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Abstract 
 

We introduce the notion of 𝑚-bi-hyperideals of a semihyperring as a generalization of bi-hyperideals, and we 

investigate some of its properties. Moreover, we characterize regular semihyperrings using 𝑚-bi-hyperideals. 

 

Keywords: semihyperring, bi-hyperideal, 𝑚-bi-hyperideal, (𝑚, 𝑛)-quasi hyperideal 

 

 

1. Introduction 
 

The notion of quasi-ideals was introduced for se-

mirings without zero and proved some properties on semirings 

using quasi-ideals, see in (Iséki, 1958). Shabir, Ali, and Batool 

(2004) characterized semirings by their quasi-ideals. Good 

and Hughes (1952) introduced the concept of bi-ideals of 

semigroups. In 1970, Lajos and Szász (1970) introduced the 

concept of bi-ideals in associative rings. Quasi-ideals are a 

generalization of left or right ideals, while bi-ideals are a 

generalization of quasi-ideals. In 2018, Munirand Shafiq (20 

18) introduced the idea of 𝑚-bi-ideals in semirings as a gene-

ralization of bi-ideals. 

The concept of hyperstructures was introduced by 

Marty (1934) in the 8th Congress of Scandinavian Mathema-

ticians. There are many authors expanded the concept of 

hyperstructures which appears in Corsini (1993), Corsini and 

Leoreanu (2003), Davvaz and Leoreanu-Fotea (2007), Vou-

giouklis (1994). The notion of a semihyperring, which both 

the sum and the product are hyperoperations, was defined by 

Vougiouklis (1990) as a generalization of a semiring. The 

concept of bi-hyperideals in semihyperrings, as a generali-

zation of bi-ideals in semirings, was studied by Huang, Yin 

 
and Zhan (2013) and Omidi and Davvaz (2016, 2017). In 

2017, Omidi and Davvaz (2017) introduced the notion of 

(𝑚, 𝑛)-quasi-hyperideals in ordered semihyperrings and in-

vestigated some of its properties. In this paper, we introduce 

the concept of 𝑚-bi-hyperideals of semihyperrings as a gene-

ralization of bi-hyperideals, and we investigate some of its 

properties. Then, we characterize regular semihyperrings by 

𝑚-bi-hyperideals. 
 

2. Preliminaries 
 

Let 𝑋 be a nonempty set. A mapping ∘ ∶ 𝑋 × 𝑋 →
𝒫∗(𝑋), where 𝒫∗(𝑋) denotes the set of all nonempty subsets 

of  𝑋, is called a hyperoperation on 𝑋 (Corsini, 1993; Corsini 

& Leoreanu, 2003; Davvaz & Leoreanu-Fotea, 2007; Vou-

giouklis, 1994). The couple (𝑋,∘) is called a hypergroupoid. If 

𝐴, 𝐵 ∈ 𝒫∗(𝑋) and  𝑥 ∈ 𝑋, then we denote 

 

𝐴 ∘ 𝐵 = ⋃ 𝑎 ∘ 𝑏

𝑎∈𝐴,𝑏∈𝐵

, 𝐴 ∘ 𝑥 = 𝐴 ∘ {𝑥} and 𝑥 ∘ 𝐵 = {𝑥} ∘ 𝐵. 

 
A hypergroupoid (𝑋,∘) is called a semihypergroup if for every 

𝑥, 𝑦, 𝑧 ∈ 𝑋, (𝑥 ∘ 𝑦) ∘ 𝑧 = 𝑥 ∘ (𝑦 ∘ 𝑧), which means that 

 

⋃ 𝑢 ∘ 𝑧 = ⋃ 𝑥 ∘ 𝑣

𝑣∈𝑦∘𝑧𝑢∈𝑥∘𝑦

. 
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A triple (𝑆, +,⋅) is called a semihyperring (Vougiouklis, 1990) if it satisfies the following conditions: 

 (i)   (𝑆, +) is a semihypergroup; 

 (ii)  (𝑆,⋅) is a semihypergroup; 

 (iii) 𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 and (𝑦 + 𝑧) ⋅ 𝑥 = 𝑦 ⋅ 𝑥 + 𝑧 ⋅ 𝑥, for all 𝑥, 𝑦, 𝑧 ∈ 𝑆. 

 A semihyperring (𝑆, +,⋅) is said to be additively commutative if 𝑎 + 𝑏 = 𝑏 + 𝑎, for all 𝑎, 𝑏 ∈ 𝑆. An element 0 ∈ 𝑆 is 

said to be an absorbing zero if 𝑎 + 0 = 0 + 𝑎 = {𝑎} and 𝑎 ⋅ 0 = 0 ⋅ 𝑎 = {0}, for all 𝑎 ∈ 𝑆. An element 𝑒 of a semihyperring 

(𝑆, +,⋅) is said to be the multiplicative identity if 𝑥 ∈ 𝑒 ⋅ 𝑥 and 𝑥 ∈ 𝑥 ⋅ 𝑒, for all 𝑥 ∈ 𝑆. A nonempty subset 𝑇 of a semihyperring 

(𝑆, +,⋅) is said to be a subsemihyperring of 𝑆 if 𝑇 is closed under both the hyperaddition + and the hypermultiplication ⋅. 

 A nonempty subset 𝐼 of a semihyperring (𝑆, +,⋅) is called a left (resp. right) hyperideal of 𝑆 if it satisfies 𝐼 + 𝐼 ⊆ 𝐼 and 

𝑆 ⋅ 𝐼 ⊆ 𝐼 (resp. 𝐼 ⋅ 𝑆 ⊆ 𝐼). If 𝐼 is both a left and a right hyperideal of 𝑆, then 𝐼 is called a hyperideal of 𝑆. Throughout this paper, 

we assume that (𝑆, +,⋅) is an additively commutative semihyperring with an absorbing zero 0. 

For more convenient, we write 𝑆 for a semihyperring (𝑆, +,⋅), 𝐴𝐵 for 𝐴 ⋅ 𝐵 and 𝑎𝑏 for 𝑎 ⋅ 𝑏, for any nonempty subsets 

𝐴 and 𝐵 of 𝑆 and 𝑎, 𝑏 ∈ 𝑆. Now, we present the definitions of quasi-hyperideals, bi-hyperideals and (𝑚, 𝑛)-quasi-hyperideals of 

semihyperrings, see for example in Davvaz and Omidi (2016), Haung, Yin, and Zhan (2013), Kar and Purkait (2017), Omidi and 

Davvaz (2016), Omidi and Davvaz (2017).  

 A nonempty subset 𝑄 of a semihyperring 𝑆 is called a quasi-hyperideal of 𝑆 if it satisfies 𝑄 + 𝑄 ⊆ 𝑄 and (𝑆𝑄) ∩

(𝑄𝑆) ⊆ 𝑄. A subsemihyperring 𝐵 of a semihyperring 𝑆 is called a bi-hyperideal of 𝑆 if it satisfies 𝐵𝑆𝐵 ⊆ 𝐵. Every left (resp. 

right) hyperideal of a semihyperring 𝑆 is a quasi-hyperideal of 𝑆. We note that each quasi-hyperideal of a semihyperring 𝑆 is a bi-

hyperideal of 𝑆. 

 For a semihyperring 𝑆 and 𝑚 ∈ ℕ, we denote 𝑆𝑚 = 𝑆𝑆𝑆⋯𝑆 (𝑚 times). If a semihyperring 𝑆 contains the multipli-

cative identity, then 𝑆𝑚 = 𝑆. A subsemihyperring 𝑄 of a semihyperring 𝑆 is called an (𝑚, 𝑛)-quasi-hyperideal (Omidi & Dav-

vaz, 2017) of 𝑆 if it satisfies (𝑆𝑚𝑄) ∩ (𝑄𝑆𝑛) ⊆ 𝑄, where 𝑚 and 𝑛 are positive integers. 

 It is clear that a quasi-hyperideal 𝑄 of a semihyperring 𝑆 is a (1, 1)-quasi hyperideal of 𝑆. In addition, an (𝑚, 𝑛)-quasi-

hyperideal of a semihyperring 𝑆 is a (𝑘, 𝑙)-quasi-hyperideal of 𝑆, for all 𝑘 ≥ 𝑚 and 𝑙 ≥ 𝑛. Furthermore, any (𝑚, 𝑛)-quasi hyperi-

deal of a semihyperring 𝑆 need not to be a quasi-hyperideal of 𝑆 (Omidi & Davvaz, 2017). 

 For any nonempty subsets 𝐴 and 𝐵 of a semihyperring 𝑆, we denote 

 Σ𝐴 = { 𝑡 ∈ 𝑆 ∣∣ 𝑡 ∈ ∑ 𝑎𝑖 , 𝑎𝑖 ∈ 𝐴𝑖∈𝐼 and I is a finite subset of ℕ }, 

 Σ𝐴𝐵 = { 𝑡 ∈ 𝑆 ∣∣ 𝑡 ∈ ∑ 𝑎𝑖𝑏𝑖 , 𝑎𝑖 ∈ 𝐴,  𝑏𝑖 ∈ 𝐵𝑖∈𝐼 and I is a finite subset of ℕ }, 

 Σ𝑎 = Σ{𝑎}, for any 𝑎 ∈ 𝑆 and 

 ∑ 𝑎𝑖 = {0}𝑖∈∅ , for every 𝑎𝑖 ∈ 𝑆. 

 

Remark 1. For any nonempty subsets 𝐴 and 𝐵 of a semihyperring 𝑆, the following statements hold: 

 (i)   Σ(Σ𝐴) = Σ𝐴; 

 (ii)  Σ𝐴 ⊆ Σ𝐴 + Σ𝐵; 

 (iii) (Σ𝐴)( Σ𝐵)⊆ Σ𝐴𝐵; 

 (iv)  Σ(𝐴 + 𝐵) ⊆ Σ𝐴 + Σ𝐵. 

 

3. Properties of 𝒎-bi-hyperideals 

 

In this section, we introduce the concept of an 𝑚-bi-hyperideal of a semihyperring. Then, we investigate some 
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properties of an 𝑚-bi-hyperideal in a semihyperring. Moreover, we study characterizations of regular semihyperrings by their 𝑚-

bi-hyperideals. 

 

Definition 3.1. A subsemihyperring 𝐵 of a semihyperring 𝑆 is called an 𝑚-bi-hyperideal of 𝑆 if it satisfies 𝐵𝑆𝑚𝐵 ⊆ 𝐵, where 𝑚 

is a positive integer. 

 We note that every bi-hyperideal of a semihyperring is a 1-bi-hyperideal. For any nonempty subset 𝐴 of a semihyper-

ring 𝑆, we denote by 〈𝐴〉𝐵 the smallest 𝑚-bi-hyperideal of 𝑆 containing 𝐴. Now, the 𝑚-bi-hyperideal 〈𝐴〉𝐵 is called the 𝑚-bi-

hyperideal of 𝑆 generated by 𝐴. If 𝐴 = {𝑎}, then we define 〈𝑎〉𝐵 = 〈{𝑎}〉𝐵. Then we have the following lemma. 

 

Lemma 3.2. Let 𝐴 be a nonempty subset of a semihyperring 𝑆. Then 

〈𝐴〉𝐵 = 𝛴𝐴 + 𝛴𝐴
2 +⋯+ 𝛴𝐴𝑚 + 𝛴𝐴𝑚+1 + 𝛴𝐴𝑆𝑚𝐴. 

Proof. Let 𝑀 = 𝛴𝐴 + 𝛴𝐴2 +⋯+ 𝛴𝐴𝑚 + 𝛴𝐴𝑚+1 + 𝛴𝐴𝑆𝑚𝐴. Clearly, 𝐴 ⊆ 𝑀. Since 𝑆 is additively commutative, 𝑀 is closed 

under the hyperaddition. Next, by Remark 1, we have 

 𝑀2  = (𝛴𝐴 + 𝛴𝐴2 +⋯+ 𝛴𝐴𝑚 + 𝛴𝐴𝑚+1 + 𝛴𝐴𝑆𝑚𝐴)2 

⊆ 𝛴𝐴𝐴 + 𝛴𝐴𝐴2 +⋯+ 𝛴𝐴𝐴𝑚 + 𝛴𝐴𝐴𝑚+1 + 𝛴𝐴𝐴𝑆𝑚𝐴 

+𝛴𝐴2𝐴 + 𝛴𝐴2𝐴2 +⋯+ 𝛴𝐴2𝐴𝑚 + 𝛴𝐴2𝐴𝑚+1 + 𝛴𝐴2𝐴𝑆𝑚𝐴 

+⋯+ 𝛴𝐴𝑚𝐴 + 𝛴𝐴𝑚𝐴2 +⋯+ 𝛴𝐴𝑚𝐴𝑚 + 𝛴𝐴𝑚𝐴𝑚+1 + 𝛴𝐴𝑚𝐴𝑆𝑚𝐴 

+𝛴𝐴𝑚+1𝐴 + 𝛴𝐴𝑚+1𝐴2 +⋯+ 𝛴𝐴𝑚+1𝐴𝑚 + 𝛴𝐴𝑚+1𝐴𝑚+1 + 𝛴𝐴𝑚+1𝐴𝑆𝑚𝐴 

+𝛴𝐴𝑆𝑚𝐴𝐴 + 𝛴𝐴𝑆𝑚𝐴𝐴2 +⋯+ 𝛴𝐴𝑆𝑚𝐴𝐴𝑚 + 𝛴𝐴𝑆𝑚𝐴𝐴𝑚+1 + 𝛴𝐴𝑆𝑚𝐴𝐴𝑆𝑚𝐴 

⊆ 𝛴𝐴2 + 𝛴𝐴3 +⋯+ 𝛴𝐴𝑚 + 𝛴𝐴𝑚+1 + 𝛴𝐴𝑆𝑚𝐴 

⊆ 𝑀. 

Thus, 𝑀 is a subsemihyperring of 𝑆. By Remark 1, we have 

𝑀𝑆𝑚𝑀 = (𝛴𝐴 + 𝛴𝐴2 +⋯+ 𝛴𝐴𝑚 + 𝛴𝐴𝑚+1 + 𝛴𝐴𝑆𝑚𝐴) 

𝑆𝑚(𝛴𝐴 + 𝛴𝐴2 +⋯+ 𝛴𝐴𝑚 + 𝛴𝐴𝑚+1 + 𝛴𝐴𝑆𝑚𝐴) 

 ⊆ 𝛴𝐴𝑆𝑚𝐴 

 ⊆ 𝑀. 

Hence, 𝑀 is an 𝑚-bi-hyperideal of 𝑆. Finally, let 𝐾 be any 𝑚-bi-hyperideal of 𝑆 containing 𝐴. It follows that 𝛴𝐴, 𝛴𝐴2, …, 𝛴𝐴𝑚, 

𝛴𝐴𝑚+1 and 𝛴𝐴𝑆𝑚𝐴 are nonempty subsets of 𝐾. We obtain that 𝑀 ⊆ 𝐾. Therefore, 𝑀 is the 𝑚-bi-hyperideal of 𝑆 generated by 𝐴, 

that is, 〈𝐴〉𝐵 = 𝛴𝐴 + 𝛴𝐴
2 +⋯+ 𝛴𝐴𝑚 + 𝛴𝐴𝑚+1 + 𝛴𝐴𝑆𝑚𝐴. 

 In a particular of Lemma 3.2, if 𝐴 = {𝑎} then we have the following corollary. 

 

Corollary 3.3. Let 𝑆 be a semihyperring and 𝑎 ∈ 𝑆. Then 

〈𝑎〉𝐵 = 𝛴𝑎 + 𝛴𝑎
2 +⋯+ 𝛴𝑎𝑚 + 𝛴𝑎𝑚+1 + 𝛴𝑎𝑆𝑚𝑎. 

 

Theorem 3.4. Every bi-hyperideal of a semihyperring is also an 𝑚-bi-hyperideal, for each 𝑚 ∈ ℕ. 

Proof. Assume that 𝐵 is a bi-hyperideal of a semihyperring 𝑆. Then 𝐵 is a subsemihyperring of 𝑆. Since 𝑆𝑚 ⊆ 𝑆, 𝐵𝑆𝑚𝐵 ⊆

𝐵𝑆𝐵 ⊆ 𝐵. Hence, 𝐵 is an 𝑚-bi-hyperideal of 𝑆. 

 The converse of Theorem 3.4 is not true, that is, any 𝑚-bi-hyperideal of a semihyperring 𝑆 need not to be a bi-

hyperideal of 𝑆. In the following example, we apply the semiring defined in Example 3.3 in (Munir & Shafiq, 2018) to construct 

a semihyperring. 
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Example 3.5. Let S = { [

0 𝑢 𝑣 𝑤
0 0 𝑥 𝑦
0
0

0
0

0 𝑧
0 0

]

∣
∣
∣
∣
∣
∣

𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧 ∈ ℕ ∪ {0} }. Then (𝑆, +,⋅) is a semiring under usual the matrix addition 

and the matrix multiplication. For every 𝐴, 𝐵 ∈ 𝑆, we define 𝐴 ≤ 𝐵 iff 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗, where 𝑖, 𝑗 ∈ {1, 2, 3, 4}. Next, we define the 

hyperoperations ⊕ and ⊙ on 𝑆 by letting 𝐴, 𝐵 ∈ 𝑆, 

𝐴⊕ 𝐵 = {𝑋 ∈ 𝑆 ∣ 𝑋 ≤ 𝐴 + 𝐵} and 

𝐴⊙ 𝐵 = {𝑋 ∈ 𝑆 ∣ 𝑋 ≤ 𝐴 ⋅ 𝐵}. 

We can show that (𝑆, ⊕, ⊙) is a semihyperring. Now, let  

B = { [

0 𝑎 0 0
0 0 0 0
0
0

0
0

0 𝑏
0 0

]

∣
∣
∣
∣
∣
∣

𝑎, 𝑏 ∈ ℕ ∪ {0}}. 

It is not difficult to check that 𝐵 is a subsemihyperring of 𝑆. Then 𝐵 is a 2-bi-hyperideal of 𝑆, that is, 𝐵 ⊙ 𝑆2⊙𝐵 ⊆ 𝐵, but 𝐵 ⊙

𝑆⊙𝐵 ⊈ 𝐵. 

 

Theorem 3.6. Let 𝐵1 and 𝐵2 be an 𝑚1-bi-hyperideal and an 𝑚2-bi-hyperideal of a semihyperring 𝑆, respectively. Then 𝐵1 ∩ 𝐵2 

is an 𝑚-bi-hyperideal of 𝑆, where 𝑚 = max{𝑚1, 𝑚2}. 

Proof. Since 0 ∈ 𝐵𝑖 for all 𝑖 ∈ {1, 2}, 𝐵1 ∩ 𝐵2 ≠ ∅. It is not difficult to show that 𝐵1 ∩ 𝐵2 is a subsemihyperring of 𝑆. Then 

(𝐵1 ∩ 𝐵2)𝑆
𝑚(𝐵1 ∩ 𝐵2) ⊆ 𝐵1𝑆

𝑚1𝐵1 ⊆ 𝐵1 and (𝐵1 ∩ 𝐵2)𝑆
𝑚(𝐵1 ∩ 𝐵2) ⊆ 𝐵2𝑆

𝑚2𝐵2 ⊆ 𝐵2. This implies that (𝐵1 ∩ 𝐵2)𝑆
𝑚(𝐵1 ∩

𝐵2) ⊆ 𝐵1 ∩ 𝐵2. Therefore, 𝐵1 ∩ 𝐵2 is an 𝑚-bi-hyperideal of 𝑆. 

 

Theorem 3.7. Let 𝑆 be a semihyperring with the multiplication identity. Then Σ𝐵𝑇 and Σ𝑇𝐵 are 𝑚-bi-hyperideals of 𝑆, for any 

𝑚-bi-hyperideal 𝐵 and nonempty subset 𝑇 of  𝑆. 

Proof. Assume that 𝐵 is an 𝑚-bi-hyperideal and 𝑇 is a nonempty subset of 𝑆. Obviously, Σ𝐵𝑇 is closed under the hyperaddition. 

Since 𝑆 has the multiplicative identity and by Remark 1, we have (Σ𝐵𝑇)(Σ𝐵𝑇)  ⊆  Σ𝐵𝑇𝐵𝑇 ⊆ Σ𝐵𝑆𝐵𝑇 = Σ𝐵𝑆𝑚𝐵𝑇 ⊆ Σ𝐵𝑇. It 

follows that Σ𝐵𝑇 is a subsemihyperring of 𝑆. Now, by Remark 1, we have  

(Σ𝐵𝑇)𝑆𝑚(Σ𝐵𝑇) ⊆ Σ𝐵𝑇𝑆𝑚𝐵𝑇 ⊆ Σ𝐵𝑆𝑆𝑚𝐵𝑇 = Σ𝐵𝑆𝑚+1𝐵𝑇 ⊆ Σ𝐵𝑆𝑚𝐵𝑇 ⊆ Σ𝐵𝑇.  

Hence, Σ𝐵𝑇 is an 𝑚-bi-hyperideal of 𝑆. Similarly, we can show that Σ𝑇𝐵 is an 𝑚-bi-hyperideal of 𝑆. 

 

Corollary 3.8. Let 𝐵1 be an 𝑚1-bi-hyperideal and 𝐵2 be an 𝑚2-bi-hyperideal of a semihyperring 𝑆 with the multiplicative 

identity. Then Σ𝐵1𝐵2 is an 𝑚-bi-hyperideal of 𝑆, where 𝑚 = max{𝑚1, 𝑚2}. 

 

Theorem 3.9. Every (𝑚1, 𝑚2)-quasi-hyperideal of a semihyperring 𝑆 is an 𝑚-bi-hyperideal of 𝑆, where 𝑚 = max{𝑚1,𝑚2}. 

Proof. Assume that 𝐵 is an (𝑚1, 𝑚2)-quasi-hyperideal of a semihyperring 𝑆. Let 𝑚 = max{𝑚1, 𝑚2}. So, we have 𝐵𝑆𝑚𝐵 ⊆

𝑆𝑆𝑚𝐵 = 𝑆𝑚+1𝐵 ⊆ 𝑆𝑚1𝐵 and 𝐵𝑆𝑚𝐵 ⊆ 𝐵𝑆𝑚𝑆 = 𝐵𝑆𝑚+1 ⊆ 𝐵𝑆𝑚2. That is, 𝐵𝑆𝑚𝐵 ⊆ (𝑆𝑚1  𝐵) ∩ (𝐵𝑆𝑚2) ⊆ 𝐵. Hence, 𝐵 is an 𝑚-

bi-hyperideal of 𝑆. 

 The converse of Theorem 3.9 does not hold, namely, every 𝑚-bi-hyperideal of a semihyperring 𝑆 need not to be an 

(𝑚1, 𝑚2)-quasi-hyperideal of 𝑆, where 𝑚 = max{𝑚1, 𝑚2}, as the following example shows. 

 

Example 3.10. By the semihyperring (𝑆, ⊕, ⊙) defined in Example 3.5, the set 𝐵 is a 2-bi-hyperideal of 𝑆, but not a (2, 1)-

quasi-hyperideal of 𝑆, since (𝑆2⊙𝐵) ∩ (𝐵 ⊙ 𝑆) ⊈ 𝐵. 
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Theorem 3.11. Let 𝑄1 be an (𝑚1, 𝑛1)-quasi-hyperideal and 𝑄2 be an (𝑚2, 𝑛2)-quasi-hyperideal of a semihyperring 𝑆 with the 

multiplicative identity. Then Σ𝑄1𝑄2 is an 𝑚-bi-hyperideal of 𝑆, where 𝑚 = max{𝑚1, 𝑛1, 𝑚2, 𝑛2}. 

Proof. By Theorem 3.9, 𝑄1 is an 𝑚1
′ -bi-hyperideal and 𝑄2 is an 𝑚2

′ -bi-hyperideal, where 𝑚1
′ = max{𝑚1, 𝑛1} and 𝑚2

′ = 

max{𝑚2, 𝑛2}, respectively. By Corollary 3.8, Σ𝑄1𝑄2 is an 𝑚-bi-hyperideal of 𝑆, where 𝑚 = max{𝑚1
′ , 𝑚2

′ }. 

 A subsemihyperring 𝐴 of a semihyperring 𝑆 is called an 𝑚-left (resp. 𝑛-right) hyperideal (Omidi & Davvaz, 2017) of 𝑆 

if it satisfies 𝑆𝑚𝐴 ⊆ 𝐴 (resp. 𝐴𝑆𝑛 ⊆ 𝐴), where 𝑚 (resp. 𝑛) is a positive integer. 

 For any nonempty subset 𝐴 of a semihyperring 𝑆, we denote by 〈𝐴〉𝐿 and 〈𝐴〉𝑅 as the smallest 𝑚-left hyperideal and the 

smallest 𝑛-right hyperideal of 𝑆 containing 𝐴, respectively. Now, the 𝑚-left hyperideal 〈𝐴〉𝐿 is called the 𝑚-left hyperideal of 𝑆 

generated by 𝐴 and the 𝑛-right hyperideal 〈𝐴〉𝑅 is called the 𝑛-right hyperideal of 𝑆 generated by 𝐴. If 𝐴 = {𝑎}, then we will 

write 〈𝑎〉𝐿 and 〈𝑎〉𝑅 instead of 〈{𝑎}〉𝐿 and 〈{𝑎}〉𝑅, respectively. Then we have the following lemma. 

 

Lemma 3.12. Let 𝐴 be a nonempty subset of a semihyperring 𝑆. Then the following statements hold: 

 (i)  〈𝐴〉𝐿 = Σ𝐴 + Σ𝐴
2 +⋯+ Σ𝐴𝑚 + Σ𝑆𝑚𝐴; 

 (ii) 〈𝐴〉𝑅 = Σ𝐴 + Σ𝐴
2 +⋯+ Σ𝐴𝑛 + Σ𝐴𝑆𝑛. 

Proof. (i): Let 𝐼 = Σ𝐴 + Σ𝐴2 +⋯+ Σ𝐴𝑚 + Σ𝑆𝑚𝐴. Clearly, 𝐴 ⊆ 𝐼. Then 𝐼 is closed under the hyperaddition, since 𝑆 is 

additively commutative. Next, by Remark 1, we have  

 𝐼2 = (Σ𝐴 + Σ𝐴2 +⋯+ Σ𝐴𝑚 + Σ𝑆𝑚𝐴)2 

 ⊆ Σ𝐴𝐴 + Σ𝐴𝐴2 +⋯+ Σ𝐴𝐴𝑚 + Σ𝐴𝑆𝑚𝐴 

 +Σ𝐴2𝐴 + Σ𝐴2𝐴2 +⋯+ Σ𝐴2𝐴𝑚 + Σ𝐴2𝑆𝑚𝐴 

 +⋯+ Σ𝐴𝑚𝐴 + Σ𝐴𝑚𝐴2 +⋯+ Σ𝐴𝑚𝐴𝑚 + Σ𝑆𝐴𝑚𝑚𝐴 

 +Σ𝑆𝑚𝐴𝐴 + Σ𝑆𝑚𝐴𝐴2 +⋯+ Σ𝑆𝑚𝐴𝐴𝑚 + Σ𝑆𝑚𝐴𝑆𝑚𝐴 

⊆ Σ𝐴2 + Σ𝐴3 +⋯+ Σ𝐴𝑚 + Σ𝑆𝑚𝐴 

⊆ 𝐼. 

We obtain that 𝐼 is a subsemihyperring of 𝑆. Now, by Remark 1, we have 𝑆𝑚𝐼 = 𝑆𝑚(Σ𝐴 + Σ𝐴2 +⋯+ Σ𝐴𝑚 + Σ𝑆𝑚𝐴) ⊆

Σ𝑆𝑚𝐴 ⊆ 𝐼. Hence, 𝐼 is an 𝑚-left hyperideal of 𝑆 containing 𝐴. Let 𝐽 be any 𝑚-left hyperideal of 𝑆 containing 𝐴. Thus, Σ𝐴, Σ𝐴2, 

…, Σ𝐴𝑚 and Σ𝑆𝑚𝐴 are nonempty subsets of 𝐽. This implies that 𝐼 ⊆ 𝐽. Therefore, 𝐼 is the 𝑚-left hyperideal of 𝑆 generated by 𝐴, 

that is, 〈𝐴〉𝐿 = Σ𝐴 + Σ𝐴
2 +⋯+ Σ𝐴𝑚 + Σ𝑆𝑚𝐴. 

 (ii): The proof is similar to (i). 

 In particular of Lemma 3.12, if 𝐴 = {𝑎} then we have the following corollary. 

 

Corollary 3.13. Let 𝑆 be a semihyperring and 𝑎 ∈ 𝑆. Then the following statements hold: 

 (i)  〈𝑎〉𝐿 = Σ𝑎 + Σ𝑎
2 +⋯+ Σ𝑎𝑚 + Σ𝑆𝑚𝑎; 

 (ii) 〈𝑎〉𝑅 = Σ𝑎 + Σ𝑎
2 +⋯+ Σ𝑎𝑛 + Σ𝑎𝑆𝑛. 

 

Theorem 3.14. Every 𝑚-left (resp. 𝑛-right) hyperideal of a semihyperring 𝑆 is an 𝑚-bi-hyperideal (resp. 𝑛-bi-hyperideal) of 𝑆. 

Proof. Assume that 𝐴 is an 𝑚-left hyperideal of a semihyperring 𝑆. Cleary, 𝐴 is a subsemihyperring of 𝑆. Now, 𝐴𝑆𝑚𝐴 ⊆ 𝐴𝐴 ⊆

𝐴. Hence, 𝐴 is an 𝑚-bi-hyperideal of 𝑆. For an 𝑛-right hyperideal of 𝑆, the proof is similar. 

 In general, an 𝑚-bi-hyperideal need not to be an 𝑚-left or 𝑚-right hyperideal of a semihyperring. This follows from the 

following example. 
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Example 3.15. Let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}. Define two hyperoperations + and ⋅ on 𝑆 as follows: 
 

+ 𝑎 𝑏 𝑐 𝑑  ⋅ 𝑎 𝑏 𝑐 𝑑 

𝑎 {𝑎} {𝑏} {𝑐} {𝑑}  𝑎 {𝑎} {𝑎} {𝑎} {𝑎} 

𝑏 {𝑏} {𝑏} {𝑏} {𝑏}  𝑏 {𝑎} {𝑏} {𝑎, 𝑐} {𝑎} 

𝑐 {𝑐} {𝑏} {𝑎, 𝑐} {𝑐, 𝑑}  𝑐 {𝑎} {𝑎} {𝑎} {𝑎} 

𝑑 {𝑑} {𝑏} {𝑎, 𝑐, 𝑑} {𝑎, 𝑐}  𝑑 {𝑎} {𝑎, 𝑑} {𝑎} {𝑎} 

 

Then (𝑆, +,⋅) is a semihyperring (Huang, Yin, & Zhan, 2013). Let 𝐴 = {𝑎, 𝑏}. We have that 𝐴 is an 𝑚-bi-hyperideal of 𝑆, but it is 

not an 𝑚-left hyperideal of 𝑆, since 𝑆𝑚𝐴 = {𝑎, 𝑏, 𝑑} ⊈ 𝐴. 

 

Theorem 3.16. Let 𝐿 and 𝑅 be an 𝑚𝑙-left hyperideal andan 𝑚𝑟-right hyperideal of a semihyperring 𝑆, respectively. Then 𝐿 ∩ 𝑅 is 

an 𝑚-bi-hyperideal of 𝑆, where 𝑚 =max{𝑚𝑙 , 𝑚𝑟}. 

Proof. It is easy to show that 𝐿 ∩ 𝑅 is a subsemihyperring of 𝑆. By Theorem 3.14, 𝐿 is an 𝑚𝑙-bi-hyperideal and 𝑅 is an 𝑚𝑟-bi-

hyperideal of 𝑆. By Theorem 3.6, 𝐿 ∩ 𝑅 is an 𝑚-bi-hyperideal of 𝑆, where 𝑚 = max{𝑚𝑙 ,𝑚𝑟}. 

 A semihyperring 𝑆 is called regular (Davvaz & Omidi, 2016; Huang, Yin, & Zhan, 2013) if for each 𝑎 ∈ 𝑆, there exists 

𝑥 ∈ 𝑆 such that 𝑎 ∈ 𝑎𝑥𝑎. 

 

Lemma 3.17. Let 𝑆 be a semihyperring. The following conditions are equivalent: 

 (i)   𝑆 is regular; 

 (ii)  𝑎 ∈ 𝑎𝑆𝑎, for all 𝑎 ∈ 𝑆; 

 (iii) 𝐴 ⊆ 𝐴𝑆𝐴, for all ∅ ≠ 𝐴 ⊆ 𝑆. 

 

Theorem 3.18. Let 𝑆 be a regular semihyperring. Then (𝑚1, 𝑚2)-quasi-hyperideals and 𝑚-bi-hyperideals coincide in 𝑆, where 

𝑚 = max{𝑚1,𝑚2}. 

Proof. Let 𝑚 = max{𝑚1, 𝑚2}. It is sufficient to show that every 𝑚-bi-hyperideal is an (𝑚1, 𝑚2)-quasi-hyperideal of 𝑆. Let 𝐵 be 

an 𝑚-bi-hyperideal of 𝑆. Then 𝐵 is a subsemihyperring of 𝑆. Let 𝑎 ∈ (𝑆𝑚1𝐵) ∩ (𝐵𝑆𝑚2). By Lemma 3.17, we have 𝑎 ∈ 𝑎𝑆𝑎 ⊆

(𝐵𝑆𝑚2)𝑆(𝑆𝑚1𝐵) = 𝐵𝑆𝑚1+𝑚2+1𝐵 ⊆ 𝐵𝑆𝑚𝐵 ⊆ 𝐵. It follows that (𝑆𝑚1𝐵) ∩ (𝐵𝑆𝑚2) ⊆ 𝐵. Hence, 𝐵 is an (𝑚1, 𝑚2)-quasi-hyperi-

deal of 𝑆. 

 

Theorem 3.19. Let 𝑆 be a semihyperring and 𝑚1, 𝑚2 ∈ ℕ such that 𝑚 = max{𝑚1, 𝑚2}. Then the following statements are 

equivalent: 

 (i)   𝑆 is regular; 

 (ii)  𝑅 ∩ 𝐿 = 𝑅𝑆𝑚𝐿, for any 𝑚1-left hyperideal 𝐿 and 𝑚2-right hyperideal 𝑅 of 𝑆; 

 (iii) 𝐵 = Σ𝐵𝑆𝑚𝐵, for each 𝑚-bi-hyperideal 𝐵 of 𝑆. 

Proof. (i) ⇒ (ii): Let 𝐿 be an 𝑚1-left hyperideal and 𝑅 be an 𝑚2-right hyperideal of 𝑆. Then 𝑅𝑆𝑚𝐿 ⊆ 𝑅𝑆𝑚+1 ⊆ 𝑅𝑆𝑚2 ⊆ 𝑅 and 

𝑅𝑆𝑚𝐿 ⊆ 𝑆𝑚+1𝐿 ⊆ 𝑆𝑚1𝐿 ⊆ 𝐿. This implies that 𝑅𝑆𝑚𝐿 ⊆ 𝑅 ∩ 𝐿. Let 𝑎 ∈ 𝑅 ∩ 𝐿. Since 𝑆 is regular, there exists 𝑥 ∈ 𝑆 such that 

𝑎 ∈ 𝑎𝑥𝑎. We obtain that  

𝑎 ∈ 𝑎𝑥𝑎 ⊆ 𝑎𝑥𝑎𝑥𝑎 ⊆ ⋯ ⊆ 𝑎 (𝑥𝑎⋯𝑎𝑥⏟    
𝑚 𝑡𝑖𝑚𝑒𝑠

) 𝑎 ⊆ 𝑅𝑆𝑚𝐿. 

 

Hence, 𝑅 ∩ 𝐿 ⊆ 𝑅𝑆𝑚𝐿. Therefore, 𝑅 ∩ 𝐿 = 𝑅𝑆𝑚𝐿. 
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 (ii) ⇒ (iii): Let 𝐵 be an 𝑚-bi-hyperideal of 𝑆. Obviously, Σ𝐵𝑆𝑚𝐵 ⊆ 𝐵. By assumption, Remark 1 and Lemma 3.12, we 

have 𝐵 ⊆ 〈𝐵〉𝑅 ∩ 〈𝐵〉𝐿 = 〈𝐵〉𝑅𝑆
𝑚〈𝐵〉𝐿 = (Σ𝐵 + Σ𝐵

2 +⋯+ Σ𝐵𝑚2 + Σ𝐵𝑆𝑚2)𝑆𝑚(Σ𝐵 + Σ𝐵2 +⋯+ Σ𝐵𝑚1 + Σ𝑆𝑚1𝐵) ⊆ Σ𝐵𝑆𝑚𝐵 

⊆ Σ𝐵 ⊆ 𝐵. Consequently, 𝐵 = Σ𝐵𝑆𝑚𝐵. 

(iii) ⇒ (i): Let 𝑎 ∈ 𝑆. By assumption, Remark 1 and Corollary 3.3, we have 𝑎 ∈ 〈𝑎〉𝐵 = Σ〈𝑎〉𝐵𝑆
𝑚〈𝑎〉𝐵 = Σ(Σ𝑎 +

Σ𝑎2 +⋯+ Σ𝑎𝑚 + Σ𝑎𝑚+1 + Σ𝑎𝑆𝑚𝑎)𝑆𝑚(Σ𝑎 + Σ𝑎2 +⋯+ Σ𝑎𝑚 + Σ𝑎𝑚+1 + Σ𝑎𝑆𝑚𝑎) ⊆ Σ𝑎𝑆𝑚𝑎 ⊆ 𝑎𝑆𝑎. By Lemma 3.17, 𝑆 is 

regular. 

 

Theorem 3.20. A semihyperring 𝑆 is regular if and only if 𝐵 ∩ 𝐿 ⊆ 𝐵𝑆𝐿, for every 𝑛-left hyperideal 𝐿 and 𝑚-bi hyperideal 𝐵    

of 𝑆. 

Proof. Assume that 𝑆 is a regular semihyperring. Let 𝐿 be an 𝑛-left hyperideal and 𝐵 be an 𝑚-bi-hyperideal of 𝑆. Let 𝑎 ∈ 𝐵 ∩ 𝐿. 

Since 𝑆 is regular, there exists 𝑥 ∈ 𝑆 such that 𝑎 ∈ 𝑎𝑥𝑎. Also, 𝑎 ∈ 𝐵𝑆𝐿. Hence, 𝐵 ∩ 𝐿 ⊆ 𝐵𝑆𝐿. Conversely, let 𝑎 ∈ 𝑆. By 

assumption, Remark 1, Corollary 3.3 and Corollary 3.13, we obtain 𝑎 ∈ 〈𝑎〉𝐵 ∩ 〈𝑎〉𝐿 ⊆ 〈𝑎〉𝐵𝑆〈𝑎〉𝐿 = (Σ𝑎 + Σ𝑎
2 +⋯+ Σ𝑎𝑚 +

Σ𝑎𝑚+1 + Σ𝑎𝑆𝑚𝑎)𝑆(Σ𝑎 + Σ𝑎2 +⋯+ Σ𝑎𝑛 + Σ𝑆𝑛𝑎) ⊆ 𝑎𝑆𝑎. By Lemma 3.17, 𝑆 is regular. 

 The proof of the following theorem is similar to the proof of Theorem 3.20. 

 

Theorem 3.21. A semihyperring 𝑆 is regular if and only if 𝑅 ∩ 𝐵 ⊆ 𝑅𝑆𝐵, for any 𝑛-right hyperideal 𝑅 and 𝑚-bi-hyperideal 𝐵     

of 𝑆. 
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