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Abstract 
 
In this paper, we investigate a new type of retrial queueing model with feedback and working breakdown services. The 

regular busy server may become defective by disasters (negative customers) at any point of time. Negative customers arrive only 

at the service time of a positive customer and remove the positive customer from the service. At the instant of failure, the main 

server is sent for repair and the repair period begins immediately. During the repair period, the server gives service at a lower 

speed (called working breakdown period). The steady state probability generating function for system size and orbit size are 

obtained using the method of supplementary variable. We also obtain some analytic expressions for various performance 

measures such as system state probabilities, mean orbit size, and mean system size of this model and some important special 

cases are discussed. Finally, some numerical examples are presented to study the impact of the system parameters. 

 

Keywords: retrial queue, G queue, feedback, working breakdown services 

 
 

1. Introduction 
 

The topic of the retrial queues in queueing theory 

has been an interesting research topic during the last two 

decades. The concept of retrial queues has been a subject of 

great effort and interest by many researchers (Artalejo, 2010; 

Artalejo & Gomez-Corral, 2008). Such queueing models are 

sure to bring applications in the performance analysis of a 

wide range of systems in data distributed networks, tele-

communications, traffic management on high-speed networks, 

and production engineering. 

The concept of negative customers (called G-

queues) was first developed by Gelenbe (1989) in computers, 

 

neural networks, and communication networks. The name G-

queue (negative customers) was adopted for queues with 

negative customers in the acknowledgment of Gelenbe. 

Negative customers (disasters) arrive only at the regular 

service time of positive customers (ordinary customers). 

Negative customers cannot accumulate in a queue and do not 

receive service, and will remove the positive customers 

already in service from the system. These types of negative 

customers cause server breakdown and the service channel 

will fail for a short interval of time. At the instant of failure, 

the main server is sent for repair and the repair period begins 

immediately. The repaired server is assumed to be as good as 

a new server. Tan Van Do (2011) presented a survey on 

queueing systems with G-networks, negative customers, and 

applications. Further, such models are motivated by recent 

advanced applications in computer systems and data 

communication networks. Recently, Kim and Lee (2014) have 

discussed queueing models with breakdowns and repairs. 
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Queueing models with different service rates were 

studied by various authors in the past. The initiative of these 

models almost made the change of the service rate dependent 

on the situation of the system, such as queues in random 

environment, queues with breakdown, and working break-

down or models with vacations and working vacations. Servi 

and Finn (2002) introduced an M/M/1 queueing system with 

working vacations. Wu and Takagi (2006) extended the 

M/M/1/WV queue to an M/G/1/WV queue. Authors like 

Arivudainambi et al. (2014), Gao et al. (2014), Rajadurai et 

al. (2016), Zhang and Hou (2012), Zhang and Liu (2015) and 

Rajadurai (2018a, 2018b) analyzed queueing systems with 

working vacations. 

The concept of working breakdowns was first 

introduced by Kalidass and Ramanath (2012). In other words, 

if the system becomes defective by disasters at any point of 

time when a regular busy server is in operation, the system 

should be ready with a substitute (standby) server in 

preparation for possible main server failures. The substitute 

server renders services to the customers while the main server 

is repaired. The service rate of the substitute server is different 

from (lower than) the main server. At the instant of the repair 

completion, the main server returns to the system and 

becomes available. Additionally, the working breakdown 

service can decrease complaints from the customers who 

should wait for the main server to be repaired and reduces the 

cost of waiting customers. Therefore, a more reasonable repair 

policy is the working breakdown service for unreliable 

queueing systems. Recently, Kim and Lee (2014) discussed a 

model M/G/1 queueing system with disasters and working 

breakdown services.  

Motivated by this factor, this work introduces a new 

class of M/G/1 retrial queue with negative customers, 

feedback under working breakdown services, and working 

vacation services. During the period of working vacation and 

working breakdown, the server works in different rates of 

services. The analytical results of this model are very useful 

and helpful for decision makers for the design of a 

management policy. This model has potential applications in 

medical service systems for telephone consultation, stochastic 

production, and inventory systems with a multipurpose pro-

duction facility and machine replacement problems. The rest 

of this work is organized as follows. The mathematical model 

description of this work is described in section 2. The steady 

state governing equations and the number of customers in the 

orbit for different states are obtained in section 3. In section 4, 

some important system performance measures are given. In 

section 5, we analyze some special cases of our model which 

are consistent with the existing literature. Numerical examples 

are presented for various parameters on the system 

performance and cost optimization is analysed in section 6. 

Finally, conclusions of the work are given in section 7. 

 

2. Basic Description of the Model 
 

We investigate an M/G/1 retrial G-queue with 

feedback under working vacations and working breakdowns 

(M/G/1/WB). 

  Arrival process: There are two types of customers 

arriving into the system: ordinary customers (positive 

customers) and disasters (negative customers). Assume that 

both types of customers arrive from outside the system 

according to independent Poisson processes with rates λ and δ, 

respectively.  

 Retrial process: If an arriving positive customer finds 

that the server is free, the customer begins his service 

immediately. Otherwise, when arriving customers find the 

server busy or lower speed service, the arrivals join the pool 

of blocked customers called an orbit in accordance with FCFS 

discipline, which means that only one customer at the head of 

the orbit queue is allowed access to the server. Inter-retrial 

times have an arbitrary distribution ( )R x with corresponding 

Laplace Stieltjes Transform (LST) ( ).R 
 

 Regular service process: Whenever a new positive 

customer or retry positive customer arrives at the server idle 

state, then the server immediately starts normal service for the 

arrivals. The service time has a general distribution which is 

denoted by the random variable S with distribution function 

(d.f) ( )S x  having LST *( )S . 

 Feedback rule: After completion of service for each 

customer, the unsatisfied customers may rejoin the orbit as 

feedback customers to receive another service with probability 

p (0 ≤ p≤ 1) or may leave the system with complement 

probability q = (1- p). 

 Removal rule and the working breakdown process: 

Negative customers (disasters) arrive only at the regular 

service time of the positive customers. Negative customers 

cannot accumulate in a queue and do not receive service but 

will remove the positive customers in service from the system. 

These types of negative customers cause server breakdown 

and the service channel will fail for a short interval of time. At 

the instant of failure, the main server is sent for repair and the 

repair period begins immediately. The repair time follows an 

exponential distribution with the rate of η. The repaired server 

is assumed to be as good as a new server. However, when 

disaster occurs in a regular busy server, the server goes for a 

working breakdown. During the working breakdown period, 

the substitute server works at a lower service rate for the 

arriving customers (μw < μ). When repair ends, if there are 

customers in the orbit, the server switches to the normal 

working level and will start a new busy period. Otherwise, it 

is idle and ready for serving new arrivals. During the working 

breakdown periods (lower speed services), the service time 

follows a general random variable Sw with distribution 

function ( )wS t  and LST
* ( ).wS   

 Multiple working vacations process: The server begins a 

working vacation each time the orbit becomes empty and the 

vacation time follows an exponential distribution with 

parameter θ. If any customer arrives during a vacation period, 

the server gives service at a lower speed service rate (μw < μ). 

If any customers in the orbit at a lower speed service 

completion instant in the vacation period, the server will stop 

the vacation and come back to the normal busy period which 

means vacation interruption happens. Otherwise, it continues 

the vacation. When a vacation ends, if there are customers in 

the orbit, the server switches to the normal working level. 

Otherwise, the server begins another vacation. During the 

working vacation periods (lower speed services), the service 

time follows a general random variable Sw with distribution 

function ( )wS t  and LST * ( ).wS   
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  Lower speed service process: We consider the 

working vacation period and working breakdown period as the 

lower speed service period, and we assume that all random 

variables (inter-arrival times, retrial times, regular service 

times and lower speed service times) defined above are 

independent of each other. 

 

2.1 Practical justifications of the suggested model 
 

The suggested model has practical real life appli-

cation in medical service systems for telephone consultation. 

Nowadays, doctors have initiated telephone consultation 

services for patients who are called positive customers. Here, 

we consider a telephone consultation service system staffed 

with a chief physician (main server) and a physician assistant 

(substitute server or working breakdown server). The 

physician assistant only provides service to the patients when 

the chief physician is on vacation (working vacation) and the 

service rate of the physician assistant is usually slower than 

the chief physician. In generally, there is a phone operator 

who is responsible to establish communications between 

doctors and patients or notes down the order of the calls, 

corresponding to the ‘orbit’. If the line is busy when a patient 

makes a call, he cannot queue but tries again sometime later 

(retrial), otherwise he is served immediately by the chief 

physician or the physician assistant. During the patients’ 

consultation time, the telephone signal status is very low or no 

network coverage (negative customer), and the patient’s call 

has lost service. Once the signal strength is full (repaired), 

then the system is again treated as good as new to serve.  

When the chief physician finds no patient has 

called, he will need to rest from his work, i.e. go on a 

vacation. During the vacation period of the chief physician, 

the physician assistant will serve the patients, if any, and after 

his service completion, if there are patients in the system, the 

chief physician will come back from his vacation whether his 

vacation has ended or not, i.e. vacation interruption happens. 

Meanwhile, if there is no patient when a vacation ends, the 

chief physician begins another work vacation (multiple 

working vacations), otherwise, the chief physician takes over 

as the physician assistant. To understand the patient’s 

condition, the chief physician will restart his service no matter 

how long the physician assistant has served the patient. On the 

other hand, to minimize the idle time of the chief physician, 

immediately on a service completion, the phone operator will 

call (or search for) the customers who are in orbit under FCFS 

and the search time is assumed to be generally distributed, 

which is corresponding to the general retrial time policy.  

 

2.2. Notations and probabilities 
 

In steady state, we assume that R(0)=0, R()=1, 

S(0)=0, S()=1, Sw(0)=0, Sw()=1 are continuous at  x = 0.  

The following notations and probabilities are used in sequent 

sections:  

 

 

 

 

 

 

 

( )r x  the hazard rate (conditional completion rate) for retrial  

of R(x); 
( )

i.e., ( ) .
1 ( )

dR x
x dx

R x
 


 

 

( )x  the hazard rate for service of S(x); 

  
( )

i.e., ( ) .
1 ( )

dS x
x dx

S x
 


 

 

( )w x  the hazard rate for lower rate service of Sw(x); 

    
( )

i.e., ( ) .
1 ( )

w
w

w

dS x
x dx

S x
 


 

 

( ) N t  the number of customers in the orbit at time t. 

 

( ) C t  the state of the server at time t. 

 
0 ( )R t   the elapsed retrial time. 

 
0 ( )S t   the elapsed service time on ith phase. 

 
0 ( )wS t   the elapsed lower rate service time. 

 

0
( ) P t  the probability that the system is empty at time t.  

 

0
( ) W t    the probability that the system is empty at time t and 

the server is in working vacation and breakdown 

(lower speed service).  

 

( , ) 
n

R x t the probability that at time t there are exactly n 

customers in the orbit with the elapsed retrial time 

of the test customer undergoing retrial lying in 

between x and x+dx.  

 

( , ) n x t  the probability that at time t there are exactly n 

customers in the orbit with the elapsed normal 

service time of the test customer undergoing service 

lying in between x and x+dx.  

 

( , ) nW x t  the probability that at time t there are exactly n 

customers in the orbit with the elapsed lower rate 

service time of the test customer undergoing service 

lying in between x and x+dx. 

 

3. Steady State Analysis 
  

  For an M/G/1 retrial G-queue with feedback under 

working vacations and working breakdowns (M/G/1/WVB), 

we developed the steady state difference-differential equations 

based on a supplementary variable method. For further 

development of this retrial queueing model, let us define the 

random variable where 
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0,  if the server is free and in working vacation and working breakdown period,

1,  if the server is free and in regular service period,
( )

2,  if the server is busy and in regular service period on bo
C t 

th phases at time ,

3,  if the server is busy and in lower speed service period period at time .

t

t








 

 

Thus the supplementary variables are introduced in order to obtain a bivariate Markov process ( ), ( );  0 .C t N t t  If 

C(t) = 1 and N(t) > 0, then 0( )R t  represents the elapsed retrial time. If C(t) = 2 and ( ) 0N t   then 0( )S t corresponds to the elapsed 

time of the customer being served in a normal busy period. If C(t) = 3 and ( ) 0N t   then 0 ( )wS t corresponds to the elapsed time 

of the customer being served in a lower rate service period.  

Let {tn; n = 1,2,...} be the sequence of epochs at which either a normal service or lower service period completion 

occurs. The sequence of random vectors      ,    
n n n

Z C t N t  forms a Markov chain which is embedded in the retrial 

queueing system. It follows from Appendix A that ;  nZ n N  is ergodic if and only if ( ),R   for our system to be stable, 

where  1 ( ) .


 


  p S  

For the process  ( ),  0N t t  , we define the probabilities  0 ( ) ( ) 0,  ( ) 0  P t P C t N t and  0 ( ) ( ) 0,  ( ) 0  W t P C t N t  

the probability densities 

 

 

 

 

0

0

0

( , )    ( ) 1, ( ) ,  ( ) ,  for 0,  0 and 1.

( , )  ( ) 2, ( ) ,  ( ) ,  for 0,  0,  0.

( , )  ( ) 4, ( ) ,  ( ) ,  for 0,  0,  and 0.

        

         

        

n

n b

n w

R x t dx P C t N t n x R t x dx t x n

x t dx P C t N t n x S t x dx t x n

W x t dx P C t N t n x S t x dx t x n

 

 

We assume that the stability condition is fulfilled in the sequel and so that we can set 
0 0

lim ( )



t

P P t  and 

0 0
lim ( )



t

W W t  limiting densities for 0x  and 0n  

 

( ) lim ( , ) ,


n n
t

R x R x t  ( ) lim ( , )  and  ( ) lim ( , ).
 

   n n n n
t t

x x t W x W x t   

 

3.1 Steady state equations  
 

The system of governing equations of server states as follows:  

 

  
0 0. P W                   (3.1) 

    0 0 0 0

0 0 0

 ( ) ( ) ( ) ( ) ( ) ,  0.      

  

          w nW Q q x x dx q W x x dx x dx n            (3.2) 

   
( )

( ) ( ) 0,  1.   n
n

dR x
r x R x n

dx
                (3.3) 

   0
0

( )
( ) ( ) 0,  0.  


     

d x
x x n

dx
               (3.4) 

    1

( )
( ) ( ) ( ),  1.    


      n

n n

d x
x x x n

dx
              (3.5) 

   0
0

( )
( ) ( ) 0,  0.        w

dW x
x W x n

dx
                              (3.6) 

    1

( )
( ) ( ) ( ),  1.          n

w n n

dW x
x W x W x n

dx
                             (3.7)  

 

The steady state boundary conditions at x = 0 are 

 1 1

0 0 0 0

(0)  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,  1.   

   

          n n n n w n wR p x x dx q x x dx p W x x dx q W x x dx n          (3.8) 
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 0 1 0 0

0 0

(0) ( ) ( ) ( ) ( ) ,  0.  

 

      R x r x dx W x dx P n               (3.9) 

 1

0 0 0

(0) ( ) ( ) ( ) ( ) ( ) ,  1.  

  

       n n n nR x r x dx R x dx W x dx n            (3.10) 

 
0 ,   0

(0)
0,        1

 
 


n

W n
W

n
               (3.11) 

 

The normalizing condition is 

 

 
0 0

1 00 0 0

( ) ( ) ( ) 1

   

 

 
      
 
 

   n n n

n n

P W R x dx x dx W x dx            (3.12) 

 

3.2. Computation of the steady state solution 
 

In the following, the probability generating function technique is used here to obtain the steady state solution of the 

retrial queueing model. To solve the above equations, we define the generating functions for |z|  1, as follows: 

 

  1 1 0 0 0

0

( , ) ( ) ;  R(0, ) (0) ;  ( , ) ( ) ;   (0, ) (0) ;  ( , ) ( )

 and (0, ) (0) ;

    

    





        



    



n n n n n

n n n n n

n n n n n

n

n

n

R x z R x z z R z x z x z z z W x z W x z

W z W z

 

 

Multiplying the steady state equation and steady state boundary condition (3.2) - (3.10) by zn and summing over n, (n = 0,1,2...) 

and solving the partial differential equations, it follows that 

 

  
( , )

( ) ( , ) 0 


  


R x z
r x R x z

x
              (3.13) 

  
( , )

(1 ) ( ) ( , ) 0  


     


x z
z x x z

x
             (3.14) 

 
( , )

(1 ) ( ) ( , ) 0   


     


w

W x z
z x W x z

x
             (3.15) 

 0

0 0 0

(0, )  ( ) ( , ) ( ) ( ) ( , ) ( ) ( , ) ( )    

  

          wR z pz q x z x dx pz q W x z x dx x z dx W          (3.16) 

 0

0 0 0

1
(0, ) ( , ) ( ) ( , ) ( ) ( , )   

  

       z R x z r x dx R x z dx W x z dx P
z

                          (3.17) 

 0(0, ) W z W                 (3.18) 

 

Solving the partial differential equations 3.13–3.15, it follows that 

 

 ( , ) (0, )[1 ( )]   xR x z R z R x e               (3.19) 

 

 ( )( , ) (0, )[1 ( )] .   A z xx z z S x e               (3.20)  

 

 ( )
( , ) (0, )[1 ( )] .


  wA z x

wW x z W z S x e               (3.21)  

where    ( ) (1 )  and ( ) (1 ) .          
w

A z z A z z   

Inserting equations 3.19–3.21 and 3.16 and make some calculations, finally we get, 
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   0 0

(0, )
(0, ) ( ) 1 ( ) ( ).          

 

R z
z R z R P W V z

z
            (3.22) 

 

where 
 *( ) 1 ( )

( )
( ) (1 )

 

  

  
 
  

w wS A z
V z

z
 and 

 *1 ( )
( )

(1 )



 

 
 
 

S A z
S z

z
 

 

Using equations 3.19–3.21 and 3.22 in 3.16, we get 

 

     * *
0(0, ) ( ) (0, ) ( ) ( ) ( ) (0, ) ( ) ( )        w wR z pz q z S A z S z pz q W z S A z W         (3.23) 

 

Using equations 3.18 and 3.22 in equation 3.23, we get 

  

 
     

       

*

* *
0

( ) ( ) (1 ( )) ( ) ( ) (0, )

                                  ( ) ( ) ( ) ( ) ( ) 1

 

   

     

      w w

z pz q R z R S A z S z R z

zW S A z S z V z pz q S A z

        (3.24) 

 

 From the above equation, we know that the key element for obtaining (0, )P z  is to find the zeros of 

    *( ) ( ) ( ) (1 ( )) ( ) ( ) 0        f z z pz q R z R S A z S z  in the range 0 1z   for the equation ( ) 0.f z  (from Gao 

et al. [2014]). From this, we give the lemma in Appendix B. 

 

From equation 3.24, we get 
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                         (3.25) 

 

Using the equation 3.25 in equation 3.22, we get 
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                        (3.26) 

 

Using equations 3.18 and 3.25–3.26 in equations 3.19–3.21, then the limiting probability generating functions (PGFs) are 

( , ),  ( , ) and ( , ).R x z x z W x z   

 

3.3.  Steady state results  
 

If the system is in steady state condition ( ),R   the PGFs are as follows: 

(i) the number of customers in the orbit when the server is idle; 
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       (3.27) 

 

(ii) the number of customers in the orbit when the server is regularly busy; 
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(iii) the number of customers in the orbit when the server is at a lower speed service; 
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W V z
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Using the normalizing condition, we can determine P0 and W0, by setting z = 1 in equations 3.26–3.28 and applying the 

L-Hospitals rule whenever necessary and then we get 
0 0 (1) (1) (1) 1.    P W R W  

The probability that the server is idle at a lower speed service is equation 3.30,   
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The probability that the server is idle in regular service is equation 3.31, 
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Corollary 3.1. If the system satisfies the steady state condition, The PGF of the number of customers in the system (Ks(z)) is 

obtained using 

  

 0 0( ) ( ) ( ) ( )     sK z P W R z z z W z              (3.32) 

 

The PGF of the number of customers in the orbit (Ko(z)) is obtained using  

  

0 0( ) ( ) ( ) ( ).    oK z P W R z z W z              (3.33)  

 

4. System performance measures 
 

Our analysis is based on the following system characteristics of the retrial queueing system.  

 

4.1. System state probabilities  
 

(i) Let R be the steady state probability that the server is idle during the retrial, 
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(ii) Let Π be the steady-state probability that the server is busy, 
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(iii) Let W be the steady state probability that the server is at lower speed service, 

 

 
 *

0 1 ( )
(1) .

( )

  

 

 
 



wW S
W W     

(iv) Let Wwb be the steady state probability that the server is on WVB, 

 

 
  *

0

0

( ) 1 ( )
.

( )

    

 

   
  



w

wb

W S
W W W    

     



P. Rajadurai et al. / Songklanakarin J. Sci. Technol. 42 (1), 236-247, 2020  243 

(v) Let Ff  be the steady state probability of server failure, 
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4.2. Mean system size and orbit size 
 

(i) The expected number of customers in the orbit (Lq) is obtained by differentiating equation 3.32 with respect to z and 

evaluating at z = 1 
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(ii) The expected number of customers in the system (Ls) is obtained by differentiating equation 3.31 with respect to z and 

evaluating at z = 1 
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(iii) The average time a customer spends in the system (Ws) and the average time a customer spends in the queue (Wq) are found 

using Little’s formula  
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4.3 Mean busy period and mean busy cycle 
 

Let E(Tb) and E(Tc) be the expected length of busy period and busy cycle under the steady state conditions. The results 

follow directly by applying the argument of an alternating renewal process which leads to  
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where T0 is the time length that the system is in empty state. Since the inter-arrival time between two customers follows 

exponential distribution with parameter λ, we have  0( ) 1 .E T   Inserting equation 3.31 into equation 4.1 and using the above 

results, we can get  
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5. Special Cases 
  

   We present three special cases of our model.  

Case (i):  No negative arrival, No feedback, No repair, and No working breakdown  

Let α = δ = c = 0; our model can be reduced to an M/G/1 retrial queue with working vacations. The results coincide 

with the results of Gao et al. (2014). 

Case (ii): No negative arrival, No feedback, No repair, and No working breakdown  

Let (α, δ, θ, p) → (0, 0, 0, 0); our model can be reduced to M/G/1 retrial queue with single working vacation. This 

model results coincide with Arivudainambi et al. (2014). 

Case (iii): No negative arrival, No feedback, No repair, No working breakdown and vacation 

Let (α, δ, θ, p) → (0, 0, 0, 0); our model can be reduced to M/G/1 retrial queue with general retrial times. The following 

result coincides with the results of Gomes Corral (1999). 
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6. Numerical Examples 
 

In this section, based on the results obtained, we present some numerical examples using MATLAB in order to 

illustrate the effect of various parameters in the system performance measures. Without loss of generality, we assume that the 

retrial times, service times, vacation times, and repair times are exponential, 2-stage Erlang, and 2-stage hyper-exponential 

distributed with the parameters α, p, and θ. The arbitrary values to the parameters are so chosen such that they satisfy the stability 

condition.  

The tables give the computed values of various characteristics of our model, i.e. probability that the server is idle (P0), 

the mean orbit size (Lq), probability that server is idle during retrial time (R), busy (Π), and working breakdown (W). The 

exponential distribution is ( ) , 0xf x e x   , Erlang distribution of order 2 is 2( ) , 0xf x xe x   , and the hyper-exponential 

distribution of order 2 is  
22( ) (1 ) , 0 and 0 1x xf x c e c e x c         .  

In Table 1, we show the effect of failure rate (α) on P0 and Lq. As the system failure rate increases, the probability of no 

patients in the buffer increases and the number of patients waiting in the buffer decreases. That is, if the negative arrival rate 

increases, the probability that the server is idle (P0) increases, the coefficient of variation (ρ) decreases, the mean orbit size (Lq) 

increases and probability that the server is busy (Π) also increases for the values of  2,  3,  4,  2,  0.5,  1,   4;b wa p            

 
Table 1. Effect of failure rate (α) on P0 and Lq. 

 

Failure rate (α) 
Exp  Erlang  Hyp-Exp 

P0 Lq Π(1)  P0 Lq Π(1)  P0 Lq Π(1) 
            

0.50 0.4655 0.4753 0.0468  0.0671 4.1174 0.0911  0.5113 0.4118 0.0600 

0.60 0.4666 0.8583 0.0555  0.0695 7.2554 0.1072  0.5122 0.7498 0.0709 

0.70 0.4678 1.4096 0.0639  0.0721 11.6741 0.1227  0.5132 1.2382 0.0814 
0.80 0.4690 2.1658 0.0721  0.0748 17.5734 0.1376  0.5142 1.9101 0.0916 

0.90 0.4702 3.1663 0.0801  0.0777 25.1399 0.1519  0.5152 2.8011 0.1015 
            

 

In Table 2 with the increase of feedback probability (p), then the probability that the server is idle (P0) decreases, the 

coefficient of variation (ρ) increases, and the mean orbit size (Lq) increases. In other words, as the number of patients increases 

for retransmission, the probability of no patients in the waiting line decreases and the number of packets in the line increases for 

the values of 2,  3,  4,  2,  1,  0.5,  0.3,   4;b wa p             

 
Table 2.  Effect of feedback probability (p) on P0 and Lq. 

 

Feedback probability (p) 
Exp  Erlang  Hyp-Exp 

P0 Lq R(1)  P0 Lq R(1)  P0 Lq R(1) 
            

0.20 0.8249 9.6753 0.0842  0.6608 14.1653 0.2025  0.7922 10.1492 0.1098 

0.30 0.7887 10.3047 0.1135  0.6168 15.2601 0.2406  0.7530 10.8233 0.1427 
0.40 0.7465 11.0918 0.1476  0.5689 16.6287 0.2821  0.7083 11.6602 0.1801 

0.50 0.6967 12.1088 0.1879  0.5165 18.3939 0.3276  0.6570 12.7318 0.2231 

0.60 0.6371 13.4826 0.2361  0.4590 20.7668 0.3774  0.5973 14.1619 0.2731 
            

 

Table 3 shows that when the vacation rate (θ) increases, then the probability that the server is idle (P0) increases, the 

coefficient of variation (ρ) decreases, the mean orbit size (Lq) decreases and the probability that the server is busy in working 

vacation (W) also decreases for the values of 2,  3,  4,  2,  0.5,  0.3,   4;b wa p          

 
Table 3. Effect of vacation rate (θ) on P0 and Lq. 

 

Vacation rate (θ) 
Exp  Erlang  Hyp-Exp 

P0 Lq W(1)  P0 Lq W(1)  P0 Lq W(1) 
            

4.00 0.6311 2.5172 0.0631  0.1988 9.1100 0.0957  0.5595 2.7898 0.0452 

5.00 0.6468 2.4839 0.0505  0.2287 8.0546 0.0765  0.5724 2.7526 0.0355 
6.00 0.6574 2.4633 0.0421  0.2486 7.4984 0.0638  0.5808 2.7301 0.0292 

7.00 0.6649 2.4494 0.0361  0.2629 7.1557 0.0547  0.5867 2.7150 0.0248 

8.00 0.6705 2.4393 0.0316  0.2736 6.9236 0.0478  0.5910 2.7042 0.0215 
            

 

For the effects of the parameters ,  ,  ,  ,  ,    wr and       on the system performance measures, three dimensional 

graphs are illustrated in Figures 1–4. In Figure 1, we see that the behavior of the mean orbit size (Lq) decreases as the values of 
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Figure 1. Lq versus μ and μw. 
 

 
 

Figure 2. P0 versus μw and η. 
 

 
 

Figure 3. Lq versus λ and α. 
 

 
 

Figure 4. Lq versus r and θ. 

the lower service rate (μw) and regular service rate (μ) 

increase. The surface displays an upward trend as expected for 

increasing the value of the lower speed service rate (μw) and 

repair rate (η) against the idle probability P0 in Figure 2. From 

Figure 3, the surface displays a downward trend as expected 

to increase the value of arrival rate (λ) and negative arrival 

rate (δ) against the mean orbit size Lq in Figure 7. In Figure 4, 

we examine the behaviour of the mean orbit size (Lq) 

decreases for increasing the value of vacation rate (θ) and 

retrial rate (r). 

 From the above numerical examples, we can find 

the influence of parameters on the performance measures in 

the system. 
 

7. Conclusions 
 

We studied an M/G/1 retrial G-queue with feedback 

under working vacations and working breakdowns (M/G/1/ 

WVB). By applying the PGF approach and the supplementary 

variable technique, the PGFs for the numbers of customers in 

the system and its orbit when it is free, regular busy, and on 

lower speed service are derived. Various system performance 

measures and some important special cases were discussed. 

The explicit expressions for the average queue length of orbit 

and system were obtained. Finally, some numerical examples 

were presented to study the impact of the system parameters. 

The novelty of this investigation is the introduction of 

working breakdown queueing models in the presence of retrial 

queues with multiple working vacations. This proposed model 

has potential practical real life applications in a production 

ordering system to enhance the performance of the production 

facility and to stop a production facility from becoming 

overloaded, in computer processing systems and in medical 

service systems for telephone consultation.  
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Appendix A 

 

  The embedded Markov chain ;  nZ n N  is ergodic if and only if ( ),R   where  *1 ( ) .


 


  p S  

 

Proof. To prove the sufficient condition of ergodicity, it is very convenient to use Foster’s criterion (Pakes, 1969), which states 

that the chain ;  nZ n N is an irreducible and aperiodic a Markov chain is ergodic if there exists a non-negative function f(j),  

jN and  ε> 0, such that mean drift 1( ) ( ) /j n n nE f z f z z j       is finite for all jN and j   for all jN, except perhaps 

for a finite number j’s. In our case, we consider the function   f(j)= j. then we have 

 

  
1,                         if   0,

( ),                if   1,2...
j

j

R j




 

 
 

 
 

 

Clearly the inequality 
*( )R   is a sufficient condition for ergodicity. 

To prove the necessary condition, as noted in Sennott et al. (1983), Markov chain  ;  1nZ n   satisfies Kaplan’s 

condition, namely, j <  for all j ≥ 0 and there exits j0  N such that j ≥ 0 for j ≥ j0. Notice that, in our case, Kaplan’s condition 

is satisfied because there is a k such that mij = 0 for j < i - k and i > 0, where  = (mij) is the one step transition matrix of 

 ;  .nZ n N Then 
*( )R   implies non-ergodicity of the Markov chain. 

 

Appendix B 

 

Lemma 3.1. If *( ),R   the equation     *( ) ( ) (1 ( )) ( ) ( )      z pz q R z R S A z S z  has no roots in the range 

0 1z   and has the minimal nonnegative root z = 1.  

 

Proof. We only need to prove that  

 

       *( )  ( ) ( ) (1 ( )) ( ) ( ) 


     u z pz q R z R S A z S z  

 

is a probability generating function of the number of customers that arrive in the system. Denote by U the time period from the 

epoch a service completion occurs, leaving the orbit non-empty, to the next service completion epoch, by NU the number of 

primary customers that arrive during U and define 

 

    ( )  ,  ( ) .ju t dt P t U t dt N U j      
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Then, ,0 1( ) ( ) ( ) (1 ) (1 ( )) ( ),  0,1,2...t t
j j j ju t e t a t e R t a t j    

        where * means convolution, α(t) is the p.d.f. of 

inter-retrial times, b(t) is the p.d.f. of normal service times and 
( )

( )  ( ).
!

j
t

j

t
a t dt e b t

j

   Denote by NU(z) the probability 

generating function of NU, we have that  

 

  

     

0 0

,0 1

0 0

*

( ) ( )

         ( ) ( ) (1 ) (1 ( )) ( )

           ( ) (1 ( )) ( ) ( )

          ( ),

   

 







 




 



     

    



 

 

j
U j

j

j t t
j j j

j

N z z u t dt

z e t a t e R t a t dt

pz q R z R S A z S z

u z

 

 

which proves the expected result that     *( )  ( ) ( ) (1 ( )) ( ) ( ) 


     u z pz q R z R S A z S z  is exactly a probability generating 

function. From assumption 
*( ),R   we have  1[ ] ( ) |  1 ( ) 1.u z

d
E N u z R

dz
 

      and the convex function u(z) is a 

monotonically  increasing  function  of  z  for  0 1,z   and   (0) 0 1,  (1) 1. Uu P N u    So  we  can  easily prove the  

 

expected result of Lemma 3.1. 

 

Then for 
*( ),R       *( ) ( ) (1 ( )) ( ) ( )      z pz q R z R S A z S z  never vanishes in the range 0 1. z  

 


