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Abstract 
 
Daily global solar radiation (DGSR) is a renewable energy source that cannot be depleted. Many researchers have used 

the sample method to collect the dataset of DGSR to obtain the statistical characteristics of the population. However, since this is 

difficult, descriptive statistics and statistical inference became the primary objective of obtaining the characteristics of the 

statistical population. In this study, a statistical model combined with generalized extreme value (GEV) distribution is proposed 

to represent the dataset of DGSR. The moments method, the Kolmogorov-Smirnov test, and the properties of GEV were per-

formed to estimate the parameters of GEV and check the validity of the estimated parameters with the actual dataset of DGSR. 

Nonlinear regression and multiple nonlinear regression of GEV with its corresponding days during a year were produced. 

Eventually, a flowchart was designed to obtain the close probability distribution of the DGSR.  
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1. Introduction 
 

Many researchers are interested in solar energy and 

its importance. It is known that solar energy is generated by 

radiation from nuclear reactions within the sun and it is con-

sidered as one of the largest sources of light and heat that is 

distributed on the earth according to the proximity to the equa-

tor. Cooling and heating systems are key prominent examples 

of the solar energy in the distillation and purification of 

drinking water and in reducing the costs that individuals pay 

to electricity companies. 

The generalized extreme value (GEV) is the most 

widely applied statistical distribution for climate modeling, 

whereby the daily global solar radiation (DGSR) is one of its 

apt applications. The three-parameter GEV distribution was 

also proved to be efficient in describing rainfall, wind speeds, 

annual floods, wave heights, and snow depths to name but a 

few ecological phenomena. 

 
Nonetheless, researchers have faced serious diffi-

culties in obtaining a prediction equation of the DGSR. They 

have noticed that the sampling method turns into statistical 

inference methods that rely on their ability to make statistical 

decisions. Thus, they need to select an appropriate statistical 

model for the terminal objective of the significant study. Here 

lies the importance of the estimation methods.  

In particular, estimation methods are used in mathe-

matical statistics for measuring the parameters of a statistical 

population. Among these methods, there are the statistical 

estimations, which include the method of moments and the 

maximum likelihood function. In addition, the estimation pro-

blems were studied to propose a pattern of similarity-based 

clustering algorithm and to maintain its application in solar 

radiation evaluation. Along with the Pearson R model, Bhard-

waj et al. (2013) used the hidden Markov model for the ex-

traction of shape-based clusters from meteorological parame-

ters. The generalized fuzzy model was then applied to accu-

rately evaluate solar radiation. Emad and Adam (2013) be-

lieved that designing a forecasting model that applies artificial 

neural networks was meant to evaluate the monthly average 

DGSR in Qena in upper Egypt whereby good concordance 

between the evaluated and measured data of global solar 

irradiation was recorded. 
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Remarkably, Hahne et al. (2014) examined a com-

parison between nonlinear and linear regression methods for 

simultaneous, independent, and proportional myoelectric con-

trol of wrist motions with two degrees of freedom offline with 

electro-myograhic signals that were gained from ten healthy 

subjects and one person who had a congenital upper limb 

deficiency. 

Empirical models were created to detect the 

correlation of the mean DGSR and the air temperature data in 

six Algerian cities. As recorded by Mecibah, Boukelia, 

Tahtah, and Gairaa (2014), the results supported the results of 

previous studies and showed that sunshine based models were 

commonly more accurate than air temperature based models. 

Furthermore, the two regression models that were applied to 

the prepared generalized models could predict the monthly 

mean global solar radiation in other Algerian locations. 

On the other hand, linear, quadratic, and cubic curve 

estimations were constructed to evaluate the global solar 

radiation in the eastern Mediterranean region in such a manner 

that regression models were monthly and annually updated 

with the MINITAB program. In addition, Teke and Yildirim 

(2014) compared monthly and general models by statistical 

test methods. Sanchez-Lorenzo, Calbó, and Wild (2013) 

checked the expansion of a new dataset of the surface solar 

radiation in Spain from the records of global solar radiation 

beginning in the early 1980s. Linares-Rodriguez, Ruiz-Arias, 

Pozo-Vazquez, and Tovar-Pescador (2013) suggested an opti-

mized artificial neural network ensemble model to evaluate 

the DGSR in large regions by applying clear-sky assessments 

and satellite images as input data to reinforce the same results 

of current models even on cloudy days. The Bristow-Camp-

bell model evaluated the DGSR evaluation in the Tibetan 

Plateau while a tentative method analyzed the DGSR. Pan, 

Wu, Dai, and Liu (2013) concluded that the standardized 

Bristow-Campbell fit the Tibetan-Plateau as it produced mo-

derately accurate global solar radiation assessments. Besharat, 

Dehghan, and Faghih (2013) chronologically compiled and 

surveyed the inclusive global solar radiation model, then 

sorted it out into four classes on the basis of meteorological 

parameters as model information. 

In previous studies, Bang and Shin (2016) made a 

comparison study on different common methods for non-cros-

sing multiple linear quantile regression to describe practical 

instruction of their applications. Moghaddasi, Bazzazi, and 

Aalianvari (2016) introduced an adaptive neuro-fuzzy in-

ference system to anticipate the ground inflow rate into the 

Amir Kabir tunnel in Iran, whereby a sample of 110 datasets 

containing most of the influential parameters on ground in-

flow rate was set to develop the ground inflow rate forecasting 

model. 

Backbreak is an unwanted phenomenon of blasting 

that causes the instability of mine walls, inefficiency of dril-

ling, and unstable machinery. Still, Faradonbeh, Monjezi, and 

Armaghani (2015) created a new artificial intelligence known 

as the genetic programming to forecast backbreak. 

Due to the large number of bird types in the world, 

it is difficult to predict the maximum number of migratory 

bird types during a limited number of migration years. How-

ever, El Genidy (2017) believed that a multiple nonlinear re-

gression model could accurately perform the job. 

In the current study, the moments method and Kol-

mogorov-Smirnov test were applied to the dataset of DGSR in 

Queensland, Australia, to estimate the parameters of the GEV 

distribution. Also, the multiple nonlinear regression model of 

GEV was used to predict the amount of DGSR on any day of 

a year. 

 

2. Materials and Methods 
 

2.1 Daily global solar radiation (DGSR) 
 

DGSR is the sum of solar radiation during a day 

represented on a horizontal surface. Common values of the 

DGSR prove to range from 1 to 35 MJ/m2 (megajoules per 

square meter) where the values are usually higher in the clear 

sun during the summer and lower through the winter or on 

very cloudy days.  

 

2.2 Dataset 
 

In this study, a dataset of DGSR during 274 days in 

2016 in Queensland, Australia was derived by the Australian 

Bureau of Meteorology, 2016 (Figure 1). Figure 1 shows the 

daily global radiation during 2016, which was measured by 

(MJ/m2) in the city of Queensland, Australia.  
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Figure 1.      Daily   global  solar  radiation  in  Queensland,  Australia   

                     during 2016. 

 

2.3 Software 
 

The software used in this study included Mathe-

matica 4, version number 4.0.1.0 (Wolfram Research, Inc. 100 

Trade Center Drive Champaign, IL USA) and SPSS 16.0 

(IBM SPSS software, New York, USA).  

 

2.4 Generalized extreme value distribution  
 

Suppose that X is a continuous random variable 

representing the dataset of DGSR, then the probability density 

function of GEV is defined as 
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where θ > 0, λ , α ∈ R ; R is the set of real numbers,  
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where the cumulative distribution function is 
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eF(x)                     (3) 

 

such that α is the shape parameter, θ is the scale parameter, 

and λ is the location parameter. 

 

2.5 Moments method 
 

Likewise, the moment generating function is 

defined as 
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The first moment around zero reads: 
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whereas the second moment around zero is 
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Therefore, the significant equations will be 
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2.6 Multiple nonlinear regression  
 

Estimating the multiple nonlinear regression of F*(x, 

y) on F(x) and F(y) is performed by the software as follows: 

 

 << Statistical `Nonlinear Fit` 

 

)}}ny,nF(x),nF(y),n{F(x

)},...,2y,2F(x),2F(y),2{F(x)},1y,1F(x),1F(y),1{{F(xdata 
, 

Nonlinear Fit  

[data, F*(x,y) = a [F(x) F(y)]3 + b [F(x) F(y)]2 + c F(x) F(y) + 

d, {x, y} , (a, b, c, d)] 

F*(x,y) = a [F(x) F(y)]3 + b [F(x) F(y)]2 + c F(x) F(y) + d   ,  

where a, b, c, and d satisfy that the model 

 

F*(x,y) = a [F(x) F(y)]3 + b [F(x) F(y)]2 + c F(x) F(y) + d, best 

fit the y))(x,*FF(y),(F(x), data quadrant in the least-squares 

sense, Mathematica software is applied to carry out this pro-

cess. 

 

3. Results and Discussion 
 

This section starts by juxtaposing the relevant re-

sults of the significant previous studies with the results of the 

current study in terms of (a) estimation methods and (b) dis-

tribution models of the dataset. Then hopefully, focusing on 

the points of contribution foregrounds the significance of the 

current study in terms of (a) the Kolmogrov-Smirnov test for 

goodness of fit and (b) multiple nonlinear regression of F(x, 

k). 

 

3.1 Estimation methods 
 

El Damsesy, El Genidy, and El Gazar (2014) made 

use of the maximum likelihood function to estimate the relia-

bility and failure rate of the electronic system with the help of 

the mixture Lindley distribution. Similarly, Hosking, Wallis, 

and Wood (1985) applied the method of probability weighted 

moments to estimate the GEV distribution. 

On the other hand, in the current study, the moments 

method and the properties of the GEV distribution were 

applied to accurately produce a nonlinear regression of the 

DGSR in Queensland, Australia during 2016. Undoubtedly, 

these methods emphasize the accuracy of estimations, and 

support the validity of their corresponding predictions. 

 

3.2 Distribution models of dataset  
 

Hasan, Radi, and Kassim (2012) presented the mo-

deling of extreme temperature, using the GEV distribution in a 

case study of Penang, Malaysia. Smith (1989) based his study 

on the extreme value analysis of environmental time series, 

which was an application to trend detection in ground level 

ozone. Joe (1994) managed to apply the multivariate extreme 

value distribution, along with some other applications, to envi-

ronmental data. Sousa, Martins, Alvim-Ferraz, and Pereira 

(2007) revealed how multiple linear regression and artificial 

neural networks, based on principal components, could predict 

ozone concentrations. Later, in a case study of Hong Kong, 

Gong, and Ordieres-Meré (2016) performed a study on the 

prediction of the daily maximum ozone threshold exceedances 

by preprocessing and ensembling artificial intelligence tech-

niques.  

However, the current study adopted the GEV dis-

tribution to represent the dataset of DGSR in Queensland, 

Australia, 2016. The dataset was then mathematically treated 

until significant results were obtained. The statistics of the 

dataset of DGSR and the daily maximum temperature during 

2016 (Figure 1, a-d) are listed in Table 1, where Q1, Q2, Q3, 

and Q4 are first quartile, second quartile, third quartile, and 

fourth quartile respectively. Hence, from Equation 5, Equation   
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  Table 1. Descriptive statistics for both the daily global solar radiation and the daily maximum  

temperature during 2016. 
 

Statistics Solar 2016 Temp 2016 Statistics Solar 2016 Temp 2016 

      

Average 16.3365 22.69964 Skewness 0.257266 -0.11614 

Variance 34.87582 28.99106 Kurtosis -0.34372 -0.60405 

SDa 5.905575 5.384335 Q1 12.4 18.4 
Min 3.1 8.9 Q2 15.6 23.2 

Max 31.3 36 Q3 20.1 26.9 

Mode 14.6 26.7 Q4 31.3 36 
Median 15.6 23.2 ADb 4.713485 4.569724 
      

  

a. SD indicates standard deviation 

b. AD indicates average deviation  

 
7, and Equation 8, we can extract the mean, median, variance, 

and standard deviation as follows: 
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In a similar vein, from Equation 9 and Equation 10, 2θ  reads. 
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Thus, 
 

α = -0.07481199 , λ = 13.781 , θ = 5.03146. 

 

The graphical representations of F(x) and f(x) are 

shown in Figure 2 and Figure 3, respectively. In particular, 

Figure 2 presents the relationship between the values of the 

DGSR "x" and its cumulative distribution function "F(x)". 

Correspondingly, Figure 3 foregrounds the relationship bet-

ween the values of the DGSR "x" and its density function f(x).  

Moreover, the mean and standard deviation can be 

separately obtained from f(x) in the following manner. 
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Figure 2.  Cumulative distribution function. 
 

 

  
 

Figure 3.  Probability density function f(x) of GEV. 

  

The value of median can be also extracted from F(x) 

in this way: 
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 As a result, with the use of the new model F(x) of 

GEV, the values of mean, standard, and median deviations are 

extracted, and they prove close to the real dataset DGSR. 

With regard to computations of quartiles Qn and 

percentiles Pn, they are spelled out in accordance with the 

theoretical model and the real dataset (Tables 2 and 3). 

A comparison between the values computed by the 

real dataset and those computed by the theoretical model is 

tabulated in Table 4. 

 

3.3 Kolmogrov-Smirnov test for goodness of fit 
 

This test is to compare the experimental cumulative 

frequency Sn(x) with the cumulative distribution function of 

the DGSR. A stepwise experimental cumulative frequency 

function Sn(x) is defined as follows: 
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where x1 , x2 , . . . , xn are the observed values of the order 

dataset X and n is the sample size. Figure 4 shows the step-

function plot of Sn(x) with F(x). The maximum differences 

Dx(n) is defined as follows: 
 

 

(x)nS-F(x)max
xx(n)

D  , where α
nD  is the critical value at 

significance level α. 

 

The simple linear regression estimation of F(x) will be: 
 

F*(x) = 0.0037 x – 0.0013, where R2 = 0.9966. 
 

Figure 4 stresses the relationship between the empi-

rical cumulative frequency Sn(x) and the theoretical F(x) such 

that the coefficient of the determination confirms the accuracy 

of the estimate. Hence, the Kolmogrov-Smirnov test helps 

reach the results arranged in Table 5. In this regard, the GEV 

distribution is an acceptable model for the dataset of DGSR at 

the significance levels of α = 0.20, 0.10, 0.05, and 0.01. It can 

be used to create a prediction model F*(x, k) for the joint 

distribution function F(x, k) as a multiple nonlinear regression 

on F(x) and cumulative distribution function S(k) of all days 

of a year. 

3.4 Using the Anderson-Darling test to compare the 

fit of GEV and Weibull distributions with the 

actual dataset DGSR 
 

The parameters of the Weibull distribution are esti-

mated by the SPSS program. The resulting values of the scale 

and shape parameters are equal to 17.798 and 3.108, res-

pectively, whereby the adjusted R square is 0.996. On the 

other hand, GEV and Weibull distributions are considered 

extreme distributions, the reason for which the Anderson-

Darling test for goodness of fit is meant to determine the most 

appropriate distributions for the actual dataset DGSR. 
 
Table 2. Computations of the values of the daily global solar radia-

tion X, base on the theoretical model and the real dataset at 

their quartile values. 
 

N F(Qn) X (Theoretical) X (Dataset) 

    

1 0.25 12.1575 12.4 
2 0.50 15.6506 15.6 
3 0.75 20.3511 20.1 
4 0.96≈1 31.9629 31.3 
    

 
Table 3. Computations the values of daily global solar radiation X 

by theoretical model and real dataset at their percentile 

values.  
 

n F(Pn) X (Theoretical) X (Dataset) 

    

1 0.10 9.71285 9.4300 
2 0.15 10.6351 10.500 
3 0.20 11.4287 11.260 
4 0.25 12.1575 12.400 
5 0.30 12.8535 13.500 
6 0.35 13.5368 13.855 
7 0.40 14.2223 14.400 
8 0.45 14.9227 14.985 
9 0.50 15.6506 15.600 

10 0.55 16.4198 16.300 
11 0.60 17.2471 16.900 
12 0.65 18.1546 17.890 
13 0.70 19.1734 19.110 
14 0.75 20.3511 20.100 
15 0.80 21.7676 21.340 
16 0.85 23.5734 23.405 
17 0.90 26.1126 24.770 
18 0.95 30.5159 27.100 
19 0.96≈1 31.9630 27.548 

   
 

                                

Table 4.     Comparison the produced values of quartiles and percentiles from the real dataset and 
                                                 from the theoretical model of the daily solar radiation at significance level α = 0.01. 

 

Statistics 
measures 

Daily solar 
radiation 

Correlation 
p-value 

Test of 

normality 
Shapiro-Wilk 

p-value 

ANOVA 

test 

p-value 

Decision 

      

Quartiles 

Real Dataset 
1 

 

0.547 

0.977 

There are no 

significance 

differences 

Theoretical 

Model 
0.573 

      

      

Percentiles 

Real Dataset 
0.991 

 

0.398 

0.787 

There are no 

significance 

differences 
Theoretical 

Model 
0.124 
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Figure 4. Empirical cumulative frequency Sn(x) versus theoretical 

F(x). 

 
Table 5. Computations of     , Dn(x) with the decisions of accepting 

the generalized extreme value distribution for the dataset X 

at significance level α = 0.20, 0.10, 0.05, 0.01 

 


nD , n = 274 Dn(x) = 0.048 Decision 

 

  

20.0

274D = 0.065 Dn(x) < 20.0

274D  Accept 

10.0

274D = 0.074 Dn(x) < 10.0

274D  Accept 

05.0

274D = 0.082 Dn(x) < 05.0

274D  Accept 

01.0

274D = 0.098 Dn(x) < 01.0

274D  Accept 

 

  

 

Let N be the size of dataset DGSR, and F(x) be the 

cumulative distribution function, then the Anderson-Darling 

test statistic (A-D Statistic) is defined as follows: 
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where i = 1, 2, …, N. 
 

As for the extreme distributions, such as Weibull 

and GEV, the adjusted statistic of A will be defined as: 
 


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


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N

0.2
1.0A*A

. 

 

On applying the equations of A and A* on Weibull 

and GEV distributions, A-D Statistic of Weibull distribution 

proves equal to 1.73325 and its adjusted statistic is 1.754196. 

Yet, the A-D Statistic of the GEV distribution is 1.073301 and 

its adjusted statistic is equal to 1.086269. As a result, the 

adjusted statistic of GEV distribution is the least, and GEV 

distribution is more suitable than Weibull distribution for the 

actual DGSR dataset. 

3.5 Multiple nonlinear regression of F(x, k) 
 

The multiple nonlinear regression F*(x, k) on F(x) 

and S(k) is rendered in the following form of multiple non-

linear regression model. 

 

F*(x, k) = a [F(x) S(k)]3 + b [F(x) S(k)]2 +  

c F(x) S(k) + d.                                                     (15) 

 

Estimating the parameters a, b, c, and d can change the equa-

tion this way: 
 

F*(x, k) = -3.574*10-8 [F(x) S(k)]3 + 4.469*10-8 [F(x) S(k)]2  

                + F(x) S(k) + 1.126*10-9  ≈ F(x) S(k),              (16) 

 

where k = 1, 2, … , 274. 

 
Figure 5 is a flowchart, summarizing the compa-

rison method of all of the different distribution functions, 

whereby researchers can use any other distribution in the 

comparison process, in addition to the GEV distribution which 

was applied in the current study. Also, F*(x, k) = (k/n) (0. 

0037x – 0.0013), where k = 1, 2, … , 274 and n = 274, thus 

F*(x) and F*(x, k) can be predicted by the values of the DGSR 

x and during k days in a year. Accordingly, F*(x, k) will reach 

its maximum value at (x, k) = (24.6, 273), and its minimum at 

(x, k) = (3.1, 5). 

 

3.6 Validity of the prediction model F*(x, k) 
 

To validate the prediction model F*(x, k), re-

searchers should (a) calculate the values of both F(x, k) and 

F*(x, k), where x is the value of DGSR, and (b) use their 

values in SPSS program, then (c) apply the homogeneity-of-

variances test and the Mann-Whitney's test for F(x, k) and 

F*(x, k). In this regard, the p-value of the homogeneity test is 

equal to 1, whereas the p-value of the Mann-Whitney's test is 

0.941. Thus, F(x, k) and F*(x, k) are equal and homogenous. 

 

4. Conclusions  
 

In this study, the GEV distribution and the DGSR 

were introduced. The moments method, test fitting of quartiles 

and percentiles were performed to estimate the parameters of 

generalized extreme value distribution. Furthermore, the Ko-

lomogorov-Smirnov test was used to fit the dataset with the 

mentioned distribution after estimating their parameters. Non-

linear regression of the cumulative distribution functions for 

the DGSR were thus derived and the multiple nonlinear 

regression of the joint distribution function of the DGSR, with 

its corresponding days, were obtained and checked vis–à–vis 

the real dataset. 

 

Significant Statement 
 

The statistical method in this study provides accu-

rate results of the daily global solar radiation, the point that is 

highly beneficial to applications of environmental sciences. It 

also helps uncover the critical areas of the daily global solar 

radiation. Now, researchers can work out a new statistical 

method of sustainable energy sources and possibly of other 

new distributions. Moreover, the results of the current study 

enable us to better understand the causes of high temperatures 

in the atmosphere, and whether it is due to environmental 

pollution or to increased solar radiation. 
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Figure 5. Flowchart comparison of different distributions. 
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