บทน้ำ

ป[ั]จจุบันนี้ ไททาเนียมได้รับความนิยมเลือกใช้เป็นวัสดุสำหรับการผลิตชิ้นส่วนในอุตสาหกรรมต่าง ๆ เช่น อุตสาหกรรมการบินและอวกาศ อุตสาหกรรมรถยนต์ อุตสาหกรรมวัสดุทางการแพทย์ และอุปกรณ์ เครื่องใช้ต่าง ๆเช่นนาพิกา แว่นตา และอื่น ๆ ทั้งนี้เนื่องจากธาตุไททาเนียมนั้นมีสมบัติพิเศษ คือมีค่าความ แข็งแรงสูงมากแต่น้ำหนักเบา ทนทานต่อสารเคมีต่าง ๆ มีความหนาแน่นต่ำ จุดหลอมเหลวสูง นอกจากนั้นยัง มีค่าสัมประสิทธิ์ทางความร้อนต่ำกว่าเหล็กและอลูมิเนียม ทำให้มีแนวโน้มความต้องการใช้ไททาเนียมมากขึ้น ถึงแม้จะมีราคาค่อนข้างสูงก็ตาม

อย่างไรก็ตาม ไททาเนียมนั้นถือว่าเป็นวัสดุที่ทำการตัดเฉือน (machining) ได้ยาก เนื่องจากมีค่าการ นำความร้อนที่ไม่ดี (poor thermal conductivity) ทำให้ไม่ช่วยในการระบายความร้อนขณะทำการตัดเฉือน ทำ ให้เกิดความร้อนสะสมที่คมตัด (cutting edge) สูงมาก ส่งผลให้อายุการใช้งานของเครื่องมือตัดสั้นลง นอกจากนั้นไททาเนียมยังเกิดปฏิกิริยาทางเคมีกับวัสดุเครื่องมือตัดได้ง่าย โดยเฉพาะอย่างยิ่งเมื่ออุณหภูมิ สูงขึ้น ส่งผลให้เครื่องมือตัดสึกหรออย่างรวดเร็ว และเนื่องจากไททาเนียมยังคงรักษาความแข็งและความ แข็งแรงที่อุณหภูมิสูงได้ดี ส่งผลให้ต้องใช้แรงในการตัดและความเค้นที่เกิดขึ้นบนคมตัดมาก ทำให้เครื่องมือ ดัดสึกหรอได้ง่ายเช่นเดียวกัน [1] จากพฤติกรรมดังกล่าวส่งผลให้รู (hole) ที่ได้จากกระบวนการเจาะ (drilling) มีคุณภาพไม่ดีเนื่องจากดอกสว่านเกิดการสึกหรอ โดยจะพบว่าขนาดของรูเจาะ (hole diameter) เกิดการผิดเพี้ยนและเกิดครีบ (burr) ทั้งด้านบนและล่างของรูเจาะ จากปัญหาดังกล่าวทำให้แต่ละปีต้องนำเข้า micro-drill ที่มีคุณภาพดี ทนการสึกหรอและมีราคาแพงจากต่างประเทศเป็นจำนวนมาก หากสามารถปรับปรุง ไปถึงขั้นผลิตเพื่อส่งออก micro-drill ที่มีคุณภาพ ก็จะเป็นการดึงเงินตราต่างประเทศได้อีกทางหนึ่ง

สำหรับงานเจาะขนาดจุลภาค (micro-drilling) ด้วยดอกสว่านขนาดเล็กนั้น จำเป็นที่จะต้องใช้ความเร็ว รอบ (speed) ที่สูงมาก ส่งผลให้ความร้อนเกิดขึ้นสูงมาก การสึกหรอของเครื่องมือตัดก็จะมากขึ้นตามไปด้วย คุณภาพของรูเจาะก็จะลดลง นอกจากนั้นเนื่องจากเป็นการเจาะบนวัสดุไททาเนียมซึ่งรักษาความแข็งและ ความแข็งแรงขณะอุณหภูมิสูงได้ดี ดอกสว่านซึ่งมีขนาดเล็กจึงควรต้องสามารถทนความร้อนและความเค้นที่ เกิดขึ้นได้ดีเช่นกัน

จากปญหาที่เกิดขึ้นในงานเจาะดังกล่าว หนึ่งในวิธีการที่จะช่วยลดปญหาคือ การนำดอกสว่านมาทำ การเคลือบผิวด้วยฟิล์มเคลือบ Diamond-Like Carbon (DLC) ซึ่งมีสมบัติเด่นในเรื่องของความแข็งผิวฟิล์มสูง เฉื่อยต่อปฏิกิริยาเคมี ต้านการกัดกร่อนและการสึกหรอที่ดี มีค่าสัมประสิทธิ์ความเสียดทานต่ำ เป็นต้น ฟิล์ม เคลือบชนิดนี้จึงเป็นที่นิยมใช้กันอย่างกว้างขวางสำหรับงานประยุกต์ เช่น อุตสาหกรรมฮาร์ดดิสก์ ชิ้นส่วนยาน ยนต์ เครื่องมือตัดและวัสดุทางการแพทย์ [2] ในงานวิจัยนี้จึงนำฟิล์มเคลือบ DLC มาประยุกต์ใช้เพื่อปรับปรุงประสิทธิภาพในการเจาะ โดยจะนำ แผ่น Silicon wafer, Aluminum foil และดอกสว่านขนาด 1 มิลลิเมตร ซึ่งทำจากวัสดุ Tungsten carbide มา ทำการเคลือบด้วยฟิล์ม 4 ชนิด ได้แก่ DLC, H-DLC, Si-O-DLC และ Si-N-DLC ด้วยวิธี Plasma-Based Ion Implantation (PBII) โดยมีความหนาฟิล์มเท่ากับ 500 นาโนเมตร ในงานวิจัยนี้ได้แบ่งการดำเนินงานออกเป็น 2 ส่วน ในส่วนที่ 1 นั้น เป็นการทดสอบสมบัติของฟิล์มเคลือบที่ได้บนแผ่น Silicon wafer และ Aluminum foil ซึ่งจะถูกนำมาทดสอบค่าความแข็งผิวฟิล์ม (Hardness) ด้วยเครื่อง Nano indentation hardness tester ค่า สัมประสิทธิ์ความเสียดทาน (Friction coefficient) ด้วยเครื่อง Tribometor แบบ Ball on disk ทดสอบ ส่วนผสมทางเคมีด้วยเครื่อง Energy-dispersive X-ray spectroscopy (EDS) และทดสอบสมบัติทางความ ร้อนของฟิล์มเคลือบด้วยเครื่อง Thermogravimetric Analyzer ในส่วนที่ 2 ทำการทดสอบงานเจาะจริงด้วย ดอกสว่านที่ถูกเคลือบ โดยทดสอบการเจาะบนแผ่นวัสดุไททาเนียมผสม เกรด Ti6Al4V หนา 1 มิลลิเมตร จำนวนการเจาะ 200 รู จากนั้นจึงประเมินผลด้วยลักษณะการสึกหรอของดอกสว่าน และคุณภาพของรูเจาะ ซึ่งได้แก่ ขนาดรูเจาะ

วัตถุประสงค์ของงานวิจัย

- เพื่อศึกษาอิทธิพลของความร้อนที่ส่งผลต่อค่าสัมประสิทธิ์ความเสียดทานและส่วนผสมทางเคมีของ ฟิล์มเคลือบ DLC, H-DLC, Si-O-DLC และ Si-N-DLC
- เพื่อศึกษาอิทธิพลของความร้อนที่ส่งผลต่อสมบัติทางความร้อนของฟิล์มเคลือบ DLC, H-DLC, Si-O-DLC และ Si-N-DLC
- เพื่อศึกษาอิทธิพลของฟิล์มเคลือบ DLC, H-DLC, Si-O-DLC และ Si-N-DLC ที่ส่งผลต่อประสิทธิภาพ ในการเจาะบนไททาเนียมผสม โดยพิจารณาจากลักษณะการสึกหรอของดอกสว่านและคุณภาพของ รูเจาะ ได้แก่ ขนาดรูเจาะ

ขอบเขตของงานวิจัย

- วัสดุชิ้นงาน Silicon wafer และ Aluminum foil ถูกเคลือบด้วยฟิล์ม DLC, H-DLC, Si-O-DLC และ Si-N-DLC ด้วยวิธี Plasma Based Ion Implantation (PBII) ความหนาฟิล์มเท่ากับ 500 นาโนเมตร
- 2. ความแข็งของฟิล์มเคลือบทดสอบด้วย Nano indentation hardness tester
- วัสดุชิ้นงาน Silicon wafer ที่ผ่านการเคลือบถูกนำมาอบที่อุณหภูมิ 400°C, 650°C และ 900°C เป็น เวลา 1 ชั่วโมง แล้วปล่อยให้เย็นตัวในเตา
- ส่วนผสมทางเคมีของฟิล์มเคลือบก่อนและหลังการอบตรวจสอบด้วยเครื่อง Energy-dispersive X-ray spectroscopy (EDS)

- ค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบก่อนและหลังการอบทดสอบด้วย เครื่อง Tribometor แบบ Ball on disk โดยที่บอลทำจากวัสดุเหล็กกล้าไร้สนิม SUS440 น้ำหนักกดที่ใช้เท่ากับ 3 นิวตัน ความเร็วรอบในการทดสอบ 3.14 เซนติเมตรต่อวินาที และทดสอบจำนวน 10,000 รอบ
- วัสดุชิ้นงาน Aluminum foil ถูกนำมาทดสอบสมบัติทางความร้อนของฟิล์มเคลือบด้วยเครื่อง Thermogravimetric Analyzer
- ดอกสว่าน Tungsten carbide ขนาด 1 มิลลิเมตร ชนิดร่องเกลียว (twist drill) ถูกเคลือบด้วยฟิล์ม เคลือบ จำนวน 4 ชนิด ได้แก่ DLC, H-DLC, Si-O-DLC และ Si-N-DLC
- 8. แผ่นชิ้นงานเจาะทำจากวัสดุไททาเนียมผสม เกรด Ti6Al4V หนา 1 มิลลิเมตร
- การทดสอบการเจาะ ทดสอบด้วยเครื่อง CNC (Computer Numerical Control) จำนวน 200 รู โดยใช้ ความเร็วรอบ 19,200 รอบต่อนาที ที่อัตราป้อน 120 มิลลิเมตรต่อนาที
- 10. ขนาดของรูเจาะตรวจสอบโดยใช้กล้อง Optical microscope

วิธีการดำเนินงานวิจัยโดยสรุป

<u>ส่วนที่ 1</u> การทดสอบสมบัติของฟิล์มเคลือบที่ได้บนชิ้นงาน Silicon wafer และ Aluminum foil

- นำชิ้นงาน Silicon wafer และ Aluminum foil ไปเคลือบด้วยฟิล์ม DLC, H-DLC, Si-O-DLC และ Si-N-DLC
- ความแข็งของฟิล์มเคลือบทดสอบด้วย Nano indentation hardness tester
- นำฟิล์มเคลือบที่ได้มาอบที่อุณหภูมิ 400°C, 650°C และ 900°C เป็นเวลา 1 ชั่วโมง
- ทำการทดสอบส่วนผสมของฟิล์มเคลือบก่อนอบและหลังอบด้วย EDS
- ทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบที่ได้ด้วยเครื่อง Tribometor
- ทดสอบสมบัติทางความร้อนของฟิล์มเคลือบด้วยเครื่อง TGA
- <u>ส่วนที่ 2</u> การทดสอบงานเจาะจริงด้วยดอกสว่านที่ถูกเคลือบ บนวัสดุไททาเนียมผสม
 - นำดอกดอกสว่าน Tungsten carbide ไปเคลือบด้วยฟิล์ม DLC, H-DLC, Si-O-DLC และ Si-N-DLC
 - ตรวจสอบการเปลี่ยนแปลงขนาดของรูเจาะโดยใช้กล้อง Optical microscope

ประโยชน์ที่คาดว่าจะได้รับ

- 1. ทราบถึงชนิดของฟิล์มเคลือบที่เหมาะสมในการนำไปเคลือบบนดอกสว่าน
- 2. ทราบถึงอิทธิพลของอุณหภูมิที่ส่งผลต่อสมบัติของฟิล์มเคลือบชนิดต่างๆ

ทฤษฏีที่นำมาใช้ในการวิจัย

Plasma-based ion implantation (PBII) ถูกพัฒนาขึ้นในช่วงปี ค.ศ 1980 และได้รับการพัฒนาเพื่อ ปรับปรุงสมบัติของฟิล์มเคลือบ Diamond-like carbon (DLC) [3] ซึ่งถือว่าเป็นกระบวนการเคลือบผิวที่ช่วย ปรับปรุงผิวชิ้นงานอีกทางหนึ่ง [4]

เครื่องเคลือบผิวโดยเทคนิค PBII จะประกอบด้วยส่วนหลัก ๆคือ Vacuum Chamber, Gas Supply System, Plasma Generator และ Insulated Sample Holder ต่อเข้ากับชุดจ่ายไฟที่ความต่างศักย์สูง หลักการทำงานจะเริ่มจากป้อนก๊าซที่ต้องการใช้ในการเคลือบเข้าไปใน chamber แล้วPlasma Generator จะ ทำให้ก๊าซนั้นแตกตัวเป็นประจุหรือเรียกว่าสถานะพลาสมาโดยใช้คลื่นความถี่วิทยุ หรือไมโครเวฟ ซึ่งพลาสมา จะมีประจุเป็นบวก จากนั้นให้ความต่างศักย์ที่เป็นขั้วลบไปที่ชิ้นงาน พลาสมาจะวิ่งเข้าชนชิ้นงาน เกิดการ แทรกซึมของประจุพลาสมาในทุกทิศทางของชิ้นงานเว้นแต่ส่วนที่เป็น Electrical Contact Point ของชิ้นงาน ซึ่งการที่จะให้ผิวของชิ้นงานได้รับพลังงานประจุอย่างเต็มที่ ความดันใน Vacuum Chamber ควรจะด่ำ (ไม่ เกิน 0.5 Pa) เพื่อที่จะลดการชนกันเองของพลาสมาไอออน และเพื่อหลีกเลี่ยงการจ่ายกำลังไฟฟ้าให้กับ ชิ้นงานมากเกินไป

รูปที่ 1 Schematic diagram of PBII technique

ฟิล์มเคลือบ Diamond-like Carbon (DLC)

Diamond-like Carbon (DLC) เป็นฟิล์มเคลือบคาร์บอนอสัณฐาน (Amorphous) มีโครงสร้างอยู่ ระหว่างเพชร (Diamond) แกรไฟต์ (Graphite) และพอลิเมอร์ (Polymer) ประกอบด้วยไฮบริไดเซชัน sp³ และ sp² เป็นส่วนใหญ่ ซึ่งมีคุณสมบัติทั่วไปคือ มีความแข็งสูง เฉื่อยต่อปฏิกิริยาเคมี มีสมบัติทางด้านการต่อต้าน การกัดกร่อนและการสึกหรอที่ดี มีสัมประสิทธิ์แรงเสียดทานต่ำ เป็นต้น ผิวเคลือบชนิดนี้เป็นที่นิยมใช้กันอย่าง กว้างขวางสาหรับงานประยุกต์ เช่น อุตสาหกรรมฮาร์ดดิสก์ ชิ้นส่วนยานยนต์ เครื่องมือตัดและวัสดุทางการ แพทย์ และอื่นๆ [5-7]

ส่วนประกอบของผิวเคลือบ Diamond-like Carbon นอกจากคาร์บอนอสัณฐานแล้ว ยังมีส่วนประกอบ ของไฮโดรเจนอีกด้วย โดยจะแบ่งประเภทตามปริมาณของคาร์บอน และ ไฮโดรเจนได้ 4 ประเภทดังรูป และมี สมบัติตามตาราง

amorphous carbon-hydrogen

 มีวเคลือบ Tetrahedral Amorphous Carbon (ta-C) ประกอบด้วยไฮบริไดเซชันแบบ sp³ 80 ถึง 88 เปอร์เซ็นต์ ไม่มีส่วนประกอบของไฮโดรเจน มีความหนาแน่น 3.1 g/cm³ และความแข็ง 80 GPa

 2. ผิวเคลือบ Hydrogenated Tetrahedral Amorphous Carbon (ta-C:H) ประกอบด้วยไฮบริไดเซ ชันแบบsp³ 70 เปอร์เซ็นต์ มีส่วนประกอบของไฮโดรเจน 30 เปอร์เซ็นต์ มีความหนาแน่น 2.4 g/cm³ และ ความแข็ง 50 GPa

 3. ผิวเคลือบ Soft Hydrogenated Amorphous Carbon (Polymer-like a-C:H) ประกอบ ด้วย ไฮบริไดเซชันแบบ sp³ 60 เปอร์เซ็นต์ มีส่วนประกอบของไฮโดรเจน 40 ถึง 50 เปอร์เซ็นต์ มี ความหนาแน่น อยู่ระหว่าง 1.2 ถึง 1.6 g/cm³ และความแข็งน้อยกว่า 10 GPa

 4. ผิวเคลือบ Hard Hydrogenated Amorphous Carbon (Graphite-like a-C:H) ประกอบด้วย ไฮบริไดเซชันแบบ sp³ 40 เปอร์เซ็นต์ มีส่วนประกอบของไฮโดรเจน 30 ถึง 40 เปอร์เซ็นต์ มีความหนาแน่น
 1.6 ถึง 2.2 g/cm³ และความแข็งอยู่ระหว่าง 10 ถึง 20 GPa

	sp ³ (%)	H (%)	Density (g cm ⁻³)	Gap (eV)	Hardness (GPa)
Diamond	100	0	3.515	55	100
Graphite	0	0	2.267	0	
C ₆₀	0	0		1.6	
Glassy C	0	0	1.3-1.55	0.01	3
Evaporated C	0	0	1.9	0.4-0.7	3
Sputtered C	5	0	2.2	0.5	
ta-C	80-88	0	3.1	2.5	80
a-C:H hard	40	30-40	1.6-2.2	1.1-1.7	10-20
a-C:H soft	60	40-50	1.2-1.6	1.7-4.0	<10
ta-C:H	70	30	2.4	2.0-2.5	50
Polyethylene	100	67	0.92	6	0.01

ตารางที่ 1 สมบัติของฟิล์มเคลือบ DLC

การสึกหรอของดอกสว่าน [7]

ในงานเจาะนั้นย่อมเกิดการสึกหรอขึ้น เนื่องจากมีความเค้นกระทำกับผิวดอกสว่าน รวมทั้งอุณหภูมิที่ สูงขึ้นระหว่างการเจาะนั้นก็เป็นหนึ่งในป[ั]จจัยที่ทำให้เกิดการสึกหรอของดอกสว่านทั้งสิ้น ซึ่งการสึกหรอมักจะ เกิดกับ 3 ส่วนต่อไปนี้คือ คมขวาง (Chisel Edge) คมตัด (Cutting Edge) และคมเลื่อย (Land)

ร**ูปที่ 3** ส่วนประกอบของดอกสว่าน

1) การสึกหรอที่คมขวาง (Chisel Edge)

เกิดขึ้นเนื่องจากอัตราการป้อนสูงเกินไป หรือเมื่อชิ้นงานมีความแข็งแรงสูง นอกจากนั้นการสึก หรอที่คมตัดยังแสดงให้เห็นว่าความแข็งแรงของดอกสว่านนั้นเหมาะสมกับชิ้นงาน หรือไม่ 2) การสึกหรอที่คมตัด (Cutting Edge) เกิดขึ้นเนื่องจากความเร็วตัดที่สูงเกินไป ซึ่งการสึกหรอมักจะเกิดขึ้นที่คมตัดด้านนอก (Outer Corner) เนื่องจากเป็นตำแหน่งที่มีความเร็วสูงสุด โดยแบ่งออกเป็น 3 ลักษณะใหญ่ได้ดังนี้

- การสึกหรอที่ปลายคมตัด (Top Face Wear) การสึกหรอเกิดขึ้นที่คมตัดในทิศทางตั้งฉากกับ การเคลื่อนที่ที่ตัดเฉือน

- การสึกหรอที่ผิวมุมหลบ (Flank Wear Land) เป็นการสึกหรอทิศทางเดียวกับทิศทางการตัด เฉือน ซึ่งขนาดของการสึกหรอจะมีผลกระทบจากการเกิดเศษพอกที่คมตัดด้วย

- การสึกหรอที่ผิวร่องคายเศษ (Crater Wear) อาจจะมีการสึกหรอเมื่อใช้ความเร็วตัดสูงมาก

3) การสึกหรอที่คมเลื่อย (Land)

การสึกหรอที่คมเลื่อยจะทำให้ขนาดเส้นผ่านศูนย์กลางที่ปลายสว่านเล็กลง ทำให้เกิดแรงเสียดทาน กับรูเจาะของผิวมากขึ้นสาเหตุที่ทำให้เกิดคมเลื้อยสึกหรอมี 2 สาเหตุสำคัญดังนี้

- วัสดุบางชนิดมีแนวโน้มจะเกิดการพอกตัว เมื่อผ่านการตัดเฉือนทำให้เกิดการเชื่อมเย็น (Cold Welding) บนเครื่องมือ ซึ่งอาจจะเกิดขึ้นที่ร่องคายเศษหรือที่คมเลื่อย ซึ่งจะเป็นผลให้เกิดความฝึดและสึกหรอ อย่างรวดเร็ว

การที่คมเลื่อยสึกหรอข้างเดียว อาจเนื่องมาจากปลอกเรียวที่ใช้มานานจนผิวเรียบมีคุณภาพ
 ไม่ดีการลับคมสว่านที่ไม่ถูกต้องหรือจากเครื่องเจาะที่ใช้มีแกนหมุนที่หมุนได้ไม่กลม

สาเหตุการสึกหรอของดอกสว่าน

ในการใช้งานเครื่องมือตัด บริเวณที่เกิดการสึกหรอคือบริเวณที่เครื่องมือตัดสัมผัสกับเศษโลหะและ ชิ้นงาน การสึกหรอที่เกิดขึ้น 2 ลักษณะคือเกิดบริเวณผิวคายเศษโลหะ และบริเวณผิวด้านข้างของคมตัด การ สึกหรอที่เกิดขึ้นนี้ทำให้เครื่องมือตัดเสื่อมประสิทธิภาพ ซึ่งสาเหตุของการสึกหรอมีดังนี้

การสึกหรอจากการเสียดสี

การที่วัสดุสองชนิดเกิดการเสียดสีกัน วัสดุที่มีความแข็งมากกว่าย่อมมีการสึกหรอน้อยกว่าวัสดุที่อ่อน กว่า และในการเจาะโลหะนั้นอุณหภูมิบริเวณคมตัดจะสูงขึ้น ถือว่าเป็นการเร่งการสึกหรอบริเวณคมตัด ยิ่งกว่านั้นเมื่อเศษโลหะเคลื่อนที่ผ่านบริเวณคมตัด จะทำให้เกิดแรงเฉือนบริเวณผิวสัมผัส หากความเค้นเฉือน ที่เกิดขึ้นนั้นสูงกว่าที่วัสดุของเครื่องมือจะรับได้ จะทำให้เครื่องมือนั้นเกิดความเสียหาย นอกจาก นั้น อาจมี อนุภาคของแข็งที่แปลกปลอมเข้ามา ส่งผลให้เกิดการสึกหรอมากยิ่งขึ้น เช่นเศษทรายที่ยังติดอยู่บริเวณผิว ของชิ้นงานหล่อหรืออนุภาคของแข็งที่ฝั่งตัวอยู่ในวัสดุชิ้นงาน

การสึกหรอที่เกิดจากการเชื่อมติดหรือเยิ้มติดของเศษโลหะ

เศษโลหะที่เชื่อมติดบริเวณคมตัด เกิดขึ้นเนื่องจากอุณหภูมิในกระบวนการเจาะโลหะที่เพิ่มสูง ขึ้นจน ทำให้เศษโลหะอ่อนตัวลง รวมทั้งจากผลของความเสียดทานระหว่างเศษโลหะกับผิวคายเศษโลหะจึงทำให้เศษ โลหะบางส่วนเกิดการเชื่อมติดหรือเยิ้มติดกับคมตัดและพอกตัวหนาขึ้น เมื่อถึงระยะหนึ่งจึงจะแตกออกมา ซึ่ง จะทำให้เนื้อวัสดุของเครื่องมือตัดบางส่วนหลุดตามออกมาด้วย

สมมุติฐาน และกรอบแนวความคิดของโครงการวิจัย

จากการที่ไททาเนียมเป็นวัสดุที่นิยมนำมาใช้ในการผลิตชิ้นงานต่าง ๆ ทั้งนี้เนื่องจากสมบัติเด่นเช่น ความแข็งแรงสูง น้ำหนักเบา ทนสารเคมี ค่าสัมประสิทธิ์ทางความร้อนต่ำกว่าเหล็กธรรมดาและอื่น ๆ แต่ อย่างไรก็ตามในงานเจาะนั้น ถือได้ว่าไททาเนียมเป็นวัสดุที่ทำการเจาะได้ยาก เนื่องจากเป็นวัสดุที่แข็ง การนำ ความร้อนไม่ดีทำให้เกิดความร้อนสูงตกค้างบนดอกสว่าน ส่งผลให้คุณภาพของรูเจาะที่ได้ไม่ดี และเกิดการสึก หรอของดอกสว่านได้ง่าย โดยเฉพาะอย่างยิ่งดอกสว่านที่มีขนาดเล็กที่ต้องใช้ความเร็วรอบสูงมาก ความร้อน จึงสูงมากเช่นกัน ดังนั้นจึงมีแนวคิดในการนำฟิล์มเคลือบ DLC ซึ่งมีสมบัติเด่นในเรื่องความแข็งของผิว เคลือบสูง ค่าสัมประสิทธิ์ความเสียดทานต่ำและทนความร้อน จึงน่าจะสามารถที่จะนำมาประยุกต์ใช้ในงาน เจาะไททาเนียมดังกล่าวได้ ผลที่ได้จะบอกได้ถึงชนิดและเงื่อนไขในการเคลือบฟิล์มเคลือบ DLC ที่เหมาะสม ต่อการเจาะดอกสว่านขนาดเล็ก โดยประเมินจากคุณภาพของรูเจาะ และประเมินจากการสึกหรอของดอก สว่าน ผลที่ได้นั้นจะสามารถนำไปเป็นแนวทางในการประยุกต์ใช้ในอุตสาหกรรมได้หลากหลาย ช่วยเพิ่ม คุณภาพในการผลิตชิ้นงาน และช่วยยืดอายุการใช้งานของดอกสว่านขนาดเล็กให้ยาวนานมากขึ้นได้อีกด้วย

การทบทวนวรรณกรรมที่เกี่ยวข้อง

ปัญหาหลัก ๆที่เกิดจากการเจาะไททาเนียมนั่นคือ คุณภาพของรูเจาะไม่ดี และอัตราการสึกหรอของ ดอกสว่านค่อนข้างเร็ว ในเบื้องต้นโครงงานนี้จึงได้ทบทวนงานวิจัยที่เกี่ยวข้องเพื่อที่จะหาแนวทางแก้ไขโดยใช้ ฟิล์มเคลือบ DLC ดังต่อไปนี้ จากงานวิจัย [8] รายงานว่าดอกสว่านขนาด 6 มิลลิเมตรที่เคลือบด้วย TiAIN (PVD) ช่วยป้องกันอุณหภูมิที่จะเกิดกับดอกสว่าน และดอกสว่านที่เคลือบด้วย DLC ช่วยลดการสึกหรอได้ดี เนื่องจากมีความแข็งสูง จากงานวิจัย [9] รายงานว่าดอกสว่านขนาด 4 มิลลิเมตร WC-Co (spiral point drill) ดีที่สุดในการเจาะ Ti-6AI-4V โดยทำให้เกิดครีบที่รูน้อยที่สุด แต่ไม่ได้เน้นศึกษาเกี่ยวกับการสึกหรอของดอก สว่าน จากงานวิจัย [10] รายงานว่าผิวเคลือบ TiAIN (PVD) และ Nitride ช่วยลดการสึกหรอของดอกสว่านและ ช่วยลดการยึดติดของ aluminum บนดอกสว่าน carbide ได้ และจากงานวิจัย [11] รายงานว่าดอกสว่านวัสดุ carbide ที่เคลือบผิวด้วยฟิล์ม TiN เมื่อทำการเจาะ Ti-6AI-4V แล้วมีการเป่าด้วยลมเพื่อระบายความร้อนก่อน เจาะรูถัดไป จะช่วยลดการยึดติดของวัสดุบนดอกสว่าน และช่วยลดครีบที่เกิดขึ้นบนรูได้

ในปี 2003, Nouari และคณะ [8] ได้เสนอผลงานวิจัยเกี่ยวกับการเจาะ aluminum alloys โดยศึกษา เกี่ยวกับการสึกหรอของดอกสว่านขนาด 6 มิลลิเมตร ชนิดที่เคลือบด้วยฟิล์ม TiAIN, TiN, DLC และไม่ถูก เคลือบผิว ผลการวิจัยแสดงให้เห็นว่าฟิล์ม TiAIN (PVD) ช่วยทำหน้าที่เป็นฟิล์มกันอุณหภูมิที่เกิดขึ้นกับดอก สว่าน จึงช่วยลดอุณหภูมิที่เกิดกับดอกสว่านได้ นอกจากนั้นฟิล์ม DLC (CVD) ซึ่งมีความแข็งสูงมากก็ช่วยลด การสึกหรอได้ดีเมื่อเจาะวัสดุ alloyed steel และ aluminum ดังรูปที่ 4

ร**ูปที่ 4** จำนวนของรูเจาะหลังจากดอกสว่านถูกเคลือบด้วยฟิล์ม DLC

ในปี 2006, Rui Li และคณะ [9] ได้เสนอผลงานวิจัยเกี่ยวกับการเจาะ titanium alloys โดยศึกษา เกี่ยวกับเงื่อนไขที่เหมาะสมในการเจาะ Ti-6AI-4V ด้วยดอกสว่านขนาด 4 มิลลิเมตรที่ทำจากวัสดุ 3 ชนิดคือ HSS (twist drill), WC-Co (twist drill) และ WC-Co (spiral point drill) ดังรูปที่ 5 ผลการวิจัยแสดงให้เห็นว่า ดอกสว่านประเภท WC-Co (spiral point drill) ส่งผลให้เกิดครีบน้อยที่สุด ดังรูปที่ 6 ทั้งนี้เนื่องจาก thrust force ที่บริเวณ S-shape ของดอกสว่านมีค่าน้อยมาก และเนื่องจาก point angle มีมากกว่าดอกสว่าน HSS (twist drill) และ WC-Co (twist drill) ตามลำดับ

รูปที่ 5 ดอกสว่าน a) HSS (twist drill) b) WC-Co (twist drill) c) WC-Co (spiral point drill)

รูปที่ 6 ลักษณะครีบที่รูทางออกของดอกสว่านชนิดต่าง ๆ

ในปี 2005, Rahim [10] ได้เสนอผลงานวิจัยในระดับปริญญาโทเกี่ยวกับการเจาะ Ti-6AI-4V โดยใช้ดอก สว่านที่ทำจากวัสดุ carbide และเคลือบผิวด้วยฟิล์ม TiAIN (PVD) และ Nitride ผลการวิจัยพบว่าฟิล์มเคลือบ ทั้ง 2 ชนิดช่วยลดการสึกหรอของดอกสว่านได้ ทั้งนี้เนื่องจากมีความแข็งแม้ในที่อุณหภูมิสูงก็ตาม สำหรับดอก สว่านที่ไม่ได้ทำการเคลือบผิว จะพบว่าเกิดการยึดติดของ titanium ซึ่งนำไปสู่การสึกหรอของดอกสว่าน ดังรูป ที่ 7

a) Chisel edge

ร**ูปที่ 7** การยึดติดของ titanium บนดอกสว่าน ณ บริเวณต่างๆ

ในปี 2005, Centero และคณะ [11] ได้เสนอผลงานวิจัยเกี่ยวกับการเจาะ Ti-6AI-4V ด้วยดอกสว่านที่ ทำจากวัสดุ carbide ขนาด 6 มิลลิเมตร และผ่านการเคลือบผิวด้วยฟิล์ม TiN จากผลการวิจัยพบว่า เมื่อทำ การเจาะในแต่ละรูแล้ว กรณีที่มีการเป่าด้วยลม (Tool I) เพื่อระบายความร้อนก่อนทำการเจาะในรูต่อไปจะช่วย ลดการสึกหรอและลดการแตกหักของดอกสว่านได้ดีกว่าการเจาะแบบต่อเนื่องโดยไม่มีการเป่าลมระบายความ ร้อน (Tool II) ดังรูปที่ 8 นอกจากนั้นเมื่อทำการเจาะแล้ววัดขนาดของครีบที่เกิดขึ้น จะพบว่าเมื่อมีการเป่า ระบายความร้อนก่อนเจาะรูต่อไป (Tool I) จะช่วยลดขนาดของครีบลงได้ดังรูปที่ 9

ูรูปที่ 8 การแตกของดอกสว่าน a) ใช้ลมเป่า (Tool I) เจาะรูที่ 455 b) ไม่มีลมเป่า (Tool II) เจาะรูที่ 16

รูปที่ 9 เปรียบเทียบความสูงของครีบเมื่อมีการใช้และไม่ใช้ลมระบายความร้อน

วิธีการดำเนินการวิจัย

ในการดำเนินงานโครงการวิจัยเรื่องการปรับปรุงประสิทธิภาพการเจาะขนาดจุลภาคบนไททาเนียม ผสมโดยการเคลือบด้วยฟิล์มคาร์บอนคล้ายเพชรนี้ ได้ทำการแบ่งงานออกเป็น 2 ส่วนดังนี้

<u>ส่วนที่ 1</u> การทดสอบสมบัติของฟิล์มเคลือบที่ได้บนชิ้นงาน Silicon wafer และ Aluminum foil

- นำชิ้นงาน Silicon wafer และ Aluminum foil ไปเคลือบด้วยฟิล์ม DLC, H-DLC, Si-O-DLC และ Si-N-DLC โดยกำหนดความหนาชั้นฟิล์มเท่ากับ 500 นาโนเมตร และทำการ เคลือบด้วยกระบวนการ Plasma Based Ion Implantation (PBII)
- ความแข็งของพีล์มเคลือบทดสอบด้วย Nano indentation hardness tester
- การทดสอบความสามารถในการทนความร้อนของฟิล์มเคลือบ โดยการนำฟิล์มเคลือบที่
 ได้ทั้งหมดมาอบที่อุณหภูมิ 400°C, 650°C และ 900°C เป็นเวลา 1 ชั่วโมง ภายใต้
 บรรยากาศปกติ แล้วปล่อยให้เย็นตัวภายในเตา
- ทำการทดสอบส่วนผสมของฟิล์มเคลือบที่ได้หลังจากถูกอบด้วยอุณหภูมิต่าง ๆด้วยเครื่อง
 Energy Dispersive X-ray Spectroscopy (EDS)
- ทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบที่ได้ด้วยเครื่อง Tribometor แบบ
 Ball on disk โดยที่บอลทำจากวัสดุเหล็กกล้าไร้สนิม SUS440 น้ำหนักกดที่ใช้เท่ากับ
 3 นิวตัน ความเร็วรอบในการทดสอบ 3.14 เซนติเมตรต่อวินาที จำนวน 10,000 รอบ
- ทดสอบสมบัติทางความร้อนของฟิล์มเคลือบด้วยการทดสอบร้อยละการเปลี่ยนแปลง น้ำหนักของฟิล์มเคลือบเมื่อได้รับความร้อนด้วยเครื่อง Thermogravimetric Analyzer (TGA)

<u>ส่วนที่ 2</u> ทำการทดสอบงานเจาะจริงด้วยดอกสว่านที่ถูกเคลือบ บนวัสดุไททาเนียมผสม

- น้ำดอกดอกสว่าน Tungsten carbide ไปเคลือบด้วยฟิล์ม DLC, H-DLC, Si-O-DLC และ Si-N-DLC โดยกำหนดความหนาชั้นฟิล์มเท่ากับ 500 นาโนเมตร และทำการเคลือบด้วย กระบวนการ Plasma Based Ion Implantation (PBII)
- ทำการทดสอบการสึกหรอของดอกสว่านทดสอบด้วยการเจาะด้วยเครื่อง CNC (Computer Numerical Control) บนแผ่นชิ้นงานไททาเนียมผสม เกรด Ti6Al4V หนา 1 มิลลิเมตร จำนวน 200 รู โดยใช้ความเร็วรอบ 19,200 รอบต่อนาที ที่อัตราป้อน 120 มิลลิเมตรต่อนาที
- ตรวจสอบขนาดของรูเจาะโดยใช้กล้อง Optical microscope

ผลการทดลองและการวิเคราะห์

ผลการทดสอบความแข็งของฟิล์มเคลือบชนิดต่าง ๆ

ฟิล์มเคลือบชนิดต่างๆที่ถูกเคลือบบนชิ้นงานแผ่น Silicon wafer ถูกวัดความแข็งของชั้นฟิล์มด้วย เครื่อง Nano indentation hardness tester โดยใช้แรงในการกดที่ผิวฟิล์มเท่ากับ 300 µN ผลการวัดความแข็ง แสดงดังตารางที่ 2

ชนิดฟิล์มเคลือบ	ค่าความแข็งของฟิล์ม (GPa)	ค่าความเค้นของฟิล์ม (GPa)
DLC	9.8	2.85
H-DLC	12.2	1.32
Si-O-DLC	10.0	0.15
Si-N-DLC	11.1	1.02

ตารางที่ 2 ความแข็งของฟิล์มเคลือบชนิดต่าง ๆ

ผลการทดสอบส่วนผสมทางเคมีของฟิล์มเคลือบชนิดต่าง ๆด้วยเครื่อง Energy Dispersive X-ray Spectroscopy (EDS)

จากผลการทดสอบส่วนผสมทางเคมีของฟิล์มเคลือบ DLC ก่อนอบและหลังอบแสดงดังรูปที่ 10 ผล การทดลองพบว่า ฟิล์มเคลือบ DLC ที่ผ่านการอบที่อุณหภูมิ 400°C มีการเปลี่ยนแปลงส่วนผสมทางเคมี เล็กน้อยเมื่อเทียบกับก่อนอบ และเมื่อผ่านการอบที่อุณหภูมิ 650°C พบว่ามีการเพิ่มขึ้นของปริมาณ silicon และ oxygen เป็นอย่างมากเท่ากับ 93.76 at.%Si และ 6.24 at.%O ตามลำดับ ในขณะที่ปริมาณ carbon ลด น้อยลง ทั้งนี้การที่ปริมาณ oxygen เพิ่มมากขึ้นเมื่อผ่านการอบที่อุณหภูมิสูงขึ้น เนื่องจากเกิดปฏิกิริยา oxidation บนชั้นผิวฟิล์ม และ oxygen ที่มีภายในเตาจะทำปฏิกิริยาเข้าแทนที่ carbon ทำให้ปริมาณธาตุ carbon ที่ตรวจสอบหลังการอบมีปริมาณลดลง [12] ผลการทดสอบดังกล่าวแสดงให้เห็นว่าฟิล์มเคลือบ DLC เริ่มมีการเปลี่ยนแปลงส่วนผสมทางเคมีหลังจากผ่านการอบที่อุณหภูมิ 400°C และจะเกิดปฏิกิริยา oxidation อย่างรุนแรงเมื่อผ่านการอบที่อุณหภูมิ 650°C

รูปที่ 10 ส่วนผสมทางเคมีของฟิล์มเคลือบ DLC

จากผลการทดสอบส่วนผสมทางเคมีของฟิล์มเคลือบ H-DLC ก่อนอบและหลังอบแสดงดังรูปที่ 11 ผล การทดลองพบว่า ฟิล์มเคลือบ H-DLC ที่ผ่านการอบที่อุณหภูมิ 400°C มีการเปลี่ยนแปลงส่วนผสมทางเคมี เล็กน้อยเมื่อเทียบกับก่อนอบ และเมื่อผ่านการอบที่อุณหภูมิ 650°C พบว่ามีการเพิ่มขึ้นของปริมาณ silicon และ oxygen เป็นอย่างมากเท่ากับ 89.87 at.%Si และ 5.36 at.%O ตามลำดับ ในขณะที่ปริมาณ carbon ลด น้อยลง ทั้งนี้การที่ปริมาณ oxygen เพิ่มมากขึ้นเมื่อผ่านการอบที่อุณหภูมิสูงขึ้น เนื่องจากเกิดปฏิกิริยา oxidation บนชั้นผิวฟิล์ม และ oxygen ที่มีภายในเตาจะทำปฏิกิริยาเข้าแทนที่ carbon ทำให้ปริมาณธาตุ carbon ที่ตรวจสอบหลังการอบมีปริมาณลดลง [12] ผลการทดสอบดังกล่าวแสดงให้เห็นว่าฟิล์มเคลือบ H-DLC เริ่มมีการเปลี่ยนแปลงส่วนผสมทางเคมีหลังจากผ่านการอบที่อุณหภูมิ 400°C และจะเกิดปฏิกิริยา oxidation อย่างรุนแรงเมื่อผ่านการอบที่อุณหภูมิ 650°C

ร**ูปที่ 11** ส่วนผสมทางเคมีของฟิล์มเคลือบ H-DLC

จากผลการทดสอบส่วนผสมทางเคมีของฟิล์มเคลือบ Si-O-DLC ก่อนอบและหลังอบแสดงดังรูปที่ 12 ผลการทดลองพบว่า ฟิล์มเคลือบ Si-O-DLC ที่ผ่านการอบที่อุณหภูมิ 400°C มีการเปลี่ยนแปลงส่วนผสมทาง เคมีเล็กน้อยเมื่อเทียบกับก่อนอบ และเมื่อผ่านการอบที่อุณหภูมิ 650°C พบว่ามีการเพิ่มขึ้นของปริมาณ silicon และ oxygen เป็นอย่างมากเท่ากับ 73.41 at.%Si และ 26.59 at.%O ตามลำดับ ในขณะที่ปริมาณ carbon ลดน้อยลง ทั้งนี้การที่ปริมาณ oxygen เพิ่มมากขึ้นเมื่อผ่านการอบที่อุณหภูมิสูงขึ้น เนื่องจาก เกิดปฏิกิริยา oxidation บนชั้นผิวฟิล์ม และ oxygen ที่มีภายในเตาจะทำปฏิกิริยาเข้าแทนที่ carbon ทำให้ ปริมาณธาตุ carbon ที่ตรวจสอบหลังการอบมีปริมาณลดลง [12] ผลการทดสอบดังกล่าวแสดงให้เห็นว่าฟิล์ม เกลือบ Si-O-DLC เริ่มมีการเปลี่ยนแปลงส่วนผสมทางเคมีหลังจากผ่านการอบที่อุณหภูมิ 400°C และจะ เกิดปฏิกิริยา oxidation อย่างรุนแรงเมื่อผ่านการอบที่อุณหภูมิ 650°C

รูปที่ 12 ส่วนผสมทางเคมีของฟิล์มเคลือบ Si-O-DLC

จากผลการทดสอบส่วนผสมทางเคมีของฟิล์มเคลือบ Si-N-DLC ก่อนอบและหลังอบแสดงดังรูปที่ 13 ผลการทดลองพบว่า ฟิล์มเคลือบ Si-N-DLC ที่ผ่านการอบที่อุณหภูมิ 400°C มีการเปลี่ยนแปลงส่วนผสมทาง เคมีเล็กน้อยเมื่อเทียบกับก่อนอบ และเมื่อผ่านการอบที่อุณหภูมิ 650°C พบว่ามีการเพิ่มขึ้นของปริมาณ silicon และ oxygen เป็นอย่างมากเท่ากับ 76.02 at.%Si และ 19.35 at.%O ตามลำดับ ในขณะที่ปริมาณ carbon ลดน้อยลง ทั้งนี้การที่ปริมาณ oxygen เพิ่มมากขึ้นเมื่อผ่านการอบที่อุณหภูมิสูงขึ้น เนื่องจาก เกิดปฏิกิริยา oxidation บนชั้นผิวฟิล์ม และ oxygen ที่มีภายในเตาจะทำปฏิกิริยาเข้าแทนที่ carbon ทำให้ ปริมาณธาตุ carbon ที่ตรวจสอบหลังการอบมีปริมาณลดลง [12] ผลการทดสอบดังกล่าวแสดงให้เห็นว่าฟิล์ม เคลือบ Si-N-DLC เริ่มมีการเปลี่ยนแปลงส่วนผสมทางเคมีหลังจากผ่านการอบที่อุณหภูมิ 400°C และจะ เกิดปฏิกิริยา oxidation อย่างรุนแรงเมื่อผ่านการอบที่อุณหภูมิ 650°C

รูปที่ 13 ส่วนผสมทางเคมีของฟิล์มเคลือบ Si-N-DLC

ผลการทดสอบสมบัติทางความร้อนของฟิล์มเคลือบเมื่อได้รับความร้อนด้วย เครื่อง Thermogravimetric Analyzer

ร**ูปที่ 14** การเปลี่ยนแปลงน้ำหนักของฟิล์ม DLC, H-DLC, Si-O-DLC และ Si-N-DLC จากผลการทดลองดังรูปที่ 14 พบว่าฟิล์มเคลือบ DLC มีการเปลี่ยนน้ำหนักอย่างรวดเร็วที่อุณหภูมิ การอบตั้งแต่ 450°C เป็นต้นไป ฟิล์มเคลือบ H-DLC พบว่ามีการเปลี่ยนแปลงน้ำหนักที่อุณหภูมิตั้งแต่ 500°C เป็นต้นไป ฟิล์มเคลือบ Si-O-DLC พบว่ามีการเปลี่ยนแปลงน้ำหนักอุณหภูมิตั้งแต่ 550°C และจากผลการ ทดลอง ฟิล์มเคลือบ Si-N-DLC พบว่ามีการเปลี่ยนแปลงน้ำหนักอุณหภูมิตั้งแต่ 600°C ดังนั้นจากรูปที่ 14 สามารถสรุปได้ว่าฟิล์มเคลือบ Si-N-DLC ซึ่งมีการเปลี่ยนแปลงน้ำหนักอุณหภูมิตั้งแต่ 600°C จังนั้นจากรูปที่ 14 สามารถสรุปได้ว่าฟิล์มเคลือบ Si-N-DLC ซึ่งมีการเปลี่ยนแปลงน้ำหนักช้าที่สุดคือ ตั้งแต่ 600°C จึงน่าจะ สามารถทนอุณหภูมิได้สูงที่สุดเมื่อเทียบกับฟิล์มเคลือบทั้งหมด

ผลการทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบทดสอบด้วย เครื่อง Tribometor แบบ Ball on disk

ผลการทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบชนิดต่างๆที่ไม่ผ่านการอบดังรูปที่ 15 พบว่า ฟิล์มเคลือบ Si-N-DLC มีค่าสัมประสิทธิ์ความเสียดทานต่ำที่สุด เท่ากับ 0.039 ในขณะที่ฟิล์มเคลือบ Si-O-DLC, H-DLC และ DLC มีค่าสัมประสิทธิ์ความเสียดทานเท่ากับ 0.07, 0.11 และ 0.14 ตามลำดับ ทั้งนี้ การที่ฟิล์มเคลือบ Si-N-DLC มีค่าสัมประสิทธิ์ความเสียดทานต่ำที่สุดเนื่องจากมีค่าความแข็งของฟิล์มสูง เท่ากับ 11.1 GPa และมีค่าความเค้นในฟิล์มค่อนข้างต่ำ เท่ากับ 1.02 GPa ดังตารางที่ 2

รูปที่ 15 ค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบที่ไม่ผ่านการอบ

ผลการทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบ DLC ที่ผ่านการอบอุณหภูมิต่าง ๆดังรูป ที่ 16 พบว่า ฟิล์มเคลือบ DLC เมื่อผ่านการอบที่อุณหภูมิ 400°C มีค่าสัมประสิทธิ์ความเสียดทานใกล้เคียงกับ ก่อนอบซึ่งมีค่าเท่ากับ 0.14 แสดงให้เห็นว่า ณ อุณหภูมิดังกล่าว ฟิล์มเคลือบ DLC ยังไม่เกิดการเปลี่ยนแปลง ของสมบัติ และเมื่อผ่านการอบที่อุณหภูมิ 650°C พบว่ามีค่าสัมประสิทธิ์ความเสียดทานสูงมากเท่ากับ 0.8 ซึ่งสอดคล้องกับการทดสอบส่วนผสมทางเคมีดังรูปที่ 10 ซึ่งแสดงให้เห็นถึงฟิล์มเคลือบ DLC มีการ เปลี่ยนแปลงส่วนผสมทางเคมีเล็กน้อยเมื่อผ่านการอบที่ 400°C และมีการเปลี่ยนแปลงส่วนผสมทางเคมีอย่าง มากเมื่อผ่านการอบที่อุณหภูมิ 650°C นอกจากนั้นยังสอดคล้องกับผลการทดสอบ TGA ดังรูปที่ 14 ซึ่งแสดง ให้เห็นถึงการเปลี่ยนแปลงน้ำหนักของฟิล์มอย่างมากหลังจากถูกให้ความร้อนตั้งแต่ 450°C

ร**ูปที่ 17** ค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบ H-DLC

ผลการทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบ H-DLC ที่ผ่านการอบอุณหภูมิต่างๆดัง รูปที่ 17 พบว่า ฟิล์มเคลือบ H-DLC เมื่อผ่านการอบที่อุณหภูมิ 400°C มีค่าสัมประสิทธิ์ความเสียดทาน ใกล้เคียงกับก่อนอบซึ่งมีค่าเท่ากับ 0.11 แสดงให้เห็นว่า ณ อุณหภูมิดังกล่าว ฟิล์มเคลือบ H-DLC ยังไม่เกิด การเปลี่ยนแปลงของสมบัติ และเมื่อผ่านการอบที่อุณหภูมิ 650°C พบว่ามีค่าสัมประสิทธิ์ความเสียดทานสูง มากเท่ากับ 0.8 ซึ่งสอดคล้องกับการทดสอบส่วนผสมทางเคมีดังรูปที่ 11 ซึ่งแสดงให้เห็นถึงฟิล์มเคลือบ H-DLC มีการเปลี่ยนแปลงส่วนผสมทางเคมีเล็กน้อยเมื่อผ่านการอบที่ 400°C และมีการเปลี่ยนแปลงส่วนผสม ทางเคมีอย่างมากเมื่อผ่านการอบที่อุณหภูมิ 650°C นอกจากนั้นยังสอดคล้องกับผลการทดสอบ TGA ดังรูปที่ 14 ซึ่งแสดงให้เห็นถึงการเปลี่ยนแปลงน้ำหนักของฟิล์มอย่างมากหลังจากถูกให้ความร้อนตั้งแต่ 500°C

รูปที่ 18 ค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบ Si-O-DLC

ผลการทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบ Si-O-DLC ที่ผ่านการอบอุณหภูมิต่างๆ ดังรูปที่ 18 พบว่า ฟิล์มเคลือบ Si-O-DLC เมื่อผ่านการอบที่อุณหภูมิ 400°C มีค่าสัมประสิทธิ์ความเสียดทาน ต่ำกว่าก่อนอบ โดยมีค่าเท่ากับ 0.039 ในขณะที่ก่อนอบมีค่าเท่ากับ 0.07 ทั้งนี้ การที่ค่าสัมประสิทธิ์ความเสียด ทานมีค่าต่ำกว่าก่อนอบเนื่องจากเกิดปฏิกิริยา oxidation บนชั้นผิวฟิล์ม ซึ่งส่งผลให้เกิดชั้น silicon-oxide ขึ้น บนผิวฟิล์มดังกล่าว [12] นอกจากนั้นเมื่อผ่านการอบที่อุณหภูมิ 650°C พบว่ามีค่าสัมประสิทธิ์ความเสียด ทานสูงมากเท่ากับ 0.8 ซึ่งสอดคล้องกับการทดสอบส่วนผสมทางเคมีดังรูปที่ 12 ซึ่งแสดงให้เห็นถึงฟิล์ม เคลือบ Si-O-DLC มีการเปลี่ยนแปลงส่วนผสมทางเคมีเล็กน้อยเมื่อผ่านการอบที่ 400°C และมีการ เปลี่ยนแปลงส่วนผสมทางเคมีอย่างมากเมื่อผ่านการอบที่อุณหภูมิ 650°C นอกจากนั้นยังสอดคล้องกับผลการ ทดสอบ TGA ดังรูปที่ 14 ซึ่งแสดงให้เห็นถึงการเปลี่ยนแปลงน้ำหนักของฟิล์มอย่างมากหลังจากถูกให้ความ ร้อนตั้งแต่ 550°C

ร**ูปที่ 19** ค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบ Si-N-DLC

ผลการทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบ Si-N-DLC ที่ผ่านการอบอุณหภูมิต่าง ๆ ดังรูปที่ 19 พบว่า ฟิล์มเคลือบ Si-N-DLC เมื่อผ่านการอบที่อุณหภูมิ 400°C มีค่าสัมประสิทธิ์ความเสียดทาน สูงกว่าก่อนอบ โดยมีค่าเท่ากับ 0.10 ในขณะที่ก่อนอบมีค่าเท่ากับ 0.039 นอกจากนั้นเมื่อผ่านการอบที่ อุณหภูมิ 650°C พบว่ามีค่าสัมประสิทธิ์ความเสียดทานสูงมากเท่ากับ 0.8 ซึ่งสอดคล้องกับการทดสอบ ส่วนผสมทางเคมีดังรูปที่ 13 ซึ่งแสดงให้เห็นถึงฟิล์มเคลือบ Si-N-DLC มีการเปลี่ยนแปลงส่วนผสมทางเคมี เล็กน้อยเมื่อผ่านการอบที่ 400°C และมีการเปลี่ยนแปลงส่วนผสมทางเคมีอย่างมากเมื่อผ่านการอบที่อุณหภูมิ 650°C นอกจากนั้นยังสอดคล้องกับผลการทดสอบ TGA ดังรูปที่ 14 ซึ่งแสดงให้เห็นถึงการเปลี่ยนแปลง น้ำหนักของฟิล์มอย่างมากหลังจากถูกให้ความร้อนตั้งแต่ 600°C

ผลการทดสอบการเจาะบนแผ่นไททาเนียมผสม เกรด Ti6Al4V จำนวน 200 รู

จากการวัดขนาดของดอกสว่านและขนาดรูเจาะหลังการทดสอบการเจาะบนแผ่นไททาเนียมผสม จำนวน 200 รู พบว่าขนาดของรูเจาะมีแนวโน้มทั้งเพิ่มขึ้นและลดลง ซึ่งการลดลงของขนาดรูเจาะ มี ความสัมพันธ์กับขนาดของดอกสว่านที่ลดลงด้วยเช่นกันเนื่องจากการสึกหรอจากการเสียดสี และการเพิ่มขึ้น ของขนาดรูเจาะที่มีความสัมพันธ์กับขนาดของดอกสว่านที่เพิ่มขึ้นเนื่องจากการสึกหรอที่เกิดจากการเชื่อมติด ของเศษโลหะ ดังรูปที่ 20

a) การสึกหรอของดอกสว่านเนื่องจากการเสียดสี

b) การสึกหรอของดอกสว่านเนื่องจากการเชื่อมติด

ร**ูปที่ 20** ลักษณะการสึกหรอที่พบหลังการทดสอบการเจาะ 200 รู ตรวจสอบด้วย SEM ขยาย 500 เท่า

รูปที่ 21 ขนาดของดอกสว่านก่อนและหลังการทดสอบการเจาะจำนวน 200 รู

จากรูปที่ 21 แสดงถึงขนาดของดอกสว่านก่อนและหลังจากทำการเจาะจำนวน 200 รู ที่เคลือบผิวด้วย ฟิล์มเคลือบ DLC, H-DLC, Si-O-DLC และ Si-N-DLC จากผลการวัดขนาดดอกสว่านพบว่า ดอกสว่านที่ไม่ เคลือบผิวมีขนาดใหญ่ขึ้น 2% เมื่อเปรียบเทียบกับก่อนเจาะ และดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ DLC และ Si-O-DLC มีขนาดใหญ่ขึ้น 1% และ 1.5% ตามลำดับ ในขณะที่ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ DLC Si-N-DLC มีแนวโน้มขนาดของดอกสว่านที่ลดลง 1% และดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ H-DLC พบว่าแทบจะไม่มีการเปลี่ยนแปลงของขนาดดอกสว่าน จากการลดลงของขนาดของดอกสว่านที่เคลือบด้วย ฟิล์ม Si-N-DLC อาจจะเนื่องจากเกิดการสึกหรอของดอกสว่านเนื่องจากการเสียดสี ในขณะที่ดอกสว่านซึ่งไม่ ผ่านการเคลือบและผ่านการเคลือบด้วยฟิล์มอื่นๆ ซึ่งขนาดของดอกสว่านใหญ่ขึ้น อาจจะเนื่องจากเกิดการ เชื่อมติดของเศษโลหะบนดอกสว่าน จากรูปที่ 22 ขนาดรูเจาะที่เจาะด้วยดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบทุกชนิดได้แก่ DLC, H-DLC, Si-O-DLC และ Si-N-DLC นั้น จะพบว่าช่วงรูเจาะที่ 1 ถึง 60 ขนาดของรูเจาะที่วัดได้มีแนวโน้มที่ เพิ่มขึ้น คาดว่าเนื่องจากเกิดการยึดติดของไททาเนียมบนดอกสว่านจึงส่งผลทำให้ขนาดของรูเจาะเพิ่มขึ้นด้วย เช่นกัน และในช่วงหลังจากรูเจาะที่ 60 ถึง 80 พบว่าขนาดของรูเจาะมีแนวโน้มลดลงเล็กน้อย คาดว่าอาจจะ เกิดจากเศษของไททาเนียมที่ยึดติดบนดอกสว่านบางส่วนหลุดออกไป จึงส่งผลทำให้ขนาดของรูเจาะมี แนวโน้มลดลง และหลังจากนั้นพบว่ามีแนวโน้มขนาดรูเจาะที่เพิ่มขึ้นอีกครั้ง ดังรูปใน ภาคผนวก ก.

รูปที่ 22 ขนาดของรูเจาะหลังการทดสอบการเจาะที่ตำแหน่งต่างๆ

จากรูปที่ 23 แสดงร้อยละการเปลี่ยนแปลงของขนาดดอกสว่านเมื่อทำการวัดขนาดของดอกสว่านก่อน และหลังทดสอบการเจาะ พบว่าขนาดของดอกสว่านที่เปลี่ยนแปลงมีความสัมพันธ์กับขนาดของรูเจาะดังรูปที่ 22 เช่นกัน ซึ่งดอกสว่านที่ไม่ทำการเคลือบผิว (Uncoated) มีขนาดเปลี่ยนแปลงมากที่สุด รองลงมาคือดอก สว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-O-DLC, DLC และ Si-N-DLC ตามลำดับ ส่วนดอกสว่านที่แทบจะไม่มี การเปลี่ยนแปลงขนาดของดอกสว่านคือ H-DLC

จากการที่ดอกสว่านที่เคลือบด้วยฟิล์ม H-DLC แล้วนำไปทำการเจาะ ซึ่งแสดงผลการทดลองว่าขนาด ของดอกสว่านก่อนเจาะและหลังเจาะจำนวน 200 รูนั้น แทบจะไม่แตกต่างกันดังแสดงในรูปที่ 23 ซึ่งสอดคล้อง กับขนาดของรูเจาะที่ไม่แตกต่างกันดังแสดงในรูปที่ 22 ทั้งนี้เนื่องจากฟิล์มเคลือบ H-DLC มีค่าความแข็งของ ฟิล์มสูงที่สุดเท่ากับ 12.2 GPa ดังตารางที่ 2 นอกจากนั้นผลการทดสอบส่วนผสมทางเคมีของฟิล์ม H-DLC ที่ อุณหภูมิ 650°C ซึ่งแสดงปริมาณ carbon ที่หลงเหลือมากที่สุดเท่ากับ 4.76 at.%C ดังรูปที่ 11 และยัง สามารถคงค่าสัมประสิทธิ์ความเสียดทานไว้ได้เท่ากับ 0.11 ในที่อุณหภูมิสูงถึง 400°C ดังแสดงในรูปที่ 17 ดังนั้นเมื่อพิจารณาในส่วนของขนาดของดอกสว่านก่อนและหลังเจาะ โดยวิเคราะห์ในเชิงของความแม่นยำของ ขนาดดอกสว่านก่อนและหลังเจาะ ซึ่งจะส่งผลต่อความแม่นยำของขนาดรูเจาะเช่นกัน จึงพบว่าดอกสว่านที่ เคลือบด้วยฟิล์มเคลือบ H-DLC ยืดอายุการใช้งานได้มากที่สุดคือ 2 เท่า ในขณะที่ฟิล์ม DLC และ Si-N-DLC ยืดอายุการใช้งานได้ 1 เท่า ส่วน Si-O-DLC ยืดอายุการใช้งานได้มากที่สุดคือ 0.5 เท่า ดังรูปที่ 23

ร**ูปที่ 23** ขนาดของดอกสว่านที่เปลี่ยนแปลงหลังจากทำการเจาะ 200 ครั้ง

ผลการวัดการสึกหรอของดอกสว่านด้วยกล้องจุลทรรศน์แบบส่องกราด

(Scanning electron microscope: SEM)

การวิเคราะห์ผลด้วยกล้องจุลทรรศน์แบบส่องกราด (Scanning electron microscope: SEM) เพื่อ ยืนยันผลการสึกหรอของดอกสว่านและความเรียบผิวของผนังรูเจาะ นอกจากการวิเคราะห์ผลการสึกหรอของ ดอกสว่านที่เกิดการเชื่อมติดของเศษโลหะจะต้องวิเคราะห์ธาตุเชิงปริมาณ (Energy Dispersive X-Ray Spectrometer; EDS) เพื่อยืนยันผลของธาตุโลหะที่เกิดการยึดติดบนดอกสว่าน จากรูปที่ 24 แสดงถึงดอก สว่านที่ไม่เคลือบผิว (Uncoated) ก่อนทดสอบการเจาะ และรูปที่ 25 แสดงถึงดอกสว่านที่ไม่เคลือบผิวหลัง ทดสอบการเจาะ พบว่าบริเวณผิวของดอกสว่านเกิดการสึกหรอจากการเชื่อมติดของเศษโลหะดังรูปที่ 26

ร**ูปที่ 24** ดอกสว่านที่ไม่ผ่านการเคลือบผิวก่อนทดสอบการเจาะ

รูปที่ 25 ดอกสว่านที่ไม่ผ่านการเคลือบผิวหลังทดสอบการเจาะ

ร**ูปที่ 26** ดอกสว่านที่ไม่ผ่านการเคลือบผิวเกิดการสึกหรอที่เกิดจากการเชื่อมติดของเศษโลหะ

ร**ูปที่ 27** ธาตุที่พบบริเวณผิวของดอกสว่านที่ไม่ผ่านการเคลือบผิวด้วยวิธีการวิเคราะห์ธาตุเชิงปริมาณ (Energy Dispersive X-Ray Spectrometer; EDS)

ร**ูปที่ 28** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-N-DLC

ร**ูปที่ 29** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-N-DLC เกิดการสึกหรอจากการเสียดสี จนเกิดการหลุดลอกของฟิล์มเคลือบ รูปที่ 27 แสดงการเชื่อมติดของเศษไททาเนียมบนดอกสว่านของดอกสว่านที่ไม่ผ่านการเคลือบผิว ด้วยวิธีการวิเคราะห์ผลด้วยกล้องจุลทรรศน์แบบส่องกราดแล้วจะต้องยืนยันผลด้วยการวิเคราะห์ธาตุเชิง ปริมาณ (Energy Dispersive X-Ray Spectrometer: EDS) เพื่อแสดงถึงธาตุที่เชื่อมติดกับผิวดอกสว่าน จาก รูปแสดงการพบธาตุไททาเนียมในปริมาณที่สูงมากถึง 38.31 at.%Ti ที่ผิวของดอกสว่าน ดังนั้นจึงแสดงให้ เห็นว่าไททาเนียมเกิดการยึดติดบนบริเวณผิวของดอกสว่านที่ไม่ผ่านการเคลือบผิว จึงส่งผลให้ขนาดของ รูเจาะและขนาดของดอกสว่านเพิ่มขึ้น

นอกจากนั้น รูปที่ 29-30 แสดงถึงดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-N-DLC พบว่าบริเวณผิว ของดอกสว่านเกิดการสึกหรอจากการเสียดสี จึงส่งผลทำให้เกิดการหลุดลอกของฟิล์มเคลือบและมีการแตกหัก ของดอกสว่านเกิดขึ้น ซึ่งส่งผลทำให้ขนาดของดอกสว่านและรูเจาะลดลง

สรุปผลการทดลองและข้อเสนอแนะ

1. การทดสอบส่วนผสมทางเคมีของฟิล์มเคลือบชนิดต่าง ๆที่ถูกอบด้วยอุณหภูมิต่างกัน

จากผลการทดสอบส่วนผสมทางเคมีของฟิล์มเคลือบก่อนอบและหลังอบ พบว่าฟิล์มเคลือบ DLC, H-DLC, Si-O-DLC และ Si-N-DLC ที่ผ่านการอบที่อุณหภูมิ 400°C มีการเปลี่ยนแปลงส่วนผสมทางเคมีเล็กน้อย เมื่อเทียบกับก่อนอบ และเมื่อผ่านการอบที่อุณหภูมิ 650°C พบว่ามีการเพิ่มขึ้นของปริมาณ silicon และ oxygen ในขณะที่ปริมาณ carbon ลดน้อยลงเนื่องจากเกิดปฏิกิริยา oxidation บนชั้นผิวฟิล์ม นอกจากนั้น พบว่าฟิล์มเคลือบ H-DLC แสดงให้เห็นถึงการเปลี่ยนแปลงของส่วนผสมทางเคมีน้อยที่สุด ณ อุณหภูมิการอบ ที่ 650°C โดยจะพบว่าอุณหภูมิดังกล่าวยังคงมีปริมาณ carbon อยู่เท่ากับ 4.76 at.%C ซึ่งมากที่สุดเมื่อเทียบ กับฟิล์มเคลือบชนิดอื่น ซึ่งอาจจะกล่าวได้ว่าฟิล์ม H-DLC เกิดปฏิกิริยา oxidation น้อยที่สุดที่อุณหภูมิสูง

2. การทดสอบสมบัติทางความร้อนของฟิล์มเคลือบเมื่อได้รับความร้อน

จากผลการทดสอบร้อยละการเปลี่ยนแปลงของน้ำหนักพีล์มเคลือบเมื่อได้รับความร้อน พบว่าพีล์ม เคลือบ DLC, H-DLC, Si-O-DLC และ Si-N-DLC เริ่มมีการสูญเสียของน้ำหนักที่อุณหภูมิตั้งแต่ 450°C, 500°C, 550°C และ 600°C เป็นตันไป ตามลำดับ จากผลการทดลองดังกล่าวกล่าวได้ว่าพีล์มเคลือบ Si-N-DLC ซึ่งมีการเปลี่ยนแปลงน้ำหนักช้าที่สุดคือ ตั้งแต่ 600°C เป็นตันไปสามารถทนอุณหภูมิได้สูงที่สุดเมื่อ เทียบกับพีล์มเคลือบทั้งหมด

3. การทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบก่อนอบและฟิล์มเคลือบที่ผ่านการอบ

ผลการทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบที่ไม่ผ่านการอบ พบว่าฟิล์มเคลือบ Si-N-DLC มีค่าสัมประสิทธิ์ความเสียดทานต่ำที่สุด เท่ากับ 0.039 ในขณะที่ฟิล์มเคลือบ Si-O-DLC, H-DLC และ DLC มีค่าสัมประสิทธิ์ความเสียดทานเท่ากับ 0.07, 0.11 และ 0.14 ตามลำดับ ทั้งนี้การที่ฟิล์มเคลือบ Si-N-DLC มีค่าสัมประสิทธิ์ความเสียดทานต่ำที่สุดเนื่องจากมีค่าความแข็งของฟิล์มสูงและค่าความเค้นในผิวฟิล์มต่ำ ผลการทดสอบค่าสัมประสิทธิ์ความเสียดทานต่ำที่สุดเนื่องจากมีค่าความแข็งของฟิล์มสูงและค่าความเค้นในผิวฟิล์มต่ำ ผลการทดสอบค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบที่ผ่านการอบที่อุณหภูมิ 400°C พบว่า ฟิล์มเคลือบ DLC และ H-DLC มีค่าสัมประสิทธิ์ความเสียดทานใกล้เคียงกับก่อนอบ ในขณะที่ฟิล์มเคลือบ Si-O-DLC มีค่าสัมประสิทธิ์ความเสียดทานมีค่าต่ำกว่าก่อนอบเล็กน้อยเนื่องจากเกิดชั้น silicon-oxide บนผิวฟิล์ม และฟิล์มเคลือบ Si-N-DLC มีค่าสัมประสิทธิ์ความเสียดทานสูงกว่าก่อนอบ นอกจากนั้นพบว่าฟิล์มเคลือบทุก ชนิดที่ผ่านการอบที่อุณหภูมิ 650°C พบว่ามีค่าสัมประสิทธิ์ความเสียดทานสูงมาก ทั้งนี้ค่าสัมประสิทธิ์ความ เสียดทาน ณ อุณหภูมิต่างๆสอดคล้องกับผลการทดสอบส่วนผสมเคมีและผลการทดสอบ TGA

4. การทดสอบการเจาะบนแผ่นไททาเนียมผสม

จากการทดสอบการเจาะบนแผ่นไททาเนียมผสมจำนวน 200 รูพบว่า ดอกสว่านที่ไม่ผ่านการเคลือบ ผิวมีขนาดใหญ่ขึ้น 2% ส่วนดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ DLC และ Si-O-DLC มีขนาดที่ใหญ่ขึ้น 1% และ 1.5% ตามลำดับ ทั้งนี้เนื่องจากเกิดการเชื่อมติดของไททาเนียมผสมบนผิวดอกสว่าน ในขณะที่ดอกสว่าน ที่เคลือบผิวด้วยฟิล์มเคลือบ Si-N-DLC มีขนาดของดอกสว่านที่เล็กลง 1% เนื่องจากเกิดการหลุดลอกของ ฟิล์มและเกิดการสึกหรอของดอกสว่าน ส่วนดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ H-DLC พบว่าแทบจะไม่มี การเปลี่ยนแปลงของขนาดดอกสว่าน ซึ่งแสดงให้เห็นว่าฟิล์มเคลือบ H-DLC ไม่เกิดการเชื่อมติดของไททา เนียมผสมบนดอกสว่านและมีความสามารถต้านทานการสึกหรอที่เกิดจากการเสียดสีได้ดีที่สุด ทั้งนี้เนื่องจาก ฟิล์มเคลือบ H-DLC มีค่าความแข็งของฟิล์มสูงที่สุดเท่ากับ 12.2 GPa นอกจากนั้นผลการทดสอบส่วนผสม ทางเคมีของฟิล์ม H-DLC ที่อุณหภูมิ 650°C ซึ่งแสดงปริมาณ carbon ที่หลงเหลือมากที่สุดเท่ากับ 4.76 at.%C และยังสามารถคงค่าสัมประสิทธิ์ความเสียดทานไว้ได้เท่ากับ 0.11 ในที่อุณหภูมิสูงถึง 400°C ดังนั้น เมื่อพิจารณาในส่วนของขนาดของดอกสว่านก่อนและหลังเจาะ โดยวิเคราะห์ในเชิงของความแม่นยำของขนาด ดอกสว่านก่อนและหลังเจาะ ซึ่งจะส่งผลต่อความแม่นยำของขนาดรูเจาะเช่นกัน จึงพบว่าดอกสว่านที่เคลือบ ด้วยฟิล์มเคลือบ H-DLC ยึดอายุการใช้งานได้มากที่สุดคือ 2 เท่า ในขณะที่ฟิล์ม DLC และ Si-N-DLC ยืดอายุ การใช้งานได้ 1 เท่า ส่วน Si-O-DLC ยึดอายุการใช้งานได้มากที่สุดคือ 0.5 เท่า

5. ข้อเสนอแนะ

ความเป็นไปได้ในการนำงานวิจัยนี้มีความเป็นไปได้สูง แต่ค่าใช้จ่ายในการเคลือบผิวก็ค่อนข้างสูง
 เช่นเดียวกัน

- อาจจะต้องมีการเปลี่ยนวัสดุที่ทำการเจาะ เพื่อให้มีความหลากหลายในการนำไปประยุกต์ใช้งาน

 อุตสาหกรรมที่คาดว่าจะนำไปใช้ได้อย่างดีคืออุตสาหกรรมการผลิตวัสดุทางการแพทย์ เช่นการผลิต แผ่นดามกระดูกซึ่งทำจากวัสดุไททาเนียมผสมเช่นเดียวกัน แต่อาจจะต้องมีการตรวจสอบคุณภาพภายใน รูเจาะมากขึ้น

- ในการศึกษาครั้งต่อไปควรเพิ่มปริมาณการทดสอบการเจาะที่มากกว่า 200 รู เพื่อแสดงให้เห็นการ สึกหรอที่ชัดเจนขึ้น

เอกสารอ้างอิง

- [1] Thorne, L., 2001, Metalworking production, pp. 15-16.
- [2] Roy, R.K., Lee, K.R., 2007, Journal of Biomedical Materials Research, Vol. 83, pp. 72.
- [3] Lifang Xia, Mengren Sun, Jiaxun Liao, Diamond Relat. Mater. 14 (2005) 42.
- [4] Conrad, J.R., Castagna, T., 1986, Bull. Am. Phys. Soc., Vol. 31, pp. 1479.
- [5] Kwak, S.C.H., Wang, J., Chu, P.K., 2005, Diamond Relat. Mater., Vol. 14, pp. 78.
- [6] Cruz, R., Rao, J., Rose, T., Lawson, K., Nicholls, J.R., 2006, Diamond Relat. Mater., Vol. 15, pp. 2055.
- [7] Shirakura, A., Nakaya, M., Koga, Y., Kodoma, H., Hasebe, T., Suzuki, T., 2006, Thin Solid Films, Vol. 494, pp. 84.
- [8] Nouari, M., List, G., Girot, F., Coupard, D., 2003, Wear, Vol. 255, pp. 1359.
- [9] Li, R., Hegde, P., Shih, A.J., 2007, Machine Tools and Manufacture, Vol. 47, pp. 63.
- [10] Abd. Rahim, Erween (2005), Master thesis, Universiti Teknologi Malaysia, Faculty of Mechanical Engineering.
- [11] Cantero, J.L., Tardio, M.M., Canteli, J.A., Marcos, M., Miguelez, M.H., 2005, Machine Tools and Manufacture, Vol. 45, pp. 1246.
- [12] Moolsradoo, N., Abe, S., Watanabe, S., 2011, Advances in Materials Science and Engineering, Vol. 2011, pp. 1.

ผลงานตีพิมพ์

- ญาณี กลั่นภูมิศรี, ณัชชา ขุนสิริมา, รชฏ เจิรญธรรม, Shuichi Watanabe, ณัฏฐนันท์ มูลสระดู่,
 2557, "การศึกษาอิทธิพลของความร้อนที่มีผลต่อค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบ คาร์บอนคล้ายเพชร (DLC)", การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลแห่งประเทศไทย ครั้งที่
 28, โรงแรมพลูแมน ราชาออร์คิด, ขอนแก่น, หน้า 538-542.
- จตุรพร วิรัชลาภ, ณฐมน ณภัทรบดินทร์, สิริยา บุษยา, Shuichi Watanabe, ณัฏฐนันท์ มูลสระดู่,
 2557, "การศึกษาอิทธิพลของธาตุเติมต่อความสามารถในการต้านทานการกัดกร่อนของฟิล์มเคลือบ คาร์บอนคล้ายเพชร (DLC)", การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลแห่งประเทศไทย ครั้งที่
 28, โรงแรมพลูแมน ราชาออร์คิด, ขอนแก่น, หน้า 543-547.
- วรโชติ หรือตระกูล, นพนันท์ ธนบริบูรณ์พงศ์, สิริรวี สุภาคดี, Shuichi Watanabe, ณัฏฐนันท์ มูล สระดู่, 2557, "การศึกษาอิทธิพลของฟิล์มเคลือบคาร์บอนคล้ายเพชร (DLC) ที่มีผลต่อการต้านทาน การสึกหรอของดอกสว่านขนาดเล็ก", การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลแห่งประเทศ ไทย ครั้งที่ 28, โรงแรมพลูแมน ราชาออร์คิด, ขอนแก่น, หน้า 548-552.
- รัตติยา รบศึก, ณัฏฐนันท์ มูลสระดู่, 2558, "การศึกษาอิทธิพลของอุณหภูมิการให้ความร้อนซ้ำต่อ สมบัติทางไตรบอโลยีของฟิล์มเคลือบ H-DLC, TiN และ TiCN", การประชุมวิชาการข่ายงาน วิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2558, โรงแรมดิเอมเมอรัลด์, กรุงเทพ, หน้า 775-779.
- อนุลักษณ์ จันทร์ยอย, ณัฏฐนันท์ มูลสระดู่, 2558, "การศึกษาอิทธิพลของอุณหภูมิในการอบต่อค่า สัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบ H-DLC, TiSiXN และ AlTiN", การประชุมวิชาการ ข่ายงานวิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2558, โรงแรมดิเอมเมอรัลด์, กรุงเทพ, หน้า 780-784.
- 45ินทร์ สุนทรพันธ์, กฤตพนธ์ จันทร์เชิดชู, วราวุธ ฤทธิแพทย์, ณัฏฐนันท์ มูลสระดู่, 2558, "การศึกษาอิทธิพลของธาตุซิลิคอนที่ส่งผลต่อค่าสัมประสิทธิ์ความเสียดทานของฟิล์มเคลือบคาร์บอน คล้ายเพชรที่ถูกอบภายใต้อุณหภูมิสูง", การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2558, โรงแรมดิเอมเมอรัลด์, กรุงเทพ, หน้า 785-790.
- รัญวรัตน์ จากสกุล, ณัฏฐนันท์ มูลสระดู่, 2558, "การศึกษาสมบัติด้านการต้านทานการกัดกร่อน ของฟิล์มเคลือบคาร์บอนคล้ายเพชร", การประชุมวิชาการวิจัยและนวัตกรรมสร้างสรรค์ ครั้งที่ 2, โรงแรมดิเอมเพรส, เชียงใหม่, หน้า 304-308.
- ธนาวุฒิ มีอานุภาพ, นภัสสร ศรีวิเซียรโชค, ณัฏฐนันท์ มูลสระดู่, 2558, "การศึกษาอิทธิพลทาง ความร้อนที่ส่งผลต่อสมบัติของฟิล์มเคลือบคาร์บอนคล้ายเพชรที่ถูกเติมด้วยธาตุซิลิกอนและ ออกซิเจน", การประชุมวิชาการวิจัยและนวัตกรรมสร้างสรรค์ ครั้งที่ 2, โรงแรมดิเอมเพรส, เชียงใหม่, หน้า 332-336.

ภาคผนวก ก.

ผลการทดสอบการเจาะ (Drilling Test)

	ขนาดของรูเจาะ (mm)		ค่าความ	เปลร์เซ็นต์ดาวบ
ชนิดฟิล์มเคลือบ	ก่อนทดสอบ	หลังทดสอบ	เปลี่ยนแปลง	
	การเจาะ	การเจาะ	(mm)	1045101101
Uncoated	1	1.02	0.02	2
DLC	1	1.01	0.01	1
H-DLC	0.995	0.995	0	0
Si-O-DLC	1.01	1.025	0.015	1.485
Si-N-DLC	1.01	1	0.01	0.99

ตารางที่ ก.1 ขนาดของดอกสว่านก่อนและหล*ั*งทำการทดสอบเจาะ

ตารางที่ ก.2 ขนาดของรูเจาะตั้งแต่รูที่ 1 ถึงรูที่ 200

รูเจาะที่	ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ (mm)					
	Uncoated	DLC	H-DLC	Si-O-DLC	Si-N-DLC	
1	1.024	1.012	1.03	1.011	1.056	
20	1.036	1.028	1.038	1.033	1.065	
40	1.04	1.028	1.033	1.035	1.065	
60	1.035	1.031	1.031	1.03	1.065	
80	1.035	1.016	1.031	1.027	1.067	
120	1.035	1.026	1.03	1.024	1.061	
160	1.031	1.035	1.038	1.031	1.055	
200	1.026	1.037	1.03	1.019	1.051	

ร**ูปที่ ก.1** ดอกสว่านที่ไม่ทำการเคลือบผิวก่อนเจาะ (บน) และหล*ั*งเจาะ (ล่าง)

ร**ูปที่ ก.2** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ DLC ก่อนเจาะ (บน) และหลังเจาะ (ล่าง)

ร**ูปที่ ก.3** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ H- DLC ก่อนเจาะ (บน) และหลังเจาะ (ล่าง)

ร**ูปที่ ก.4** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-O-DLC ก่อนเจาะ (บน) และหลังเจาะ (ล่าง)

ร**ูปที่ ก.5** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-N-DLC ก่อนเจาะ (บน) และหลังเจาะ (ล่าง)

ร**ูปที่ ก.6** รูเจาะที่ 1 ถึง 200 โดยดอกสว่านที่ไม่ทำการเคลือบผิว

ร**ูปที่ ก.7** รูเจาะที่ 1 ถึง 200 โดยดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ DLC

ร**ูปที่ ก.8** รูเจาะที่ 1 ถึง 200 โดยดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ H-DLC

ร**ูปที่ ก.9** รูเจาะที่ 1 ถึง 200 โดยดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-O-DLC

ร**ูปที่ ก.10** รูเจาะที่ 1 ถึง 200 โดยดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-N-DLC

ภาคผนวก ข.

การวิเคราะห์ผลด้วยกล้องจุลทรรศน์แบบส่องกราด

(Scanning electron microscope: SEM)

ร**ูปที่ ข.1** ดอกสว่านที่ไม่ผ่านการเคลือบผิวก่อนทดสอบการเจาะ

ร**ูปที่ ข.4** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ DLC หลังทดสอบการเจาะที่ 200 รู

รูปที่ ข.5 ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ DLC เกิดการสึกหรอที่เกิดจากการเชื่อมติดของเศษโลหะ

ร**ูปที่ ข.6** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ H-DLC หลังทดสอบการเจาะที่ 200 รู

ร**ูปที่ ข.7** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-O-DLC หลังทดสอบการเจาะที่ 200 รู

ร**ูปที่ ข.8** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-O-DLC เกิดจากการเชื่อมติดของเศษโลหะ

ร**ูปที่ ข.9** ดอกสว่านที่เคลือบผิวด้วยฟิล์มเคลือบ Si-N-DLC หลังทดสอบการเจาะที่ 200 รู

ภาคผนวก ค. ผลงานตีพิมพ์