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Abstract

This work presents a new derivation technique for new differential transform formulae of a product of composite
functions. The new formulae are applied to nonlinear plane autonomous systems to demonstrate their efficiency and reliability.
The approximate series solutions estimated by the differential transform method (DTM) and the multistep differential transform
method (MsDTM) are then compared with the flow direction of the vector fields defined by the original system and an analytical
solution calculated by the phase-plane method. We found that the MSDTM results are in better agreement with the analytical
solution than the DTM ones. Moreover, the MsDTM can be applied to systems whose analytical solutions are unobtainable. The
approximate solutions by the MsDTM have the same direction to the flow of the vector field of the system. It follows that the

proposed new formulae are reliable and efficient.

Keywords: differential transform method, nonlinear plane autonomous systems, multistep differential transform method, phase-

plane method

1. Introduction

Autonomous systems are systems of first-order
differential equations of the form

dx

g - 9 Xo)
dx
d_t2: 9, (X, X,,)
dx,
dt = gn(Xl""’Xn)
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such that the independent variable does not explicitly appear
on the right hand side of each differential equation. In the case
of n=2, the system is called a plane autonomous system and

V(Xl'xz):(91(X11X2)192(X1!X2)) is a vector field in the
plane that indicates the movement direction. If the parameter
t is interpreted as time, then x(t)z(x(t),y(t)) indicates the

position of the particle in the plane at time t and a solution of
the system is interpreted as a path of this particle starting from
X(0,0) :(X(O),y(O)) (Zill & Wright, 2014).

The differential transformation method (DTM) is an
alternative procedure for obtaining an approximate Taylor
series solution of differential equations. The main advantage
of this method is that it can be applied directly to nonlinear
differential equations without requiring linearization and
discretization. The concept of the differential transform
method was introduced by Zhou (Zhou, 1986), who solved
linear and nonlinear problems in electrical circuits and many
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other problems related to differential equations (Damirchi &
Shamami, 2016; Mahgoub & Alshikh, 2017; Methi, 2016;
Mirzaee, 2011; Moon, Bhosale, Gajbhiye, & Lonare, 2014;
Patil & Khambayat, 2014).

Although the DTM series solution gives a good
approximation for some problems, in some cases, the series
solution diverges in a wider domain. Due to this reason the
multistep differential transform method (MsDTM) is used.
The MsDTM is based on the DTM, but compared with other
methods it does not need small parameters, auxiliary functions
and parameters, or discretization. In this technique, the
solution domain is divided in subdomains (Ebenezer, Freihet,
Khan & Khan, 2016; Ertirk, Odibat & Momami, 2012;
Odibat, Bertelle, Aziz-Alaoui & Duchamp, 2010; Rashidi,
Chamkha, & Keimanesh, 2011; Zurigat & Ababneh, 2015). In
particular, we are interested in the technique introduced by
Chang (Change & Chang, 2008), to calculate the DTM of
nonlinear functions.

In this paper, a derivation technique of new
differential transform formulae for the product of composite
functions is presented. The computation consists of three
steps. The first step is finding the differential transformation
of the product of two composite functions in the general form
as shown in Equation 3.1. The next step is finding the
differential transformation for the higher order derivative of a
power function as shown in Lemma 3.1. The last step is the
derivation of the new differential transformation shown in
Formulae 1-8, calculated by using the general formulae of
higher order derivatives of composite functions studied in
(Weisstein, n.d.) combined with Lemma 3.1. Then, the new
differential transform formulae obtained are used to transform
the nonlinear plane autonomous systems to find the DTM and
MsDTM approximate solutions of the problem. By comparing
graphically the results, we obtain the approximate series
solutions calculated by the DTM and the MsDTM that have
the same direction with the vector fields flow and they are
also similar to the analytical solution obtained by the phase-
plane method.

Here is the structure of the paper. In section 2, the
one-dimensional differential transformation method s
described. In section 3, the analysis of the method and new
formulae calculation are proposed. In section 4, the new
differential transform formulae proposed are applied to three
examples of nonlinear plane autonomous systems to show the
reliability and efficiency of the method. The conclusion is
given at the end of the paper in section 5.

2. Basic Definitions and Fundamental Operations of
the One-Dimensional Differential Transform
Method

2.1 Definition

The one-dimensional differential transform of the
function X(t) is defined as

x(k)i{dk“‘)} k0. @1

T kY dtt

In Equation 2.1, X(t) is called the original function and
X (k) is called the transformed function.

2.2 Definition

The inverse one-dimensional differential transform
of X (K) is defined as

x(® = X (®)(t-t,)", (2.2)
k=0
that is,
k
» (t—t k
x(t):zg d Xk(t) . 2.3)
&k dt
Equation 2.3 implies that the concept of differential

transformation method is derived from Taylor series
expansion. Actually, in concrete applications, the function

X(t) is expressed by a truncated series and Equation 2.2
becomes

X(t) = i X (K)(t-t,)". 2.4)

2.3 Fundamental operations

The fundamental operations of the one-dimensional
DTM are shown in Table 1. The multistep differential
transformation method (MsDTM) is advantageous for
applications in physics. For instance, due to small time steps
the MsDTM has a powerful accuracy especially for an initial
value problem (IVP).

Let [0, T] be the interval over which we want to

find the solution of the IVP. In actual applications of the
DTM, the approximate solution of the I\VP can be expressed
by the finite series

(2.5)

N
x® =Y XK)(t)", te[0,T].
k=0
Let us assume that the interval [0, T] in divided into
N subintervals [t, ,,t,], i=1...,m of equal step size

h=T/m by using the nodes t, =ih. The main ideas of the

MsDTM can be found in (Odibat, Bertelle, Aziz-Alaoui, &
Duchamp, 2010). In fact, the MsDTM gives the solution in the
form,

X, (), tel0t]

Xl(t)! te [t1't2] (2.6)

X(t) =

Xm(t)l t E[tm’tm—l]’
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Table 1.  Fundamental operations of one-dimensional DTM.

Original function X(t) Transformed functions X (k)
x(t) £ y(t) X (K) £ Y(K)
AX(1) AX(K)
x(0) y(t) Zk;, X () Y(k-r)
X(t) y(t) z(t) zk(‘;zr;xa)v(r ) Z(k—r)
L0 )

where x (t) = Z)( (K)(t—t,)* and the initial condition x () =xYt.).

k=0

3. Analysis of Method

This section introduces our derivation technique of the new differential transform formulae for the product of
composite functions derived in Formulae 1-8. To obtain these new formulae, the derivation is shown in the following steps.

Step 1. The differential transformation for the product of two composite functions is represented by f( ()) (y(t)) which are
the original functions. By the definition given in Section 2.1 of the DTM combined with Leibniz formula, we obtain

1 dk 1] & k1 dr k—r
ELle(y(t)) (y(t))} k,[Z(k oIt F(y0) S e (y(t))}

r=0 t=t,

=S F()G(k-1),
(31)

k)= ),{jt[rr (y(t))}

Step 2. This step finds the differential transformation for the higher order derivative of the power function that is used in
Step 3.

where  F(r)== {gtrr (y(t))}

t=t, t=t

Lemma 3.1 If k,r,mel" U{0} andlet w=r—m=0,...,r wherer =0,...,k, m=0,...,r, then

RO I
ktodt |7 ’

= Zk: kZ '"iY(kl)Y(kz—kl)---Y(k—kW,l), k > 0. (3.2)

Ky1=0k,_»=0 k;=0

[ 1dy®"
L krodtt
Proof. Assume that k,r,mel*u{o} andlet w=r—m=0,...,r wherer =0,....,.k, m=0,...,r

Case k =0; we have =0 and m=0,then | 1 d°y(®° | _;
0! dt° '
. t=t,



84 U. Somboon et al. / Songklanakarin J. Sci. Technol. 42 (1), 81-94, 2020

Case k > 0; we will prove by mathematical induction. Let P(w) be Equation 3.2.
First, we will show that the statement holds for w =0, that is

P(O)=[%—d dyt(kt) } -0,

Next, we assume that the statement is true for w=r -1, that is

p(pn{%ﬂ} -y 3 zv(k)v(k ) Y (K=K, o).

k
dt k;_»=0k,_3=0 k=0

We will show that the statement is also true for W = I . This can be seen as follows

05 é’tk Mt)"lv(t))}

13 k! e 4K
== t
{k!k;o (kK )k, 'dt YO Gy

=0

Sl de 1 dY
- L a0 L
_ZZ ZY(k)Y(k k) Y(k=K. ).

Therefore, the statement holds for w = r, and the proof is completed.

Step 3. The functions f (y(t)) and g (y(t)) in Step 1 are considered as the original functions in the Formulae 1-8. To obtain

these new differential transform formulae, the general formulae of higher order derivatives of some composite functions are used
together with Lemma 3.1 in the following calculations.

Formula 1. If f(y(t)) e’® s the original function, then

d* 1 1
F(k)—ﬁ{aey“lt —k{ey”r OF'Z(I’( n)1)'r y (t)—(Y(t)) L

m=0

evao)zz( D"y"(t, ){kllj?(y(t))rm}
! -

r=0 m=0 (r m)'ml

o e (DY) 1 d* F—m
:e<)zz( ) (){ﬁﬁ(ym) } ,

r=0 m=0 (r_ m)lml

where Y (0) = y(t,), and we have used Lemma 3.1 to transform ( (t ))’ m
0 kl dtk y

t=t,

Formula 2. If f (y(t)) = In(y(t)), y(t) >0 is the original function, then

k _1 k dk r
= {5 In(y(t)) 2 [rjﬁ(y(t))}

r=1

F(k) = %{% In (y(t))}

1 (-pt 14 '
= 5 In Y( ) z rY'(t, )[ )|:k!dtk (y(t)) :|[t0’

=t
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1, k=0
0, k=12,3,..

and

where k — k! are the binomial coefficients, 5
r) (k-r)ir

{kl jt (v <>>} _ Y S YR (k) YK,
t=ty

K_1=0k, =0 k=0

Formula 3. If f (y(t)) =sin(y(t)) is the original function, then

(r—=m)!m!

F(k)=%{%sm(y(t))} =a%;rrsin(t) (Z ey y ()dtk(y(t))rmﬂ

t=t,
Zk:
=0

r

t=y(t)

(-D)"y"(t,)| 1 d*
S {k'dt (yoy L

& ()

=D"Y™(©)| 1 d* rm
S a0

v S (—m)m!

0

sin(t)

d
d"o

= sin(t
> Ssiny

r=0

where Y (0) = y(t,), and we have used Lemma 3.1 to transform ( ®)"
k| dtk

t=t,

Formula 4. If f (y(t)) = Cos(y(t)) is the original function, then

F(K) = FLj'—kcos(y(t))} :%{ > %:t cos(t)

:IO

(1)y(t)1dk r-m
Z [kldtk(y(t)) L

t=y(ty) M= 0 (r m)lm|

L (-D"Y™(©0)| 1 d* rm
i Liiar 001 |

v (o) M0 (r—m)Im!

r

k
d
= t
E prC cos(t)

r=0

Kk r

d
= — cos(t
,Z:;dtr (t)

k
where Y (0) = y(t,). and we have used Lemma 3.1 to transform |:%:?(y(t))rm:|

t=t,

Formula5. If f (y(t)):sinh(y(t)) is the original function, then

1{d* ll14d" S (D" -
F(k):m{wsmh(y(t))}H :ﬁ{;‘;ﬁdt’ smh(t)ty(t)(mzo(r(_n)])!r -y ()dtk(y(t)) ﬂ

( 1)mym(t) 1 dk r-m
Z {kldtk(y(t)) L

(r—m)Im!

(-D"Y™0)| 1 d*
z |:k|dtk (y( )) :|tto

v (0) M0 (r—m)!m!

0
r

k

d" .
=>» —sinh(t
;dt, ®)

t=y(ty)
k r

d' .
=» —sinh(t
;dt, ®

where Y (0) = y(to), and we have used 3.1 to transform [kl o (y( )) } .
t=t,

1
(z((_ ))|r ' (y(t)) H
t=y(t) \M=0 =t

85
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Formula 6. If f (y(t)) = cosh(y(t)) is the original function, then

F(k) = kllu cosh(Y(t))J =%{ > %:trr cosh(t)

( 1)mym(t) 1 d* r-m
it e 000 |

t=y(ty) M= 0 (r m)'m'

)"y"()[ 1 d o
z {kldtk(y(t)) LD

t:Y(O)mO (r m)lml

(-1)"r!
tym(;) YO OItk(y(t)) ]L
dr
tl'

Zk: cosh(t)

r

o

r

k
cosh(t
X gy

r=0

o

where Y (0) = y(t,) . and we have used Lemma 3.1 to transform { 1d —(y(t )) } i
k!dt
t=t,

Formula7.If f y(t) J y(t) is the original function, then

_1)d" 1| Tk+d) -D" '
F(k)_k!{dtk \/W} k{zr(kﬂ)r( )Z [ J Y()) dt"( (t))}

t=t,

_ T(k+3) (G e[ d
TNk )z ( ] Y(0)) {dtk (y)' }

t=ty

=t

where k :L are the binomial coefficients,
r) (k—r)i

I(1+2)=2I'(2), zeQ, T¢)=z, T()=(n-1!, neZ, and

[%%(y“ﬂ = 3 VY (k). Yk, ).

t=t, Kr1=Ok2=0 k=0

Formula 8. If f(y(t)):i is the original function, then

y(®)

I ) 4y

F(k)—k!{dtk y(t)} k,{ Z( 1)[]y() OItk(y(t))}
-1 | d r

SO 1)() V) {W(ym)}_t

t=ty

t=t,

where k — k! are the binomial coefficients, and
r) (k—rjm

|:%3?(y(t))r:| - z i "'ZZZY(kl)Y(kz_kl)“-Y(k_ kr—l)'

t=ty kr—l:o krfz =0 kl:o

The transformed functions are shown in Table 2.
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Table 2.  Transformed functions of some nonlinear functions.

Original function f (y(t)) Transformed functions F (K)
e¥® e rzk(;;((rl) r:)lr(rtv){kl!%(y(t))rmllo
In(y() o) Zr(Yl)(;;( ){%%W)rl .
sin(y()) rzk;:—trrsm(t)”“ ((rl) r:)lr(r:[:){;'j:k y(t)~ }
cos(y(0) > L P o((rl) oy {kl a0 }
sinh(y(®)) idT '"h(t)‘ e (rl) n:)lr(‘r:'){kl' gtk L
cosh(y(t)) io; COSh(t)”(t)mo((rl) n:)lr(;l){ljljtkk Yoy L
5 i Sae O o0 |
o il v [goor],

4. Applications

In this section, we extended the application of the DTM to nonlinear plane autonomous systems. To demonstrate the
formulae introduced in the previous section, three examples are studied here. The accuracy of the method is assessed by graphical

and data value comparisons.

Example 4.1. Consider the following system of nonlinear plane autonomous
X =e’ (4.2)

y'=e*, for t €[0,1.25], (4.2)

subject to the initial conditions x(0) =0, y(0) =0.
Applying the DTM of Equations 4.1 and 4.2 and using the initial conditions x(0) =0, y(0) =0. it follows

R n"y"©0)[ 1 d
X(k+1)— [ © ZZ((r_)m)!,;!){EW(y(t)) }]

r=0 m=0

r=0 m=0

X D"X™(0)| 1 d* r-m
Y(k+1) = [ “ZZ((r)m).n(ﬂ){kydT(x(t)) }j

X (0) =0, Y(0) =0.

By substituting k =0, ...,11 we obtain the coefficients of the series solution as follows
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XM=Y =L X@) = Y(2) =5, X&) = V(&) =5, X(4) = Y(4) - %

X(5) = Y(5)_— X(6) = Y(6)—— X(7) = Y(7):— X(@8) = Y(8) =

X(9) = Y(9):% X(10) = Y(10)_ L X(11) = Y(ll)_ - X1 =Y1) == L

Hence, the series solution reads

2 3 4 5 6 7 8 9 10 11 12
y(t) = X(t)_t+t +t +t +t +t +t +t +t t +t t , te[0,1.25].
2 3 4 5 6 7 8 9 10 11 12’

On the other hand, by applying the MsDTM to Equations 4.1 and 4.2 with same initial conditions, it follows

X, (k+1) = [Y(O)ZZ( 1)inm(0){%gT(y(t))rm} }

r=0 m=0 (r_m)'m'

r=0 m=0 (r m)lml

Vi) = {xm)zz( D" X; (O){:!g?(x(t))r—m} ]

XO(O) = vai (0) = Xi—l(ti)! YO(O) =0, Yi (0) = yi—l(ti)! i =1,2,3,4,5.
Thus, we obtain the series solution

t+0.5t°+0.3333t°+0.25t*+0.2t°+0.16667 t°+ 0.14286 '

+0.125t° +0.1111t° +0.1t" + 0.0909t" + 0.0833t*, t <[0,0.25]

0.286682 +1.33333(t— 0.25) + 0.888889(t— 0.25)* + 0.790124(t— 0.25)°
+0.790124(t—0.25)" + 0.842798(t— 0.25)° + 0.936443(t— 0.25)°
+1.07022(t—0.25)" +1.24859(t— 0.25)® +1.47981(t— 0.25)°

+1.77577(t— 0.25)" + 2.15245(t— 0.25)" + 2.63078(t— 0.25)"*, t €[0.25,0.5]
0.693147 + 2(t—0.5) + 2(t—0.5)? + 2.66667(t— 0.5)° + 4(t— 0.5)* + 6.4(t—0.5)°
+10.66667(t—0.5)° +18.2857(t— 0.5)" +32(t—0.5)° +56.8889(t— 0.5)°
+102.4(t—0.5)'° +186.182(t— 0.5)" +341.333(t- 0.5)**, t [0.5,0.75]
1.38628 +3.99993(t— 0.75) + 7.99972(t— 0.75)° + 21.3322(t— 0.75)°
+63.9955(t—0.75)* + 204.782(t— 0.75)° + 682.595(t— 0.75)° + 2340.28(t— 0.75)’
8190.85(t—0.75)° +29122.5(t— 0.75)° +104839(t— 0.75)*° + 381227 (t— 0.75)"*
+1.39781x10°(t-0.75)*2, t €[0.75,1]

4.05773+57.843(t—1) +1672.91(t—1)* + 64510.45(t—1)° + 2.79861x10° (t—1)*
+1.56645x10" (t—1)° +8.05403x 10" (t—1)° + 4.19282x 10" (t—1)*°
+2.20478x10" (t—1)"" +1.16903x 10 (t—1)**, t €[1,1.25].

y(®) =x(t) =

This problem with the initial conditions x(0) =0, y(0) =0 can be solved analytically by the phase-plane method to
obtain the analytical solution y(X) = X. As seen in Figure 1, the approximate series solutions calculated by the DTM and the

MsDTM are the same as the analytical solution and they have the same direction with the flow of the vector fields. Moreover, the
DTM and the MsDTM gave data results similar to the analytical results (Table 3).
However, if we consider the problem with the initial conditions of x(0) =—2, y(0) =1., the analytical solution

obtained is y(x)=In (eX +e_e*2) . The data values of the approximate solutions of the DTM and the MsDTM were compared
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Figure 1. MsDTM: The DTM and numerical solution compared with vector field flow directions.

Table3. DTM and MsDTM values compared with the analytical solutions.

t x(t) MsDTM Analytical Error
0.2 0.2231436 0.2231436 0.2231436 0
0.4 0.5108257 0.5108257 0.5108257 0
0.6 0.9162908 0.9162908 0.9162908 0
0.8 1.6094160 1.6094160 1.6094160 0

t x(t) DTM Analytical Error
0.2 0.2231436 0.2231436 0.2231436 0
0.4 0.5108248 0.5108248 0.5108248 0
0.6 0.9160622 0.9160622 0.9160622 0
0.8 1.5924103 1.5924103 1.5924103 0

with analytical solution and are shown in Table 4. We can see that the MsDTM results are much more similar to the analytical
results than the DTM results.

The following two examples show that the proposed new transformed functions of the product of composite functions
can be applied effectively to the nonlinear plane autonomous system when the analytical solutions are unavailable.

Example 4.2. Let us consider the following system of nonlinear plane autonomous
X' = x%eY (4.3

y' =ye* -y, for t £[0,0.2], (4.4)
subject to the initial conditions x(0) =1, y(0) =1.
Applying the DTM to Equations 4.3 and 4.4 and with the initial conditions x(0) =1, y(0) =1, it follows that

X (K1) = k%lz F(r)zr X (1) X(k=r—1)

Y (k+1) :&(ZY(k— r)G(r)—Y(k)],

and the initial condition becomes X (0) =1, Y(0) =1,
where
1d'

F=e0 3y O (O)L. i (t))””} ,

1=0 m=0 (I_m)'ml

om0 (I-m)im!

cp=ey y (I X0 <°)[3!j;<xa>>'m} -
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Table4. DTM and MsDTM values compared with the analytical solutions.

t x(t) MsDTM Analytical Error
0.2 -1.4473324 1.0360783 1.0360783 0
04 -0.8671829 1.0996385 1.0996384 1x107
0.6 -0.2340544 1.2161777 1.2161776 1x107
0.8 0.5147103 1.4483531 1.4483533 2x107

t x(t) DTM Analytical Error
0.2 -1.4473324 1.0360783 1.0360783 0
04 -0.8671831 1.0996383 1.0996384 2x107
0.6 -0.2340822 1.2161499 1.2161711 2.12x10°
0.8 0.5130110 1.4466537 1.4476856 1.0319 x 10

Hence, we obtain the series solution by the DTM

X(t) =1+ 2.71828t+9.72444t% + 38.8048t° +164.329t" + 722.872t° + 3265.98t° +15052.5t’
+7045.9t% +333873t" +1.59826x10°t™ + 7.71576 x10°t™ +3.75161x107t*, t €[0,0.2]

y(t) =1+1.71828t+5.17077 t+19.3526t° +80.1435t* + 351.093t° +1593.47t° + 7409.3t’
+35062.4t% +168146t° +814830t™ +3.98192x10°t" +1.95937x10°t*, t<[0,0.2].

On the other hand, by applying the MsDTM to Equations 4.3 and 4.4 we obtain

X, () == Y RO X ()X (k=11

Y, (k+1) = (Zk:Y -nNG;(r —Yi(k)j, Xo(0) =1, X;(0) =x;,(t;), Yo(0) =1, Y;(0) =y;,(t), i=1,23/4
where

= (I-m)im! =& (I-m)Im! | rldt’

Fo=e0yy IO (O)H;r,(y(t))' } 6 -3y EU" X0 (0){1 LN (t)).m} |

The following approximate series solution is the result.

1+2.71828t +9.72444t% + 38.8048t> +164.320t* + 722.872t° + 3265.98t° +15052.5t
+70454.9t° +333873t° +1.59826 x10°t™° + 7.71576 x10°t™ + 3.75176x10"t", t [0,0.05]
1.1664 + 4.09489(t— 0.05) +19.3628(t— 0.05)* +103.094(t— 0.05)°

+585.693(t— 0.05)* +3468.59(t— 0.05)° + 21148.6(t— 0.05)° +131763(t—0.05)’
+834742(t—0.06)° +5.35899 x10° (t— 0.06)° +3.47789x 10 (t—0.06)*

+2.27748x10° (t—0.06)" +1.50275x10° (t— 0.06)"?, t<[0.05,0.1]

1.43766 +7.26784(t—0.1) + 51.4129(t— 0.1)* + 416.14(t— 0.12)°

+3626.29(t—0.1)* +33122.1(t— 0.1)° + 312581(t— 0.12)° +3.02155x10° (t—0.1)’
+2.9749%107 (t—0.1)® + 2.97167 x10° (t— 0.1)° + 3.00338 x10° (t— 0.1)*°

+3.06482x10" (t—0.1)" +3.15286 x10" (t—0.1)"?, t [0.1,0.15]

2.02412 +19.7164(t—0.15) + 293.806(t— 0.15)* + 5196.51(t— 0.15)° +100769(t— 0.15)*
+2.06843x10° (t—0.15)° +4.41157 x107 (t—0.15)° +9.67037 x10° (t— 0.15)’
+2.16368x10" (t—0.15)° + 4.91847 x10" (t—0.15)° +1.13227 x10" (t— 0.15)"°
+2.63346 10" (t—0.15)" + 6.17734x10" (t— 0.15)*?, t €[0.15,0.2].

X(t) =




U. Somboon et al. / Songklanakarin J. Sci. Technol. 42 (1), 81-94, 2020 91

1+1.71828t +5.17077t* +19.3536t* +80.1435t° +351.093t° + 7409.3t’
+35062.4t° +168146t° + 814830t +3.98192 x10°t™ +1.95937 x10"t*, t €[0,0.05]
1.1019 + 2.43565(t—0.05) +9.93481(t—0.05)® +50.7118(t— 0.05)°
+286.334(t—0.05)" +1708.87(t—0.05)° +10559.3(t— 0.05)°® +66814.5(t—0.05)’
+430122(t—0.05)° + 2.8059 x10° (t—0.05)° +1.84864 x107 (t—0.05)™°
+1.2283x10°%(t—0.05)™" +8.21708 x10°(t—0.05)"?, t €[0.05,0.1]
(0 = 1.25743+4.03738(t—0.1) + 25.7226(t— 0.1)* + 206.07(t—0.1)°

+1823.14(t—0.1)* +17024.4(t—0.1)° +164483(t—0.1)° +1.62549 x10° (t— 0.1)’
+1.63413x107 (t—0.1)° +1.66403x10°(t—0.1)° +1.71169 x10° (t—0.11)"°
+1.75515x10" (t—0.1)** +1.85343x10™ (t-0.1)"%, t [0.1,0.15]
1.57118+10.3218(t—0.15) +151.148(t—0.15)? + 2.779.76(t— 0.15)* + 56212.2(t— 0.15)*
+1.19708x10° (t—0.15)° + 2.63404 x 10" (t—0.15)° +5.92862 x10°(t— 0.15)’
+1.35679x10" (t—0.15)° + 3.145x10™ (t—0.15)° + 7.36425 x 10" (t—0.15)"°
+1.73866 x10™ (t—0.15)" + 4.13307 x10" (t— 0.15)"?, t €[0.15,0.2].

The approximate series solution obtained by the MsDTM and the DTM are compared graphically with the flow direction of the
vector fields (Figure 2). We can see that the MsDTM result is in better agreement with vector field than the DTM result.
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Figure 2. MsDTM and DTM compared with vector field flow directions.

Example 4.3. Let us consider the following system of nonlinear plane autonomous
X' =2x+siny (4.5)

y' = x(y’+1), for t €[0,0.4], (4.6)
subject to the initial condition x(0) =1, y(0) =1.
Applying the DTM of Equations 4.5 and 4.6, we obtain

>0 F : (y(t))””} J

vy mo (r—m)!m! K1 dt<

X (K+1) = kiﬂ[zx (k)+ig—trrsin(t)

Y (k+1) =ki+1[X(k)+§k:iY(|)Y(r—|)X(k— r)j,

r=0 1=0
and the initial condition becomes x(0) =1, y(0) =1.
Then, we obtain the series solution
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X(t) =1+ 2.84147 t+3.38177 t*+2.56549t° +0.498022t* —3.62605t° —13.1978t°
—36.6427t" —93.1066t" —224.685t° —520.598t"° —1160.66t" —2481.54t", t €[0,0.4]

y(t) =1+ 2t+4.84147 t°+10.6041t° + 24.528t* +57.5466t° +134.91t°
+315.164t" +733.76t° +1702.66t° +3938.03t™ +9079.66t™ + 20873.9t", t <[0,0.4].

On the other hand, by applying the MsDTM to Equationa 4.5 and 4.6, it follows

L (-D"Y,"(0)| 1 d* r-m
i [ 00) U

v, 0y ™0 (r—m)!m!

xi(k+1):ki{2xi(k)+i

+1

d" .
sin(t
vz ®

Yi(k+1)=ki[xi(k)+iivi<l)vi<r—I)xi(k—r)j,

+1 =0 1=0

Xo(o) =1, xi(o) = Xi—l(ti)l Yo(o) =1, Yi (0) = yi—l(ti)! i=12,34,5.
Hence, we obtain the series solution
1+ 2.84147 t+3.38177 t%+ 2.56549t° + 0.498022t* — 3.62605t°> —13.1978t°
—36.6427t" —93.1066t° — 224.685t° —520.598t"° —1160.66t™ — 2481.54t*2, t <[0,0.08]
1.25028 + 3.43174(t—0.08) + 3.98652(t— 0.08)* + 2.28135(t— 0.08)*
—3.27511(t—0.08)* —19.3406(t— 0.08)° — 67.1434(t—0.08)°
—205.262(t—0.08)" —584.413(t— 0.08)® —1563.52(t— 0.08)°
—3898.43(t—0.08)"° —8808.52(t— 0.08)" —16669.2(t—0.08)"?, t <[0.08,0.16]
1.55128 + 4.10089(t— 0.16) + 4.24803(t— 0.16)* —1.14073(t— 0.16)°
—23.7465(t—0.16)* —108.548(t—0.16)° — 404.828(t— 0.16)°
—1336.03(t—0.16)" —3807.58(t— 0.16)® —8159.94(t— 0.16)°
—2936.53(t—0.16)"° +104910(t— 0.16)"* + 850945(t—0.16)"?, t €[0.16,0.24]
1.90448 + 4.67667(t—0.24) + 2.1336(t— 0.24)? — 22.5505(t— 0.24)°
—142.022(t—0.24)* —585.377(t— 0.24)° —1394.54(t— 0.24)° + 4460.95(t— 0.24)’
+93830.2(t—0.24)® +865886(t— 0.24)° + 6.29241x10° (t— 0.24)"°
+3.98717x107 (t—0.24)" + 2.27165x10°(t— 0.24)", t [0.24,0.32]
2.27311+420097(t—0.32) —9.88838(t— 0.32)* — 38.0005(t— 0.32)® +1179.65(t— 0.32)*
+24086.5(t— 0.32)° + 281349(t— 0.32)° + 2.24486 x10°(t— 0.32)”
+8.20097 x10° (t— 0.32)® —1.15647 x10° (t— 0.32)° —3.29081x 10° (t— 0.32)"
—5.19089x10"(t—0.32)" —6.53363x10" (t—0.32)"%, t €[0.32,0.4].
1+ 2t+4.84147 t*+10.6041t> + 24.528t* +57.5466t° +134.91t° + 315.164t”
+733.76t° +1702.66t° +3938.03t"° + 9079.66t" +20873.9t*?, t <[0,0.08]
1.19765 + 3.04364(t—0.08) +8.7346(t—0.08)* + 24.1547(t— 0.08)*
+69.2557(t—0.08)* +199.329(t—0.08)° +571.305(t—0.08)°
+1629.29(t—0.08)" + 4624.49(t—0.08)® +13067.8(t—0.08)°
+36779.9(t—0.08)"° +103170(t—0.08)"* +288632(t—0.08)*?, t = [0.08,0.16]
1.5131+5.10287(t—0.16) +18.7225(t—0.16)° + 68.529(t— 0.16)*
+254.775(t—0.16)* +942.871(t—0.16)° +3463.75(t—0.16)° +12638.4(t—0.16)’
+45855(t—0.16)° +165680(t—0.16)° +597192(t—0.16)*
+2.15185x10°(t—0.16)™ + 7.76857 x10° (t— 0.16)*?, t €[0.16,0.24]

x(t) =

yt) =
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2.09104 +10.2318(t—0.24) + 53.3091(t— 0.24)® + 278.516(t— 0.24)°
+1449.56(t—0.24)" + 7466.42(t— 0.24)° + 38168.7(t— 0.24)° +194558(t— 0.24)’
+994211(t—0.24)° +5.12151x10° (t—0.24)° + 2.67247 x107 (t— 0.24)"°
+1.41713x10°(t—0.24)" + 7.64272x10°(t—0.24)"2, t €[0.24,0.32]
3.4941+30.0249(t—0.32) + 266.217(t— 0.32) + 2342.96(t—0.32)® + 20645.6(t— 0.32)*
+185021(t—0.32)° +1.70474x10° (t— 0.32)° +1.61372x10" (t—0.32)’

+1.55164 x10°(t—0.32)° +1.49064 x 10° (t— 0.32)° +1.40754 x10" (t— 0.32)"°

+1.28807 x10" (t—0.32)" +1.12816 x10"(t—0.32)"?, t [0.32,0.4].

Similar to the previous examples, the MsDTM result is in better agreement with the flow of the vector field than the DTM result

(Figure 3).
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Figure 3.

5. Conclusions

The MsDTM combined with our new formulae have
been successfully applied to solve nonlinear plane
autonomous systems. Three different examples were solved
and the series solutions of the DTM and the MsDTM were
obtained. These are compared with the analytical solutions
calculated by the phase-plane method in the first example and
compared to the vector fields flow directions in the second
and the third examples. The results of the MsDTM were more
similar to the analytical solution and to the vector field flow
direction than the DTM results. Therefore, this method based
on our new transformed functions is a reliable and efficient
mathematical tool for solving nonlinear plane autonomous
systems.
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