A v 1 ad 1 ana & oA A
AFmsFaanzilasnd linldtiugwlaun 35U §Asesauevasuds uaiasngunnluag
l4f (calcination temperature) TuiA3u1g9 (1090-1590 °C) [17] aypmafdiazildasdauwa
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1.4.4.2 MIFIATZAMEITANAZNOY (Precipitation)

A v o @ ad . i @ ) o = av A A o o aA
LWhDIIINYDIMNAVDIID Solid state  reaction  @IN/D ﬂqlﬂwﬁquqaﬁﬂLﬂﬂqmaﬁﬂUQﬁ
o e o €  ad . S ! ) @ Aa
RILAINEHBU GUINNNEY I@ULaquﬂqiﬁﬂLﬂiqz'ﬂ@')ﬂ’lﬁ Wet chemical Gﬁﬂﬂq@]')qﬁ]?&%’lﬁllﬁ‘l@ﬁqiﬂ&l
[~3 = o ada [ . ad J = o ¥
Tu']@a%ﬂ']ﬂ“ﬂu’]@LaﬂLLﬂzﬂJﬂqiﬂizfﬂ’]U@'ﬁLLﬂ‘U AINMIaneznaw LUw Wet chemical jﬁﬁuﬂsﬁﬂﬂqiﬂ
& o o o . L. 2 A o A o a o e a
aqiﬂﬂ@]uwawﬂusL%iZ@Uaz@laN (atomic-level mixing) 5]\‘]1]LL%’JI%Ngﬂﬂ'ﬂzslﬁﬁ’]iwﬂ@]ﬂmsﬂﬂwmuq@
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31338084 Oliveira et.al. [22] VL@‘Y]"Iﬂ']ia\‘]Lﬂj’]ZV\ﬁqi@nuqiﬂiﬂau aﬂL'ﬂiﬂﬂJI@l}LLULiﬂﬂJ

F19M (BaCey oY, 10:5) lana3aaau (Precursor) Nl leun Ba(NOs), 0.03 Tua , Ce(NOs)s6H,0



0.027-0.03 Tua uaz Y(NOs)s6H,0 0-0.003 lwa tdwssuanlufianasnauan ialudatislu
n13AN@znan (Precipitating  agent) lasAIuquen pH Ikasfirindy 2.8 anaaszuziIa1Ng
ANATNan mﬂauﬁ"l,@mﬂvlmmLLﬂa"LGﬁﬁﬁqm%Qﬁ 1,100 °c  Hwaan 1 Talus Ifansuaas et
BaCey,Y0:0:5 Niamwiatade 300 wiluwuas fawiwisewos Schmid  etal.  [23] lavinns
FIUATIZA SrCe0, fpdEmMIananaunEwas i lanasaeuils ldun Srco, was Ceo,
gﬂazmﬂlﬁagjilugﬂmaomsﬂs:naﬂumm wiranaznanlasldiantneatduargaralunis
ANATNOU @nmﬂauﬁqnmgﬁﬁaa LLaﬁ”’;ﬁﬁVLaJLmLmaVLmﬁﬁqmﬁnﬁ 940 °C a1 5 1alue ld
Juasnaand SrCe0; U389 Handal etal. [24] lavinnssaiangsd BninJouuas
wudnialadsiunuludisoneantad  (CegonYo1Mn,0,.5) A2835N1sanaznausINlaaLaToy
Ce(NO,)s, Y(NOs); uaz MnCl, ¥nanazansliidnnu snniwinluanazneuialaslasls
1382818 hexamethylene-tetramine 15395 1 M Hudtisanaznan taznaud lainlunsas
wazandlayls 2-propanol 11} Lma"l,snﬁﬁqmﬁgﬁ 1,400 °C fluran 12 Talus Ididunednirsow
wazhuamialavUsiwnuludisoneanos (Ceyo, Yo MnO,.5)
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AUANA1Y UAzTRALSZANTUTUYDIRIITTIDANAZNOWAUAN AT ﬁwaﬁﬂﬁgﬂmuawm@
YRIRNTHAAAUNUANA19NY [24, 25] 1NUII8Vad  Kim-Lohsoontorn  et.al. wuinlunis
§31a3129% CeO, Uay BaCeO; @18813T18ANAzNanfinandann (NaOH  13suifisuniy
(NH,4),C,0,) E&dwalﬁgﬂi”mLLawm@maammamﬁmsﬁu@m@mﬁ‘uashd"ffmﬁ]u nanAalunng
FILATZH CeO, I@Ulﬁmsﬁz\ﬁﬁuﬁaglugﬂﬂaa%ﬁ M3 20 M NaOH Huditisanaznau %
msw'ﬁmﬁm«?ﬁﬁﬁwﬁmﬂugﬂLwiaﬁ“nm@im:é'umiu (TEM: 24 nm diameter and 129 nm long)
Tupmeiilold 1 M (NH,),C,0, Wudrtisanaznon lﬁmimamﬁmsﬁﬁﬁNﬁmﬂugmmu%"mﬁam
fuwalngluszaululasuas [24]
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precipitation)
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(Agglomeration) VaIFIINRAAH FNIIDRAVIIAVEIRIINEAS ITRFSIazAlEluIz U T
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2.1.1 MIFILATIZTHES

NNINILATIEH Ba,,Ce,Sr,0; (BCS) Uaz Ba,Ceq,Zr,0; (BCZ) #1837 Solid State Reaction
Method laeld SrCOs, Y(NO4)s*6H,0, Gd(NO,)s*6H,0, ZrO,, BaCl,»2H,0, BaCO; way CeO,
289 Aldrich WRNENTRITHANFATIULUTIIENWHEL Ball mill Tasdl C,H:O (SIAL) Lilusazts
Tuua wazdl Zro, ball tiatrelimsidwiadoriu IFanuEisan 170 rpm Wwna 24 591w
niwinslay LLﬁ'sLLﬂa%ﬁﬁqmﬁgﬁ 1,100-1,300 avrmaidos uwnan 2 uaz 12 alus
mﬂﬁ?uﬁﬁmmmgﬂLLUUI@N&%Nwﬁmm:aaﬁﬂs:nawﬁa6] ﬁagluﬁaam Toglfie3as X-ray
Diffractrometer (XRD)

2.1.2 196132982 U X-Ray Diffractometer (XRD)
NMIN51970LaLLA389 Model D8 Advance: Bruker AXS, Germany 40 Ailajad 30 Uad
wanuds lTawd cu uunssinfia faNg1Iaa%  1.5406 WIlwNes ﬁﬁfmﬁmuquim

l1sunsy Diffrac Plus software of the Bruker Analytical X-ray System (XRD Commander)
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Committee on Powder Diffraction Standards (JCPDS

2.1.3 N15&319 SOEC

drgnasanmanaaled $1uan 3 03y nsalwde ruasasaiassannuenlansadin
14u598@ 3000 Janddanefia uazalunisse 30 Sud LLﬁaﬁﬁméﬁuma%ﬁqmﬂQﬁ 1,500
paenalos (wa 12 99109 mniwihanysenoudlwesas SOEC Tasmsanuiduiazinaia

LWANATN Wasna e NTaw 900 asasaldus 1w 1 Tl

2.1.4 MInadaun3tnal)ni3a1 Reverse water gas shift reaction

iidiedaumiwned suaudrdnw Wildwwa 70-100 wo shusfiléssimin 0.1 3
waalaadls Quartz Reactor Safinglu 4 mm awen? 50 cm ¥innsnesaulasnsilaw CO,,
H, W&s Ar (40:60) uaz Ar 1ui30nms 10 mi/min, 25 mi/min uaz 65 miimin a8y ansuls
anufauluzng 400-800 °C  wdemameusifalunarnifedfitenlanlfiedes Gas

Chromatography (GC)



2.1.5 mManagaunisan1sulisnanaasisas
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waanaaaIauwananunsaanagavandeadlwentinsol  Tasnisilow H, uaz CO,
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2.2.1 MIHILATIZTHAS

1“5’&’136?&67%%§ﬂﬁ3@%m] 3 saa28nAa Barium Nitrate (Ba(NOs3),) 99%, Cerium nitrate
(Ce(NO3);) 99.9% Waz Ammonium oxalate ((NH4),C,0,) 99% s3fihannsladiiativa
UszanBnmmaad IWinnanae 2 5fiede Yitrium nitrate (Y(NOs)s) 99% waz Gadolinium nitrate
(GA(NOy)s) 99% snsthandulusneneaIlsznouifatfun N unmIusin LLaz"ﬁ’mlumsﬁugﬂ
ﬁ”'mm 3 wiiafa Cobalt oxide (C0o,03) 99%, Nickel oxide (NiO) 99% iLae Zinc oxide (ZnO)
99%,

L@TBNRITAZANE Ba(NO3), AT 1 M J30103 60.23 Jaaans, Ce(NOs); AMuLTUTH
1 M 60.84 085807 U8z (NH,),C,0, ANULTNTH 1 M 180.70 Hadaas (ny@ALnslay Yitrium
%38 Gadolinium 3zl% Ba(NO;), 1 M 61.19 §aaan3, Ce(NOs); 1 M 56.18 Tafaa3, Y(NOs);
%38 Gd(NO;); 1M 6.23 adaas waz (NH,),C,0, 1 M 208.28 Nadaq)WaNgITAZAL
Ba(NO), 1 M 60.23 Jaaaa7 Uaz Ce(NO;); 1 M 60.84 Uaaaas (Laz Y(NO;); #38 Gd(NOs);
1M 6.23 Hadaas) Iduilodennu vnswauasazansfile asl (NH,),C,0, lasiisasns
lva 60 Naddasdawfi ﬁqmvﬁgﬁ 80 BIALTALTUR WIBNNUNIBFIIA2E magnetic stirrer 1T
I8 30 W ué’amni‘fuﬂm@iaﬁqmwgﬁﬁmLflunm 30 Wit (n3eitlE Ultrasonic probe 147 750
Hz was 30 Wil waznauansene magnetic stirrer siadnilua 30 wift) shansnlalyds
aznonsanlagldinias centrifugal 1w3nsh 3000 rpm w5 wfl aunsznIssfien pH
Uszanm 7 ﬁ’mﬂﬂizmaﬁwaaﬂﬁqmﬂqﬁ 105 aveioaidos 1uaan 16 Talag esfilewn
ualAazidua LLa:LmLmavlsﬁﬁﬁqmﬂgﬁ 1000 asenaidosinam 5 dalug fwsunsaa

SOEC ltauaanfeny 2.1.2

2.2.2 MIATIVHDUANANMILIBTNANS
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BaCO, BCS 1100 C, 2h BCZ 1200 C,12h
Parameters
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A CeO, nanopowder has been synthesized using sonication-assisted precipitation. The use of ultrasonics during precipita-
tion showed potential morphology control during synthesis. The sonication-assisted precipitation with highly aqueous base
(20 M NaOH) successfully induced the formation of a one-dimensional nanostructure of CeO, rods with a homogeneous shape
and size (TEM: 24 nm diameter and 129 nm long). A conventional precipitation under the same conditions provided the CeO,
in nonuniform sizes and shapes. Heat treatment (1100°C for 4 h) was required for CeO, formation when (NH4),C,O4 was
used instead of NaOH. The concentration of the precipitation agent (15-20 M) strongly affected the size and shape of the

product. Importantly, according to the temperature-programmed reduction/oxidation study, the CeO, prepared using the sonica-
tion-assisted route showed a relatively higher level of reversible oxygen storage capacity (2384 pmol/g), compared with the CeO,

prepared by conventional route (1748 pmol/g).

Introduction

Ceria (CeQ,) is a fluorite-structured ceramic that is
known to exhibit a rather stable crystallographic mor-
phology up to a high temperature (its melting point is
2700°C)." Due to its high oxygen storage capacity
(OSC), CeO, has been employed in various applications,
including use as an oxygen-conducting electrolyte for
solid oxide/electrolysis cells,”” gas sensors, catalytic sup-
ports,4 and UV absorbents and filters.” Different routes
of CeO, synthesis have been reported, such as solgel,(r9
hydro or solvent thermal synthesis,'® ' combustion,'>'*
microemulsion,’>'® and precipitation.’””° Different pre-
cursors have been used, such as cerium nitrate hexahy-
drate (Ce(N03)3-6H20),10‘11’14’18’19 cerium carbonate
hydrate (Ce,(CO3)5-8H,0),>'  cerium  acetate hydrate
(Ce(C,H;0,)5-4H,0),% cerium hydroxide (Ce(OH),),®
and cerium chloride heptahydrate (CeCl3-7H,0) in this
work.

Irregular morphology can negatively impact material
performance. Therefore, morphology-controlled synthesis

*pattaraporn.kim@mahidol.ac.th
© 2014 The American Ceramic Society

of CeO, has been undertaken in many works to gener-
ate nanoscale architectures in various shapes, such as
nanocubes, nanospheres, nanooctahedroms, and nano-
rods.27%¢ Among the various shapes, one-dimensional
(1D) structures, such as rods, wires, and tubes, have
become the most popular during the synthesis of CeO,
due to their unique physical properties.”>** CeO, nano-
rods exhibited a higher catalytic activity during CO
oxidation than nanocubes or nanoparticles due to the
relatively higher surface area and reducibility of surface
oxygen species observed for the rods.”” Therefore, shape-
controlled synthesis methods of ceria nanorod have
attracted much attention in recent years.?® !
Homogeneous precipitation is a promising method
for nanopowder synthesis due to its simplicity and low
reaction temperatures. Nanoscale CeO, has already been
prepared using conventional precipitation  techniques.
Most of the previous works were focused on the effects of
various parameters, such as the precursor and precipitation
::1gents,20’23’32 the reaction temperature and time, 192733
the atmosphere,®® and the additives.>*** Less information
has been reported regarding the effects of ultrasonics dur-
ing precipitation and the potendal of ultrasonics-assisted
precipitation during morphology-controlled synthesis. No



646 International Journal of Applied Ceramic Technology—Kim-Lobsoontorn, et al.

studies have reported the preparation of nanoscale, mono-
sized CeO; in a rod-like shape using controlled ultrasoni-
cation during precipitation.

In this work, the use of ultrasonics and concentrated
NaOH solution during precipitation successfully pro-
vided a one-dimensional nanostructure of CeO, (rods in
a uniformed size). The precipitation methods during
conventional route and the sonication-assisted route were
compared. A precipitation using different precipitation
agents was also reported (sodium hydroxide (NaOH)
and ammonium oxalate (NHy),C,O4 solutions). The
effect of the precipitation agent content (5-20 M
NaOH) on the CeO, morphology was investigated. The
product was characterized using XRD (x-ray diffraction),
SEM (scanning electron microscopy), TEM (transmis-
sion electron microscopy), and TGA (thermogravimetric
analysis). The average crystallite size was estimated using
the Debye—Scherrer equation. Furthermore, the amount
of oxygen storage capacity (OSC) of the prepared CeO,
was identified using the temperature-programmed reduc-
tion/temperature-programmed oxidation study.

Materials and Method

Cerium chloride heptahydrate (CeCl;-7H,0, 99.9%
purity; Sigma-Aldrich, St. Louis, MO) was dissolved
in 50 mL of deionized water (DI water) to form a 1 M
precursor solution. Sodium hydroxide (NaOH, Sigma-
Aldrich, 98%  purity) and ammonium oxalate
((NH4),C,0y, Sigma-Aldrich, 98% purity) were used as
precipitation agents. A 100 mL solution of NaOH was
prepared at 20 M, while that of (NH4),C,O4 was
prepared at 0.2 M. The precursor was added dropwise
to the precipitation agent (0.5 mL/min) such that the
concentrated agent could be stirred to avoid self-precipi-
tation. For the modified method, the solution tempera-
ture during the reaction was measured as 70°C.
Therefore, the temperature was maintained at 70°C
during the reaction during the conventional route. The
reaction was allowed to proceed for 30 min after the
complete addition of the precursor at the reaction tem-
perature. For the modified method, the irradiation
occurred during the precipitation through the direct
immersion of a high-intensity ultrasonic probe (VC 750,
2.5 cm diameter, 20 kHz, 150 W/cm?, Tihorn; Sonics
& Materials, Newtown, CT) into the reaction solution.
After completing the precipitation, the products were sep-
arated, washed with DI water until the washings were
neutral (pH 7), and dried in a 110°C oven for 24 h. The
samples were collected as precipitated and after calcina-
tion at 900, 1000, and 1100°C. The crystalline structure
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was determined using an XRD (Cu Ko radiation 1.5418
A, 20 =10-90°% Bruker D8 Advance; Bruker AXS,
Karlsruhe, Germany). The microstructure was examined
using SEM (Hitachi 54700; Hitachi, Tokyo, Japan) and
TEM (JEOL JEM-1230, Tokyo, Japan). The TGA study
was performed using a thermal analyzer (SDT 2960;
Perkin Elmer, Shelton, CT; Waltham, MA). The average
crystallite size (d) of the sample was estimated using the
Debye—Scherrer equation Eq. (1):

B 0.9%
BrwivCos(0)

where A is the wavelength, 0 is diffraction angle, and

Bewrm is  the full-width for the halff-maximum

(FWHM) intensity peak of the sample. It should be
noted that the equation is limited to nanoscale particle

d (1)

as with larger size other factors than crystallite size start
to largely influence the peak broadening. The BET spe-
cific surface area of CeQO, synthesized through ultrasonic-
assisted precipitation was characterized by nitrogen
adsorption (Quantachrome).

Based on the assumption that the crystallite growth
is homogeneous, the activation energy of crystallite
growth during calcination can be approximated:

i- conl3E) o

where C'is the constant, R is the ideal gas constant, 7"is
heat treatment temperature, and E is activation energy
for crystallite growth during calcination.

After preparation, the redox properties associated
with the OSC for the prepared CeO, were determined
using a temperature-programmed reduction (TPR). In
detail, the TPR experiment was carried out in a quartz
reactor 10 mm in diameter that was mounted vertically
inside a tubular furnace. A type-K thermocouple was
placed into the annular space between the reactor and
furnace, while another thermocouple covered by a
closed-end quartz tube was inserted in the middle of
the quartz reactor to recheck the possible temperature
gradient. The sample (100 mg) was heated from 25
to 1000°C under 5%H, in nitrogen flowing at 50 cm’/
min; the amount of H, consumed during the TPR pro-
cess was monitored online with a thermal conductivity
detector and quantified by calibrating the peak areas
against the TPR of a known amount CuO. Furthermore,
after purging the system with nitrogen, the reversibility
of OSC was determined by applying TPO after a second
TPR (as called TPR-2). The TPO was carried out by
heating the catalyst up to 900°C in 10%0O, in nitrogen;
the amounts of chemisorbed oxygen were also measured.
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Results and Discussion

CeO, was synthesized by conventional precipitation
(without sonication) using different precipitation agents:
20 M NaOH and 0.2 M (NH,),C,04. CeO, could be
synthesized as precipitated without further heat treatment
when concentrated NaOH was used (Fig. 1a). The XRD
patterns showed CeO, with a cubic fluorite structure,
corresponding to four main peaks at (111), (200), (220),
and (311) planes (ref. JCPDS card no. 34-394). After
calcination at 900, 1000, and 1100°C for 1 h, the inten-
sity and the sharpness of the XRD peaks increased signif-
icantly, suggesting a higher crystallinity for the CeO,, as
shown in Fig. 2. When (NH,4),C,04 was used as a pre-
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Fig. 1. XRD patterns of the precipitated CeO, prepared using
(a) NaOH precipitation agent in conventional route and (b)
(NH4)>C50y precipitation agent in conventional route.
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Fig. 2. XRD patterns of the precipitated CeO, prepared using
20 M NaOH precipitation agent: (a) calcination ar 1100°C for
1 h; (b) calcination at 1000°C for 1 b; and (c) calcination at
900°C for 1 b,
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cipitation agent, the CeO, could not be synthesized as
precipitated (Fig. 1b); it was formed after heat treatment
at 1100°C for 4 h (Fig. 3). The average crystallite size of
the sample was calculated using Debye—Scherrer equa-
tion, performing on the (111), (200), (220), and (311)
diffraction peaks. The calculated average crystallite size
of the CeO, synthesized using different synthesis condi-
tions is presented in Fig. 4. The sample precipitated
using NaOH exhibited relatively smaller sizes (~72 nm)
compared with those using (NH4),C;04 (~235 nm). As
expected, increasing the calcination temperature increased
the crystallite size. The activation energy for the CeO,
nanocrystallite growth during calcination was calculated
(approximately 14.79 kJ/mol).

Figure 5 presents the SEM images of the prepared
CeO, in the conventional route. The SEM images
showed that the precipitation agent significantly impacts
the morphology of the powder. The morphology of the
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Fig. 3. XRD pattern of the CeO, prepared using 0.2 M
(NH;)>C,0; precipitation agent after calcination at 1100°C for
4 h.
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Fig. 4. Calculated average crystallite size of the CeO, synthesized
using different synthesis conditions.
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1 1 1
10.0um

l 500 2

N I L S e
TMEC 5.0kV 11.1mm %100k SE(M) 11/29/2012 16:30 500nm

Fig. 5. SEM images of precipitated CeO, using: (a)
(NH4),C,0; precipitation agent in conventional route; and, (b)
NaOH precipitation agent in conventional route.

CeO, was different when a different precipitation agent
was used. The CeO, precipitated using (NH,),C,O4 in
the conventional route exhibited a nonuniform size
(average size of 12 x 32 um), while the shape was
rather regular as long plates (Fig. 5a). When NaOH was
used as a precipitation agent, the CeO, exhibited both
nonuniformed particle size and shape (Fig. 5b).
Although the powder appeared nanoscale, the particle
shape was a combination of long-thin rods and thin
plates (average size of 248 x 1217 nm).

Hydroxyl ions (OH™) are involved in CeO, precip-
itation in alkaline solutions. Therefore, the OH™ con-
centration should be important factors for the particle
morphology. Because the dispersive forces and electro-
static interactions of the ions are important factors
that control the crystal formation, increasing the OH™
concentration might lead to different electrostatic charge
conditions that favor the formation of different mor-
phologies.’® In this study, the concentration of the
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precipitation agent significantly affected the CeO, mor-
phology. Figure 6a—c presents the SEM images of CeO,
precipitated using the conventional route with 5-15 M
NaOH. Unlike when 20 M NaOH was used (rod-like
CeO, was formed), the shape and size of the product
varied. When 15 M NaOH was used, the CeO, formed

Fig. 6. SEM images of precipitated CeO, using (a) 15 M
NaOH; (b) 10 M NaOH; and (c) 5 M NaOH as precipitation

agent in conventional route.
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agglomerated spherical shapes, as shown in Fig. Ga.
When the concentration was decreased (10 and 5 M
NaOH), Fig. 6b and c shows that the particles were
agglomerated in micrometer scale and irregularly
shaped, corresponding to the work of Pinjari er al;
10 M of NaOH was added dropwise to the cerium
nitrate hexahydrated solution at room temperature.'®
Although different precursors were reported to affect
the morphology of the final CeO, product,26 the differ-
ent precursors (CeCls-7H,O and Ce(NOj3)5-6H,0) in
this work and that of Pinjari et a/'® did not affect the
final product morphology (10 A NaOH was used in
both works). The type of precipitation agent and its
concentration impacts the final product morphology
more strongly.

As shown in Fig. 7, the TGA analysis presents the
weight loss of the CeO, product synthesized using differ-
ent NaOH concentrations. At 550°C, the total weight
loss of the CeO, synthesized using 5, 10, 15, and 20 M
NaOH was 10.79%, 10.44%, 10.21%, and 9.20%,
respectively. The use of a lower concentration of NaOH
caused a higher weight loss in the CeO, products. Asso-
ciating weight loss in the CeO, products with any partic-
ular mechanism is difficulc without further study.
However, it was reported that when the crystallinity of
the metal oxide decreases, the weight loss increases.”*%’
The difference in %weight loss between the product
obtained from 20 A NaOH and those obtained from
5-15 M NaOH could be caused by different product
morphologies related to its crystallinity. The rod-like
CeO, obtained from precipitation with 20 NaOH could
exhibit a relatively higher crystallinity and thermal stabil-
ity than the agglomerated particles of CeO, obtained
from 5-15 M NaOH precipitation. Another possible
reason might be related to the evaporation of humidity
and the dehydration of the precipitate. The theoretical
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Fig. 7. TGA graph of the CeO; using conventional precipitation
with different concentration of precipitation agent (5-20 M
NaOH).
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weight loss for the decomposition of cerium hydrate
oxide to ceria is 17.31%, that is, Ce(OH); or
Ce0,-2H,0 to CeO,. The difference in the measured
total weight loss from the theoretical weight loss could
be caused by the precipitation consisting of partially
hydrated ceria (CeO,-xH,0) corresponding to x equals
1.16, 1.11, 1.09, and 0.97 to the precipitates prepared
from 5, 10, 15, and 20 M NaOH, respectively.

A comparison of CeO, products from different
precipitation routes was performed (conventional route
and sonication-assisted precipitation). The CeO, could
be synthesized as precipitated without further heat treat-
ment when concentrated NaOH was used during both
routes (Figs 8a and 1a). The peaks for the crystal planes
synthesized using the sonication-assisted route matched
those of the crystal planes synthesized using the conven-
tional route. Therefore, no significant difference was
apparent with respect to the type of crystalline phase in
the product prepared from both methods. Although son-
ication was used during precipitation, the CeO, was not
formed as precipitated when (NH4),C,04 was used as a
precipitation agent (Fig. 8b). Similar to the conventional
route, the formation of the CeO, synthesized using
(NH4),C,04 required further heat treatment after pre-
cipitation (1100°C for 4 h). The average crystallite size
of the sample calculated using the Debye—Scherrer
equation was ~57 nm for the CeO, synthesized using
the sonication-assisted precipitation with NaOH and
143 nm when (NH,4),C,04 was used. Compared with
the conventional route, the crystallite size decreased when
using the sonication-assisted precipitation route. For the
sonication route, the cavitation phenomenon produces

* CeO,

(a) conventional route
NaOH agent

(b) sonication assisted route
NaOH agent

Intensity (Arb. Unit)

(C) sonication assisted route
(NH,).,C.0, agent

10 20 30 40 50 60 70 80 o0

2 Theta (degree)

Fig. 8. XRD patterns of the precipitated CeO, prepared using
(a) NaOH precipitation agent in conventional route; (b) NaOH
precipitation agent in sonication-assisted route; and (c)
(NH;)>C50y precipitation agent in sonication-assisted route.
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bubbles that eventually collapse, generating extreme con-
ditions, such as intense micromixing, intense local tem-
perature, high pressure, and high heating and cooling
rates. These high heating and cooling rates affect the
crystallization of the products, resulting in fast kinetics
that do not allow the nuclei to grow further. This effect
can decrease the crystal size when using sonication.

As shown in Fig. 9a, when using the sonication-
assisted route, a relatively smaller particle size of the
CeO; can be obtained when using (NH4)C,0O4 (average
size of 7 x 13 pm) compared with the conventional
route (12 X 32 pum). For NaOH, ultrasonic irradiation
successfully induced the formation of uniformly sized
CeO, with a homogenecous rod-like shape (238 nm
diameter and 916 nm long) (Fig. 9b). Although the rod
size obtained from the conventional route (Fig. 5b) was
smaller than that obtained from sonication-assisted route
(Fig. 9b), the CeO, shape from conventional route was
a combination of thin rods and large plates, generating a

1 1 1
10.0um

1 1 1 1
TMEC 5.0kV 11.2mm x100k SE(M) 11/29/2012 16:40 500nm

Fig. 9. SEM images of precipitated CeO, using (a)
(NH4),C50; precipitation agent in sonication-assisted route and
(b) NaOH precipitation agent in sonication-assisted route.
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comparable average size between the CeO, synthesized
from the conventional (248 x 1217 nm) and sonica-
tion-assisted routes (238 x 916 nm). Therefore, using
ultrasonics during precipitation might provide a narrow
particle-size distribution and/or size reduction. This
result agrees with the work of Yin er a** and Pinjari
et al'® in which nanoscale CeO, was prepared using a
sonochemical method. These works reported that the
CeO, was considerably less agglomerated and exhibited a
smaller particle size when using ultrasonics. However,
both works reported the formation of nanoparticulate
CeO, in an unevenly shaped structure. In this work,
1D-nanostructure CeO, rod, which is one of the most
interesting CeO, morphologies, could be synthesized
using sonication-assisted precipitation. The different
results between this work and previous works could be
caused by different synthesis conditions (precursor, pre-
cipitation agent, and its concentration and/or intensity of
ultrasonic used). The ultrasound intensity used in this
work was higher than that used in previous works
(150 W/cm?® in this work, 100 W/cm? in the work of
Yin er al,** and 34 W/em? in the work of Pinjari
et al'®). The work of Subrt et al®’ reported the forma-
tion of CeO, nanorods with comparative dimension of
5-10 nm in diameter and 50-150 nm in length synthe-
sized via ultrasonication and polyethylene glycol (PEG)
as a structure-directing agent. The BET specific surface
area of CeQ, synthesized through ultrasonic-assisted pre-
cipitation was 150.5 m”/g. The summary of calculated
crystallite sizes under different conditions is shown in
Table I.

The TEM study supports the SEM analysis by
showing a combination of plates and rods for the CeO,
generated using the conventional route as well as a
homogeneous rod-like shape for those from the sonica-
tion-assisted route. The results ensure that the CeO,
products precipitated from both the conventional and
sonication-assisted routes (using NaOH as precipitation
agent) were nanoscale (Fig. 10). The TGA analysis pre-
sents the weight loss of the CeO, products from the
conventional and the sonication-assisted precipitation. As
shown in Fig. 11, the weight loss proceeded continu-
ously for the CeO, obtained from both methods. For
the CeO, from the sonication-assisted route, the TGA
curve illustrated distinct stages of weight loss, corre-
sponding to the evaporation of humidity and the dehy-
dration of the precipitate. At 115°C, the difference in
total weight loss between both products peaked (2.88%
for the CeO, synthesized from conventional route and
4.75% for the CeO, synthesized using sonication). After-
ward, the difference in weight loss between both prod-
ucts decreased. At 550°C, the total weight losses for
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Table I. Comparison of Particle Size and Shape Obtained from Different Precipitation Routes

Average particle size

Precipitation Precipitating  Calculated crystal
method agent size (nm) SEM TEM Particle shape
Conventional NaOH 72 248 x 1217 nm 29 x 136 nm  Plate and thin rod-like
route (NH,4),C,O4 235 12 x 32 um — Plate-like
Sonication-assisted NaOH 57 238 x 916 nm 24 x 129 nm  Rod-like
route (NH,),C,O4 143 7 x 13 pm - Plate-like
102
------ Conventional route
100 1
Sonication aided route
<BE
£ 96 -
°
2 o4
92 -
90

Fig. 10. TEM images of precipitated CeO using NaOH precipi-
tation agent in (a) conventional route and (b) sonication-assisted
route.

CeO, synthesized using the conventional route and
the sonication-assisted route were 9.20% and 9.28%,
respectively.

From the TPR study presented in Table II, the
amount of hydrogen uptakes over the CeO, synthesized
using the sonication-assisted route is clearly higher than
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Fig. 11.  TGA graph of the CeO5 using conventional and sonica-

tion-assisted precipitation.

Table II. Results of TPR-1, TPO, and TPR-2 analy-
ses of prepared CeO,

Tota.l H2 Tota] 02 Total Hz
Uptake Uptake Uptake
from from from
TPR-1 TPO TPR-2
Catalyst (nmol/g) (nmol/g) (nmol/g)
CeO, 2384 1226 2371
(sonication-
assisted route)
CeO, 1748 859 1710
(conventional
route)

the CeO, synthesized using the conventional route. The
amount of H, uptake was used to indicate the amount
and percentage of reducible oxygen in the samples. From
the calculation, the amount of reducible oxygen for the
CeO, synthesized using the sonication-assisted route was
estimated to be 2384 pumol/g (15.7% of total oxygen in
catalyst) compared with 1748 pumol/g (10.8% of total
oxygen in catalyst) for the CeO, synthesized convention-
ally; therefore, the higher OSC was higher for the CeO,



652 International Journal of Applied Ceramic Technology—Kim-Lobsoontorn, et al.

synthesized using the sonication-assisted route. After
purging the system with helium, the reversibility of the
OSC was determined by applying TPO followed by a
second TPR (as called TPR-2). Regarding the TPR-2
results given in Table II, the amounts of hydrogen
uptake were approximately identical to those of TPR-1
for the CeO, synthesized using the sonication-assisted
route. The difference between TPR-1 and TPR-2 was
0.05% for the CeO, synthesized using the sonication-
assisted route and 2.17% for the CeO, synthesized using
the conventional route. Therefore, a relatively higher
level of reversibility is apparent for the OSC of the
CeO, synthesized using sonication compared with that
synthesized conventionally. The cause of this behavior is
still not clear without further study; however, this behav-
jor is likely due to different morphology of CeO, pre-
pared using the different routes. The redox behavior of
the CeO, was reportedly improved by approaches such
as adding a transition metal (normally Zr) or a con-
trolled nanostructure of ceria.’® CeQ, nanorods exhibit
more stable redox properties than conventional nanopar-
ticles.>® The CeO, with more crystal planes of (100)
and/or (110) contains more oxygen vacancies than (111)
planes; the CeO, nanorods predominantly contain (100)
and (110), while the CeO, nanoparticles contain more
(111) planes.”® In this study, the relatively higher OSC
level for the CeO, synthesized from the sonication-
assisted route was therefore likely due to the uniform size
and shape of the nanorods induced by the sonication,
corresponding to more oxygen vacancies.

Conclusion

Nanoscale CeO, rods could be prepared without
calcination when 20 M NaOH was used as the precipita-
tion agent. When (NH4),C,O4 was used as the precipi-
tation agent, the precipitate required further heat
treatment (1000°C, 4 h) to form CeO,; the product was
microscale. Without sonication, the product exhibited
irregular morphology although nanoscale CeO, could be
synthesized using NaOH. Sonication-assisted precipita-
tion exhibited potential for size-controlled synthesis.
When the precipitation process was modified using a
sonicator and 20 M NaOH was used, homogeneous
one-dimensional CeO, nanorods could be formed. The
concentration of the precipitation agent also significantly
affected the CeO, morphology. When 5-20 A NaOH
was used, the size and shape of the product varied. At
15 M NaOH, the CeO, was nanoscale, forming agglom-
erated spherical shapes; at 5 and 10 M NaOH, the

CeO, was agglomerated and on the micrometer scale.

Vol. 11, No. 4, 2014

From the temperature-programmed reduction/tempera-
ture-programmed oxidation testing, the CeO, prepared
using sonication showed a relatively higher level of
reversible oxygen storage capacity compared with the
CeO, prepared using the conventional route.
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IIR-SOFC containing an annular-coated wall reformer exhibited the
cell power density (0.67 W/cmz) and electrical efficiency (68%) with
an acceptable temperature gradient and a moderate pressure drop
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Abstract

The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (1IR-SOFC) fuelled by natural
gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic
annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer
designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power densiyni0 47 W

and electrical efficiency (68%) with an acceptable temperature gradient and a moderate pressure drop across the refarhoep (@53

IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating
pressure, steam to carbon (S : C) ratio, gas flow pattern (co-flow and counter-flow pattern), and natural gas compositions. The simulation
results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature (1223 K-1173 K]
and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure
mode (110 bar) improved the temperature gradient and cell performance. Increasing the S: C ratio from 2:1 to 4:1 could decrease the
temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother
IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural
gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided
smoother temperature gradient in the system but showed lower power density and electrical efficiency.

Key words
indirect internal reforming; solid oxide fuel cell; annular-coated wall reformer; packed-bed reformer; catalytic coated wall reformer; catalytic
annular reformer

1. Introduction Previously, the reactivity toward natural gas steam reforming
and the kinetic models of the catalyst have been reported, and
most of the studies concentrated on loweradd G kinetics

An indirect internal reformer solid oxide fuel cell (IIR- [4—9]. The work of Schadel et al. [10] developed reaction

SOFC) is a promising technology for future energy conver-mechanisms in detail from which methane, propane, butane

sion systems. The integration of an internal indirect reformingand natural gas (sulphur-free) steam reforming over Rh-based

compartment to SOFC assembly enables stack thermal marcatalyst were evaluated by comparing the experimental results
agement and increases system efficiency. Heat generated fromith the numerical predicted conversions. Their equations
exothermic electrochemical reactions and ohmic losses in avere applied in this study.

SOFC can be transferred to an endothermic reforming reac- The internal reformer is typically designed as a packed-

tion in the reformer, which is in close thermal contact with the bed configuration containing a pellet or powder form of nickel

anode side of SOFC H3]. Carbon deposition on the SOFC (Ni)-based or noble metal-based catalysts. Typically, IIR-
anode can also be minimized by decreasing the content of hySOFC which contains conventional packed-bed reformer has
drocarbon directly contacting the anode. Generally, naturabeveral issues including a high pressure drop, bed redistribu-
gas or methane is applied as the primary fuel for IIR-SOFC.tion and heat transfer limitation. Heat transfer is limited by

* Corresponding author. Tel: +66-2-8892138; E-mail: pattaraporn.kim@mabhidol.ac.th
This work was supported by the Thailand Research Fund (TRG 5680051).
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packed-bed characteristic and external heat may not be idezoating the wall of the reformer channel with the catalyst.
ally transferred to the middle of the reformer bed {1113]. With this design, the reforming reaction occurs both at the
Furthermore, mismatch between the rates of endothermic ansurface of the inner reformer channel and on the surface of
exothermic reactions in an [IR-SOFC leads to a significantthe catalytic annular rod. The amount of catalyst per volume
local cooling effect. The previous work showed the effectis increased depending on the surface area of the annular rod
of fuel type (methane, biogas, methanol, and ethanol) on thend the coated wall. For this reason, the reforming activity
temperature gradient in tubular-packed bed internal reformecan be greater while the pressure drop and heat transfer limita-
[14]. Among different primary fuels, methanol presents tion are minimized. Furthermore, the required length of tubu-
the smoothest temperature profile where methane shows thlar SOFC can also be shortened. In detailed, the mathemati-
largest cooling spot at the first half of the reformer chan- cal modelling was developed to predict the cell performance
nel. This temperature gradient may consequently results irand temperature gradient along the cell. The behaviours of
thermally induced mechanical stresses and reduced efficiencyiR-SOFCs using four categories of internal reformers were
The high reactivity catalyst in the packed-bed reformer wascompared: a packed-bed reformer, a coated-wall reformer, an
also reported to react too rapid for the reforming operationannular reformer and an annular-coated wall reformer, which
[15]. Previously, there have been several attempts to solvevere called R, Ry, R3 and R, respectively. The perfor-
this problem, e.g., by applying a catalyst with lower reform- mance of IIR-SOFC with Rreformer was then studied un-
ing reactivity [15], by introducing some oxygen at the feed asder a range of operating conditions: inlet fuel temperature,
autothermal reforming [14,16] or using a wash-coated wall re-operating pressure, steam to carbon (S : C) ratio, gas flow pat-
former with the catalyst [1#21]. The wash-coated reformer tern and natural gas composition. The model code was de-
was reported to provide improved heat transfer characteristicseloped on COMSO® program software in two-dimensional
as well as a lower pressure drop across the reformer [11,12hxial code. From this study, the potential design and operating
In addition, since the amount of catalyst per volume for theconditions of a IIR-SOFC system fuelled by natural gas were
catalytic-coated wall reactor is much lower than that for thedetermined.
catalytic packed-bed reactor, it provides a potential benefit for
IIR-SOFC application where uniform methane steam reform-2. Model geometry and equations
ing activity is required [22,23]. In planar SOFC, gas flow filed
can be designed to suit for the internal reformer with catalytic ~ Four designs of tubular SOFC integrated indirect inter-
wash-coat application. However, in the case of tubular SOFCnal reformers were compared: a packed-bed,(Boated-wall
along SOFC tube is required for an internal reformer with cat-(Rz), annular (R) and annular-coated wall ¢R reformers.
alytic wash-coat application, leading to an increase in ohmicThe schematic diagrams of these four designs are shown in
loss and contact resistance between anode and current colleEigure 1. For all the configurations, natural gas (36.72%,
tor [24]. This is the drawback for IIR-tubular SOFC when C;Hg 8.1%, GHg 2.03%, GH19 0.44%) and steam were con-
catalytic wash-coat is used. verted to hydrogen-rich gas in the internal reformer before
In this study, an alternative design of tubular IIR-SOFC being introduced into the fuel channel of tubular SOFC. Si-
containing an annular-coated wall reformer is presented. Inmultaneously, air was fed in the same flow direction through
tegrating a coated wall reformer with an annular reformer, thethe air channel. All the dimensions and physical properties of
annular-coated wall reformer involves inserting the catalyticSOFC system in the present work, which are summarized in
wash-coated rod in the middle of the reformer channel andTable 1, were based on the previous literatures [19,22,23].
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Figure 1. Schematic diagrams of tubular 1IR-SOFC with (a) packed-bed reformgy;, (B) coated-wall reformer (8, (c) annular reformer (§ and (d)
annular-coated wall reformer gR



Journal of Energy Chemistry Vol. 23 No. 2 2014 253

Table 1. Constant parameter values of tubular IIR-SOFC system

Parameters Values References
Fuel cell length 0.60m Fukuhara C and Igarashi A [23]
Reformer radius 3x103m Fukuhara C and lgarashi A [23]
Annular catalyst rod radius 2x10°3m —
Inside radius of the cell 5.4x103m Fukuhara C and lgarashi A [23]
Anode thickness 1x103m Fukuhara C and lgarashi A [23]
Electrolyte thickness 4x10°m Fukuhara C and lgarashi A [23]
Cathode thickness 5x105m Fukuhara C and lgarashi A [23]
Anode permeability 1x10°12 Lee M et al. [19]
Cathode permeability 1x10°12 Lee M et al. [19]
Average density of triple phase 633.73 kgm 3 Fukuhara C et al. [22]
Average specific heat of triple phase 5743 kg 1K1 Fukuhara C et al. [22]
Anode thermal conductivity 2.7Wm LK1 Fukuhara C et al. [22]
Cathode thermal conductivity 9.6 Wm 1K1 Fukuhara C et al. [22]
Convection coefficient in the fuel channel 2987 Wm2.K~1 Fukuhara C et al. [22]

Convection coefficient in the air channel 1322.8 Wm2.K1 Fukuhara C et al. [22]

2.1. Gasdistribution diameter {p) and the mean free path of the molecular species
(Equation 7).

For gas distribution, Brinkman Equation (1) was applied €

e _ . .
to calculate the distribution through the porous area (packed- D5 pmix = ;D%Pm'x (%)
bed catalyst and electrodes), while the incompressible Navier- 1 1 1
Stokes Equation (2) was used to predict the gas flow pattern = + (6)
in all the gas channels [25]. Dipmix  Dimix  Dika
B ao, 1 8RT
Up = —k_pV+,LLD v (1) Diku= édp A (7)

v 0(pr) = —Op+ pd%0+ S (2)

where, 7 is the fluid velocity,p is the densityp is the pres-

sure, /' is the effective viscosityk, is the permeability, and The electricity generation was calculated from the rela-
S is the source term, which is neglected since the simulatiortionship between polarisation and the activated area of SOFC.
studied under steady state condition. The study was mainlyActivation, concentration and ohmic polarisation are known
focused on the diffusion of gaseous compounds through th&o be major losses for SOFCs. Activation loss arises from an

2.2. SOFC model

porous reforming bed and fuel cell components.

activation energy barrier to the electrochemical reaction at the

The pressure and velocity gradient of the gas diffusionelectrode. In this work, the activation polarisatiogat, was
properties were taken into account by applying the moleculacomputed with Butler-Volmer Equation (8);

diffusion and binary diffusion equations, as shown in Equa-

tions (3) and (4) [26].

o (1_yi)
Dimix = > (Yi/Dij;) (3)
i,5#1
0.001437175
D; ;= ( 3 4)

9= A2, 13, _1/3,
pM; v+

where, D; mix and D; ; are the molecular diffusion and bi-
nary diffusion flux, respectively, of specigsin mixed gas
(m?.s™1), y; is the mole fraction of speciesp is the pres-
sure,M; ; = 2/(1/M;+1/M;) and M; is the molecular weight
of component, and~ is the special diffusion volume (re-

RT RT

where, J; is the current density (A1~2), Jo is the exchange
current density (An—?), R is the universal gas constant
(kIJmol~1.K—1), andF is the Faraday constant {@ol~1). All
relevant parameters were reported by Zhu et al. [27].

The concentration polarisation occurs because of the re-
sistance to gas diffusion through the porous media and it nor-
mally occurs at high current density and/or at high fuel utiliza-
tion. Generally, gas diffusion behaviour can be predicted by
mathematical models such as Fick's model, Dusty gas model
(DGM), and Stefan-Maxwell model. DGM was chosen in the

Ji=Jo |:exp(aaF77act) — exp(w)] (8)

ported by Fuller et al. [26]). The diffusion behaviour was Presentwork.

corrected by applying porosity) and tortuosity £) to obtain

an effective diffusivity coefficientD? ;.. as shown in Equa-

tion (5). Furthermore, gas diffusion through porous media,
D; pmix, Was explained in Equation (6) by two mechanisms of

molecular diffusion D; mix) and Knudsen diffusioniy; ),

which in turn depends on the relationship between the pore

RT

T L i
2F PH,PH,0 2F bcobco,

4F DO,

9)
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Ohmic polarisation arises from ion transport across theE f finermas Of @an IIR-SOFC in this section was then defined as
cell, which mainly depends on the ionic and electronic con-the ratio of the heating value of hydrogen left over from com-
ductivity of SOFC material. By applying Ohm’s law, the re- bustion to that of the inlet fuel, as shown in Equation (13).
lationship between ohmic polarisation and material resistivity
can be determined. In the present work, the material proper- nﬂ‘;tLHVHZ, 1173 K— Y (—AHreform)
ties reported by Zhu et al. [27] were used. The voltage drop Ef fthermai= S ni"LHV; 1173k
was computed by the simplified equation: ’ ’

(13)

where, n; is the number of moles of componentand

ohm = J Rohm (10)  LHV, 1173« is the lower heating value of componehiat
where, 7onm is the voltage drop caused by ohmic losses (V); 1173K. To investigate the electrical efficiency, the outlet re-
J is the current density (An~2), and Ronm is the ohmic resis- forma_tes were fed into the fuel chann(_el of tubular SOFC. The
tance per unit area km-2). Although both H and CO can glectrlcal _efﬁuencyEfftherma; was defined from the follow-
be electrochemically consumed in a SOFC, the rate of elecld €quation.
tricity generated from CO is only 1/3 comparing with that of Ef foreo= PsorcAact
H> [28]; thus, the rate of CO oxidation in SOFC has been elec thi“LHW 1173 K

negllected in this ;tudy. At .the anddkectrolyte interface, where, Psorcis the power density (§-1-m?), Acy is the ac-
H» is electrochemically oxidized, whereas @& consumed . - . ;

. ) tive area (M), n is the molar flow rate of the inlet gas, apfl
at the cathodelectrolyte interface. The conversion rates of .

Hz, Retectty, and O, Reieco,, at the indicated boundary were is the mole fraction of the inlet fuel.
simulated from Equations (11) and (12), respectively:

(14)

3. Mass balance and energy balance in reformer and

RelecH, = % (11)  SOFC model
Rejeco, = % (12) Heat transfer in this system involves conduction along

stack materials. Conversion from heat flow through the
The reliability of these electrochemical equations, codedsystem and radiation between the reformer and SOFC are
in a COMSOL® program, was validated by comparison with concerned [30,31]. Mass and energy balances for the four

the experimental results of Lin et al. [29]. As shown in Fig- configurations of internal reformer and SOFC are given in the
ure 2, the results were in good agreement with fairly acceptfollowing equations, respectively.

able deviation (less than 10%). e Steady state 2-D dimensional model for different reformers
Packed bed reformer
1.0 Mass balance
i O(—D;Uc; + ¢i0) — iR =0 15
09 F Simulation (1023 K) ( ci+civ) —ps ZU reform (15)
R VA Experiment (1023 K) Energy balance
08 Simulation (1023 K)
E EooN N, Experiment (1073 K) ~
g ] D(UPCDT) - D(/\iDT) + ZAHreformRreform =0 (16)
2 ok Boundary
- _ 2=0;7>0;u =0, vr =vrn, cir=crin, Tr =Tr)in
Al As(TA -T2
¥ S r=ry 2>0;n (kOT)=Ms(T, = T) + o As(Ty s)
3 T ) P Y | D T R ’ 1 A,y 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 o + T\

Current density (W-em
urrent density (Weem ) Coated wall reformer

Figure 2. 1-V curve validations between the simulation results in the presentM
) - ass balance
work and the experimental results (Lin et al. (2006)) [29]

E bal
2.3. Efficiency nergy balance

On the basis of the assumption that most of the generated O@pCeT) — BT + ZAHrefmmRremrm =0 (8
hydrogen was combusted to supply heat for the steam reformBoundary

ing reaction, some generated heat was used as the heat source.
The thermal efficiency was defined as the amount of useful
energy that can be extracted from IIR-SOFC relative to the
total energy evolved by the process. The thermal efficiency, r=rz;z220n-N;= Sctoct ZviRj

2=0;r>0,u4 =0, vu= Vrin, Cir = Crin, Ir = Tt in
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cAs(TH—TH __Jeo _Jeo
n'(kDT):)\ryf(Tr—jjf)—f— 1 Z’Yr 1 Sl n'NCO,f——E, n'NCOzyf—ﬁ
a*x(a—;) n- (kOT) = hes(Ty — Th)
Annular reformer Solid oxide fuel cell
Mass balance Energy balance
D(—Dl DCZ' + CZ’J) =0 (19) cA (T4 _ T4)
O(ZpepT) — O(AOT OH, S TSl _ =0
Energy balance (7pepT) = DOASIT) + 5 DHedeo + Ay ( 1 )
—+ (=1
Er AS Es
= 25)
O(pCeT) — ONOT) + S AHretormBreform=0 (20 _ (
(OpCoT) ( ) Z reform-treform (20) Boundary anode/electrolyte interface,
Boundar
Y n-(kOT) = ZAHelecRelec‘f' JMrotal
2=0;r>0,u4 =0, v = Vrin, Ci,r = Cr,in, Trod = Tt in r=r; z>0n- (kDT) _ hf,s(Ts— Tf)
r=r, 2 2 O, n- Ni _ ZUZRj T e, 2 =2 0, n (ksaDT) hsa(Ta Ts)
SactAact Air channel
cAs(T4— T4 Mass balance
mn- (kDT) = Ar_’f(Trod_ﬂ)‘i‘ 1 154( r 1 S)
Sl Wl A | O(—D;0c¢; +¢;9) =0 (26)
Er AS Es
Energy balance
Annular-coated wall reformer .
Mass balance O(ZpCpT) — 3 O(MOT) =0 (27)
O(—D;0c; +¢;7) = 0 (1)  Boundary
Energy balance z=0;72>0; ua=0, va=vain, ¢i,a= cain, Ta= 1
Jo
= =7 2>0;n- N — _ 72
O(WpCpT) — O(NOT) + ZAHreformRreform =0 (22) =Ta 2= U N N0y f oF
(EOT) = Ts—T;
Boundary n- (kOT) = M s(Ts—Tt)
r=rg, 2>0,n-(kO7)=0
2=0;72>0; ur =0, vor =vin, ¢ir = crin, Trod = Tr,in,
Tr =Trin 4. Results and discussion
r=r,;2z>20n-N;= A ZUiRj As described earlier, IIR-SOFC model was studied for the
actact P four system configurations:{RR», Rs and Ry reformers. The
. o As(T7" = Tg) model was developed as the smallest single unit cell taking
n- (ROT) = Ars(Troa = Ti) + 7 A (1 into account of the effects of temperature on gas distribution,
er + A \es reactant conversion and charge transfer. To simplify the anal-

ysis, the following assumptions are made:

4 4
o As(Ty — T5) e Each section is considered to be a non-isothermal

n- (kOT) = Mg (Th — T}) +

1 + ﬂ (i _ 1> steady-state condition
er  As \é&s e I[deal gas behaviour is applied for all the gas components
o Steady state 2-D dimensional model for tubular SOFC e Pressure drops in SOFC stack and coated-wall reformer
Fuel channel are neglected
Mass balance e The global fuel utilisation is maintained constantly
along the cell coordinate
D(—Dl DCi + Czﬁ) - Z ViRelec =0 (23)
Energy balance 4.1. Modelling of IIR-SOFC as base case
O@pCpT) — Z Oo\OT)=0 (24)

IIR-SOFC model was initially simulated using constant
Boundary parameters as a base case. Temperature and pressure were
controlled at 1173 K and 1 bar. The mixture of natural gas and
steam having a steam to carbon (S : C) ratio of 2.0 was intro-
Ty duced to the system. The natural gas composition of the North
2k Sea was used as the base case (86.72% BH% GHg,

z2=1L;r>0; ut =ur, v = vr, pf =Pr Cif = Cir, It =Tt

J)

Hy

=Ty, ZZO;n-NHz,f:—ZF

) n'NHzo,f =
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2.03% GHg and 0.44% GHj0). The flow rate of the inlet CO,. The gas compositions at the outlet of the fuel channel
fuel for all the configurations was 14.2 ém 1, while the in-  of IIR-SOFC were also predicted as 53%,H9% CO, 19%
let air flow rate to the cathode was 94.24%g1! to maintain H>0 and 9% CQ for the system with Rreformer; 57% H,
the oxygen utilisation at 25% in the cathode side. SOFC load18% CO, 20% HO and 5% CQ for R3 reformer; and 62%
ing voltage of 0.7 V was applied. H2, 16% CO, 14% HO and 8% CQ for the system with &
Figures 3 shows the concentration profiles of methaneyespectively. The hydrogen levels from IIR-SOFC with, R
ethane, propane, butane, steam, hydrogen, carbon monoxid®& and R, reformers were lower than that from IIR-SOFC
and carbon dioxide in the reformer and fuel channel of l1IR- with Ry, which is mainly due to the different amount of cat-
SOFC with R, Ry, Rs and R, reformers, respectively. As ex- alyst present in the internal reformer and the different levels
pected, the levels of all the hydrocarbons and steam decreased water-gas shift reaction taking place in the reformer over
along the length of the reformer, whereas those of hydrogenthese four configurations.
carbon monoxide and carbon dioxide increased. Atthe end The temperature profiles at the reformer, fuel and air
of the reformer, all of the hydrocarbons were completely con-channels of these four IIR-SOFC systems were also predicted.
verted. The gaseous products from IIR-SOFC system withFigure 4 presents the temperature profiles in reformer, fuel
R; internal reformer contained the highest hydrogen contentand air channel while Figure 5 shows the temperature gradi-
(75% Hp, 13% CO, 12% HO and 2% CQ). This gaseous ents from COMSOR program. A temperature gradient was
products then flowed backward to the fuel channel of SOFC,observed for all the configurations and cooling spots were
and an electrochemical reaction occurred to generate electrimbserved near the entrance of the reformers. The maximum
ity. From the simulation, the vent gas at the outlet of fuel temperature drop, 93 K, was observed for IIR-SOFC with
channel consisted of 38%,H8% CO, 50% HO and 14% R; reformer, whereas the temperature drop over IIR-SOFC

3 CJHH)
—=——o—C0 —*———C0,

0.8
L (b
y
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[ 3
g 2 4
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2 L 04+
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Figure 3. Concentration profiles of IR-SOFC with (a) packed-bed reformer, (b) coated wall reformer, (c) annular reformer and (d) annular-coated wall reformer
operated under constant temperature of 1173 K, pressure of 1 bar, S/C = 2, and co-flow pattern (for each species, solid symbols represent gas concentration ir
reformer and the rest is in fuel channel)
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systems with R Rs, and R, reformers were 3K, 43K and SOFC with R reformer can generate more ldontent, IIR-
33K, respectively. Furthermore, the differences in the tem-SOFC with R, R3 and R, reformers would be more compat-
perature distribution at the reformer, air and fuel channels forible with ceramic components of SOFCs, which is subjected
IIR-SOFC with R reformer appeared to be the largest, com- to the challenge of a temperature gradient for prolonged oper-
pared with those of the other three systems. Although IIR-ations.
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Figure 4. Temperature profiles of the reforméh§, fuel channelsT;) and air channelsig) of IIR-SOFC with (a) packed-bed reformer, (b) coated wall reformer,
(c) annular reformer and (d) annular-coated wall reformer operated under constant temperature of 1173 K, pressure of 1 bar, S/C = 2, and co-flow pattern

The performanceof these four [IR-SOFC systems wasorder to investigate the suitable operating conditions for this
then considered in terms of the power density and electridIR-SOFC system.
cal efficiency. As shown in Figure 6, under the same oper-
ating conditions, [IR-SOFC with Rreformer provided the 4.2 Effect of fuel inlet temperature
highest power density (0.67 M 2) and electrical efficiency

0, i . ..
(68%). The pressure drops across the reformer were predicted Decreasing the reformer activity can be a way to reduce

to be 2.6%10"* kPa, 3.4& 1&5.kPa, 2'5&_1075 kPa, and  the temperature gradient across the reformer system [1,7].
3.53<10"° kPa for IIR-SOFC with the designsiRRz, Rs,  Since the rate equations of methane steam reforming reac-
and Ry, respectively. tion are expressed as a function of temperature, controlling

All the simulation results above show that IIR-SOFC with the reformer temperature affects the reforming activity. The
the Ry reformer can be a potential IIR-SOFC system for a nat-reformer temperature can be controlled by the fuel inlet tem-
ural gas feed. The system provided the highest power densitperature. Therefore, the effects of fuel inlet temperature on
and electrical efficiency and highgtontent with acceptable the temperature gradient and cell performance were investi-
temperature gradient and pressure drop across the reformeagated by decreasing the fuel inlet temperature from 1223 K
In the next step, the effects of operating parameters on théo 1123 K, while the air inlet temperature at cathode side was
system performance and temperature gradient were studied ikept constantly.



258 P. Kim-Lohsoontorn et al./ Journal of Energy Chemistry Vol. 23 No. 2 2014

As shown in Figure 7, the temperature gradient acrosgively. The inlet temperature therefore affected the power den-
the reformer could not be reduced by decreasing the fuel inlesity and electrical efficiency. At 1123 K, the power density
temperature, although the temperature drop at the entrance @fas 0.48 Wem 2, and the electrical efficiency was 59%. At
reformer decreased when a lower fuel inlet temperature wad173 K (base case), the power density was 0.6&iv2, and
used. The simulation showed that the use of low fuel in-the electrical efficiency was 64%. At 1223 K, the power den-
let temperature reduced the heat accumulated in the systesity was 0.77 Wem ™2, and the electrical efficiency was 68%.
and consequently increased the cell overpotentials and low- The temperature gradient across the reformer could
ered the cell voltage. The lower fuel inlet temperature alsonot be decreased using a lower fuel inlet tempera-
affects the conversion rate in the fuel reforming process, leadture because both the power density and the electrical
ing to lower hydrogen production rate and then higher fuelefficiency also decreased with lower fuel inlet tempera-
utilization in SOFC, thus bringing an increase in concentra-ture. Therefore, the use of a lower inlet fuel temper-
tion polarization in SOFC. The cell voltages were 0.772V, ature is not a practical solution for [IR-SOFC withs R
0.700V and 0.647V at 1223 K, 1173 K and 1123 K, respec-reformer.
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Figure 5. Temperature gradients in the reformer and fuel channel of IIR-SOFC following schematic diagrams in Figure 1: (a) packed bad, (b) coated wall, (c)
annular and (d) annular-coated wall reformer (The model was coded in the CO®I$@igram at constant temperature of 1173 K, pressure of 1 bar, S/C =2,
and co-flow pattern)
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Figure 6. Comparison of power density and electrical efficiency between IIR-SOFC with packed-bed, coated wall reformer, annular and annular coated wall
reformers operated under constant temperature of 1173 K, pressure of 1 bar, S/C =2, and co-flow pattern

lower overpotentials were obtained when IIR-SOFC with R
reformer was operated under high pressure mode (10 bar),
which in turns leads to higher cell voltages. The cell voltage
increased to 0.783 YV for the system operated at 10 bar pres-
sure, while that was 0.700V for the same system operated
at 1 bar pressure. Therefore, increasing the operating pressure
can not only reduce the temperature gradient across IIR-SOFC
with R4 reformer but also increase the cell performance.
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1223
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—— 1223 K

—— 173K 1293 ¢
——1123K r
11234 | | | | 1273 [
0.0 02 0.4 0.6 0.8 1.0 [
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Dimensionless axial g r
Figure 7. Effect of inlet fuel temperature on the temperature profile of re- £ 1233
former for IIR-SOFC with annular-coated wall reformer operated under con- § r
stant pressure of 1 bar, S/C = 2, and co-flow pattern s 1213
5 C
1193
4.3. Effect of operating pressure n7E
. 1153 : L L L [ s L L | L s [ s L L | L s s
The effects of operating pressure on the temperature gra- 0.0 02 04 0.6 0.8 1.0
dient and cell performance were investigated. Figure 8 shows Dimensionless axial
the influence of the operating pressure on the temperatureigure 8. Effect of operating pressure on the temperature profile of reformer
profiles (between 1 bar and 10 bar) of IIR-SOFC with rie- for IR-SOFC with annular-coated wall which operated under constant tem-

former when the operating temperature was maintained conerature of 1173 K, S/C =2, and co-flow pattern

stantly at 1173 K and S : C was 2.0. The drop in the tempera-

ture profile significantly decreased when operating under high

pressure mode. This could be caused by the change in paf-4. Effect of steamto carbon ratio

tial pressure of gas species involving the steam reforming and

electrochemical reactions, since the reaction rate can be de- The effects of inlet steam content on the temperature gra-

creased by increasing the pressure. The influence of pressutient along the system and on the system performance were

on the gas diffusion is also a possible reason for the decreasavestigated by varying the inlet steam to carbon (S : C) ratio

in temperature drop. from 2.0to 4.0. Figure 9 shows the effect of inlet S : Cratio on
The power density and electrical efficiency obtained from the temperature profile of IR-SOFC withyReformer. When

IIR-SOFC operated at 10 bar (0.67-8kh~2 power density, S :C was increased, the temperature gradient in the reformer,

66% electrical efficiency) were also slightly higher than thosefuel and air channels decreased. This decrease could be due to

operated at 1 bar (0.65 %2 power density, 64% electri- the accumulated heat in the system since excess steam fed to

cal efficiency). Furthermore, higher open-circuit potential andthe system could be further used in endothermic reactions in
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the reformer. However, the use of a high inlet S : C ratio sig-the end of the channet € 1) and then accumulated along the
nificantly reduced the electrical efficiency from 67% to 35% air and steam until reaching the entrance of reformerQ);
when S : C was 2.0 and 4.0, respectively. This was caused bghus, the temperature gradient became smoother. The average

fuel dilution. temperature in [IR-SOFC with the co-flow pattern was higher
than that with the counter-flow pattern, leading to a greater
1223 mean cell temperature and lower overpotential. The power

density and electrical efficiency ofjJReformer operated un-
der a counter-flow pattern were 0.62dh 2 and 61%, re-
spectively, which were lower than those (0.620wi2 and
68%) conducted under a co-flow pattern.

Temperature (K)

4.6. Effect of natural gas composition

The effect of natural gas composition on 1IR-SOFC per-
formance (temperature profile, power density and electrical
efficiency) was investigated. Table 2 shows pure methane and
three different compositions of natural gas that were used: the

Dimensionless axial base case (North Sea source), raw and sale natural gases from
Figure 9. Effect of S: C ratio on temperature profile of IIR-SOFC with the Gulf of Thailand.
annular-coated wall reformer operated under constant temperature of 1173 K,
pressure of 1 bar, and co-flow pattern

0.6 0.8 1.0

Table 2. Composition of natural gas in base case, raw and sale
natural gas from Thailand gulf

4.5, Effect of flow direction Compositions (vol%)
CHy CzHe CsHg C4Hip CO

The comparison of counter-flow pattern and co-flow pat The North Sea (base case) 86.72 810 203 044 -
P P P Raw natural gas from Thailand gulf 67.39 9.33 5.15 2.22 14.26

tern (shown in preViqus _SeCtion) was don_e' Figure 10 ShoWSSale natural gas fro m Thailand gulf 72.31 7.24 2.19 0.93 14.70
the temperature profiles in the reformer, air and fuel channels
of IR-SOFC with R, reformer operated under a counter-flow
pattern. By comparing the temperature gradients across the The thermodynamic properties of these different compo-
system for R reformer under a co-flow pattern (Figure 4d), it sitions of natural gas were identified in terms of lower heating
can be seen that flow pattern significantly affected the tempervalue (LHV) and thermal efficiency. The LHV value and ther-
ature gradient. The temperature gradient at the entrance of th@al efficiency of fuel are shown in Figure 11. Although the
reformer over R reformer with the counter-flow pattern was base case had the highest LHV value, pure methane had the
higher than that with the co-flow pattern. Under the counter-highest thermal efficiency.
flow pattern, the significant temperature increase along the Figure 12 shows the temperature gradients in the re-
air flow channel could be due to the heat accumulation alongormer, fuel and air channels of IIR-SOFC fuelled by natu-
SOFC. For the co-flow system, heat was firstly generated atal gas from different sources. As shown in this figure, the
composition of the natural gas significantly affected the tem-
1273 perature profile, i.e., IR-SOFC fuelled by raw natural gas and
i sale natural gas showed smoother temperature gradients than
those of base case and pure methane. There were also tem-
perature drops at the inlet of the reactor channel in every cat-
egory. Pure methane exhibited a temperature drop in the re-
actor channel from 1173 K to 1020 K, while the temperature
dropped to 1070K, 1071 K and 1098 K for base case, raw
gas and sale gas, respectively. The average temperature for
IIR-SOFC with Ry reformer tube, which was fuelled by pure

1223

Temperature (K)

1073 | ——T

——7 methane and the North Sea natural gas, was higher compared
: T, with those of raw and sale natural gases, likely because of the
102300‘ : '0'2 — '0‘4 — ‘0‘6' : ‘ols BE— content of methane in the feedstocks. The higher content of

methane in the base case resulted in a stronger endothermic
steam reforming reaction at the entrance of the reformer sec-
Figure 10. Temperature profiles of the reformef;§, fuel channels(;), and 9

air channels %) of IIR-SOFC with annular-coated wall reformer operated tion, WhICh Consequemly resultedin a |arger temperature dl’Op
under counter-flow pattern over this area.
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Figure 12. Effect of natural gas composition on temperature profile operated under co-flow pattern at 1173 K. (a) Pure methane, (b) Base case, (c) Raw natural
gas from Gulf of Thailand, (d) Sale natural gas (raw natural gas after treated)

The natural gas composition also affects the electricalefficiencies for pure methane, base case, raw natural gas
efficiency and power density. As shown in Figure 13, the and sale natural gas were 45%, 41%, 37% and 39%, re-
power densities for pure methane, base case, raw naturabectively. Thus, the electrical efficiency and power den-
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gas and sale natural gas were 0.&W 2, 0.52Wcm 2,
0.45Wi/cnt and 0.48 Wem ™2, respectively. The electrical feedstocks.
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sity increased with the increasing methane content in the



262 P. Kim-Lohsoontorn et al./ Journal of Energy Chemistry Vol. 23 No. 2 2014

50 0.8

40 77 -
—_ F 0.6 -
c\c r ,‘\,/\
N Z | = |0
5 30r = I Z 7
2 [ Z L
= iy 5 ;
L% 204
= L 5 L
2020+ =
R § I
“ S o2f

10 + L

ol 0.0

Pure methane Base case Raw gas Sale gas Pure methane Base case Raw gas Sale gas
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with a conventional R reformer indicated that all the hy-
. . Nomenclatures
drocarbons in natural gas (i.e., methane, ethane, propane an .
) act Active surface area (f)
butane) were rapidly consumed by the reformer. Hence, the o o
IIR-SOFC Indirect internal reformer solid oxide fuel cell

temperature appeared to drop sharply at the entrance of the

reformer, and this drop was mainly related to the mismatch *? Permeability

between the rapid endothermic steam reforming reaction ratei.i Binary diffusion flux (n-s™)

and the amount of heat supplied from the electrochemical re-Di.mix Molecular diffusivity of componentin mixed gas
action. On the other hand, IIR-SOFC with the internal R (m?s71)

Rs and R, reformers provided smoother natural gas conver- Df i Effective diffusivity coefficient (nf-s~*)

sion and a low temperature drop at the entrance of the inter-D; pmix Gas diffusion through porous media3ms1)

nal reformer, which are more compatible to SOFC material. D, Knudsen diffusivity coefficient (fis~1)

In addition, a significantly higher power density and electri- £ f f, . Electrical efficiency efficiency (%)

cal efficiency as well as lower pressure drop can be achieved,g ¢ ... Thermal efficiency (%)

particularly in the case of IR-SOFC withsReformer. Ia
A sensitivity analysis of selected parameters was then per- ; Exchange current density (W2

formed for [IR-SOFC with R reformer. 1IR-SOFC with a . Current density (An-2)

co-flow (of fuel and air) pattgrn provided a higher voltage anq HVi 1173« Lower heating value of componenat 1173 K

smoother temperature gradient along the system than thatwith Molecul oht of stmol-L

a counter-flow pattern. The reduction of fuel inlet temperature = * olecuiarweight o ,Componem(g mol™)

resulted in a smoother temperature profile at the entrance of Moles of componerit (mol)

Faraday constant (9.64930* C-mol~1)

the reformer but also led to an increase in cell overpotentials™ Molar flow rate of the inlet gas

and consequently reduced the cell voltage. Increasing the op4’soFc Power density (~*m?)

erating pressure resulted in an increased system efficiency and Pressure (bar)

a reduced temperature drop at the entrance of the internal ref2 Universal gas constant (8.3148nbl*-K~)

former. The use of a high inlet steam to carbon (S : C) ratio Releg H, Conversion rate of b

also reduced the temperature drops as well as the electricaRelec o, Conversion rate of @

efficiency. Rohm Ohmic resistance per unit are&Xin—2)
Lastly, it was observed that the composition of natural T Temperature (K)

gas also played an important role in the thermal and electri- Mole fraction of species

cal performance of IIR-SOFC. Comparing natural gas from

the North Sea to natural gas from Thailand (i.e., the raw gagsreeks letters

from the Gulf of Thailand, and the sale natural gas after pro- € Porosity

cessing), Thai natural gas had lower methane content and pro#act  Activation loss (V)
vided a smoother temperature gradient along SOFC systemycone Concentration loss (V)
but achieved a lower power density and electrical efficiency. g, Ohmic loss (V)
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Fluid phase density (kgi~2)

Effective viscosity (Pa)

Fluid velocity (ms™1)

Special diffusion volume reported by
Fuller et al. (1966) [26]

Subscripts and superscripts

a Anode

c Cathode
H>  Hydrogen
H,O Steam
O, Oxygen

CO Carbon monoxide
CO, Carbon dioxide

in

Inlet fuel
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HIGHLIGHTS

« Precipitation factors: agent, concentration, temperature, ultrasonic was studied.

« Synthesis using (NH4),C,04 as an agent could provide a single phase BaCeOs.

« Ultrasonic during precipitation helps uniform size and shape of the particle.

« The BaCeOs from the sonication assisted route was tested under steam electrolysis.
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Barium cerate (BaCeO3) was synthesized using conventional precipitation and ultrasonic-assisted precip-
itation. The effect of precipitation parameters (precipitation precursor, precipitation agent, agent concen-
tration and temperature) significantly affected %perovskite formation and crystallite size of the product.
Precipitation with 1 M (NH,4),C,04 induced the formation of a single-phase BaCeO3 while precipitation
with 5-20 M NaOH provided a mixed phase of BaCeOs and CeO,. The %perovskite increased as increasing
precipitation temperature; however, the crystallite size of the product also increased. Increasing
ultrasonic intensity (30 and 150 W cm~2) during precipitation was found to increase the %perovskite
and to reduce crystallite size. The precipitation with 1 M (NH4),C,04 agent, using ultrasonic intensity
at 150 W cm™2, provided single phase BaCeOs; with crystallite size of 18.4 nm after calcination at
900 °C for 4 h. The electrochemical performance of the BaCeOs cell under steam electrolysis condition
(controlled voltage from OCV to 1.5 V; 20% H,0, 40% H,, and 40% N,) was measured (600-800 °C) and

the activation energy of conduction was calculated to be 0.78 eV.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The H; energy system appears to be an effective way for better
environment and sustainability [1,2]. Most of the H, is currently
produced from hydrocarbon fuels [3-6]; however, it results in
the CO, emission and consumes valuable hydrocarbon fuel
resources. An alternative method to produce H, is via the steam
electrolysis (H,O — H; + 0.50,). If the electricity required for this
process is derived from renewable energy sources, this represents
a low (or zero) carbon route to H, production. Solid oxide electrol-
ysis cell (SOEC) has gained much interest for H, production via
steam electrolysis application. Conventional SOECs are compose
of an oxide-ion conducting electrolyte such as stabilised zirconia
or doped ceria [7-9]. Comparing to the oxygen-ion (0?~), a proton

* Corresponding author. Tel.: +66 28892138x6101/2; fax: +66 28892138x6129.
E-mail address: pattaraporn.kim@mahidol.ac.th (P. Kim-Lohsoontorn).

http://dx.doi.org/10.1016/j.cej.2015.01.053
1385-8947/© 2015 Elsevier B.V. All rights reserved.

(H*) exhibits much smaller ionic radius, the mobility is therefore
relatively higher, leading to higher conductivity and cell perfor-
mance [10]. Moreover, proton-conducting SOEC offers pure H, at
the cathode while H, diluted with unreacted steam are produced
at the cathode of oxygen-ion conducting SOEC [11].

Therefore, proton-conducting electrolyte based perovskite-type
has gained much attention for an application in solid oxide
electrolysis cell. Among the proton conducting electrolytes,
BaCeOs-based electrolyte can exhibit relatively high conductivity
(0.04Scm™! at 600 °C) [12]. Conventional solid state reaction of
oxide materials (BaCOs + CeO, — BaCeOs + CO,) has been widely
used for synthesis of BaCeOs. However, it is rather difficult to con-
trol homogeneous composition by this method. The method
requires repeated cycles of mixing and heat treatments at elevated
temperature. Prolonged calcination at high temperature above
1100 °C results in a powder having large crystallite size with
non-uniform size and shape. Sintering temperature as high as

Please cite this article in press as: P. Kim-Lohsoontorn et al., Low-temperature preparation of BaCeO3 through ultrasonic-assisted precipitation for appli-
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1500-1700 °C must typically be used to obtain relative density
>90% when using powder synthesized from solid state reaction
[13,14]. The evaporation of BaO was also reported to occur at
temperature above 1550 °C [15]. This leads to low performance
in SOECs fabricated from this initial powder. The wet chemical
methods can provide mixing of individual component at atomic
level and also reduce the diffusion distance, leading to synthesized
product with nano crystallite at lower temperature when com-
pared to the solid state reaction [16]. Therefore, different routes
to nano-BaCeO; synthesis have been proposed such as sol-gel
[17,18], hydro or solvent thermal synthesis, combustion [19], and
precipitation [20-23,26].

Homogeneous precipitation is a promising wet chemical
method. However, one disadvantage of this method is that it is dif-
ficult to control product particle size and the size distribution. The
ultrasonic irradiation results an acoustic cavitation which is a
repeated cycle of the formation, growth, and implosive collapse
of the bubbles. During the cavitation, bubble collapse causes high
pressure pulse, intense local heat and extreme cooling rate, leading
to an intense micromixing. This can promote many chemical reac-
tions [20,21]. Therefore, precipitation with ultrasonic is of interest.
Preparation of BaCeOs; using co-precipitation has been reported
using salts of oxalic [22-25], and best to our knowledge, there is
no report on the use of ultrasonic during precipitation for BaCeO3
synthesis. There is also no report on precipitation using chloride-
based precursors with hydroxide agent for BaCeOs synthesis.

In this study, BaCeOs; was synthesized using conventional
precipitation and ultrasonic-assisted precipitation. The effect of
precipitation parameters (precipitation precursor, precipitation
agent, agent concentration, and temperature) has been studied in
conventional route. After that, ultrasonic was used during precipi-
tation in ultrasonic-assisted precipitation route. The effect of
ultrasonic intensity was investigated. An SOEC was fabricated from
synthesized powders. The electrochemical performance of the cell
fabricated from the synthesized powder was investigated under
steam electrolysis mode.

2. Experimental
2.1. Synthesis of BaCeOs

A precursor solution of CeCls-7H,0, BaCl,-2H,0, and Ce(NOs)s-
6H,0 (Sigma-Aldrich, 99.9% purity) was prepared for 1M and
50 ml. A proper ratio of BaCl,-2H,0 was reacted with HNOs to form
Ba(NOs),. NaOH and (NH4)>,C,04 (Sigma-Aldrich) were used as
precipitation agents. A 100 ml solution of NaOH was prepared at
10-20 M, while that of (NH4),C,04 was prepared at 1 M. The pre-
cursor was added drop wise to the precipitation agent such that
the concentrated agent could be stirred to avoid self-precipitation.
The precursor feed rate was 0.5 ml min~". The solution was stirred
using magnetic stirrer at 120 rpm. The reaction was allowed to
proceed for 30 min after completing addition of the precursor at
controlled precipitation temperature (25-90°C). For the ultra-
sonic-assisted precipitation route, the effect of ultrasonic intensity
was studied. For low intensity ultrasonic experiment, the solution
beaker was placed in an ultrasonic bath (Ultrasonik, Dentsply
NeyTech, USA) which provided ultrasonic intensity at 30 W cm~2.
For high intensity ultrasonic experiment (intensity: 150 W cm2),
the irradiation occurred through the direct immersion of a high-
intensity ultrasonic probe (Tihorn, Sonic and Material Inc., USA)
into the reaction solution. After completing the precipitation,
the products were separated, washed with DI water until the
washings were neutral, and dried at 110 °C for 24 h. The samples
were collected as precipitated and also after calcination at 900 °C
for 5 h.

2.2. Characterization

The crystalline structure was determined using an XRD (Bruker
D8 Advance). The average crystallite size (d) of the sample was
estimated using the Debye-Scherrer equation:

B 0.9
Brwrm €0S(0)

where / is the wavelength, 0 is diffraction angle, and Bryyy is the
full-width for the half-maximum (FWHM) intensity peak of the
sample.

The percentage of the perovskite phase was determined by
measuring the major XRD peak intensity using the following
equation:

d

I perovskite

%Perovskite = < > x 100

Iperovskite + IBaC03 + ICeOZ
The thermal gravimetric analysis (TGA) study was performed
using a thermal analyser (Perkin Elmer).
Microstructural image of the sample were taken using trans-
mission electron microscope (TEM), TECNAI 20, Philips.

2.3. Cell fabrication

An electrolyte supported cell was fabricated. Synthesized
BaCeO3 was pressed at 1 metric ton for 2 min followed by sintering
at 1500 °C for 10 h to produce an electrolyte pellet with a diameter
of ~25.0 mm and a thickness of ~2.5 mm. To prepare electrodes,
silver conductive paste (Sigma-Aldrich) was coated on both sides
of the electrolyte pellet followed by firing at 900 °C for 2 h, giving
an electrode layer with an area of 0.785 cm? and a thickness of
~30 pm.

2.4. Performance measurement

Single cell polarisation curves were generated using linear
sweep current techniques. A potentiostat (Metrohm Autolab, Neth-
erlands) was used to control the voltage between open circuit volt-
age (OCV) and 1.5 V with a scan rate of 20 mV/s. Platinum wire was
attached to the cell for electrical connection. The cell was placed in
the cell holder and the cell ridge was sealed using glass sealant
(Ultra-Temp 516, Aramco, USA) to separate the gas environment
of the two electrode chambers. A vertical furnace (Chavachot,
Thailand) was used to control the temperature of the rig. The test
system allowed variable gas compositions of steam, H,, and N, to
be introduced to the electrode. A carrier gas was N, to control
the steam ratio in the gas compositions. After passing through
the flow controllers, the H,/N; line passes through the humidifier,
which is a bubble column situated inside a thermocirculator bath,
to saturate the gas with water.

The value of activation energy (E;) of conductivity was calcu-
lated using Arrhenius equation:

oT = A - exp[-E,/RT]

where ¢ is ionic conductivity (Scm™"), T is absolute temperature
(K), R is gas constant 8.314 J K~ mol~!, and E, is activation energy
(J mol™1).

3. Results and discussion

3.1. Conventional precipitation: effect of precipitation agent, agent
concentration and precipitation temperature

Figs. 1 and 2 illustrate the XRD patterns of product as precipi-
tated and after calcination at 900 °C, respectively. The product
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Fig. 1. XRD patterns of as-precipitated product, synthesized using different
precipitation agent (NaOH, (NH,4),C,04) and temperature (25-90 °C) in conven-
tional route.
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Fig. 2. XRD patterns of the product after calcination at 900 °C for 4 h, synthesized
using different precipitation agent (NaOH, (NH,4)>,C>04) and temperature (25-90 °C)
in conventional route.

was synthesized using different conditions (precipitation agent,
agent concentration, and temperature). As shown in Fig. 1, before
calcination, the precipitation products in all conditions were com-
posed of mixed phases of BaCeOs, BaCOs, and CeO, with different
compositions depending on precipitation parameters. After calci-
nation at 900 °C for 4 h, the intensity and the sharpness of the
XRD peaks increased significantly, suggesting a higher crystallinity
for the products (Fig. 2). Chemical precipitation using highly con-
centrated NaOH was previously found to significantly affect the
morphology of the precipitation product and provides nano-scale
CeO, [26]. In this study, highly concentrated NaOH (10-20 M)
was therefore used. However, when NaOH was used as a precipita-
tion agent, a single phase BaCeOs could not be synthesized. The
product was a light-yellow power. The XRD patters showed that
the product was a mixture of BaCeO; and CeO,. The patterns
showed CeO, with a cubic structure, corresponding to main peaks
at (200),(213),(400),(311),(420), and (422) planes (ref. JCPDS
card No. 34-394). Although NaOH concentration was increased
from 10 to 20 M (constant precipitation temperature at 90 °C),
the product was still a mixture of BaCeO3 and CeO,. It should be
noted that in the case of NaOH agent, unwanted phase such as
BaO was not detected. A single phase BaCeOs; (100%perovskite)

could be synthesized using 1M (NH,4),C,04 as a precipitation
agent. A white power was obtained. The XRD patterns showed
BaCeOs; with an orthorhombic structure, corresponding to main
peaks at(220),(122),(213),(422),(233),(440)and (613) planes
(ref. JCPDS card No. 22-0074).

The average crystallite size of the sample was calculated using
Debye-Scherrer equation, performing on the main diffraction
peaks. The percentage of the perovskite phase was also determined
by measuring the major XRD peak intensity. The calculated aver-
age crystallite size and %perovskite of the BaCeOs synthesised
using different synthesis conditions is presented in Table 1. In this
study, we aimed to obtain high %perovskite and small crystallite
size of BaCeOs. As increasing NaOH concentration from 10 to
20 M, the %perovskite after calcination increased from 37.3% to
62.5% but the crystallite size also increased from 20.9 to 34.2 nm.
Hydroxyl ions (OH™) involving in the precipitation in alkaline solu-
tions should be important factors for the product formation.
Because the dispersive forces and electrostatic interactions of the
ions are important factors that control the crystal formation,
increasing the OH™ concentration might lead to different charge
conditions which relate to the product formation [27]. Using
(NH4)2,C,04 as precipitation agent provided high %perovskite for-
mation. The product contained 30.6%perovskite before calcination.
After calcination at 900 °C for 4 h, 100% pervoskite was obtained
with the crystallite sized of 29.8 nm.

The effect of precipitation temperature was also investigated.
The precipitation temperature was varied from 25 to 90 °C when
20 M NaOH was used as precipitation agent. As decreasing precip-
itation temperature, the crystallite size of product decreased from
34.2 to 23.9 nm (after calcination). However, the %perovskite of the
product also decreased from 62.5% to 50.6% (shown in Fig. 2 and
Table 1). This indicates that precipitation temperature also an
important factor for product purity, corresponding to the work of
Almeida de Oliveira et al. [28]. It was reported that in the experi-
ment of precipitation with mixed oxalate agent, when temperature
increases from 25 to 70 °C, the CeO, impurity phase in the precip-
itate considerably decreases [28].

3.2. Ultrasonic-assisted precipitation: effect of ultrasonic intensity

A comparison of products from different precipitation routes
was performed (conventional route and ultrasonic-assisted precip-
itation route). Fig. 3 shows the XRD patterns of the product as
precipitated and Fig. 4 shows the XRD pattern of the product after
calcination at 900 °C for 4 h. The XRD peaks for the crystal planes
synthesized using the ultrasonic-assisted route matched those of
the crystal planes synthesized using the conventional route (Figs. 1
and 2). Therefore, no significant difference was apparent with
respect to the type of crystalline phase in the product prepared
from both methods. When using the ultrasonic assisted route, a
relatively smaller particle size of the product could be obtained
comparing to conventional precipitation. In Fig. 4, relatively higher
intensity and sharper peaks were clearly seen when high intensity
ultrasonic (150 W cm~2) was applied, comparing to low intensity
ultrasonic (30 W cm™2). As shown in Table 1, when (NH,),C,04
was used as precipitating agent, the product after calcination
exhibited an average crystallite size of 27.5 nm and 18.4 nm for
low intensity and high intensity ultrasonic route, respectively
(conventional route: 29.8 nm). For NaOH route, the use of ultra-
sonic during precipitation affected both crystallite size and %perov-
skite of the products. As shown in Table 1, when 20 M NaOH was
used as precipitating agent, the product after calcination exhibited
%perovskite of 65.7% and 74.9% for low intensity and high intensity
ultrasonic route, respectively (conventional route: 62.5%). It is
unclear how ultrasonic could help increase the %perovskite of
BaCeOs. However, it is likely that during ultrasonic irradiation
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Table 1

Calculated %perovskite and crystallite size of product synthesized using different conditions (route: conventional/ultrasonic assisted; precipitating agent: NaOH/(NH,4),C504;
precipitating concentration: 1-20 M; precipitating temperature: 25-90 °C; calcination condition).

Route Precursor Precipitation Precipitation Temperature  %perovskite Crystal size (nm)
agent concentration (°C) As After As After
precipitated calcination precipitated calcination
Conventional Chloride NaOH 20 25 26.6 50.6 6.4 239
base 20 70 26.7 52.8 7.6 28.7
20 90 31.9 62.5 8.2 34.2
15 90 29.1 374 7.7 23.7
10 90 28.8 373 7.1 20.9
Nitrate (NH4)>C204 1 90 30.6 100 18.7 29.8
base
Ultrasonic Low Chloride NaOH 20 90 235 65.7 4.9 27.1
assisted intensity base
Nitrate (NH4)2C204 1 90 17.9 100 7.6 27.5
base
High Chloride NaOH 20 90 49.6 749 4.2 15.2
intensity base
Nitrate (NH4)2C204 1 90 45.9 100 6.3 18.4
base
®  BaCeO, N B BaCeO,
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Fig. 3. XRD patterns of the product as precipitated, synthesized using sonication
assisted route (precipitation agent: NaOH and (NH4),C;04; and temperature of
90 °C).

the particles are able to move rapidly due to turbulent flow and the
shockwave generated by homogeneous cavitation [29]. This can
lead to increased kinetic and the product formation.

The TEM image of BaCeO3 prepared using conventional precip-
itation (Fig. 5(a)) and ultrasonic-assisted precipitation (Fig. 5(b)) is
shown in Fig. 5 when (NH,4),C,04 was used as precipitation agent
and calcination was at 900 °C for 4 h. It can be seen that the sam-
ple prepared from conventional precipitation without ultrasonic
was in irregular shape with a large particle size and size distribu-
tion. There was an extent of particle aggregation from conven-
tional precipitation while the sample from ultrasonic-assisted
precipitation (150 Wcm™2) was in spherical shape with an
average size less than 50 nm. The particle was relatively more
even. The results indicated that ultrasonic during precipitation
could help the powder disperse more uniformly. This corresponds
to the works of other material synthesis such as Li-based cathode
[29,30]. The effect of ultrasonic on BaCeOs3 precipitation has not
been previously investigated. Yi et al. reported that ultrasonic
irradiation not only make the solid powder disperse more
uniformly in the solution but also efficiently restrain the agglom-
eration of solid powders [30].

2 Theta (degree)

Fig. 4. XRD patterns of the product after calcination 900 °C for 4 h, synthesized
using ultrasonic-assisted precipitation route with different ultrasonic intensity and
precipitation agent.

After the precipitation and drying process, the thermal decom-
position of uncalcined powder was observed using TGA. Fig. 6
shows the first stage of weight loss between 80 and 230 °C, relating
to the rapid evaporation of adsorbed and structure water from the
precipitated. The second weight loss occurred at 400-800 °C, relat-
ing to the decomposition of BaCOs. The phases of BaCOs, BaO, and
CeO, were reported to form after heating over 300 °C and BaCeOs3
started to form the crystalline perovskite phase at about 600 °C
where most other elements were decomposed [31]. The third dis-
tinct weight loss occurred at 900 °C. This can attributed to the
chemical reaction between precipitated precursors and removal
of carbon and nitrogen oxide. The calcination temperature was sig-
nificantly lower, compared to conventional solid state reaction
method (1097-1591 °C) [32]. The total weight loss of the BaCeO3
synthesized using (NH4),C,04 as a precipitation agent was 45.6%
in conventional route and 46.6% in ultrasonic-assisted route. The
use of NaOH as a precipitation agent caused a lower weight loss
in products. The total weight loss of the BaCeOs synthesized using
NaOH as precipitating agent was 15.8% in conventional route and
17.3% in ultrasonic-assisted route. Associating weight loss in the
products with any particular mechanism is difficult without further
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Fig. 5. TEM image of BaCeOs prepared from (a) conventional precipitation and (b)
ultrasonic-assisted precipitation.
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Fig. 6. TGA spectrum of product as precipitated, prepared using different route.

study. However, the difference in the measured total weight loss
from the theoretical weight loss (47.2%) in NaOH route was due
to the mixed phases of BaCeO3 and CeO, in the product. The total
weight loss in NaOH route was larger in ultrasonic-assisted
precipitation route when comparing to conventional route,
corresponding to %perovskite which was relatively higher in
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Fig. 7. Temperature dependences of electrical conductivity for BaCeO3 synthesized
using ultrasonic-assisted precipitation.

ultrasonic-assisted precipitation when comparing to conventional
route. The TGA results and %perovskite formation was correspond-
ing. In (NH,4),C,04 route, total weight loss in ultrasonic-assisted
precipitation and in conventional route was comparable, corre-
sponding to theoretical weight loss and 100%perovskite formation.

3.3. Electrochemical performance measurement

The BaCeOs; powder synthesized using 1 M (NH4),C,04 with
high intensity ultrasonic-assisted precipitation was fabricated into
a single cell. This condition of synthesis was used because the con-
dition provided single phase BaCeOs as reported in Section 3.2. The
cell was tested under steam electrolysis condition. The gas mixture
of 20% H,0, 40% H,, and 40% N, was introduced to the anode cham-
ber and N,-flusing gas was introduced into the cathode chamber.
The operating temperature was varied in a range of 600-800 °C.
Temperature dependences of electrical conductivity for BaCeOs
synthesized using ultrasonic-assisted precipitation is presented
in Fig. 7. The conductivity of the cell increased from
2.67 x 107®Scm™" at 600 °C to 1.56 x 107> Scm™" at 800 °C. The
activation energy of conduction was 0.78 eV (75 k] mol~!). The
conductivity was relatively low, compared to doped BaCeOs [12].
The doping with different donor or acceptor impurities such as tri-
valent elements which exhibit a larger ionic radius will generate
oxygen vacancy and can help increase conductivity. However, the
appearance of proton conductivity in pure BaCeOs can be repre-
sented as a result of defect structure, exposed to humidified atmo-
sphere. The humidified atmosphere results the dissociative water
adsorption and appearance of a significant amount of proton
defects in the perovskite. When proton conductor is exposed to
steam, oxygen vacancy is filled with hydroxyl group (OH) and this
means protons are incorporated into the perovskite structure.

4. Conclusion

Precipitation parameters (precipitation precursor, precipitation
agent, agent concentration and temperature) significantly affected
%perovskite and crystallite size of the BaCeOs. Synthesis using
(NH4)2,C,04 as a precipitation agent could provide a single phase
of BaCeO3 while using NaOH as an agent provided a mixed phase
of BaCeO5 and CeO,. Increasing precipitation agent concentration
and temperature increased %perovskite and crystallite size of the
product. The use of ultrasonic during precipitation helped uniform
particle size and shape distribution. The %perovskite also increased
when ultrasonic was used during precipitation, likely due to
increased kinetic as a result of turbulent flow and shock wave cre-
ated by homogeneous cavitation. The BaCeOs; prepared through
high intensity ultrasonic assisted precipitation using (NH4),C504
as an agent could be formed with TEM crystallite size <50 nm.
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The cell fabricated from the material exhibited activation energy of
conduction at 0.78 eV under steam electrolysis condition.
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