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Abstract
Constructing a silt pit is one of the most widely adopted and effective practices used in oil 
palm plantations to conserve soil and water. The objective of this study was to utilize the 
HYDRUS-2D/3D to determine the optimal dimensions of silt pit and optimise the simulation 
results employing the multiple linear regression (MLR) and/or artificial neural network (ANN). 
Both methods were used to select the optimal size and dimensions of silt pit sizes depending 
on the amount of rain and soil properties. The treatments that were adopted included: 1) seven 
soil textures, 2) five surface slopes, and 3) three silt pits sizes. Each silt pit size comprised of 
three depth levels to accommodate the amount of water available in the pit. The approach first 
utilised the HYDRUS-2D/3D software to simulate the time-to-empty (TTE) of various silt pit 
sizes on different soil and slopes. Secondly, trends were then distinguished from the data, and 
the best fit was determined using MLR and ANN models to estimate the optimal silt pit size. 
The TTE was affected by the water head in the pits (H), pit width (W), the amount of water 
applied (Vw), and the pit volume (Vp), but was not affected by the surface slope (Slope). The 
findings demonstrated that the MLR models did not perform sufficiently to represent the results 
of TTE (R2 = 0.632; MSE = 85.83) compared with the ANN models (R2 = 0.977; MSE = 10.33). 
This was mainly due to the non-linear relations of these factors. The results demonstrated that 
by using the same input data, the ANN models could favourably be used for TTE predictions.

Keywords: Soil water conservation; Silt pit; HYDRUS-2D/3D; Multiple Linear Regression; 
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1. Introduction
Water harvesting can be defined as 

a process that allows the collection of 
rainwater or surface runoff, which is then 
utilised for agricultural (for crops and 
vegetables) and domestic purposes, or 
for livestock watering. Soil management 
for soil fertility and rainwater harvesting 
can reduce the risk of nutrient depletion 

(Giller et al., 2006; Mupangwa et al., 2006; 
Tittonell et al., 2007; Vanlauwe and Giller, 
2006). It has been predicted that the rainwater 
harvesting processes could decrease the risk 
for crop failure and could help in improving 
soil fertility (Rockstrom, 2000). Improved 
soil fertility could decrease the nutrient loss 
and ensure the redistribution of the eroded 
nutrients in the soil (Bohluli et al., 2014).
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Abstract
Understanding the perception of people on the provision of water meters in houses can aid in 
the enhancement of water conservation strategies in a locality. In this study, the perception of the 
residents of the town of Pollachi, Tamil Nadu, India was assessed using a questionnaire survey. 
Queries were related to the quality of the water, duration and frequency of water supply, need for 
water pricing, usage of filters, preference for implementation of water meter, water treatment, etc. 
The survey was analyzed based on four major parameters, namely; age, gender, locality and literacy 
of the people.  A total of 78 residents from various locations in and around Pollachi were considered 
for this survey. The study indicates that frequency of supply of water to the residents of the town is 
not uniform in all locations and the residents within the town received water supply for a longer 
duration compared to those living away from the town. The quality of water is perceived to be good 
by majority of the residents. There was a mixed response from the males and females regarding 
boiling of water and usage of filters. Perception of people over the provision of water meter in the 
house is mixed and most of the males perceived that a water meter should be provided compared 
to the females. Women had more conviction of the fact that the provision of a water meter would 
solve the water shortage problem in their town, in comparison with the men. Thus, provision of 
water meter will definitely aid in water conservation as people would have to pay as per their usage. 
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1. Introduction 

 Water scarcity is an issue that is threatening 
many developing countries today and India is 
no exception to that. India is the home for 
1.34 billion people. With 16% of the global 
population, it has only 4% of the world’s water 
resources (Government of India, 1999). India 
has been taking significant steps to develop its 
water resources, but rapidly growing population, 

industrial and infrastructural development, 
agriculture and unequal distribution of water 
has resulted in demand exceeding the supply 
(Cronin et al., 2014). According to National 
Institute of Hydrology (2010), the current 
water availability per capita is around 1,170 
m3/person·year, indicating that India is just 
above the water stressed criteria of 1,000 m3/
person (WRI, 2007), based on Government 
of India (1999). In addition, issues such as 



H. H. Abdulaali et al /  EnvironmentAsia 13(1) (2020) 53-66

54

Studies have shown that the growth of 
healthy oil palm correlates significantly to 
high yield production which can be achieved 
through the application and optimisation 
of water management practices (Lim et al., 
2012; Bohluli et al., 2014). There are many 
ways for conserving water and soil on steep 
slopes, one of which is by constructing 
terraces. Terraces may be defined as 
ground embankments constructed across the 
slope down to the lower surface runoff point 
in order to guide the run-off to the outlet at 
a stable velocity to prevent erosion, via the 
shortest path (Morgan, 2005).

In some regions, water run-off and 
soil erosion could be very severe, despite 
the construction of terraces or water 
conservatories. In these areas, the silt pits 
must be dug for reducing the water flow, 
which increases water infiltration in the soil 
and maximises water conservation (Afandi 
et al., 2017; Murtilaksono et al., 2007). 
Terminologies such as silt pit, pit/pitting, 
irrigation pit, diking/dammer-diker, water 
harvesting pit, and planting pit have been 
used to describe the straddling of contour 
trenches both in size and shape. All apply 
the same concepts to collect the run-off, trap 
and settle the sediment, thereby increasing 
soil moisture, improving the groundwater, 
breaking the slope length, reducing soil 
erosion and loss of fertiliser (Haridas, 2005; 
Bohluli et al., 2014). Atmaja (2007) assessed 
the efficiency of constructing silt pits and 
ridge terraces for conserving the soil moisture 
content during the palm oil plantation. The 
researchers noted the highest soil water 
content in the areas containing silt pits. 
Furthermore, the researchers concluded that 
the silt pits could fulfil the water demand of 
the palm oil plants and thus, lead to increased 
production. However, there is no standard size 
for a silt pit, as the sizes vary depending on 
the soil properties, slope surface, and rainfall 
intensity. Since using direct measurement 
is time-consuming and costly, indirect 
methods have been developed such as 
numerical methods to estimate water flow 
and the transportation of nutrients. Moreover, 
modelling is used to assess soil properties such 
as the percentage of soil particles and/or water 
flow parameters. Notwithstanding, numerical 

models are increasingly being used as an 
approach for predicting or analysing water 
flow and contaminant transport processes. 
One of the most prominent methods is the 
HYDRUS model.

HYDRUS-2D/3D (Karandish & Šimůnek, 
2016; Šimůnek et al., 2008) refers to software 
which is used for simulating transient, 2- or 
3-D movement of the runoff water and soil 
nutrients for various boundary conditions, like 
irregular boundaries, and soil heterogeneities. 
The HYDRUS-2D/3D models can be used 
for many applications since these models are 
developed using simple input parameters that 
could be determined in the projects having 
limited resources (Karandish and Šimůnek, 
2016). Notably, many studies have used 
a simulation approach (e.g., Rocha et al., 2006; 
Warrick and Lazarovitch, 2007; Lazarovitch et al., 
2009), whereas, a number of other studies 
have used HYDRUS (2D/3D) to calibrate 
and test the predictions against experimental 
data (e.g., Abbasi et al., 2003a,b; Wöhling and 
Schmitz, 2007; Crevoisier et al., 2008; Zerihun 
et al., 2014). Accordingly, this provides 
confidence that the model can adequately 
describe these complex systems. 

Some recent studies have used neural 
networks for classification, simulation and 
optimisation of some models applied in 
the field of engineering science (Menhaj 
2000). Many researchers have applied 
neural networks models for estimating the 
infiltration rates (Jain and Kumar, 2006), 
exchangeable cations (Amini et al., 2005), 
saturated hydraulic conductivity (Schaap et al., 
2001; Doaee et al., 2005; Parasuraman et al., 
2006; Ghanbarian-Alavijeh et al., 2010), 
and hydrologic processes (Lazarovitch et al., 
2009; Isik et al., 2013). One of the more 
recent studies by (Elnesr and Alazba, 2017) 
compared the HYDRUS-2D/3D results with 
an ANN to simulate water distribution under 
a surface dripper. The researchers noted that 
the ANN prediction models could provide 
good results, with the correlation coefficient 
values for the 7809 data points ranging 
between 0.93 and 0.99.

The primary aim of this research was to 
construct a HYDRUS-2D/3D model to predict 
the optimum size of the silt pit by quantifying 
and examining the relationships between the 
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silt pit sizes with the soil types, steepness/
slope, and rainfall intensities (volume of 
water in the pits) based on the large number of 
treatments as mentioned earlier. Notably, this 
was to distinguish the trend of all experimental 
elements used in the study. Furthermore, the 
secondary objective of this research was 
to obtain a quick and low-cost analytical 
procedure to estimate the optimal size of the 
silt pit for the maximum time-to-empty (TTE) 
prediction. It is aimed to find an alternative of 
using the complicated numerical programme 
like HYDRUS-2D/3D model, we will utilise 
ANN with the aid MLR analysis to perform 
the task.

2. Methodology
2.1. Numerical methods

The first stage of this study utilises the 
software HYDRUS 2D/3D models to simulate 
the time-to-empty of various silt pit sizes on 
different soils, water head, and slopes. The 
governing equations and initial boundary 
conditions for transient flow are described 
along with providing a brief introduction on 
the numerical methods for transient water 
flow. The Richards equation is the dominant 
equation applied in unsteady conditions and is 
shown in 2D mode (Equation 1) (Azhdari, 2008; 
Simunek et al., 2005). The HYDRUS model is 
used to solve Richard’s analysis using a linear 
finite element model (FEM), to simulate the 
movement of water in the soil (Abassi, 2005).

where θ is the volumetric moisture; K is the 
unsaturated hydraulic conductivity; h is the 
matrix potential; S is the water intake by 
root; α is the angle between the flow path and 
vertical axis; x is the distance; and t is the time.

2.2. Numerical experiment factors

In this study, seven soils with wide-ranging 
soil textures (sand, sandy loam, loam, silt, 
sandy clay loam, silty clay, and clay) were 
used based on the soil hydraulic properties 
according to the USDA classification. 
Five surface slopes (0˚, 5˚, 10˚, 15˚, 
20˚, and 25˚) were employed. Three silt 
pits of sizes (3, 4, and 5 m3) were used 
where each size consisted of three depth 
levels (D1, D2, and D3). The length (L) 
was fixed for all sizes (4 m) (Table 1). 
Next, a two dimensional (2D) model 
was generated using HYDRUS with the 
W (width) and D (depth) of the silt pits, 
(Figure 1). The volumes of water applied 
in the pits (volume of water runoff that is 
generated during a rainfall storm of the 
catchment area) were 1, 2, 3, 4, and 5 m3 
respectively.

Figure 1 illustrates the initial and 
boundary conditions, flow domain, and 
the prescribed boundary condit ions. 
The simulated domain was 600 cm deep 
and 600 cm wide. The transport domain 
was discret ised into 3,953 to 5,506 
2D-elements with a fine grid formed 
around the silt pit walls of (5.5 cm), with 
the element spacing gradually increasing 
far ther  f rom the s i l t  pi t  wal ls  unt i l 
reaching the global targeted size of the 
finite elements (21 cm). A time-variable 
flux boundary condition was specified 
around the silt pit wall. Notably, during 
water applications,  a variable water 
head is calculated depending on the flux 
discharge rate. The atmosphere boundary 
condition was found to be negligent at the 
soil surface (no flux). Also, a free drainage 
boundary condition was specified at 
the bottom boundary and vertical sides, 
allowing for downward drainage. The 
initial soil water contents were equally 
applied to the field capacity. The TTE 
of water in the pit was determined by 
monitoring the cumulative amount of 
water flux from the walls of the pit 
(variable head boundary) as well as the 
time until obtaining the volume of water 
in the silt pit.

(1)
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2.3. Multiple linear regression

MLR is a linear regression model, which 
can be applied for analysing the relationship 
between a single response variable (dependent 
variable) and 2-or more controlled variables 
(independent variables). MLR analysis is 
generally used for describing the quantitative 
relationship between the response variables 
and multiple explanatory variables (Tabari et 
al., 2012). The following linear equation is 
used in the MLR models:

where Y is the dependent variable, α0 and αn 
are the MLR parameters, and x1 and xn  are the 
independent variables.

2.4. Neural networks model Design

An ANN model is an interconnected 
network comprising of several simple 
processing units known as neurons, similar 
to the biological neurons present in a human 
brain. There is an interconnection between 
these layers where each has a magnification 
weight. The architecture of the multi-hidden 
layers neural network is illustrated in Figure 
2 (Rojas, 2013).

Five variables Sand%, Clay%, Vw/W, 
Slope, and Vp were used as independent 
variables (input of ANN), and one dependent 
variable TTE will also be used (output of ANN). 

Therefore, each input vector will consist  of  5 
numbers, and the output consists of only one 
number. Some researchers stated that only 
one hidden layer is necessary for such cases 
(Akbar et al., 2018). Other researchers have 
found that using two hidden layers provides 
the best results (Kavuncuoglu et al., 2018). 
This will be checked later in the study using 
trials. Also, a milestone, “2n”, “2n+1” has 
been suggested by some researchers (Park, 
2011) to determine the number of neurons 
in a single hidden layer where n represents 
the input layer nodes number (independent 
variables). 

There are many activation functions used 
by researchers, while in practice just a small 
number are familiar. Some examples are the 
hyperbolic tangent sigmoidal, log-sigmoidal, 
and some trigonometric and linear functions 
(Rojas, 2013). After conducting several trials, 
a logarithmic sigmoid function for hidden 
neurons and linear function for output neurons 
was determined to be the most acceptable for 
the prediction of TTE.

Regarding the training process of the 
network, it begins with the weights being 
initialised randomly in an interval [-1, 1].  Next, 
there must an iterative training algorithm 
to minimise the cost function. All training 
algorithms sometimes fall in local and not 
global points. Notably, no algorithm can be 

Figure 1: Screen capture of the geometry figure generated 
from the HYDRUS 2D/3D window to show how the initial 
and boundary conditions were applied
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assured of achieving the global optimum 
in non-linear problems (Gopalakrishnan, 
2010). Most of the training algorithms 
attempt to solve the problem with suitable 
weights, which are sensitive to initial weight 
assumptions such as back-propagation (Rojas, 
2013). 

Four training algorithms were used in 
this paper to determine which one is 
optimum for the study. These included; 

Figure 2: Schematic of the ANN architecture, showing highly 
interconnected nodes (neurons)

Figure 3: Proposed Procedure for ANN Model for Regression: (a) Training 
and determining the optimum ANN (b) Later used for the trained ANN

r e s i l i e n t  b a c k  p r o p a g a t i o n  ( R P ) , 
Levenberg-Marquardt  (LM),  sca led 
conjugate gradient (SCG), and Bayesian 
regulation (BR) (Gopalakrishnan, 2010). 
A comparison of the different algorithms 
was carried out based on the mean squared 
error.  Data  were  normal ised before 
submitting to the networks. This process 
limits the highest and lowest values to 
certain intervals such as [-1, 1] or [0, 1]. 
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Figure 4: Shows the effect of soil textures to time-to-empty (TTE) with 
all experimental elements. [volume of pits (Vp), volume of water (Vw), 
and depth of pits (D1, D2, and D3 are 50, 75, 100 cm, respectively)] 

where Oi  are the observed values; Pi is the 
predicted values; Oave is the measured rate 
values; N is the comparison numbers; Pave is 
the simulated values. The Root mean squared 
error (RMSE) is the square root of MSE.

3. Results and Discussion
3.1. Trend Study

HYDRUS displayed all soil textures 
having the same trend (Figure 4). Hence, the 
average of all soils was taken to understand 
the effect of the silt pit dimensions, the volume 
of water in the pit, volume of the pit, and the 
slope surface on the TTE.

Figure 5 illustrates the effect of the water 
head (H), the volume of the silt pit (Vp), and 
depth of the pit (D) on the TTE with different 
surface slopes. In this Figure, fixing Vp and 
increasing H will cause the TTE to decrease. 
To explain this, Vp 5 m3 is selected with two 
depths: D3 (W = 125 cm and D = 100 cm) and 
D1 (W = 250 m and D = 50 cm), as shown 
in Figure 6a and b, respectively. The wetted 
area (wetted side areas and base area) of pit 

The submitted data set is divided into 
three subsets to implement an acceptable 
stopping technique; training, validation, 
and test sets. Measuring the predictive 
capability of the model is checked by the test 
set. Here, we constrained the total number of 
iterations (epochs) to 1000, and the validation 
is stopped when the errors increased for 
50 epochs (due to the large dataset). In this 
research, 1512 datasets were divided as 70 
% training, 15 % validation, and 15 % test 
sets of the total data. MATLAB software 
randomly made the selection of these sets. 
Next, different network hierarchies and 
different training algorithms were trained 
using these data to determine the optimum 
networks and optimum training algorithm. 
Figure 3a illustrates the proposed method for 
determining the best ANN for the prediction 
of TTE. While Figure 3b displays how the 
optimum network will be used by MATLAB 
at a later stage.

2.5. Model Performance Measurement

For evaluating the proposed neural 
network model, statistical parameters like 
the correlation coefficient (R2) and Mean 
Square Error (MSE) (small MSE value reflects 
a proper training of the model) were used and 
were estimated as follows:
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D3 (12.5 m2) is larger than the wetted area of 
pit D1 (11.5 m2). Therefore, this means that 
more significant amounts of water would be 
in contact with the soil; thus, leading to much 
larger water flow. Moreover, the head of water 
in the silt pit D1 (50 cm) is half that of D3 
(100 cm). Accordingly, this will lead to an 
increase of the pressure head and increase the 
water flow from the wetted area as shown in 
Equation (12) (Kale & Sahoo, 2011):

where f(t) is the infiltration rate; K is effective 
hydraulic conductivity; ho is the depth of 
ponding water over the soil surface; hs 
represents the capillary suction head at the 
wetting front; L is the depth of wetting front 
below the bottom of the pond.

Figure 5 also illustrates that when H is 
fixed, and W is gradually increased, this will 
increase TTE. Indeed, this can be explained 
in Figure 6; the amount of water in the silt pit 
with wider wall dimensions (water volume 
will be 5 m3) (Figure 6a) is double that of the 
pit with narrow dimensions (water volume 
will be 2.5 m3) (Figure 6c). This then leads to 
the continuous release of water for much of 
the period. Also, Figure 5 illustrates that there 
is no effect shown by the slopes to TTE for 
all experimental elements. The reason for this 
may be caused by the set of the initial water 
conditions equal to the field capacity in the 
HYDRUS geometry.

3.2 Performance of ANN model on the 
prediction task

In this study, a three- and four-layered 
ANN (which have 1 and 2 Hidden layers 
respectively) with different hidden layers 
and nodes were used for the prediction 
of TTE. Figure 7 shows the relationship 
between the network structures versus the 
mean squared error for different training 

algorithms for a network with the single 
hidden layer. The same calculations were 
performed for the networks with double 
hidden layers (i.e. 400 networks tested 
with 4 training algorithms) (Figure 7). The 
utilised model showed that the single hidden 
layer provides reasonable prediction results. 
The designed networks contain different 
types of activation functions; logarithmic 
sigmoid for the hidden layer(s) and pure 
linear function for the output layer. Table 2 
displays the optimal ANN having the LM 
training algorithm with logarithmic sigmoid 
as a transfer function in the hidden layer 
with the structure 5-20-1. Whereas, the 
optimum double hidden layer network has 
the structure of 5-7-3-1 trained by BR. It is 
clear from observing the image sketches in 
the figure that the darker blue areas have less 
MSE. Therefore, taking this into account, 
the number of weights to be updated, and the 
values of  R2 and MSE, the optimal function 
will be considered as 5-7-3-1.

3.3 Performance of MLR model

Based on the TTE data collected 

from the simulation, a linear model was 
next found from the relation between the 
dependent model and the five independent 
variables (Sand%, Clay%, Vw/V, Slope, and 
Vp). The model was obtained using the least 
squares method, and the results acquired as 
given in Equation (5):

As observed in Figure 8, the modelled 
TTE values were not in agreement with the 
actual values. The values of R2 and MSE are 
0.632 and 85.83, respectively. Therefore, 
the MLR model results are not suitable for 
this prediction. Accordingly, it is important 
to search for a nonlinear fitting model for 
the predictions.
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Figure 5. Effect of head of water in pits (H), volume of pits (Vp), width of pit 
(W), and depth of pits (D) to time-to-empty. A slope surface 0˚, B slope surface 
15˚, and C slope surface 25˚
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Figure 6. Show the effect of depth (D) and width (W) of the pit in each of the 
same volume of pit (Vp) and amount of water (Vw) ( A and B) and in the same 
value of head of water (H) and different size of pit (Vp) (A and C) (Screen capture 
of HYDRUS window results)

Figure 7. Optimum Single Hidden Layer ANN 
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Figure 9: Correlation between the actual results (Targets) and predicted results by MLR Model 
(left) and ANN Model with Double hidden layers of structure 5-7-3-1 (right)

Figure 8: Image plots for MSE vs. number of hidden neurons for Double Hidden Layer ANN

3.4 Comparison between the ANN and MLR 
models

The HYDRUS results were considered as 
the true or measured values (or target values). 
The best way of viewing the fitting results is 
by drawing the relation between the fitted and 
actual data (i.e. it must be on a line of the slope 
equal to 1 intercepting the y-axis at the origin). 
If this result is displayed like a line, then they 

are considered to be the best fit. By examining 
the performance results of the MLR and ANN 
(5-7-3-1, Logsig-Logsig-Purelin, BR) models, 
the MSE and R2 values are 10.33 and 0.977 for 
ANN and 85.83 and 0.632 for MLR (Figure 
9), respectively. The results show that the 
ANN models might be built to predict TTE 
which is better than the MLR model. This 
can be validated by observing the histogram 
illustrated in Figure 10.



H. H. Abdulaali et al /  EnvironmentAsia 13(1) (2020) 53-66

63

Figure 10: Error Occurrence Histogram for all 1512 Points

Figure 11: Prediction of trained ANN 5-7-3-1 vs MLR Predictions and Actual results

As shown in Figure 11, a correlation can 
be observed between the predicted and actual 
variables. As a result, the neural networks 
models can precisely predict the TTE and is 
therefore considered as a useful tool for this 
area of application.

The ANNs prediction models based on our 
view will play a vital role in the applications and 
techniques for modelling a more complicated 
problem for soil modelling, especially in the 
experimental field. However, one disadvantage 
of the ANN prediction model is that it requires 
a large observation set for the training process 
and must cover the entire prediction range. 
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4. Conclusions
From the results using HYDRUS 

2D/3D, the trend of the results indicated 
that when increasing the head of water in 
the silt pit, the TTE will decrease. Moreover, 
the depth of the silt pit could not be lower 
than the active root zone of the oil palm 
trees. In other words, in an area with limited 
rainfall, the depth of the silt pit should be 
shallow enough to avoid the possibility of 
water redistribution under the root zone of 
the oil palm tree. 

This paper has aimed to develop ANN 
and MLR models to predict the TTE in 
silt pits employing five variables, Sand%, 
Clay%, Vw/W, Slope, and Vp. Statistical 
analyses were carried out to compare both 
models. The results indicated that the ANN 
model is an effective model for predicting 
the TTE especially in the presence of using 
complex linearities. A closer correlation was 
observed between the predicted values from 
the model and those found by using HYDRUS 
2D/3D. Therefore, designers can rely on the 
TTE obtained from the model without the 
need to restore the complex simulation based 
on the available information such as soil 
texture (Clay and Sand %). Moreover, the 
amount of water generated from the rainfall 
in catchment area could be used to determine 
the suitable TTE for any plant field. Further 
research into this field is necessary before 
obtaining a definitive model(s) for the 
predictions. Future work may be performed 
using experimental data instead of using 
simulation data. Additionally, applicants 
can follow the steps illustrated in Figure 3 
for the prediction. Full details of data used 
and MATLAB codes for this paper are found 
in the project page: https://github.com/
Husam78/SiltPit.
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