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Abstract 

 

General criteria were derived for the linear dependence of arithmetic functions over the complex field as well as several 

other criteria for arithmetic functions that were solutions of additive, multiplicative, exponential, and logarithmic equations. A 

number of examples were worked out in order to compare the results with the existing ones.  
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1. Introduction 
 

An arithmetic function is a complex-valued function 

defined over the set of natural numbers ℕ.  Let A   be a set of 

arithmetic functions equipped with the usual addition and the 

Dirichlet convolution defined for               A   by 

 

1 2 1 2( )( ) : ( ) ( ),f f n f n f n    

 

 

 

It is well-known by Cashwell and Everett (1959) that ( A  

, , )   is a unique factorization domain. The identity with 

 

respect to   is the arithmetic function I  defined by ( ) 1I n   

for 1n   and            for 1.n   For       A , its Dirichlet  

inverse, i.e., the inverse with respect to ,  denoted by 1,f   

exists if and only if (1) 0.f   A function AA  is said to be 

additive if                                                                 ℕ). A function M A  

is  said  to  be  multiplicative  if  ( ) ( ) ( )M mn M m M n    for all  

,m nℕ   with                       An exponential function E A 

is a function satisfying                                                     ℕ).   A         

logarithmic function LA is a function satisfying                                               

( ) ( ) ( )L mn L m L n   ( ,m nℕ). 
 

In one of our previous studies, the ℂ-linear depen-

dence of three types of arithmetic functions, namely, additive, 

exponential and logarithmic were investigated. It was found 

that  
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1 2,f f 

f ( ) 0I n 

( ) ( ) ( ) ( ,A m n A m A n m n   

( ,m n( ) ( ) ( )E m n E m E n 

gcd( , ) 1.m n 
1 2 1 2

|

( )( ) : ( ) ( / ) (
d n

f f n f d f n d n   ℕ). 
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1) two additive functions are always linearly 

dependent,  

2) exponential functions are always linearly inde-

pendent, and  

3) logarithmic functions are linearly dependent if 

and only if they are algebraically dependent.  

 

The case of multiplicative functions was previously investi-

gated by Kaczorowski, Molteni, and Perelli (1999, 2006). 

They found that if the multiplicative functions 
1, , , nI f f  are 

pairwise non-equivalent (recall that two multiplicative arith-

metic functions f and g are equivalent if ( ) ( )m mf p g p  for 

all         ℕ and all but finitely many primes      then 
1, , nf f   

are ℂ-linearly independent.  
 

Here, we continue our existing investigation. Com-

plementing the results in Komatsu, Laohakosol, and Reung-

sinsub (2011, 2012) we further investigated the ℂ-linear de-

pendence of arithmetic functions which are solutions of addi-

tive equation, multiplicative equation, exponential equation, 

and logarithmic equation. To this end, the general criteria for 

linear dependence were proved. For additive functions, we 

extended one of our earlier results to cover the linearly 

dependence of general ( 2)n   functions. An alternative proof 

that exponential functions are always linearly independent 

was given. For multiplicative functions, conditions for a finite 

set of nonzero pairwise distinct multiplicative functions to be 

linearly independent were established. Conditions for linear 

independence of multiplicative functions based on an old 

method of Popken (1962) were proved. Finally, a necessary 

condition for linear independence of a finite set of nonzero 

pairwise distinct logarithmic arithmetic functions was derived. 

Several examples illustrating the so-obtained criteria were 

worked out in order to compare with the existing criteria.  

 

2. Results 

 

Our first result deals with two general criteria for 

linear (in)dependence.  

 

Theorem 1. Let 
1 2, , , nf f f  be ( 2)n   nonzero, pairwise 

distinct arithmetic functions. Assume that there exists an 

index {1, , }J n   such that (1) 0.Jf   

 

1) If there exist distinct 
1 1, , nm m  ℕ \{1}  such 

that 

1,1 1,1 1,1 ,1

1, 1 1, 1 1, 1 , 1

0,

J J n

n J n J n n n

F F F F

F F F F

 

     


   (1) 

where  1

, ( )i j i J jF f f m
 
for 1, ,i n  and 1, , 1,j n   

then 
1 2, , , nf f f  are ℂ-linearly independent.  

2) If  

1,1 1,1 1,1 ,1

1, 1 1, 1 1, 1 , 1

0,

J J n

n J n J n n n

F F F F

F F F F

 

     


  (2) 

for all                        ℕ          then 
1 2, , , nf f f  are ℂ-linearly 

dependent.  

 

Proof. The proof can be found in Ponpetch, Laohakosol, and 

Mavecha (2017). 

 

2.1 Additive functions 

 

In this subsection, we consider additive functions 

and start with an auxiliary result. 

 

Proposition 2. If         A   is a nonzero additive function, then 

its Dirichlet inverse is given by  

 

Theorem 3. If 
1, , nA A  are  ( 2)n   nonzero pairwise 

distinct additive arithmetic functions, then they are ℂ-linearly 

dependent.  

 

Proof. The proof can be found in Ponpetch, Laohakosol, and 

Mavecha (2017).  

 

2.2 Exponential functions 

 

In this section, we give another proof of the linear 

independence of exponential functions. 

m ),p

1 1, , nm m   \{1}

A

 1 21/ (1) .A A A 
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Theorem 4. The nonzero exponential arithmetic functions 

 1  , 2, nEE n  are pairwise distinct if and only if they are 

ℂ-linearly independent.  

 

Proof. We have proved in Ponpetch, Laohakosol, and Mave-

cha (2017) that 
1, , nE E

 
are linearly independent. 

 

Conversely, assume that 
1, , nE E

 
are not pairwise 

distinct. Then there are distinct indices , {1, , }i j n  such that 

(        ℕ ) yielding a linear relation.  

 

2.3 Multiplicative functions 

 

In this section, we present another condition for 

linear independence of multiplicative functions, and show that 

without such condition, there are examples of both dependent 

and independent functions.  

 

Theorem 5. Let  1 2, , ,  2nM M M n   be nonzero, pair-

wise distinct multiplicative arithmetic functions. If there are 

distinct primes 
1 2 1, , , np p p   

such that  

 

 1

1 2 1( ) 0i j nM M p p p

                                                (3) 

 

for all , {1, , }i j n  with ,i j  then 
1 2, , , nM M M  are ℂ-

linearly independent.  

 

Proof. We prove this theorem by induction on .n  For the case 

2,n   suppose on the contrary that 
1 2,M M  are ℂ-linearly 

independent. Then there are complex constants 
1 2,c c  not all 

zero such that  

 

1 1 2 2 0.c M c M                          (4) 

 

Operating by 1

1M   through (4), we get  

 

 1

1 2 2 1( ) ( ) 0c I m c M M m     ( m ℕ ).                            (5) 

 

Replacing m  by 
1,p  the prime 

1p
 
satisfying (3), in (5), we 

get                                   Using (3), we deduce 
2 0.c  Put- 

ting 
2 0c   in (4), we get  

Assume now that the theorem holds up to 1n   

functions, we prove its validity for n  functions. Suppose on 

the contrary that                                   are ℂ-linearly de-

pendent. Then there are complex constants 
1 2, , , nc c c   not 

all zero such that 
 

1 1 2 2 0.n nc M c M c M                                                   (6) 

 (6) 

Operating by 1

1M   through (6), we get 

 

1 2 2( ) ( ) ( ) 0  n nc I m c F m c F m     ( m ℕ ),                (7) 

 

where  1

1   2, , .j jF M M j n    Let 
1 1, , np p   be 

distinct primes satisfying (3) and let  

 

                    ℕ. 
 

Replacing m  by 
11, ,

nn ptp t V
   in (7), we get 

 

2 2 1 2 1( ) ( ) ( ) ( ) 0.n n n n nc F p F t c F p F t      (8) 

 

For 2, , ,j n   define    

 

1
( ) if

( )
0 otherwise.

nj p

j

F m m V
mG 


 


 

 

It is easy to check each 
jG  is multiplicative and so that the 

relation (8) becomes 

 

2 2 ( ) ( ) 0n nd G m d G m    ( m ℕ ),           (9) 

 

 

where 
1( ) ( 2, , ).j j j nd c F p j n    If  ( 2, , )jG j n   are 

zero functions, then ( ) 0jF m 
 
for 

1
.

npm V


  Since 
11 ,

npp V



 

using the multiplicativity of 1

1jM M   and (3), we get   

 1

1 1 10 ( ) ( ) 0,j jF p M M p     which is a contradiction. 

Thus  ( 2, , )jG j n   are nonzero functions. Since 

 1

1 1 10 ( ) ( ) ( )j k j kM M p M p M p     for j  not equal to ,k  

we have 

1
{

npV m

  1; gcd( , ) 1}nm p  

 1

2 2 1 1( ) 0.c M M p 

1 0.c 

 1 2, , ,  3nM M M n 

m( ) ( )i jE m E m



K. Ponpetch et al. / Songklanakarin J. Sci. Technol. 41 (6), 1328-1338, 2019  1331 

 

 

1

1 1 1 1 1 1 1

1

1 1 1 1 1 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

j j j j

k k k k

G p F p M M p M p M p

M p M p M M p F p G p





    

     

 

showing that  ( 2, , )jG j n   are pairwise distinct. Since 

     

   

   

1 1 1

1 2 1 2

-1 -1

1 -2

1 1 2 2

( ) ( ) ( )

                                   * ( ) * ( )

                                   ( ) ( ) ( ) ( )

                              

j k n j k j k n

j k j k n

j k j n k n

G G p p G G p G G p

F F p L F F p

F p F p F p F p

  

 

 

    



  

   

   

1 1 2 2

1 1

1 2

     ( ) ( ) ( ) ( )

                                   ( ) ( ) 0,

j k j n k n

j k j k n

M p M p M p M p

M M p M M p

 

 



  

   

 

for all , {2, , }, ,j k n j k    the multiplicative functions   ( 2, , )jG j n   satisfying (3). Thus, the induction hypothesis yields 

that  
2 , , nG G

 
are ℂ-linearly independent, which in turn implies, from (9), that 

10 ( ) ( 2, , ).j j j nd c F p j n     Since 

1

1 ,j jF M M    using the multiplicativity and (3), we have 
1( ) 0,j nF p    which shows that 0 ( 2, , ).jc j n    Replacing 

0 ( 2, , )jc j n    in (6), we get 
1 0.c   

    If the condition (3) does not hold, then 
1 2, , , nM M M  can either be ℂ-linearly dependent, or independent as seen 

from the following examples. 

 

Example 6. Consider the four functions
1 2 3 4, , , ,F F F F  defined, respectively, by  

1 1 1 1 1 1 1 1

1

(1) (2) 1, (3) (5) (6) (10) 2, (15) (30) 4,

( ) 0 for all positive integers 1,2,3,5,6,10,15,30.

F F F F F F F F

F n n

       

 

  

2 2 2 2 2 2 2 2

2

(1) (3) 1, (2) (5) (6) (15) 2, (10) (30) 4,

( ) 0 for all positive integers 1,2,3,5,6,10,15,30.

F F F F F F F F

F n n

       

 

  

3 3 3 3 3 3 3 3

3

(1) 1, (2) 3, (3) (5) 2, (6) (10) 6, (15) 4, (30) 12,

( ) 0 for all positive integers 1,2,3,5,6,10,15,30.

F F F F F F F F

F n n

       

 

  

4 4 4 4 4 4 4 4

4

(1) 1, (2) (5) 2, (3) 3, (6) (15) 6, (10) 4, (30) 12,

( ) 0 for all positive integers 1,2,3,5,6,10,15,30.

F F F F F F F F

F n n

       

 

  

It is easily checked that 
1 2 3 4, , ,F F F F

 
are multiplicative functions with inverses, for rℕ, 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1

(1) 1, (2 ) ( 1) , (3 ) (5 ) ( 2) , (6 ) (10 ) (2) ,

(15 ) (4) , (30 ) ( 4) , ( ) 0 for all positive integers 1,2 ,

3 ,5 ,6 ,10 ,15 ,30 .

r r r r r r r r

r r r r r

r r r r r r

F F F F F F

F F F n n

     

  

       

    
 

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1

2 2 2

(1) 1, (2 ) (5 ) ( 2) , (3 ) ( 1) , (6 ) (15 ) (2) ,

(10 ) (4) , (30 ) ( 4) , ( ) 0 for all positive integers 1,2 ,

3 ,5 ,6 ,10 ,15 ,30 .

r r r r r r r r

r r r r r

r r r r r r

F F F F F F

F F F n n

     

  

       

    
  

1 1 1 1 1 1

3 3 3 3 3 3

1 1 1

3 3 3

(1) 1, (2 ) ( 3) , (3 ) (5 ) ( 2) , (6 ) (10 ) (6) ,

(15 ) (4) , (30 ) ( 12) , ( ) 0 for all positive integers 1,2 ,

3 ,5 ,6 ,10 ,15 ,30 .

r r r r r r r r

r r r r r

r r r r r r

F F F F F F

F F F n n

     

  

       

    
  

1 1 1 1 1 1

4 4 4 4 4 4

1 1 1

4 4 4

(1) 1, (2 ) (5 ) ( 2) , (3 ) ( 3) , (6 ) (15 ) (6) ,

(10 ) (4) , (30 ) ( 12) , ( ) 0 for all positive integers 1,2 ,

3 ,5 ,6 ,10 ,15 ,30 .

r r r r r r r r

r r r r r

r r r r r r

F F F F F F

F F F n n

     

  

       

    
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In this case, the condition (3) does not hold while we have ℂ-linearly dependent relation 
1 2 3 4 0.F F F F      

 

Example 7. Consider the four functions
1 2 3 4, , , ,G G GG  defined, respectively, by  

 

1 1 1 1 1 1 1 1

1

(1) 1, (2) (5) 2, (3) (10) 4, (6) (15) 8, (30) 16,

( ) 0 for all positive integers 1,2,3,5,6,10,15,30.

G G G G G G G G

G n n

       

 
  

2 2 2 2 2 2 2

2 2

(1) 1, (2) 3, (3) 9, (5) 2, (6) 27, (10) 6, (15) 18,

(30) 54, ( ) 0 for all positive integers 1,2,3,5,6,10,15,30.

G G G G G G G

G G n n

      

  

  

3 3 3 3 3 3 3

3 3

(1) 1, (2) 5, (3) 25, (5) 2, (6) 125, (10) 10, (15) 50,

(30) 250, ( ) 0 for all positive integers 1,2,3,5,6,10,15,30.

G G G G G G G

G G n n

      

  

  

4 4 4 4 4 4 4

4 4

(1) 1, (2) 7, (3) 49, (5) 2, (6) 343, (10) 14, (15) 98,

(30) 686, ( ) 0 for all positive integers 1, 2,3,5,6,10,15,30.

G G G G G G G

G G n n

      

  

  

 

It is easily checked that 
1 2 3 4, , ,GG G G

 
are multiplicative functions with inverses, for rℕ,  

 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1

(1) 1, (2 ) (5 ) ( 2) , (3 ) ( 4) , (6 ) (15 ) (8) ,

(10 ) (4) , (30 ) ( 16) , ( ) 0 for all positive integers 1,2 ,

3 ,5 ,6 ,10 ,15 ,30 .

r r r r r r r r

r r r r r

r r r r r r

G G G G G G

G G G n n

     

  

       

    

 

1 1 1 1 1

2 2 2 2 2

1 1 1 1

2 2 2 2

(1) 1, (2 ) ( 3) , (3 ) ( 9) , (5 ) ( 2) , (6 ) (27) ,

(10 ) (6) , (15 ) (18) , (30 ) ( 54) , ( ) 0 for all positive

integers 1,2 ,3 ,5 ,6 ,10 ,15 ,30 .

r r r r r r r r

r r r r r r

r r r r r r r

G G G G G

G G G G n

n

    

   

       

    


 

1 1 1 1 1

3 3 3 3 3

1 1 1 1

3 3 3 3

(1) 1, (2 ) ( 5) , (3 ) ( 25) , (5 ) ( 2) , (6 ) (125) ,

(10 ) (10) , (15 ) (50) , (30 ) ( 250) , ( ) 0 for all

positive integers 1,2 ,3 ,5 ,6 ,10 ,15 ,30 .

r r r r r r r r

r r r r r r

r r r r r r r

G G G G G

G G G G n

n

    

   

       

    



 

1 1 1 1 1

4 4 4 4 4

1 1 1 1

4 4 4 4

(1) 1, (2 ) ( 7) , (3 ) ( 49) , (5 ) ( 2) , (6 ) (343) ,

(10 ) (14) , (15 ) (98) , (30 ) ( 686) , ( ) 0 for all

positive integers 1,2 ,3 ,5 ,6 ,10 ,15 ,30 .

r r r r r r r r

r r r r r r

r r r r r r r

G G G G G

G G G G n

n

    

   

       

    



 

 

Here, the condition (3) does not hold. We show that 
1 2 3 4, , ,GG G G  are ℂ-linearly independent. Suppose on the contrary that

 

1 2 3 4, , ,GG G G  are ℂ-linearly dependent. Then there are complex constants 
1 4, ,c c  not all zero such that  

 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) 0.c G n c G n c G n c G n                                                                                                                       (10) 

 

Putting 1,2,3,6,n   respectively in (10), we get  

 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

(1) (1) (1) (1) 0

(2) (2) (2) (2) 0

(3) (3) (3) (3) 0

(6) (6) (6) (6) 0.

c G c G c G c G

c G c G c G c G

c G c G c G c G

c G c G c G c G

   

   

   

   

 

 

Using the defining values of 
1 2 3 4, , , ,G G GG  the coefficient matrix of the above system is non-singular, and this implies that 

1 2 3 4 0,c c c c     which is a contradiction.    
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 We proceed now to use a method of Popken (1962) to derive the criterion for linear independence of multiplicative 

functions. Let S (  ℕ) be a commutative semi-group in which a unique factorization condition holds. We assume that S  has an 

identity-element 1 and no other unit than 1. By a reduced semi-group 
0 ,S  we mean a set of m S  such that  

0gcd( , ) 1m x   for 

some fixed 
0 .x S  

 

Theorem 8. Let  1 2, , ,  2nM M M n   be nonzero, pairwise distinct multiplicative arithmetic functions. Suppose that there 

exists a semi-group S (  ℕ) with the properties described above, and there are                                   ℂ such that 

 

1 1( ) ( ) 0 ( ).n nc M t c M t t S                 (11) 

 

Then there is at least one suffix {2, , }h n   such that 

 

 1 0( ) ( )hM m M m m S              (12) 

 

for some reduced semi-group 
0 .S S   Moreover, 1

1 hM M   vanishes on some reduced semi-group 
0 }\{1S  contained in .S  

Proof. We prove by induction on .n  For the case 2,n   there are 
1 2( 0),c c ℂ such that 

 

2 21 1( ) ( ) 0 ( ).c M t c M t t S                  (13) 

 

Taking 1t   in (13), we get 
1 2 0.c c    Thus, (13) yields 

1 2( ) ( )M t M t  for all ,t S  i.e., (12) holds with 2h   and 

0 .S S  Assume that the theorem holds up to  1n   functions, we next prove its validity for n  functions. If 
1( ) ( )nM t M t  for 

all ,t S  then there is nothing more to prove. Otherwise,  
1 nM M  on ,S  and so there exists 

1x S  such that  

11 1( ) ( ).nM Mx x  By assumption, we have 

 

1 1( ) ( ) 0 ( ).n nc M t c M t t S                   (14) 

 

Let 
1 1{ ;gcd( , ) 1} .S m S m x S     Taking 

1,t mx  where 
1,m S  in (14) and by multiplicitivity, we get  

 

1 1 1 1 1 1( ) ( ) ( ) ( ) 0 ( ).n n nc M x M m c M x M m m S                       (15) 

 

Taking ,t m  where 
1,m S  in (14) and multiplying by 

1( ),nM x we have
 

 

1 1 1 1 1( ) ( ) ( ) ( ) 0 ( ).n n n nc M x M m c M x M m m S     (16) 

 

Subtracting (15) and (16), we have 

 

   1 1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( )   ( ) ( ) 0 ( ).n n n n nc M x M x M m c M x M x M m m S                   (17) 

 

Since  1 1 1 1( ) ( ) 0,nc M x M x   the relation (17) is similar to the relation (11) on 
1.S  By the induction hypothesis, there 

exists a reduced semi-group 
2 1S S S   such that 

1 hM M  on 
2S  for some  {2, , 1}.h n    Define 1

1 .hM M    

Clearly 

1 2( 0), , , nc c c  
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 1 1

1 1

|

( ) ( ) ( )h h

d m

m
m M M m M d M

d
    

    
 

            (18) 

for all 
0 \{1}.m S  Since 

0gcd( , ) 1,m x   we have 
0gcd( , ) 1d x   and  

0gcd( / , ) 1,m d x  i.e., 
0, ./d m d S  The relation (18) 

becomes 

 1 1 1

1 1

| |

( ) ( ) ( ) ( ) ( ) ( ) 0h h h h

d m d m

m m
m M M m M d M M d M I m

d d
    

      
 

   

which holds for all 
0 \{1}.m S   

 

Corollary 9. Let  1 2, , ,  2nM M M n   be nonzero, pairwise distinct multiplicative arithmetic functions. For all indices 

2, , ,j n   if there exists an   such that the relation 

 1 ( ) 0i jM M p                 (19) 

holds for all primes ,p  then 
1 2, , , nM M M   are ℂ-linearly independent.  

 

Proof. Suppose by the contrary 
1 2, , , nM M M

 
are ℂ-linearly dependent. Then there are complex constants 

1 2, , ncc c  not all 

zero such that 

 

1 1 2 2( ) ( ) ( ) 0 (n nc M t c M t c M t t    ℕ).                         (20) 

 

Since S ℕ, the relation (20) restricts to 

 

1 1 2 2( ) ( ) ( ) 0 ( ).n nc M m c M m c M m m S                (21) 

 

Without loss of generality, assume that 
1 0.c   By Theorem 8, for some 2, , ,j n   the relation 

1( ) ( )jM m M m  holds for all 

m in some reduced semi-group 
0 0 0{ ; gcd( , ) 1} , ,S m S m x S x S      and 1

1 * jM M   vanishes on 
0 \{1}.S  Let 

1

0 1
r

rx p p S 
  ℕ

1, , , rp p  being primes, and                          ℕ. Choose another prime 
1{ , , }.rq p p   Then for any  ℕ, 

we have 
0gcd( , ) 1,q x   i.e., 

0.q S   Thus,  1

1 * ( ) 0,jM M q 
 
 which is a contradiction. 

We next exhibit by examples that Theorem 5, the result in Kaczorowski, Molteni, and Perelli (2006) and Corollary 9 

are somewhat independent of one another by analyzing the case of two multiplicative arithmetic functions f  and .g  In this 

case, the corresponding three linearly independent conditions are:  

 

- A (Theorem 5) f  and g  are nonzero pairwise distinct with  1 ( ) 0f g p    for some prime .p  

- B (Kaczorowski, Molteni, & Perelli 2006)
 

, ,I f g  are pairwise non-equivalent, i.e., there are infinitely many primes p  

such that ( ) ( ), ( ) ( ) and ( ) ( )m m m m m mI p f p I p g p f p g p    for some mℕ. 

- Cα (Corollary 9) f  and , ,I f g  are nonzero pairwise distinct with                                for all primes .p  

 

Example 10. Consider two multiplicative functions 
1f  and 

1g  defined by                                           ( n  ℕ).  

- A  is true because  1 2

1 1 ( ) 0f g p p p     for all primes .p  

1 ,, r  

2

1 1( ) , ( )f n n g n n 
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- B  is true because 2 2

1 1 1 1( ) 0 ( ), ( ) 0 ( ), ( ) ( )m m m m m m m m m mI p p f p I p p g p f p p p g p         for all 

primes p  and for all m ℕ. 

- 
1C  is true because  1 2

1 1 ( ) 0f g p p p     for all primes .p  

The functions 
1f  and 

1g  are ℂ-linearly independent by any one of the three criteria ,A B , or 
1.C        

Example 11. Consider two multiplicative functions
2f and 

2g defined by 
2 2 2(1) 1, (2) 3, ( ) 0 for 1,2f f f n n     and 

2 2 2(1) 1, (2) 5, ( ) 0 for 1,2.g g g n n      

- A  is true because evaluating at the prime 2, we get  2 2

1 (2) 3 5 2 0.f g       

- B  does not hold because 
2 2( ) ( ) 0m mf p g p   for all primes 2p   and for all mℕ. 

- 
C  does not hold for all  ℕ because   1

2 2 ( ) 0f g p   for all primes 2.p    

Thus, 
2f  and 

2g  are ℂ-linearly independent by the criterion ,A  but not by the other two criteria.  

Example 12. Consider two multiplicative functions 
3f  and 

3g  defined by 

3 3 3 3(1) 1, ( ) 0, (2 ) 0 ( 2), ( ) ( 2, 2),m m mf f p f m f p p p m      

2

3 3 3 3(1) 1, ( ) 0, (2 ) 0 ( 2), ( ) ( 2, 2).m m mg g p g m g p p p m        

- A  does not hold because  1

3 3 ( ) 0f g p   for all primes .p  

- B  is true because 2 2

3 3 3 3( ) 0 ( ), ( ) 0 ( ), ( ) ( )m m m m m m m m m mI p p f p I p p g p f p p p g p          for all primes 

2p  and for all mℕ \{1}.  

- 
C  does not hold for all  ℕ because   1

3 3 (2 ) 0.f g     

Thus, 
3f  and 

3g  are ℂ-linearly independent by the criterion ,B  but not by the other two criteria.  

Example 13. Consider two multiplicative functions 
4f  and 

4g  defined by   

2

4 4 4 4(1) 1, ( ) 0, (2 ) 2 ( 2), ( ) ( 2, 2),m m mf f p f m f p p p m      

4 4 4 4(1) 1, ( ) 0, (2 ) 4 ( 2), ( ) 0 ( 2, 2).m mg g p g m g p p m        

- A  does not hold because  1

4 4 ( ) 0 0 0f g p     for all primes .p  

- B  does not hold because 
4( ) ( ) 0m mI p g p 

 
for all primes 2p   and for all mℕ. 

- 
2C  is true because   1 2 2 2 2 4

4 4 4 4 4 4 4* ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0f g p g p g p f p g p f p p            

for all primes 2p   and  1 2

4 4* (2 ) 4 0 0 2 2 0.f g          

Thus, 
4f  and 

4g  are ℂ-linearly independent by the criterion 
2 ,C  but not by the other two criteria.  

 

Example 14. Consider two multiplicative functions 
5f  and 

5g  defined by 

5 5 5 5 5

5

(1) 1, (2) 2, ( ) 0 ( 2), (2 ) 0 ( 2), (3 ) 0 ( 2),

( ) ( 2,3; 2),

m m

m m

f f f p p f m f m

f p p p m

       

  

 

5 5 5 5 5

2

5

(1) 1, (2) 4, ( ) 0 ( 2), (2 ) 0 ( 2), (3 ) 0 ( 2),

( ) ( 2,3; 2).

m m

m m

g g g p p g m g m

g p p p m

       

  
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- A  is true because there is a prime 2 such that   1

5 5 (2) 2 4 2 0.f g       

- B  is true because 2 2

5 5 5 5( ) 0 ( ), ( ) 0 ( ), ( ) ( )m m m m m m m m m mI p p f p I p p g p f p p p g p          for all 

primes 2,3p   and for all mℕ \{1}.  

- 
C  does not hold for all  ℕ because   5 5

1 (3 ) 0.f g      

Thus, 
5f  and 

5g  are ℂ-linearly independent by the criteria A and ,B  but not by .C   

 

Example 15. Consider two multiplicative functions 
6f  and 

6g  defined by 

2

6 6 6 6(1) 1, ( ) 0 ( 2), (2 ) 2 ( 1), ( ) ( 2, 2),m m mf f p p f m f p p p m       

6 6 6 6(1) 1, ( ) 0 ( 2), (2 ) 4 ( 1), ( ) 0 ( 2, 2).m mg g p p g m g p p m         

- A  is true because there is a prime 2 such that   6 6

1 (2) 2 4 2 0.f g       

- B  does not hold because 
6( ) ( ) 0m mI p g p   for all primes 2p   and for all mℕ. 

- 
2C  is true because   1 2 2 2 2 4

6 6 6 6 6 6 6* ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0f g p g p g p f p g p f p p            for all primes 

2p   and  1 2 2

6 6 (2 ) 4 4 2(4) 2 6 0.f g          

Thus, 
6f  and 

6g  are ℂ-linearly independent by the criteria A  and 
2 ,C  but not by .B      

 

Example 16. Consider two multiplicative functions 
7f  and 

7g  defined by 

7 7 7 7 7(1) 1, (2) 2, ( ) 0 ( 2), (2 ) 2 ( 2), ( ) ( 2, 2),m m mf f f p p f m f p p p m          

2

7 7 7 7 7(1) 1, (2) 2, ( ) 0 ( 2), (2 ) 0 ( 2), ( ) ( 2, 2).m m mg g g p p g m g p p p m           

 

- A  does not hold because  1

7 7 ( ) 0f g p   for all primes   

- B  is true because 2 2

7 7 7 7( ) 0 ( ), ( ) 0 ( ), ( ) ( )m m m m m m m m m mI p p f p I p p g p f p p p g p         for all 

primes 2p   and for all mℕ 

- 
3C  is true because 

 1 3 3 2 2 2 3

7 7 7 7 7 7 7 7 7 7

2 3

7 7 7

3 6

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                          2 ( ) ( ) ( )

                      0

f g p f p f p g p f p g p f p g p g p

g p g p g p

p p

     

 

  

  

for all primes 2p   and  1 3

7 7 (2 ) 2 4 0 8 0 0 8 2 0.f g             

Thus, 
7f  and 

7g  are ℂ-linearly independent by the criteria B  and 
3,C  but not by .A   

 

2.4 Logarithmic functions 

 

As for logarithmic functions, we show that subject to an extra condition, they are ℂ-linearly independent, while without 

such a condition they are ℂ-linearly dependent.  

 

Theorem 17. Let 
1, , nL L  be ( 2)n   nonzero pairwise distinct logarithmic arithmetic functions.  

\{1}.

.p
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1) If there exist distinct primes 
1, , np p

 
such that 

 

 
1 1 2 1 1

1 2

( ) ( ) ( )

0

( ) ( ) ( )

,

n

n n n n

L p L p L p

L p L p L p


 (22) 

 

then 
1, , nL L  are ℂ-linearly independent. 

 

2) If the condition 

 
1 1 2 1 1

1 2

( ) ( ) ( )

0

( ) ( ) ( )

n

n n n n

L p L p L p

L p L p L p


 (23) 

 

holds for all distinct primes 
1, , ,np p  then 

1, , nL L  are ℂ-linearly dependent.  

 

Proof.     1) The proof can be found in Ponpetch, Laohakosol, and Mavecha (2017). 

2) We first treat the case 2.n   From (23) we have  

 

1 1 1 2 2 1 1 1 2 2 2 2( ) ( ) 0, ( ) ( ) 0c L p c L p c L p c L p     (24) 

 

for some complex constants 
1 2,c c  not all zero. Without loss of generality, assume 

1 0.c   Then the system (24) becomes 

 

1 1 2 2 1 1 2 2 2 2( ) ( ), ( ) ( )L p d L p L p d L p   (25) 

 

where 
2 2 1/d c c  ℂ. Taking another prime 

jp  in place of 
1p  in (23), we get another system  

 

1 1 2 2 1 1 2 2 2 2( ) ( ) 0, ( ) ( ) 0.j jc L p c L p c L p c L p        (26) 

 

If 
1 0,c   then 

2 0,L   which is a contradiction. Thus 
1 0,c   and rewrite (26) as 

 

1 2 2 1 2 2 2 2( ) ( ), ( ) ( ).j jL p d L p L p d L p    (27) 

 

Subtracting corresponding equations (except the first) in the two systems (25) and (27), we get 
2 2.d d   Hence 

1 2 2( ) ( )L p d L p  

for all prime ,p  implying that 
1 2 2.L d L  Now, we proceed to the general case. Assume the result holds up to 1n   functions, 

we use induction to show that it holds for n  functions. The vanishing of the determinant (23) infers that their columns are 

dependent, i.e., there are complex constants 
1, , nc c  not all zero such that 

 

 
1 1 1 2 2 1 1 1 1 2 2( ) ( ) ( ) 0, , ( ) ( ) ( ) 0.n n n n n n nc L p c L p c L p c L p c L p c L p                        (28) 

 

Since not all of 
1, , nc c

 
are zero, without loss of generality, assume 

1 0.c   The system (28) becomes 

 

1 1 2 2 1 1 1 2 2( ) ( ) ( ), , ( ) ( ) ( ),n n n n n n nL p d L p d L p L p d L p d L p          (29) 

 

where 
1/i id c c  ℂ ( 2, , ).i n   Taking another prime 

jp  in place of 
1p  in (28), we get another system 
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1 1 2 2 1 1 2 2( ) ( ) ( ) 0, , ( ) ( ) ( ) 0.j j n n j n n n n nc L p c L p c L p c L p c L p c L p              (30) 

 

If 
1 0,c 

 
from the system (30) leaving the first row we get another homogeneous system of order 1.n   If the determinant of the 

system is 0,  we are done by the induction hypothesis; otherwise it implies that 
2 0,nc c     which is a contradiction. If 

1 0,c   rewrite (30) as 

 

1 2 2 1 2 2( ) ( ) ( ), , ( ) ( ) ( ),j j n n j n n n n nL p d L p d L p L p d L p d L p          (31) 

 

where                       ℂ ( 2, , ).i n   Subtracting corresponding equations (except the first) in the two systems (29) and (31) leads 

to the homogeneous system 

 

2 2 2 2 3 3 2 2 2

2 2 2 3 3 2

( ) ( ) ( ) ( ) ( ) ( ) 0, ,

( ) ( ) ( ) ( ) ( ) ( ) 0.

n n n

n n n n n n

d d L p d d L p d d L p

d d L p d d L p d d L p

         

        
 

 

If the coefficient matrix of this last system is singular, we return to the lower case. If it is non-singular, then ( 2, , ),i id d i n    

implying that 
1 2 2( ) ( ) ( )n nL p d L p d L p    for all prime ,p  and so 

1 2 2 .n nL d L d L    
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