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Abstract

An algebraic system is a structure which consists of a nonempty set together with a sequence of operations and a se-
quence of relations on this set. Properties of this structure are expressed in terms and formulas. In this paper, we show that the set
of all linear hypersubstitutions for algebraic systems of the type ((n), (2)) with a binary operation on this set and the identity
element forms a monoid. Finally, we characterize idempotent and regular elements on the monoid.
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1. Introduction

The concept of an algebraic system was first intro-
duced by A.l. Mal'cev in 1973. For approach to algebraic sys-
tems, we need some preparations. Let A be a nonempty set
and n € N* := N \ {0}. An n-ary operation on A is a mapping
f:A™ - A. We call n the arity of f. An n-ary relation on A is
a relation y < A™and call n the arity of y. Let I,] be indexed
sets and let (f;);es, (¥;) je; e sequences of operation symbols
and relation symbols, respectively. Let t = (n;);¢; and © =
(n;) je; where f; has the arity n; for every i € I and y;has the
arity n; forevery j € J.

Definition 1.1 (Mal’cev, 1973) An algebraic system of type
(7, 1) is atriple A = (4, (f})ier, (¥;) je;) consisting of a no-
nempty set A, a sequence (f;);e; Of operations on A where f;
is n;-ary for i € I and a sequence (y;);e; of relations on A
where y;is n;-ary for j € J. The pair (z, ) is called the type of
an algebraic system.

*Corresponding author
Email address: sorasak.l@cmu.ac.th

To classify algebras into collections called varieties
we need terms and some pairs of terms, i.e. equations. To
classify algebraic systems into subclasses by logical sentences
we need a language, i.e. quantifier free formulas.

Now, we recall basic notions related to terms. For a
natural number n > 1, let X;, = {x4, ..., x,} be a finite set of
variables, and let X := Uy,»1 X, = {x4, ..., Xy, ... } be countably
infinite. Let {f;|i € I} be a set of operation symbols which is
disjoint from X. An n-ary term of type 7 is defined inductively
as follows:

(i) Every variable x; € X,, is an n-ary term of type

T.
(i) If ¢4, ..., ty, are n-ary terms of type 7 and f;is an
n;-ary operation symbol, then f;(ty, ..., t,,) is an
n-ary term of type .
Let W, (X,,) be the set of all n-ary terms of type T which con-
tains x4, ..., x, and is closed under finite application of (ii).

Not all of the terms in the second-order language
will used to express properties of algebraic systems. The one
is called formulas, first introduced by A.l. Mal'cev in 1973.
For approach to formulas see also (Mal’cev, 1973), and we
recall the definition of formula which is defined by Denecke
and Phusanga (2008).To define the quantifier free formulas of
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type (z, t)we need the logical connectives — (negation), \/ (disjunction) and the equation symbol ~.

Definition 1.2. (Denecke & Phusanga, 2008) Let n € N*. An n-ary quantifier free formula of type (z, t)(for simply, formula) is
defined in the following steps:
(i) If¢y,t; are n-ary terms of type 7, then the equation t ~t, is an n-ary quantifier freeformula of type (z, 7).
(ii) If j € Jand t4, -, tn; @re m-ary terms of type 7 and y; is an n;-ary relation symbol, then y;(ty, ..., fn,) is an n-ary
quantifier free formula of type (z, 7).
(iii) If F is an n-ary quantifier free formula of type (z, ), then —=F is an n-ary quantifier free formula of type (z, 7).
(iv) If F; and F, are n-ary quantifier free formulas of type (z, ), then F; V F, is an n-ary quantifier free formula of type
(z, ).
Let F(+(Wp(X,)) be the set of all n-ary quantifier free formulas of type (z,7). In 2012, M. Couceiro and E. Lehtonen

introduced the concept of a linear term, i.e., a term which each variable occurs only once.

Definition 1.3. (Couceiro & Lehtonen, 2012) An n-ary linear term of type 7 is defined inductively as follows:
(i) Every x; € X,, is an n-ary linear term of type 7.
(ii) If ty, ..., t,, are n-ary linear terms of type 7 with var(t,) N var(t,) = @ forall 1 < I < k < n; (where var(t) is the
set of all variables occurring in the the term t) and f; is an n;-ary operation symbol, then f;(t;, ..., t,,,) is an n-ary
linear term of type 7.
Let Wl (X,)) be the set of alln-ary linear terms of type .

In this paper, we consider an algebraic system of type ((n), (2)), i.e., we have only one n-ary operation symbol and
one binary relation symbol. We define the new definition of linear formulas of type ((n),(2)) and give the concept of
superposition of linear terms and superposition of linear formulas. This leads to introduce the concept of linear hypersubstitutions
for algebraic systems of type ((n),(2)). We show that the set of all linear hypersubstitutions for algebraic systems of type
((n), (2)) together with a binary operation o,. and an identity element forms a monoid. Furthermore, the characterizations of

idempotent and regular elements are investigated.
2. Linear Terms of Type (n) and Linear Formulas of Type ((n), (2))

Let var(t) be the set of all variables occurring in the term t and let var(F) be the set of all variables occurring in the
formula F.
In this section, we first defined the definition of a linear term and a quantifier free linear formula of type ((n), (2)) as

follows:

Definition 2.1. Let m,n € N*with m > n. An m-ary linear term of type (n) is defined in the following inductive way:
(i) Every x; € X,,is an m-ary linear term of type (n).
(ii) If tq, ..., t, are m-ary linear terms of type (n) with var(t;) nvar(t,) =@ forall 1 <l <k <nand f is an n-ary
operation symbol, then f (¢4, ..., t;,) is an m-ary linear term of type (n).

Let W(l,’;’)“ (X,n) be the set of all m-ary linear terms of type (n).
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Example 2.2. Let (n) = (2) be the type with a binary operation symbol f and X, = {x;, x,}. Then xy, x,, f (x1, x3), f (x2,x;) are

examples of binary linear terms of type (2).

Definition 2.3. Let m,n € N* with m > n. An m-ary quantifier free linear formula of type ((n),(2)) (for simply, linear
formula) is defined in the following steps:
(i) Iftq,t, are m-ary terms of type (n) and var(t,) N var(t,) = @ then the equation t; = t, is an m-ary quantifier free
formula of type ((n), (2)).
(ii) If ty,t, are m-ary terms of type (n) with var(t,) n var(t,) = @and y is a binary relation symbol, then y(ty,t,) is
an m-ary quantifier free formula of type ((n), (2)).
(iii)If F is an m-ary quantifier free formula of type ((n),(2)), then —F is an m-ary quantifier free formula of type
(), @).
(iv) If F; and F, are m-ary quantifier free formulas of type ((n), (2)), then F; V F, is an m-ary quantifier free formula of
type ((n), (2)).
Let T(léz)'(z))(w(n) (Xm)) be the set of all m-ary quantifier free linear formulas of type ((n), (2)).

Remark 2.4. The linear formulas defined by (i) and (ii) are called atomic linear formulas.

Example 2.5. Let ((2), (2)) be a type, i.e., we have one binary operation symbol fand one binary relation symbol y and let X, =
{x1,x,}. Then the binary atomic linear formulas of type ((2),(2)) are x; = x,, x; = x1, y(xq,%2), ¥(x2,%,). Moreover, we
obtained all other linear formulas of type ((2),(2)) from binary atomic linear formulas of type ((2),(2)) by using the
connectives — and V.

Next, we give the concepts of the superposition of linear terms and linear formulas for algebraic systems of type

((n), (2)). For convenient, we let S, be the set of all permutations of {1, ..., n}.
3. Superposition of Linear terms and Linear Formulas

Definition 3.1. Let m,n € N*with m > n, t € Wi3 (X)) and ty, ..., t, € WS (X,,) with var(t,) nvar(t,) = @ forall 1 <1 <
k < n. We define the concept of a superposition of linear terms

SH s W) (Kn) X (W) (Kn))™ == Wl (Xim)
as follows:

() ft=2x;;1<i<n, then S 7% (x;,tq, ..., tn) = t;.

(i) If ¢ = f(Xn(2), - » Xn(n)) Where € Sy, then

SR (f (enays o0 X))ot oo t) = F S T (mays trs oes t)s oy ST T (X, 1y s )

Now, we can extend the concept of this superposition to quantifier free linear formulas by substituting variables

occurring in a quantifier free linear formula by a linear term, and obtain a new quantifier free linear formula. We explain this by

the following operations R¥" ™ when m,n > 1.
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Definition 3.2. Let m,n € N* withm > nand t, ..., t, € W5 (X,,) with var(t,) N var(t,) = @ forall 1 <1 < k < n. The
operation

RUP I WA (X)) U Pl ) Wy () X (Wiin )" - Wi K) U 7, (@) Wy Km))
is defined by the following inductive steps:

(i) It € WEI(X,), then RUM T (t,ty, ..., ty) = ST (8, 1y, oo, En).

@iy IfFe T(léz),(z)) (W(n)(Xn)) and F has the form x,;) = x(j) Where w € S,,, then RU™ () =

Xr(j)r E1r v tn) = glin ’}n(xn(i), [ ST, tn) ~ §lin ?n(xn(j), [ ST tn)-

(i) 1FFeFn o) (W(m(Xn)) and F has the form y (x(;), Xx(;)) Where € S, then

RU™ T (Y Gy X)) 1 oor t) 5= Y (SU B (Ra(iys T woes 0 )s ST (s B oo ).

(iv) IfF e 7:(122),(2)) (W(n) (Xn)) and supposed that RU" ™ (F, t,, ..., t,) is already defined, then

RUMT (<F, by, oy ) = = (R (F . 1) )
(v) IfFe 7:(122),(2)) (W(n) (Xn)) and F has the form F; Vv F, and supposed that RU™ % (F, ty, ..., t,,) is already defined
forall I = 1,2, then RU™ % (F, V Fy, ty, ..., ty) = R (Fy, tq, o, t) VR (Fy, ty, ooy t).
The next theorem is to show some properties of superposition of linear terms and superposition of linear formulas. We
will use this theorem to prove the endomorphism properties of the extension of linear hypersubstitutions, identity linear hyper-

substitution and some characterizations of special elements in the next section.

Theorem 3.3. Let m,n,p e N* withm=n=p. If p € W(’,’;’)I(Xn) u T(l%,(z)) (W(n) (Xn)), then the operation RU" 7% satisfies
the following properties:
(FC1) RU" 7 (R¥™ P (B, ty, e ), 51, e Sn) =
R'"P (ﬁ,S””’}n(tl, Sy eer Sp)y ooy SURT (£ 51 ) sn)) where t, ..., t, €

Weny(Xp), var(t) nvar(t,) =@ forall1 <l <k <pands,..,s, €
Wy (X, var(s)) nvar(s,) = @forall1 <l <k <n.

(FC2) RUm (B, x1, .., Xy) = B.
4. Monoid of Linear Hypersubstitutions for Algebraic Systems of Type ((n), (2))

In this section, we would like to form the new structure of so-called "Monoid of Linear Hypersubstitutions for Alge-

braic Systems of Type ((n), (2))". The way to approach this, we first define the based set.

Definition 4.1. Let n € N*. A linear hypersubstitution for algebraic systems of type ((n), (2)) is a mapping

a:{f}U = WG U Bl o) (Won (X))

which maps an n-ary operation symbol f to an n-ary linear term of type (n) and maps a binary relation symbol y to a binary

quantifier free linear formula of type ((n), (2)). We denote the set of all linear hypersubstitutions for algebraic systems of type

(), (@) by Hyp'™((n), (2)).
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From now on, every element in Hyp'™((n), (2)) will be denoted by o, -, that means o, z(f) = t and o,z (y) = F.
To define a binary operation on Hyp”"((n), (2)), we extend a linear hypersubstitution for algebraic systems o to a
mapping & defined by the following definition.
Definition 4.2. Leto, r € Hyp'™((n), (2)), € S, and ¢ € S,. Then we define a mapping
B WG ) U B0 ) (W (062)) = WES 06 U B ) (W (42))
inductively defined as follows:
(i) G¢rlx;]=x; foreveryi=1,..,n.
(i) Gorlf Cnays o X(u)) =S R (00 (P, B [Xacy ] s B [y ])-
(iii) Gerlxpa) = Xp] = Ger[xpm] = Ger[xo]-
(iv) f?t,F[)’(xzp(n'X¢(z))]::R”nzz(Uc,F(V),6:,F[x¢(1)];6:,F[x¢(z)])-
(V) Gep[F] == s[F] for F € Flin s (W(n) (XZ)).

Now, we define a binary operation o.on Hyp'"((n), (2))as follows:

Definition 4.3. Let 6, f,, 0¢, r, € Hyp'™((n),(2)) and o be the usual composition of mapping. Then we define a binary opera-

tion o on Hyp'™((n), (2)) by 0¢, r, °r Oty r, = Gty p, © Oty py-

Next, we prove that a binary operation as we already defined in Definition 4.3 satisfies associative law. To get our

result, we need some preparations as follows:

Lemma 4.4. For each o, € Hyp'™((n), (2)), m € S, and ¢ € S,. Then we have
(i) 6.F [Slm%(tr X(1)s - rxrr(n))] = gtin R(Gerlt], O [xn(1)]: e, Ot [xn(n)])-

(i) 6't,F[Run22(ﬁ' x¢(1)rx¢>(2))] = Rln 22(@,1?[3]’ 6't,F[x¢(1)]l6{:,F[x¢(2)])-

Proof. (i) Let t € W(L,i’)l(Xn). We give a proof by induction on the complexity of a linear term t. Obviously, if t = x; forall 1 <

i <nlft=f(xpq) - Xne) and forevery [ =1,...,n we assume that & z[S“™ % 2z, Xn(1)r - r X )]
= SUnR (G, v [xn)], e [Xn)], ) Ger[Xn(m]), then by Theorm 3.3 we get &, ¢ [S“™ 2 (f (Xr(1)s - r Xn(n))s Xr1)s o r X)) |
=6 [f(Sunﬁ(xn(n: Xgr(1)s »e» xn(n))' ff(slm %(xn(n)' X(1)s »es xn(n)))]
=8Mn 1 (04, £ (), B p [SU™ R (Xr(a)s Xre(1)s oo X)) s woos B[S R (X Xre(a)s oo X)) 1)
=gtin 2o N, stin 2(6&17[3571’(1)]’ &t,F[xn(l)]' ey &t,F[xn(n)])r ey SHT Tﬁ(&t,F[xn(n)], Gt [xn(l)]r e, O [xn(n)])-
=St (SUn R (001 (), Bk [Xn(w ] 0 ek [Xrm ) Ber [Xr)s s Ber[Xnen] )
=glin %(@,F [f(xn'(l)r ey xrt(n))]' 6t,F [xn(l)]r ey 6t,F [xrr(n)])-
(ii) Let B € T(léﬁ),(z)) (W(n) (Xz)). We give a proof by the following steps.
If B has the form xg1) = xg(2), then we have 6, [R™ % (x (1) = X2 Xp(1) Xp2))]
=605 [S"" 5 (Xg1) Xp 1) X)) = S 5(Xp2) Xp 1) Xp(2))]
=gtin %(6t,F[x¢(1)]!6t,F[xqb(l)]v&t,F[de(Z)]) ~ shin %(6t,F[x¢(2)]16t,F[x¢-(1)]lat,F[x(p(Z)])
=Rln 22(61:,F[x (1)] ~ Gy plx (2)]' 6eplx (1)]: G6er[x (2)])
] ] ] ¢

=R”n22(6t,F[x¢(1) ~ xqs(z)]: 6t,F[x¢v(1)]' 6t,F[x¢v(2)])'
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If B has the form y (x4 1), X(2)), then by Theorem 3.3 we have 6, x[R"™ (¥ (xp(1) Xp2))s Xp(1)» X)) |

=8ee [y (5" 3 (%) Xp (1) X9 @), Y (S 3 (X2, X (1), X))

=R % (00r (1), e[S 3 (xp 1) Xp 1), X)) O[S 3 (X2, X0, X))

=R (00 (1), S 5B r[xe )] Ber[Xo)] Ber[Xe@])s S 5Bk [Xe@), Ber|Xpw)]: Ber[Xe@])-

=R SR (00, 1), 6er (X0 Ber[*e2)]), Ber[¥ew)] BerXp@])

=RY 3G r[Y (o1 X)) Ber[Xp )] Ber[*g)])-
If B has the form —Fand assume that 6, r[R'"%(F,xpa) Xp@)]| = R"™4(6:r[F, e r[xp) ] Ber[Xp]), then we get
Ger[R S (=F, xp 1) Xp2)] = e[ (R 2 (F. xp00) Xp) D] = 2Bt [R5 (F, xp2), o)D) =
—(R¥™5(6,r[F), 6,5 [xg)] 6erlxp@]) = R 5 (=605 [F1, 6er[xp )] er[*o)])

= Rin 22(6t,F [—F], 6¢r [’%(1)]: G [x¢(2)])-
As a result of Lemma 4.4, we have the following lemma.

Lemma 4.5. Let o, r,, 0¢, r, € Hyp'™((n), (2)). Then we have

A A ~
(t,,F, °r Ot,1,)" = Gty R, © Oty Fy-

Proof. Let t € W(l,i')l(Xn), we give a proof by induction on the complexity of a linear term t. If t = x; ;1 <i <mn, then
(o'tl,Fl °r Gtz,Fz)A[xi] = x; = 6t [%i] = G, 5, [Or, 5, [Xi]] = (Beyp, © Oy r)[Xi] 1 £ = f(Xp@)s os Xn@my), then by Lemma 4.4
we have that (cr,:l',.-1 o, atz_Fz)A[f(xn(l), ,x,r(n))]
=gtin XS Jtz,Fz)(f)' (O-tl,Fl °r Utz,Fz)A[xﬂ(l)]' e (Utl,Fl °r O'tz,FZ)A[xn(n)])
=glin 2(@1,& [UtZ,FZ N1 5t1,F1 [6t2,F2 [xn(l)]]r ey 5t1,F1 [6t2,F2 [xn(n)]])
:6t1,F1 [Slm ﬁ(UtZ,FZ N, 5tZ,FZ Xzl - 6tZ,FZ [Xzm) D]
=64, £, [6t, 5, [f Ccre(1)s oo s X))
= (6,5, © O, ;) [f (Xr(1ys +or X)) -
Letg € T(léﬁ),(z)) (W(n) (Xz)). We give a proof by the following steps.
If B has the form x4(1) = x¢(2), then we have (o¢, , o 0r, 1) [Xp1) = Xp2)]
= (0t,r, °r Ot, 1) " [Xp)] = (Utl,Fl °r Gtz,Fz)A[x¢(2)]
= (5t1,1«'1 ° 5t2,F2)[x¢(1)] i (6't1,F1 ° 6't2,F2)[x¢(2)]
= 5t1,F1 [5tz,Fz [x¢(1)]] = 5t1,F1 [6152,172 [x¢(2)]]
=0t r, [xq>(1)] ~ 6t F, [x¢(2)]
= Xp() F X¢(2)
= (6t,r, ° 6tZ,FZ)[x¢(1) ~ x¢(2)]-

If B has the form y (x, 1), X4 (2)). then by Lemma 4.4 we have that (a; . or ¢, r,)" [y (o) *¥o@))]

. A A
=Run22((0t1,F1 °r atz,Fz)(V): (atl,Fl or UtZ,FZ) [x¢(1)], (Jtl,Fl or Gtz,Fz) [x¢(2)])
=Rln 22(6t1,F1 [Utz,Fz 621} &tl,Fl [5t2,F2 [’%(1)]]' &tl,Fl [&tz,Fz [x¢(2)]])

:3t1,1=1 [Rlin 22(<7t2,1=2 W, 5t2,F2 [x¢(1)], &tz,Fz [x¢(2)])]

=6, 1, [0, 5, [V (X p 1)) Xp2))]]
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= (5t1,F1 ° 5t2,1-'2)[)’(x¢(1):x¢(2))]-
If B has the form—F and assume that (o¢, r, °r 0, r,)"[F] = (8¢, ° 8¢, r,)[F], then we obtain that

(th,Fl or atz,Fz)A[_‘F] = _'(fftl,F1 °r Utz,Fz)A[F] = _|(6t1,F1 ° 6t2,F2)[F] = _‘&tl,Fl [61.‘2,1-‘2 [F]] = 61.‘1,1-‘1 [_‘&tZ,FZ [F]] =

6t1,F1 [6'1:2,1’2 ["F]] = (6t1,F1 ° 6tz,Fz)[_'F]-

It follows from Lemma 4.5 that the binary operation o,. satisfies associative law. We prove this fact in the next lemma.

Lemma 4.6. For any o, ,, 0¢, r,, 0t, r, € Hyp'™((n), (2)), we hav

(O-t1.F1 °r O-tz.Fz) °r Ot3,F; = Oty Fy °r (O-tz,Fz °r O-ta,Fa)'

Proof. By using Lemma 4.5 and the fact that osatisfies associative law, it can be shown that o, satisfies associative law. In fact,

we  have (CTtl,F1 °r atz,Fz) °r Oty F, = (Utl,Fl °r Utz,Fz)A ° Otk = (6}1,171 ° 6(:2,F2) ° 0t p = Ot,F, © (652,172 ° 053,173) =6, °
(Utz,F2 or Ut3,F3) = 0t,,F, °r (Utz,Fz or 0t3,F3)-
Let g;4 be a linear hypersubstitution for algebraic systems which maps the operation symbol fto the linear term
f (x4, ..., x,)and maps the relation symbol y to the linear formula y (x4, x,), i.e. g;4(f) = f (x4, ..., xn) and g;4(y) = y (x4, x3).
A linear hypersubstitution ;4 is claimed to be an identity, which we will prove this fact in the next lemma.

Lemma 4.7. For any linear term t € W(Z?(Xn) and linear formula

p € T(l(iﬁ)_(z)) (W(n) (Xz)), we have 6;4[t] = t and 6;4[B] = B.

Proof. Lett € W(L,i’)l(Xn), we give a proof by induction on the complexity of a linear term ¢. Ift = x;withi = 1, ..., n, then
Gialxi] = x;. 1f t = f(Xn(1), ) Xn(ny) Where T € S, then we get 64 [f (xnaays o) Xnmy)| =

SR (0 r (), Bep[Xn) 0 Ber[Xnm]) = ST R(F (e s X0, Xn()s oo Xne() = F(Xr(r)s o X(y)- Next, let B €

T(Léz)'(z)) (W(n) (Xz)) , ¢ € S,, We give a proof by the following steps.

If B has the form xg(1) = xg42), then we have G6i4[xp1) * Xp)| = Gia[xp)] = 6ial*Xpm)] = xp(1) = Xp(2). If B has the
formy Cepy, Xp)),  then  Gialy(epn) Xp)] = R 5(0tr (1), 6o r[Xp )] Ger[xp]) = RS (y (1, %2), X1, Xp2)) =
Y(Xp(1), Xp(2))- IT B has the form —F and assume that 6,4 [F] = F, then 6;4[—F] = =6;4[F] = —F.

Lemma 4.8. Let a;4 € Hyp'™((n), (2)).Then we have oy4is an identity element with respect to o,..

Proof. First, we prove that ;, is a left identity element by using Lemma 4.7. Let 6, € Hyp'™((n), (2)). Then we
have(oiq o7 0t ) (f) = (8iq © 0tr) () = Gia[oer ()] = 0¢e(f) and (04 oy 0.7 ) ) = (614 © 0¢.r) V) = Giaoer (V)] =
o, r(¥). Now, we show that g, is a right identity element. Let o, € Hyp'™((n), (2)). By Theorem 3.3, we obtain that
(0t °r 910) () = (6t © 01a) () = Gepl0ia (D] = 6eplf (1, v, X1 = SU R (00,5 (F), B plxa), oo, B plxa]) =

SR (00r (), X1, e Xn) = 0 (f) Ad (0 o7 01a) (V) = (6o © 01a) ) = Gerl0a (V)] = G ply (x1, x2)]

=R (6,1 (y), 6, p[x1], 6, p[x2]) = R % (0, p(¥), X1, %2) = 012 (y). This implies that 6;4 o 0¢p = 0¢p = O r o Oig.

Therefore, a;4 is an identity element.
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Theorem 4.9. Hyp'™((n), (2)) = (Hyp“"((n), (2)),e,, 0;4) is a monoid.

Proof. From Lemma 4.6 and 4.8, the conclusion holds.
5. Idempotent and Regular Elements in #yp'"((n), (2))

In this section we study some semigroup properties of }[yp”"((n), (2)), especially we characterize idempotency and
regularity of o, € Hyp”"((n), (2)). We first introduce some notations and definitions of idempotent and regular elements in
Hyp'™((n), (2)) with respect to o,..

Forany o, € Hyp'™((n), (2)),m € Sy, ¢ € S,we denote :

By ={opp |t =x; € X, F = xp1) = Xp(2)}-

By = {0ur | t = x; € X, F = y(xp(1), Xg(2))}.

By ={oer | t = xi € Xn, F = 2(x900) ~ Xp2))},

By={0pp |t =x; € Xy, F = 2y (Xg(1), X)) }:

Bs = {oer | t = f(Xn(a), - Xn(w)), F = Xp) ® X}

Be = {00 | t = f(Xn(a)s s X)), F = ¥ (g2 Xp2)) 1

By = {our 1t = f (Xn(r), - Xmam ) F = 2(6g0) = Xp))}

Bg = {00 | t = f(Xp(a), - Xna), F = ¥ (X2, X))}

We note that P = {Bj, ..., Bg} is a partition of Hyp'™((n), (2)).

The concepts of an idempotent element and a regular element are defined in Fyp'n((n), (2)). An element o, €
Hyp'™((n),(2)) is said to be idempotent if o,r o 0, = 0y p, that is, (opr °r 0rr)(f) = orp(f)and  (opr oy 0rp)(¥) =
oo r(¥). And o,p € Hypt™((n),(2)) is called regularif there is an element oz € Hyp'™((n),(2)) such that o

Ocr °r O¢f o Opp. The semigroup Hyp'((n),(2)) is called regular if every element in Hyp'"((n),(2)) is regular.

Furthermore, we denote the set of all idempotent and regular in Hyp'™((n),(2)) by E(Hyp”"((n),(z))) and

Reg (H yp'n((n), (2))), respectively.

Lemma 5.1. (Burris, 1981) Suppose F is a formula insome F, +)(W;(X,,)). Then the following pair of formula is equivalent:
—|(—|F) =F.

Lemma 5.2. Let o, € Hyp'™((n), (2)). Then o, ¢ is idempotent if and only if 6, ¢[t] = t and 6, [F] = F.

Proof. Assume that o, is idempotent, i.e., (0. oy 01¢)(f) = 0o r(f) and (o, °r 015)(¥) = 0, p(¥). We now consider
6t,F[t] = 6t,F[0t,F(f)] = (6t,F ° Ut,F)(f) = (Jt,F o Jt,p)(f) = Ut,F(f) =t and 6t,F[F] = 6t,F[0t,F(V)] = (&t,F ° Ut,F)(V) =
(otF or 0ep)(¥) = 01 (y) = F. Conversely, let &,z[t]=t and &,z[F] =F. Then we have(oyr oy opr)(f) = (6er ©

Ut,F)(f) = 6t,F [Ut,F(f)] = 5t,F[f] =t =o.r(f) and (O't,F or Ut,F)()’) = (&t,F ° Ut,F)()’) = 6't,F [%F(V)] = &t,F[F] =F =
oy ¢ (). This shows that o, is idempotent.

Proposition 5.3. g;, is idempotent.
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Proof. Since a; is an identity in Hyp'™((n), (2)) and by Lemma 4.7, we obtain that 6;4[¢] = t and 6,4[F] = F. By Lemma 5.2,

we have that g;, is idempotent.

Theorem 5.4. Leta, » € Hyp'™((n), (2)). Then the following statements hold.
(i) Everyo.r € By is idempotent.
(if) Every o, € Bs is idempotent.

(iii) Every o, € B, is not idempotent.

Proof. We first prove that o,z € B, is idempotent. To do this, let o, p € By with t = x; and F = xg(1) = x¢(2)- We consider
Geplxi] = x; and 6, p[xpa) = xp@)] = 6er[Xpw)] = Ger[Xp@)] = Xpa) = xp2)- By Lemma 5.2, o, € By is idempotent.
Next, let o,z € By with t =x; and F = —(xg(1) = Xp(2)). We consider  Gz[x;] = x; and 6. p[~(xp1) = Xp(2))] =
—(8er[xpa) = Xp)]) = (xp1) ® Xp2)) and then by Lemma 5.2, o, € B is idempotent. Lastly, let o, € B, with ¢ = x;
and F = =y (xg (1), Xp(2))- TO show that it is not idempotent, we consider

Ger[v(xpwr Xo@)] = ~(Gerly(xp) xp)])

4 (Rlin Zz(Ut,F(y)' 6t,F [x¢(1)], 65,F [x¢(2)]))

4 (Rlin Zz(—')’(’%(l)' x¢(2))’ Xp(1) X¢(2)))

- <—' (R 3(r(xoay xp). x¢(1>'x¢(z>)))

=Y (x¢(¢(1))' x¢(¢<z)))
# ¥ (X o).
Therefore, every o, € B, is not idempotent.

The following example shows that there is an element in B, which is not idempotent.

Example 5.5. Let ((3), (2)) be a type, i.e., we have one ternary operation symbol and one binary relation symbol, say f and y,
respectively. If we consider o,z € B, with t = x, and F = y(x3, x;), then we obtain 6, [y (x2,%1)] = R'™%(0pr (), x2,%1) =
RY™ 2 (y(xxg, 1), X2, %1) = Y(X1,%3) # ¥(X2,%1). SO, 0 ¢ in this form is not idempotent.

We have to find some necessary conditions for the element in B, which is idempotent element. The next theorem

shows such condition.

Theorem 5.6. Leto, r € B,. Then g, is idempotent if and only if ¢(j) = forall j = 1,2.

Proof. Let o, € B,. Then we have t = x; and F = y(x¢(1),x¢(2)). Assume that ¢(j) # j for some j = 1,2. We prove that o, ¢
is not idempotent. To show this, we consider &,z [y (xp(1) Xp2))] = 6, [¥ (02 2] = R 2 (y (x2,%1), X2, 1) = ¥ (1, %2) #
¥ (x,,x,) and then by Lemma 5.2, o, ;- is not idempotent. Conversely, assume that the condition holds. Clearly, 6, -[x;] = x; and
we see that 6, ¢y (Xpay Xp2))] = Gerly Cer, x2)1 = R 4(y (31, %), %1, %2) = ¥ (%1, %) and thus by Lemma 5.2 we get that
o pis idempotent.

Now, it comes to characterize the idempotent element in B, ..., Bg. We first show that all elements in Bg are not idem-

potent and then show that the idempotency of Bs, Bg, B; need the some conditions. In fact, we have the following results.
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Theorem 5.7. Every o, € Bg is not idempotent.

Proof. Let o, € Bg With t = f(x,,(l), ...,xn(n)),F =y (X¢p1), Xp(2))- Suppose the contrary that o,  is idempotent, by Lemma
5.2, we obtain that 6, [t] =t and &, z[F] = F. Obviously, 6. [y (xpa) Xp@))] # ¥ (Xp(1), Xp(2)) Since we have already
shown this inequality holds in Theorem 5.4 (iii). It contradicts to the result of our assumption. Therefore, o,  is not idempotent.

Next, we show that there is an element in Bg which is not idempotent as the following example.

Example 5.8. Let ((3), (2)) be a type, i.e., we have one ternary operation symbol and one binary relation symbol, say f and y,
respectively. If we consider o, r € Bs with t = f(x3,%1,x;) and F = x; = x,., then we have &, p[f (x3, x1, x;)]
= SUM3(f (x3, %1, %), X3, %1, X2) = f (%2, %3,%,). By Lemma 5.2, we conclude that oz is not idempotent.

We remark here that if we let o, ; € Bs,...,Bg, then 6, [F] has the same situation in the previous theorems. So, we are
interesting in the way to find some conditions for the idempotency of &, r[t]. The next theorem shows that if we set some

conditions, then we get the characterization of idempotent elements in Bs, Bg, B;.

Theorem 5.9. Leta, € Hyp'™((n), (2)). Then the following statements hold.
(i) o.r € Bsisidempotent if and only if (i) = i foralli = 1, ...,n.
(i) o € Bgis idempotent if and only if w(i) = i foralli = 1,..,nand ¢(j) =j forall j = 1,2.

(iii) oy € By isidempotent if and only if (i) = i foralli =1, ...,n.

Proof. (i) Let ¢ € Bswitht = f(Xz(1), ) Xn(my) and F = X1y = Xg(2). Now we may assume that if (i) = i for some i =

Lo, Then Gup[f (Xny o Xnm)] = S R(F (Xn(ays s Xa(m) ) Xy - X)) = f Cnn@))r -+ Xn(n(n))- By our as-
sumption, f(xn(n(l)), ...,xn(n(n))) * f(x,,(l), ...,xn(n)) and thus o, ris not idempotent. Conversely, assume that the condition
holds. To show that o, is idempotent we consider &,z [f(xnc1), - Xum))] = Gerlf 1y s x0)] = f(%q, ..., ) SO that
8 ¢[t] = t. We can prove similarly to the proof of Theorem 5.4(i) that 6, z[F] = F. Therefore, o,  is idempotent.

(ii) Let o.r € Bg With = f(xz(1), - Xu(ny) @and F = ¥ (xp(1), Xp(2))- We first assume that (i) # i for some i =
1,..,n or ¢(j) # j for some j = 1,2. Then by the same manner as in the proof of (i) we can show that o is not idempotent.
Conversely, assume that the condition holds. Clearly, & r[f(Xn(1), -» Xnm))] = Gerlf (1, o, )] = f(xg, o, x,) and thus
6 r[t] = t. Moreover, we have that &, [y (xpa) Xp@))] = Gcrly (s, x2)] = y(x1, x2), that is 6, [F] = F. By Lemma 5.2,
oy r is idempotent.

(iii) By using Lemma 5.1, we can prove similarly to the proof of (i) that this statement holds.

Note that every idempotent element is regular. We characterize all regular elements in Hyp”"((n), (2)), we consider
o.r € Hyp'™((n), (2)) which is not idempotent. The characterization of regularity in Hyp'™((n), (2)) can be shown in the next

theorem.

Theorem 5.10. Let o, » € Hyp"™((n), (2)). Then the following statements hold.
(i) Everyo.r € B, isregular. (iv) Every o.r € B is regular.
(ii) Every o,y € B, is regular. (v) Everyo.r € B, isregular.

(iii) Every o, € Bs is regular. (vi) Every o,.r € Bg is regular.
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Proof. (i) Let o r € B, witht = x; and F = y(xg(1), X¢(2))- We consider regularity of o, » € B, only the case of ¢(j) # j for
some j = 1,2. To do this, we choose o ¢ € B, With = x; and F' = y (x4-1(1), Xp-1(2)) such that (oyr oy 045 o 05 ) (f) =
x; = 0y (f) and (07 o 045 or 00 ) (V) = Gp |Gk [y cp) ¥p@)]] = Gur[R™ 5 (06 (), Xp ) Xp(2))] =
Ger[R™ 5 (¥ (g1, Xgm12)) Xp ) Xg(2))| = Bt r [V(x¢(¢-1<1))'x¢(¢-1(z)))] = Gury (Kgopn1) ¥popn@)] =
Gerly Ger, 2201 = R™ (Y (xp 1) Xp2))r X1, %2) = ¥(Xp(1), Xp(2)) = 0¢.r(v). This implies that, o - is regular.
(it) Similarly to the proof of (i) and by using Lemma 5.1, we can show that every o, € B, is regular.
(iii) Let o¢ € Bs With t = f(Xg(1), -, Xmy) and F = X1y = xg(2). We consider in the case of (i) # i for some

i =1,...,n, then there exists o s € B, With £ = f (X713, o, Xp10)) aNd F = x (1) & Xy SUCh that (o, o 0 o 01 (F)

Gtr [6£,F [f (nays - Xn(n))]]

Ger[S"™ R (06 () Xrays vor X))

Ger (SR (f (e 2y o Xt )y X o0 X)) ]
6er | (enu-scary = Fatrrc) |

Ger[f From=1(ays +r Xrrom=1(my) |

= Gy p[f (g, s x0)]

= SURR(F(Xn()s - Xr(n) )s X1s s Xn)

= f(%n)s - Xnm)

= o r(f).

And  (apr o 0g or 0er) (V) = Bur[Beslxea) = Xp2)]] = Ber [&f,p'[x¢(1)] ~ 3f,ﬁ[x¢(z)]] =6ur[xe) = Xp2)] = Xp) =

X¢(2)-
(iv) Let o € Bg With t = f(x,.[(l), ...,xn(n)) and F = y(x¢(1),x¢(z)).

To prove that o i is regular, we consider in three cases: If (i) = i forall i = 1, ...,n and ¢(j) # j for some j = 1,2, then there
exists oz € Bg With £ = f (1), o) Xn(ny) AN F'= y(Xp-1(1), Xp=1(2)) SUCh that (o, o 05 o 02 ) (F)

= Ger[GerLf (Xncays s Xmtm))]]

=6t,F[S”n¢L(f(xﬂ(1)' ---'xn(n))'xn(l)' ""xn(n))]

= Gerlf (xn(n'(l))' e xn(n’(n)))]

= Gup[f (n(ays +r Xnm))]

= SR (F (Xrays - Xm) ) Xy - X))

= f (%n(atay) - X))

= f(.xn(l)r ey xﬂ(n))
= 0er(f).

Similarly to the proof of (i), we have that (o, o, 04 o 0F)(¥) = 0 (¥).
If (i) # i for some i = 1,...,n and ¢(j) = j for all j = 1,2, then there exists oz € By With { = f(x;-1¢4), .., Xp-1(n))and
F'=y(xpa)Xpmy) such that (oprop 0pp o 0pr)(f) = 0pp(f), it follows from (iii). Moreover, we consider

(at.F °r Ot f O Ut,F)(}’)
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= Ger[ 8 r [y (X 1) xp2)1]

=606 [S" 3 (¥ (xp ) X0 ): Xp): Xo2)]
= Ocrly (x¢(¢(1>)'x¢(¢(1>))]

= Gerly (xp ) Xp()]

= S 3 (r(%g) X9 @) Xp(1) X))
=Y (x¢(¢(1)),x¢(¢(2)))

= }/(X¢(1).x¢(z))
= Ut,F()’)-
Finally,

1259

if m(@)#i for some i=1,..,nand ¢()#j for some j=12, then there exists o;z € Bs with =

f(x,,-1(1), ...,xn—1(n)) and F'= y(x¢—1(1),x¢—1(2)) such that (o, ¢ o 05 o 0pr ) (f) = 015 (f) and (o5 o 05 o Orr)

(¥) = o r(v). Therefore, we conclude that o, r is regular.

(v) This statement can be proved by using Lemma 5.1 and the same process as we proved in (iii).

(vi) This statement can be proved by using Lemma 5.1 and the same process as we proved in (iv).

Consequence of this section, every linear hypersubstitution is regular and then Hyp'™((n), (2)) is a regular semigroup.

Acknowledgements

This research was supported by the Centre of Ex-
cellence in Mathematics, the Commission on Higher Educa-
tion, Thailand.

References

Burris, S., & Sankappanavar, H. P. (1981). A course in univer-
sal algebra. New York, NY: Springer Verlag.

Couceiro, M., & Lehtonen, E. (2012). Galois theory for sets of
operations closed inder permutation, cylindrifi-
cation and composition. Algebra Universalis,
67, 273-297.

Denecke, K. (2016). The partial clone of linear terms. Sibe-
rian Mathematical Journal, 57, 589-598.

Denecke, K., & Phusanga, D. (2008). Hyperformulas and so-
lid algebraic systems. Studia Logica, 90(2), 263-
286.

Denecke, K., & Wismath, S. L. (2002). Universal algebra and
applications in theoretical computer science. Boca
Raton, FL: Chapman and Hall/CRC.

Mal'cev, A. I. (1973). Algebraic Systems. Berlin, Germany:
Akademie-Verlag.



