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ABSTRACT

The purpose of this dissertation is to investigate new contraction map-

pings in metric spaces and b-metric spaces endowed with binary relations. The

main results of this dissertation are divided into two parts. In the first part, we

improve the notion of a Z-contraction mapping with respect to a b-simulation func-

tion and also prove fixed point results on b-metric spaces endowed with only a tran-

sitive relation. Our results can reduce to several important results in the past. We

also introduce the concept of an (F,γ)<-contraction mapping, which is improved

from weaker conditions on F -contraction mappings in metric spaces endowed with

a binary relation. We prove fixed point results for (F,γ)<-contraction mappings

and also furnish some examples to demonstrate the benefit of our main results.

Furthermore, we introduce the new contraction namely (ψ,φ,<)-contraction and

prove the fixed point theorem for relation-theoretic (ψ,φ,<)-contractions in a met-

ric space endowed with a T -orbital transitivity. We also give an example to show

the benefit of our theorems. In the last part, we extend and generalize Ran and
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Reurings’s results to prove nonlinear matrix equations by giving new notions con-

cerning b-simulation functions via Ky Fan norms. Also, we apply fixed point results

for (F,γ)<-contraction mappings and (ψ,φ,<)-contraction mappings to prove the

existence and uniqueness of a solution of some nonlinear matrix equations and we

give some numerical examples to support some results of our applications.

Keywords: b-Simulation function, Lower semicontinuous, Right upper semicon-

tinuous, Thompson metric, Ky Fan norm.
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CHAPTER 1

INTRODUCTION

Nonlinear matrix equations occur in several problems in stability anal-

ysis, control theory, system theory, and dynamic programming. Many years

ago, several authors used various methods to investigate the existence of solu-

tions of nonlinear matrix equations. One of these methods is to use the fixed

point theory. The most well known fixed point theorem is the Banach contrac-

tion principle, which is due to Banach [1]. Many generalizations of the Banach

contraction mapping principle to partially ordered metric spaces are appeared in

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

In 2004, Ran and Reuring [17] solved the existence of a solution of a

nonlinear matrix equation

X =Q+
m∑
i=1

A∗iG(X)Ai,

where A1,A2, . . . ,Am are arbitrary n×n matrices, Q is a Hermitian positive defi-

nite matrix and G is a continuous order-preserving mapping which maps from the

set of all n×n Hermitian matrices into the set of all n×n positive definite matrices

such that G(0) = 0, using the Ky Fan norm and analogous result of the Banach

contraction principle for partially ordered metric spaces. After that, Sawangsup

et. al. [18, 19, 20] used the Ky Fan norm to solve the same nonlinear matrix equa-

tion and analogous results of fixed point results for contractions concerning some

control functions in the setting spaces endowed with a binary relation. In [21],

Lim used the Thompson metric and the fixed point method to solve the existence

and uniqueness of a positive definite solution of a nonlinear matrix equation

X−
m∑
i=1

MiX
δiM∗i =Q,0< |δi|< 1,

where Q is an n×n positive semidefinite matrix and M1,M2, . . . ,Mm are n×n non-

singular matrices or Q is an n×n positive semidefinite matrix and M1,M2, . . . ,Mm

are arbitrary n×n matrices. Several techniques involving fixed point theory are
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more suitable in solving the existence and uniqueness of several nonlinear matrix

equations.

Based on many applications of the existence results in the fixed point

theory, many mathematicians introduced and investigated new fixed point results

for various generalized contraction mappings. For instance, the interesting fixed

point results of a new contraction namely Z-contraction with respect to a simula-

tion function introduced by Khojasteha et al. [22]. In the same way, Argoubi et al.

[23] considered a pair of nonlinear mappings satisfying a contractive condition in-

volving a simulation function in metric spaces endowed with a partial order, which

is a generalization of the fixed point theorem for Z-contractions with respect to

simulation functions in metric spaces. In [24], Demma et al. introduced the notion

of a b-simulation function in the setting of b-metric spaces, which is a modifying of

the concept of a simulation function, and also proved fixed point results by deal-

ing with such contraction in b-metric spaces. Also, fixed point theorems for a new

kind of contractions called F -contractions, are shown by Wardowski [26]. After

that, many authors generalized and improved F -contraction in different ways.

The main results of this study consist of three topics as follows:

The first topic, we introduce the notion of the Z-contraction mapping

with respect to b-simulation functions under an arbitrary binary relation namely

Zb<-contraction mappings. We also introduce the concept of (F,γ)<-contraction

mappings which improve the concept of F -contraction mappings in metric spaces

endowed with a binary relation and the notion of (ψ,φ,<)-contraction mappings,

where ψ is not a weak altering distance function, and φ is not continuous. Next,

we investigate the existence and uniqueness of a fixed point for Zb<-contraction

mappings in complete b-metric spaces endowed with a transitive relation and give

fixed point results for (F,γ)<-contraction mappings in complete metric spaces

endowed with a transitive relation. Moreover, we establish the fixed point theorem

for relation-theoretic (ψ,φ,<)-contractions in a metric space endowed with a T -

orbital transitivity. After that, we give some examples to show the benefit of our

theorems.
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The second topic, we prove the existence and uniqueness of a solution

of the nonlinear matrix equation

X =Q+
m∑
i=1

A∗iG(X)Ai,

where A1,A2, . . . ,Am are arbitrary n×n matrices, Q is a Hermitian positive defi-

nite matrix and G is a continuous order-preserving mapping which maps from the

set of all n×n Hermitian matrices into the set of all n×n positive definite matri-

ces such that G(0) = 0 by using fixed point results for Zb<-contraction mappings

via Ky Fan norms. Also, we confirm the existence and uniqueness of a definite

positive solution of a nonlinear matrix equation by giving numerical examples,

which approximate by MATLAB.

The last topic, we apply fixed point results for (F,γ)<-contraction map-

pings and (ψ,φ,<)-contraction mappings via Thompson metrics to solve the non-

linear matrix equation

Xr =Q+
m∑
i=1

A∗iGi(X)Ai,

where r ≥ 1, A1,A2, . . . ,Am are n× n nonsingular matrices, Q is a Hermitian

positive definite matrix and G1,G2, . . . ,Gm are continuous order preserving self-

mappings on the set of all n×n positive definite matrices. We also give some

numerical examples to confirm the correctness of our applications.
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The following diagram shows the motivation and the overall of our

main result.
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CHAPTER 2

PRELIMINARIES

Throughout this dissertation, we denote by C, R, R+, R+, Q, Z, N and

N0 the set of complex numbers, real numbers, positive real numbers, non-negative

real numbers, rational numbers, integers, positive integers, non-negative integers,

respectively. Henceforth, let n be a positive integer, X will denote a nonempty

set, and Rn will denote the product set R×R× . . .×R︸ ︷︷ ︸
n−terms

.

2.1 Fixed points

Definition 2.1.1. Let X be a nonempty set and let T be a self-mapping on X.

A point x ∈X is called a fixed point of T if and only if Tx= x.

Example 2.1.2. Let X = R and T :X →X be defined by

Tx= 2x+ 1

for all x ∈X. Then −1 is a fixed point of T .

Example 2.1.3. Let X = R and T :X →X be defined by

Tx=−x2 + 5x

for all x ∈X. Then 0 and 4 are fixed points of T .

Example 2.1.4. Let X = [0,∞) and T :X →X be defined by

Tx= 1
2 ln(x2 + 1)

for all x ∈X. Then 0 is a fixed point of T .

Example 2.1.5. Let X = [0,1] and T :X →X be defined by

Tx= x2e−x+ 1
3x

3

for all x ∈X. Then 0 is a fixed point of T .
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Example 2.1.6. Let X = [0,4] and T :X →X be defined by

Tx= e−x+ 2
√
x

for all x ∈X. Then f has no a fixed point.

Example 2.1.7. Let X = R and T :X×X →X×X be defined by

T (x,y) =
(
x

3 + 2, y4 + 2
)

for all (x,y) ∈X×X. Then
(
3, 8

3

)
is a fixed point of T .

Example 2.1.8. Let X be the set of 2×2 matrices and T :X→X be defined by

T

 x1 x2

x3 x4

= 3

 x1 x2

x3 x4

−
 1 0

0 1



for all

 x1 x2

x3 x4

 ∈X. Then

 1
2 0

0 1
2

 is a fixed point of T .

Example 2.1.9. Let X be the set of 2×2 matrices and T :X→X be defined by

T

 x1 x2

x3 x4

=−2

 x1 x2

x3 x4

+

 6 0

3 9



for all

 x1 x2

x3 x4

 ∈X. Then

 2 0

1 3

 is a fixed point of T .

2.2 Fields

Definition 2.2.1. A field is a set F together with two binary operations + and ·,

which are called addition and multiplication, respectively, satisfying the following

axioms. For all a,b,c ∈ F,

(F1) a+ b ∈ F and a · b ∈ F;

(F2) a+ b= b+a and a · b= b ·a;

(F3) (a+ b) + c= a+ (b+ c) and (a · b) · c= a · (b · c);
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(F4) there exists an element in F, called additive identity element and denoted

by 0F, such that for all a ∈ F, a+ 0F = a;

(F5) there exists an element in F, called multiplicative identity element and de-

noted by 1F, such that for all a ∈ F, a ·1F = a;

(F6) for each a ∈ F, there exists an element −a ∈ F such that a+ (−a) = 0F;

(F7) for each a ∈ F with a 6= 0F, there exists an element a−1 ∈ F such that a ·

(a−1) = 1F;

(F8) the left distributive law, a · (b+ c) = a · b+a · c and the right distributive law,

(b+ c) ·a= b ·a+ c ·a hold.

This field is denoted by 〈F,+, ·〉.

Example 2.2.2. 〈C,+, ·〉, 〈R,+, ·〉 and 〈Q,+, ·〉 are fields under the usual addition

and usual multiplication but 〈Z,+, ·〉 is not a field because 2 has no multiplicative

inverse.

2.3 Vector spaces

Definition 2.3.1. A nonempty set V is said to be a vector space over a field

〈F,+, ·〉 if the vector addition operation + : V ×V → V and the scalar multiplica-

tion operation · : F×V → V satisfy the following properties: for all x,y,z ∈ V and

a,b ∈ F,

(V 1) (x+y) + z = x+ (y+ z);

(V 2) x+y = y+x;

(V 3) there is an element 0 ∈ V such that x+ 0 = x;

(V 4) for each x ∈ V , there exists an element (−x) ∈ V such that x+ (−x) = 0;

(V 5) (ab)x= a(bx);

Ref. code: 25615909320441WJZ
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(V 6) a(x+y) = ax+ay;

(V 7) (a+ b)x= ax+ bx;

(V 8) 1Fx= x.

Also, this vector space is denoted as (V,+, ·).

Example 2.3.2. Let X be an arbitrary set and F be any field, and let F (X,F)

be the set of all function from X into F. The set F (X,F) is a vector space with

the two algebraic operations defined for f,g ∈ F (X,F) and k ∈ F by

(f +g)(t) = f(t) +g(t),

(kf)(t) = kf(t).

Then (F (X,F),+, ·) is a vector space over a field F.

Example 2.3.3. Let x= (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) be vectors in Rn.

The sum of these two vectors is defined as the vector

x+y = (x1 +y1,x2 +y2, ...,xn+yn).

For a scalar k ∈ R, define scalar multiplications, as the vector

ax= (ax1,ax2, . . . ,axn).

Then (Rn,+, ·) is a vector space over a field R.

Example 2.3.4. The set of m×n matrices with entries from a field F is a vector

space, which we denote by Mm×n(F), under the following operations of addition

and scalar multiplication: For A= (aij)m×n,B = (bij)m×n ∈Mm×n(F) and c ∈ F,

A+B = (aij + bij)m×n and cA= (caij)m×n.

Remark 2.3.5. A real vector space is a vector space whose field of scalars is the

field of real numbers.

Remark 2.3.6. A complex vector space is a vector space whose field of scalars is

the complex numbers.

Ref. code: 25615909320441WJZ
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2.4 Normed spaces

Definition 2.4.1. Let X be a real (or a complex) vector space. A norm on X is

a function ‖ · ‖ :X→ R satisfying the following properties for all x,y ∈X and for

all scalar α:

(N1) ‖x‖= 0 if and only if u= 0;

(N2) ‖αx‖= |α|‖u‖;

(N3) ‖x+y‖ ≤ ‖x‖+‖y‖.

Also, the ordered pair (X,‖ · ‖) is called a normed space.

Remark 2.4.2. In a normed space (X,‖ · ‖), we get ‖x‖ ≥ 0 for all x ∈X.

Example 2.4.3. Let X = R2 and a function ‖ · ‖ :X → R be defined by

‖x‖= |x1|+ |x2|

for all x= (x1,x2)∈R2. Then (R2,‖·‖) is a normed space, and it is called a taxicab

normed space.

Example 2.4.4. Let X = Rn and a function ‖ · ‖ :X → R be defined by

‖x‖=
√√√√ n∑
i=1
|xi|2

for all x= (x1,x2, . . .xn) ∈ Rn. Then (Rn,‖ · ‖) is a normed space, and it is called

an Euclidean space on Rn.

Definition 2.4.5. Let X be a normed space and {xn} be a sequence of element

of X. The sequence {xn} converges to x ∈X denoted by lim
n→∞xn = x or xn→ x

as n→∞ if lim
n→∞‖x−xn‖= 0, i.e., for every ε > 0, there exists a natural number

N such that ‖x−xn‖< ε for all n≥N .

Definition 2.4.6. Let X be a normed space and {xn} be a sequence of element

of X. The sequence {xn} is called a Cauchy sequence if lim
n→∞‖xm−xn‖ = 0, i.e.,

for every ε > 0, there exists a natural number N such that ‖xm−xn‖ < ε for all

m,n≥N .

Ref. code: 25615909320441WJZ
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Definition 2.4.7. Let X be a normed space. If every Cauchy sequence is conver-

gent in X, then X is called a complete normed space or Banach space.

Example 2.4.8. The Euclidean space Rn is a Banach space.

2.5 Metric spaces

Definition 2.5.1. Let X be a nonempty set. A function d :X×X→ R is called

a metric on X (or a distance function on X) if the following conditions hold for

all x,y,z ∈X:

(M1) d(x,y) = 0 if and only if x= y;

(M2) d(x,y) = d(y,x);

(M3) d(x,z)≤ d(x,y) +d(y,z) .

Remark 2.5.2. In a metric space (X,d), we get d(x,y)≥ 0 for all x,y ∈X.

Remark 2.5.3. Let (X,‖ · ‖) be a normed space. The mapping d : X ×X → R

given by

d(x,y) = ‖x−y‖

for all x,y ∈X defines a metric on X. This metric is called the metric induced by

norm.

Definition 2.5.4. A nonempty set X equipped with a metric d on X, denoted

by (X,d), is called a metric space. The elements of metric space (X,d) are called

points. For fixed x,y ∈X, we called the nonnegative number d(x,y) that distance

from x to y.

Example 2.5.5. Let X = R and d :X×X → R be defined by

d(x,y) = |x−y|

Ref. code: 25615909320441WJZ
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for all x,y ∈X. The first two conditions in Definition 2.5.1 are obviously satisfied,

and the third follows from the ordinary triangle inequality for real numbers:

d(x,y) = |x−y|

= |(x− z) + (z−y)|

≤ |x− z|+ |z−y|

= d(x,z) +d(z,y).

Then d is a metric on R and it is called a usual metric on R. Thus (R,d) is a

metric space called a usual metric space.

Example 2.5.6. Let X be a nonempty set and define d :X×X → R by

d(x,y) =


0 if x= y,

1 if x 6= y.

Then d is a metric on X and it is called that a discrete metric on X. Also, the

pair (X,d) is called a discrete metric space.

Example 2.5.7. Let X = Rn, where n ∈ N, and define d :X×X → R by

d(x,y) =
√√√√ n∑
i=1

(xi−yi)2

for all x= (x1,x2, . . . ,xn),y = (y1,y2, . . . ,yn)∈Rn. Then d is a metric on Rn and it

is called a Euclidian metric on Rn. Also, the pair (X,d) is called an n-dimensional

Euclidian metric space.

Example 2.5.8. Let X = Cn, where n ∈ N, and define d :X×X → R by

d(x,y) =
√√√√ n∑
i=1
|xi−yi|2

for all x= (x1,x2, . . . ,xn),y = (y1,y2, . . . ,yn)∈Rn. Then d is a metric on Cn and it

is called a Euclidian metric on Cn. Also, the pair (X,d) is called an n-dimensional

unitary metric space.
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Example 2.5.9. Let X = R2 and define d :X×X → R by

d(x,y) = |x1−y1|+ |x2−y2|

for all x = (x1,x2),y = (y1,y2) ∈ R2. Then d is a metric on R2 and it is called a

taxicab metric on R2. Thus, (X,d) is a taxicab metric space.

Example 2.5.10. Let X = R2 and define d :X×X → R by

d(x,y) = max{|x1−y1|, |x2−y2|}

for all x = (x1,x2),y = (y1,y2) ∈ R2. Then d is a metric on R2. Thus, (X,d) is a

metric space.

Example 2.5.11. Let (X,d) be a metric space, k be a positive real number, and

define d′ :X×X → R by

d′(x,y) = kd(x,y).

Then d′ is a metric on X. This is called a dilotion metric on X, and (X,d′) is

called a dilotion metric space.

Example 2.5.12. Let X = c := {{xn}⊆R (or C) : {xn} is a convergent sequence}

and define dc :X×X → R by

dc(x,y) = sup
n∈N
|xn−yn|

for all x= {xn},y = {xn} ∈X. Then (X,dc) is a metric space.

Example 2.5.13. Let X = `∞ := {{xn} ⊆R(or C) : {xn} is a bounded sequence}

and define d∞ :X×X → R by

d∞(x,y) = sup
n∈N
|xn−yn|

for all x= {xn},y = {xn} ∈X. Then (X,d∞) is a metric space.

Example 2.5.14. Let [a,b] be a closed interval on R and X = B[a,b] := {x :

[a,b]→ R : x is a bounded function} and define d∞ :X×X → R by

d∞(x,y) = sup
t∈[a,b]

|x(t)−y(t)|

for all x,y ∈X. Then (X,d∞) is a metric space.
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Example 2.5.15. Let [a,b] be a closed interval on R and X = C[a,b] := {x :

[a,b]→ R : x is a continuous function} and define d∞ :X×X → R by

d∞(x,y) = sup
t∈[a,b]

|x(t)−y(t)|

for all x,y ∈X. Then (X,d∞) is a metric space.

Definition 2.5.16. Let (X,d) be a metric space, x ∈X and ε > 0. We now define

a set

Bε(x) := {y ∈X : d(x,y)< ε},

which is called an open ball of radius ε with center x.

Definition 2.5.17. Let (X,d) be a metric space. A sequence {xn} in X converges

to x ∈X, written xn→ x as n→∞ or

lim
n→∞xn = x,

if for every ε > 0 there exists N ∈ N such that

n > N implies that d(xn,x)< ε.

That is, xn→ x if d(xn,x)→ 0 as n→∞. Equivalently, xn→ x as n→∞ if for

every open ball Bε(x) there exists N ∈ N such that xn ∈Bε(x) for all n > N .

Definition 2.5.18. Let (X,dX) and (Y,dY ) be metric spaces. We say that the

mapping f :X → Y is continuous at a point x0 ∈X, if for every ε > 0 and x ∈X

there is a δ > 0 such that dY (fx,fx0)< ε whenever dX(x,x0)< δ.

Theorem 2.5.19. A mapping T from a metric space (X,dX) into a metric space

(Y,dY ) is continuous at a point x0 ∈X if and only if

xn
dX→ x0 ⇒ Txn

dY→ Tx0.

Definition 2.5.20. Let (X,d) be a metric space. The sequence {xn} in X is

called a Cauchy sequence if it holds that, for all ε > 0, there exists N ∈ N such

that d(xm,xn)< ε for m,n≥N .
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Lemma 2.5.21. Let (X,d) be a metric space, {xn} be a sequence in X. Then

{xn} is a Cauchy sequence if and only if d(xn,xm)→ 0 when n,m→∞.

The following lemma will be useful later.

Lemma 2.5.22 ([27]). Let (X,d) be a metric space and {xn} a sequence in X

such that lim
n→∞d(xn,xn+1) = 0. If {xn} is not Cauchy in X, then there exist ε > 0

and two subsequences {xn(k)} and {xm(k)} of {xn} such that n(k)>m(k)> k such

that

lim
k→∞

d(xm(k),xn(k)) = lim
k→∞

d(xm(k),xn(k)+1) = lim
k→∞

d(xm(k)−1,xn(k)+1)

= lim
k→∞

d(xm(k)−1,xn(k)+1) = lim
k→∞

d(xm(k)+1,xn(k)+1) = ε.

Definition 2.5.23. Let (X,d) be a metric space. If every Cauchy sequence is

convergent in X, then X is called a complete metric space.

Example 2.5.24. The usual metric space R is a complete metric space.

Example 2.5.25. The Euclidean metric space Rn is a complete metric space.

Example 2.5.26. The unitary metric space Cn is a complete metric space.

Example 2.5.27. The sequence space (`∞,d∞) is a complete metric space.

Example 2.5.28. The sequence space (c,dc) is a complete metric space.

Example 2.5.29. The function space (C[a,b],d∞) is a complete metric space.

2.6 b-Metric spaces

In 1989, Bakhtin [28] introduced the concept of a b-metric space as

follows:

Definition 2.6.1 ([28, 29]). Let X be a nonempty set and b≥ 1 be a given real

number. A mapping d : X ×X → [0,∞) is said to be a b-metric on X if the

following conditions hold for all x,y,z ∈X:
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(b1) d(x,y) = 0 if and only if x= y;

(b2) d(x,y) = d(y,x);

(b3) d(x,z)≤ b[d(x,y) +d(y,z)].

Also, the triplet (X,d,b) is called a b-metric space with the coefficient b≥ 1.

It is clear that the definition of a b-metric space is an extension of a

standard metric space. The following are some examples of b-metric spaces.

Example 2.6.2. The set of real numbers endowed with the mapping d : R×R→

[0,∞) defined by

d(x,y) = |x−y|p

for all x,y ∈R, where p≥ 1 is a real number, is a b-metric space with the coefficient

b= 2p−1.

Example 2.6.3 ([30]). The set lp(R) := {{xn} ∈ R : Σ∞n=1|xn|p < 1}, where 0 <

p < 1, together with the mapping d : lp(R)× lp(R)→ [0,∞) defined by

d(x,y) := (Σ∞n=1|xn−yn|p)
1/p ,

where x= {xn},y= {yn} ∈ lp(R), is a b-metric space with the coefficient b= 21/p >

1.

Example 2.6.4 ([30]). The set Lp[0,1] := {x : [0,1]→R :
∫ 1

0
|x(t)|pdt < 1}, where

0< p < 1, together with the mapping d : Lp[0,1]×Lp[0,1]→ [0,∞) defined by

d(x,y) :=
(∫ 1

0
|x(t)−y(t)|pdt

)1/p
,

where x,y ∈ Lp[0,1], is a b-metric space with the coefficient b= 21/p > 1.

Example 2.6.5 ([30]). The set X = {0,1,2} with the mapping d :X×X→ [0,∞)

defined by

d(0,0) = d(1,1) = d(2,2) = 0

d(1,0) = d(0,1) = d(2,1) = d(1,2) = 1
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and

d(2,0) = d(0,2) = c

where c is given real number such that c≥ 2. is a b-metric space with the coefficient

b= c
2 ≥ 1.

Example 2.6.6 ([31]). Let (X,d) be a metric space. The mapping d : X×X →

[0,∞) defined by

ρ(x,y) := (d(x,y))p ,

where p≥ 1 is a real number, is a b-metric on X with the coefficient b= 2p−1 ≥ 1.

Next, we recall the following basic knowledge in b-metric spaces.

Definition 2.6.7 ([32]). Let (X,d) be a b-metric space. The sequence {xn} in X

is called:

(a) aconvergent sequence if and only if there exists x∈X such that d(xn,x)→ 0

as n→∞. In this case, we write xn→ x as n→∞;

(b) a Cauchy sequence if and only if d(xn,xm)→ 0 as n,m→∞.

Remark 2.6.8. In a b-metric space (X,d), the following assertions hold:

(a) a convergent sequence has a unique limit;

(b) each convergent sequence is Cauchy;

(c) in general, a b-metric is not continuous.

Definition 2.6.9 ([32]). The b-metric space (X,d) is complete if every Cauchy

sequence in X is convergent in X.

2.7 Binary relations

Definition 2.7.1. Let X be a nonempty set. A subset < of X ×X is called a

binary relation on X.
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Remark 2.7.2. Let < be a binary relation on a nonempty set X. Note that for

each pair x,y ∈X, one of the following conditions holds:

(a) (x,y) ∈ <, which amounts to saying that “x is <-related to y” or “x relates

to y under <.” Sometimes, we write x<y instead of (x,y) ∈ <;

(b) (x,y) /∈ < which means that “x is not <-related to y” or “x does not relate

to y under <.”

In this dissertation, for a binary relation on a nonempty set X and

x,y ∈X, we write x</y whenever x<y and x 6= y.

Definition 2.7.3. Let < be a binary relation defined on a nonempty set X and

x,y ∈X. We say that x and y are <-comparative if either (x,y) ∈ < or (y,x) ∈ <.

We denote it by [x,y] ∈ <.

Definition 2.7.4 ([33]). Let X be a nonempty set and T a self-mapping on X.

A binary relation < defined on X is said to be T -closed if for any x,y ∈X,

(x,y) ∈ <⇒ (Tx,Ty) ∈ <.

Example 2.7.5. Let X = [0,∞) and T : X → X be defined by Tx = x2 for all

x ∈X. Define a relation < by

<= {(x,y) ∈X×X : x≤ y}.

Then < is T -closed.

Definition 2.7.6 ([33]). Let X be a nonempty set and < a binary relation on a

nonempty set X. A sequence {xn} ⊆X is said to be <-preserving if

(xn,xn+1) ∈ <

for all n ∈ N.

Example 2.7.7. Let X = R and {xn}= {n}. Define a relation < by

<= {(x,y) ∈X×X : x≤ y}.

Then {xn} is <-preserving since (xn,xn+1) = (n,n+ 1) ∈ <.
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Example 2.7.8. Let X = R and {xn}=
{

1
2n : n ∈ N

}
. Define a relation < by

<=
{

(0,0),
(

0, 1
2n
)
,
( 1

2n ,
1

2n+1

)}
.

Then {xn} is <-preserving since (xn,xn+1) =
(

1
2n ,

1
2n+1

)
∈ <.

Definition 2.7.9 ([33]). Let (X,d) be a metric space. A binary relation < defined

on X is said to be d-self-closed if whenever {xn} is an <-preserving sequence and

xn
d−→ x as n→∞,

then there exists a subsequence {xnk} of {xn} with [xnk ,x] ∈ < for all k ∈ N.

Example 2.7.10. A relation < in Example 2.7.8 is d-self-closed with the usual

metric d.

Definition 2.7.11 ([34]). Let X be a nonempty set and < a binary relation on

X. A subset E of X is said to be <-directed if for each x,y ∈E, there exists z ∈X

such that (x,z) ∈ < and (y,z) ∈ <.

Definition 2.7.12 ([35]). Let X be a nonempty set and < a binary relation on

X.

(a) The inverse, transpose or dual relation of < denoted by <−1, is defined by

<−1 = {(x,y) ∈X×X : (y,x) ∈ <}.

(b) The symmetric closure of <, denoted by <s, is defined to be the set <∪<−1

(i.e., <s := <∪<−1). Indeed, <s is the smallest symmetric relation on X

containing <.

Proposition 2.7.13 ([33]). For a binary relation < defined on a nonempty set

X, we have

(x,y) ∈ <s⇔ [x,y] ∈ <.

Definition 2.7.14 ([36]). Let X be a nonempty set and < a binary relation on

X. For x,y ∈X, a path of length k (where k is a natural number) in < from x to

y is a finite sequence {z0, z1, z2, ..., zk} ⊆X satisfying the following conditions:
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(a) z0 = x and zk = y,

(b) (zi, zi+1) ∈ < for all i= 0,1,2, . . . ,k−1.

Note that a path of length k involves k+ 1 elements of X, although they are not

necessarily distinct. We denote by Υ(x,y,<) the family of all paths in < from x

to y.

Definition 2.7.15 ([37]). Let < be a binary relation on a nonempty set X. A

subset Z ⊆X is said to be <-connected if for each x,y ∈ Z, there exists a path in

< from x to y.

Definition 2.7.16 ([38]). Let < be a binary relation on a nonempty set X. A

sequence {xn} ⊆ X is said to be: <-nondecreasing if xn<xn+1 for all n ∈ N; <-

increasing if xn</xn+1 for all n ∈ N.

Remark 2.7.17. Note that the notion < is T -closed is equivalent to say that T

is <-nondecreasing.

Definition 2.7.18 ([39]). A binary relation < defined on a nonempty set X is

said to be

(a) reflexive if (x,x) ∈ < for all x ∈X,

(b) irreflexive if (x,x) /∈ < for all x ∈X,

(c) symmetric if (x,y) ∈ < implies (y,x) ∈ <,

(d) antisymmetric if (x,y) ∈ < and (y,x) ∈ < implies x= y,

(e) transitive if (x,y) ∈ < and (y,z) ∈ < implies (x,z) ∈ <,

(f) complete, connected or dichotomous if [x,y] ∈ < for all x,y ∈X.

Definition 2.7.19. A partially ordered set is a set X together with a partial

odering (also called partial order), that is, a binary relation which is written �

and satisfies the following conditions for any x,y,z ∈X:
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(a) x� x (Reflexive);

(b) x� y and y � x, then x= y (Antisymmetric);

(c) x� y and y � z, then x� z (Transitive).

Also, the ordered pair (X,�) is called a partially ordered set.

Remark 2.7.20. Note that we can write a partial ordering � on a set X as

follows:

y � x⇔ x� y.

for all x,y ∈X.

Definition 2.7.21 ([40]). Let T be a self-mapping on a nonempty set X. A binary

relation < on X is said to be

(a) T -transitive if it is transitive on TX;

(b) T -orbitally transitive if it is transitive on the orbit O(x) = {x,Tx,T 2x, . . .}

of x under T for all x ∈X.

Remark 2.7.22. Note that the following implication are obvious and the converse

is not true in general.

Transitivity =⇒ T -transitivity =⇒ T -orbitally transitivity

Example 2.7.23 ([40]). Let X =
{

0, 1
2 ,

1
22 , . . .

}
and a relation < be defined by

<= {(x,y) ∈X×X : x > y > 0}∪
{

(0,0),
(

0, 14

)
,
(

0, 1
2n
)

: n≥ 4
}
.

Define T : X → X by Tx = 1
2x for all x ∈ X. Then < is T -orbitally transitive

which is not T -transitive since
(
0, 1

4

)
,
(

1
4 ,

1
8

)
∈ < but

(
0, 1

8

)
/∈ <.

Definition 2.7.24 ([40]). Let < be a binary relation on a nonempty set X and

T : X → X be a given mapping. A sequence {xn} on X is said to be: a (T ;<)-

Picard sequence if it is a Picard sequence, that is, xn+1 = Txn = Tnx0 for all n∈N

and x0 is a given point in X, and xn<xn+1 for all n∈N; a (T ;<)-increasing-Picard

sequence if it is a Picard sequence and xn</xn+1 for all n ∈ N.
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Proposition 2.7.25 ([40]). Let (X,d) be a metric space endowed with a binary

relation < and T be a self-mapping on X. Suppose that the following conditions

hold:

(i) < is T -closed;

(ii) there exists x0 ∈X such that x0<Tx0.

Then there exists a (T,<)−Picard sequence based at the initial point x0.

Definition 2.7.26 ([41]). Let (X,d) be a metric space. A self-mapping T on X

is said to be an orbitally continuous if for each x,z ∈X and any sequence {ni} of

positive integers with lim
i→∞

Tnix= z ∈X, we have lim
i→∞

TTnix= Tz.

Definition 2.7.27 ([42]). Let (X,d) be a metric space endowed with a binary

relation <. A self-mapping T on X is said to be <-continuous if Txn→ Tx for all

sequence {xn} ⊆X such that xn→ x and xn<xm for all n,m with n <m.

Definition 2.7.28 ([40]). Let (X,d) be a metric space endowed with a binary

relation <. A self-mapping T on X is said to be orbitally <-continuous if for

all x,z ∈ X and any sequence {ni} of positive integers, we have Tnix→ z and

Tnix<Tni+1x (for all i ∈ N) imply TTnix→ Tz.

The following implications show that the concept of orbitally <−continuity

is weaker than <-continuity, orbitally continuity and continuity.

Continuity ⇒ Orbitally continuity

⇓ ⇓

<-continuity ⇒ Orbitally <-continuity

Definition 2.7.29 ([42]). Let (X,d) be a metric space equipped with a binary

relation <. A subset B ⊆ X is said to be (<,d)-increasingly regular if for every

<−increasing sequence {xn} ⊆X such that xn→ x ∈X as n→∞, we have xn<x

for all n.

Definition 2.7.30 ([38]). Let (X,d) be a metric space. A subset G ⊆X is said

to be precomplete if each Cauchy sequence {xn} ⊆G converges to some x ∈X.

Ref. code: 25615909320441WJZ



22

Definition 2.7.31 ([38]). Let (X,d) be a metric space endowed with a binary

relation <. A subset G ⊆ X is said to be (<,d)-increasingly precomplete if each

<-increasing Cauchy sequence {xn} ⊆G converges to some x ∈X.

Note that every precomplete subset of X is (<,d)-increasingly precom-

plete whatever the binary relation <.

2.8 Contraction mappings and generalized contraction mappings

2.8.1 Banach contraction mappings

In 1922, Banach [1] introduced a contraction mapping known as the

Banach contraction mapping as follows:

Definition 2.8.1 ([1]). Let (X,d) be a metric space. A mapping T : X → X is

said to be contraction mapping if there exists k ∈ [0,1) such that

d(Tx,Ty)≤ kd(x,y) (2.8.1)

for all x,y ∈X. The constant k is called Banach constant.

Example 2.8.2. Let X =R with the usual metric d. Define a mapping T :X→X

by

Tx= 1
2x

for all x ∈X. Then T is a contraction mapping with the Banach constant k = 1
2 .

Example 2.8.3. Let X = [0,1] with the usual metric d. Define a mapping T :

X →X by

Tx= cx2

for all x ∈X, where c ∈
[
0, 1

2

)
. Then T is a contraction mapping with the Banach

constant k = 2c.

Example 2.8.4. Let X =R with the usual metric d. Define a mapping T :X→X

by

Tx= cos(cosx)

for all x∈X. Then T is a contraction mapping with the Banach constant k= sin1.
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The author also established a remarkable fixed point theorem known

as Banach contraction principle as follows:

Theorem 2.8.5 ([1]). Let (X,d) be a complete metric space. If T : X →X is a

contraction mapping, then T has a unique fixed point ω ∈X, and for each x ∈X,

we have

lim
n→∞T

nx= ω.

Moreover, for each x ∈X, we have

d(Tnx,ω)≤ kn

1−kd(Tx,x)

for all n ∈ N.

Example 2.8.6. Let X =R with the usual metric d. Define a mapping T :X→X

by Tx = 1
2x for all x ∈ X. Then T is a contraction mapping with the Banach

constant k = 1
2 . It follows from Banach contraction principle that T has a unique

fixed point. In this case, a point 0 is a unique fixed point of T .

2.8.2 Z-Contraction mappings

In 2015, Khojasteh et al. [22] introduced the definition of a simulation

function as follows.

Definition 2.8.7 ([22]). A mapping ζ : [0,∞)× [0,∞)→R is called a simulation

function if it satisfies the following conditions:

(ζ1) ζ(0,0) = 0;

(ζ2) ζ(t,s)< s− t for all t,s > 0;

(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞ tn = lim

n→∞sn > 0, then

limsup
n→∞

ζ(tn, sn)< 0.

We denote the set of all simulation functions by Z.
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Example 2.8.8 ([22]). Let ζ1, ζ2, ζ3, : [0,∞)× [0,∞)→ R be defined by the fol-

lowing rules:

1. ζ1(t,s) = ψ(s)− φ(t) for all t,s ∈ [0,∞), where φ,ψ : [0,∞) → [0,∞) are

two continuous functions such that ψ(t) = φ(t) = 0 if and only if t = 0 and

ψ(t)< t≤ φ(t) for all t > 0;

2. ζ2(t,s) = s− f(t,s)
g(t,s) t for all t,s ∈ [0,∞), where f,g : [0,∞)→ [0,∞) are two

continuous functions with respect to each variable such that f(t,s)> g(t,s)

for all t,s > 0;

3. ζ3(t,s) = s−ϕ(s)− t for all t,s ∈ [0,∞), where ϕ : [0,∞)→ [0,∞) is a con-

tinuous function such that ϕ(t) = 0 if and only if t= 0.

Then ζi is a simulation function for all i= 1,2,3.

Definition 2.8.9 ([22]). Let (X,d) be a metric space, T : X →X be a mapping

and ζ ∈ Z. Then T is called a Z-contraction mapping with respect to ζ if the

following condition is satisfied

ζ(d(Tx,Ty),d(x,y))≥ 0 (2.8.2)

for all x,y ∈X.

Remark 2.8.10 ([22]). Note that ζ(t,s) < 0 for all t,s > 0. Therefore, if T is a

Z-contraction mapping with respect to ζ ∈ Z then

d(Tx,Ty)< d(x,y) (2.8.3)

for all distinct x,y ∈X. This means that every Z-contraction mapping is contrac-

tive, and therefore T is continuous.

Theorem 2.8.11 ([22]). Let (X,d) be a complete metric space and T :X→X be

a Z-contraction with respect to ζ. Then T has a unique fixed point u in X and for

every x0 ∈X the Picard sequence {xn}, where xn = Txn−1 for all n∈N, converges

to the fixed point of T .
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The following example supports the Theorem 2.8.11.

Example 2.8.12 ([22]). Let X = [0,1] and d :X×X→R be defined by d(x,y) =

|x−y| for all x,y ∈X. Then (X,d) is a complete metric space. Define a mapping

T : X →X as Tx = x
x+1 for all x ∈X. Then T is not a Banach contraction, but

is a Z-contraction with respect to ζ ∈ Z, where

ζ(t,s) = s

s+ 1 − t

for all t,s ∈ [0,∞). Indeed, if x,y ∈X, then

ζ(d(Tx,Ty),d(x,y)) = d(x,y)
1 +d(x,y) −d(Tx,Ty)

= |x−y|
1 + |x−y| −

∣∣∣∣∣ x

x+ 1 −
y

y+ 1

∣∣∣∣∣
= |x−y|

1 + |x−y| −
∣∣∣∣∣ |x−y|
(x+ 1)(y+ 1)

∣∣∣∣∣
≥ 0.

Note that, all the conditions of Theorem 2.8.11 are satisfied and so T has a unique

fixed point. In this case, a point 0 is a fixed point of T .

Next year, Demma et al. [24] gave the definition of a b-simulation

function as follows:

Definition 2.8.13 ([24]). Let b ≥ 1 be a given real number. A mapping ξ :

[0,∞)× [0,∞)→ R is called a b-simulation function if it satisfies the following

conditions:

(ξ1) ξ(t,s)< s− t for all t,s > 0;

(ξ2) if {tn}, {sn} are sequences in (0,∞) such that

0< lim
n→∞ tn ≤ liminf

n→∞ sn ≤ limsup
n→∞

sn ≤ b lim
n→∞ tn <∞,

then

limsup
n→∞

ξ(btn, sn)< 0.

Ref. code: 25615909320441WJZ



26

We denote the set of all b-simulation functions by Zb.

Remark 2.8.14. Note that every simulation function is a b-simulation function

with b= 1.

We give an example of a b-simulation function as follows:

Example 2.8.15. Let b ≥ 1 and ξ : [0,∞)× [0,∞)→ R be defined by ξ(t,s) =

ψ(s)−φ(t), where φ,ψ : [0,∞)→ [0,∞) are functions such that ψ(t)< t≤ φ(t) for

all t > 0 and ψ is continuous and nondecreasing. Then ξ satisfies conditions (ξ1)

and (ξ2) in the Definition 2.8.13 as follows:

(ξ1) Let s, t > 0. Then

ξ(t,s) = ψ(s)−φ(t)< s− t.

(ξ2) Let {tn}, {sn} are sequences in (0,∞) such that

0< lim
n→∞ tn ≤ liminf

n→∞ sn ≤ limsup
n→∞

sn ≤ b lim
n→∞ tn <∞.

Then

limsup
n→∞

ξ(btn, sn) = limsup
n→∞

[ψ(sn)−φ(btn)]

≤ limsup
n→∞

ψ(sn)− liminf
n→∞ φ(btn)

≤ ψ
(

limsup
n→∞

sn

)
− liminf

n→∞ btn

< limsup
n→∞

sn− liminf
n→∞ btn

≤ 0.

Therefore, ξ is a b-simulation function.

Definition 2.8.16 ([24]). Let (X,d,b) be a b-metric space, T :X→X be a map-

ping and ξ ∈ Zb. Then T is called a Z-contraction mapping with respect to a

b-simulation functions ξ if

ξ(bd(Tx,Ty),d(x,y))≥ 0 (2.8.4)

for all x,y ∈X.
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Theorem 2.8.17 ([24]). Let (X,d,b) be a complete b-metric space and let T :X→

X be a mapping. If T is a Z-contraction mapping with respect to a b-simulation

function ξ. Then T has a unique fixed point.

2.8.3 F -Contraction mappings

In 2012, Wardowski [26] introduced the concept of an F -contraction

mapping as follows:

Definition 2.8.18 ([26]). Let (X,d) be a metric space and T : X → X be a

mapping. Then T is called an F -contraction mapping if there exists τ > 0 such

that

∀x,y ∈X [d(Tx,Ty)> 0⇒ τ +F (d(Tx,Ty))≤ F (d(x,y))], (2.8.5)

where F : R+→ R is a mapping satisfying:

(F1) F is strictly increasing, i.e. for all α,β ∈ R+ such that α < β, F (α)< F (β);

(F2) for each sequence {αn} ⊆ R+, lim
n→∞αn = 0 if and only if lim

n→∞F (αn) =−∞;

(F3) there exists k ∈ (0,1) such that lim
α→0+

αkF (α) = 0;

Example 2.8.19 ([26]). Let F1,F2,F3, :R+→R be defined by the following rules:

1. F1(α) = lnα for all α ∈ R+;

2. F2(α) = α+ lnα for all α ∈ R+;

3. F3(α) = −1√
α

for all α ∈ R+.

Then Fi is a function satisfying the conditions (F1)− (F3) for all i= 1,2,3.

Remark 2.8.20 ([26]). From (F1) and 2.8.5 it is easy to conclude that every

F -contraction T is a contractive mapping, i.e.

d(Tx,Ty)< d(x,y), (2.8.6)

for all x,y ∈X with Tx 6= Ty. Thus every F -contraction is a continuous mapping.
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Moreover, Wardowski used concept of an F -contraction mapping to

consider the existence and uniqueness of fixed point in complete metric spaces

and given an example as follows:

Theorem 2.8.21 ([26]). Let (X,d) be a complete metric space and let T :X→X

be an F -contraction mapping. Then T has a unique fixed point in x∗ ∈X and for

every x∗ ∈X the sequence {Tnx} converges to x∗.

Example 2.8.22 ([26]). Consider the sequence {Sn} as follows:

Sn = 1 + 2 + · · ·+n= n(n+ 1)
2

for all n∈N. Let X = {Sn :n∈N} and d :X×X→R be defined by d(x,y) = |x−y|

for all x,y ∈ X. Then (X,d) is a complete metric space. Define the mapping

T :X →X by

T (S1) = S1 and T (Sn) = Sn−1 for all n > 1.

The mapping T is not the Banach contraction mapping. Indeed, we get

lim
n→∞

d(T (Sn),T (S1))
d(Sn,S1) = lim

n→∞
Sn−1−1
Sn−1 = 1.

On the other side taking F (α) = α+ lnα for all α ∈ R+, we obtain that T is

an F -contraction mapping with τ = 1. To see this, let us consider the following

calculations: First, observe that

∀m,n ∈ N[T (Sm) 6= T (Sn)⇔ ((m> 2∧n= 1)∨ (m> n > 1))].

For every m ∈ N, m> 2 we have

d(T (Sm),T (S1))
d(Sm,S1) ed(T (Sm),T (S1))−d(Sm,S1) = Sm−1−1

Sm−1 eSm−1−Sm

= m2−m−2
m2 +m−2e

−m

< e−m

< e−1.
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For every m,n ∈ N,m > n > 1 the following holds

d(T (Sm),T (Sn))
d(Sm,Sn) ed(T (Sm),T (Sn))−d(Sm,Sn) = Sm−1−Sn−1

Sm−Sn
eSn−Sn−1+Sm−1−Sm

= m+n−1
m+n+ 1e

n−m

< en−m = e−1.

Clearly S1 is a fixed point of T .

In 2014, Piri and Kumam [43] used the following condition instead of

the conditions (F2) and (F3) in Definition 2.8.18:

(F2′) infF =−∞;

(F3′) F is continuous on (0,∞).

We denote by F the set of all functions satisfying the conditions (F1), (F2′) and

(F3′).

Example 2.8.23 ([43]). Let F1,F2,F3, :R+→R be defined by the following rules:

1. F1(α) =− 1
α for all α ∈ R+;

2. F2(α) =− 1
α +α for all α ∈ R+;

3. F3(α) = 1
1−eα for all α ∈ R+.

Then Fi is a function satisfying the conditions (F1), (F2′) and (F3′) for all i =

1,2,3.

Theorem 2.8.24 ([43]). Let (X,d) be a complete metric space and let T :X→X

be a mapping. Suppose F ∈ F and there exists τ > 0 such that

∀x,y ∈X [d(Tx,Ty)> 0⇒ τ +F (d(Tx,Ty))≤ F (d(x,y))]. (2.8.7)

Then T has a unique fixed point in x∗ ∈ X and for every x∗ ∈ X the sequence

{Tnx} converges to x∗.
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2.8.4 Contraction mappings concerning weak altering distance func-

tions

We recall the definition of an altering distance function, which was

introduced by Khan et al. [25].

Definition 2.8.25. A function ψ : [0,∞)→ [0,∞) is said to be altering distance

function if it satisfies the following conditions:

(ψ1) ψ is continuous and nondecreasing;

(ψ2) ψ(t) = 0 if and only if t= 0.

Example 2.8.26. Define ψ1,ψ2,ψ3,ψ4 : [0,∞)→ [0,∞) by

ψ1(t) = t2, ψ2(t) = t, ψ3(t) = tet, ψ4(t) = ln(1 + t)

for all t≥ 0. Then ψi is a function satisfying the conditions (ψ1) and (ψ2) for all

i= 1,2,3,4.

In 2012, Yan et al. [44] discussed some results on the existence and

uniqueness of a fixed point in partially ordered metric spaces by using the concept

of an altering distance function as follows.

Theorem 2.8.27 ([44]). Let (X,�) be a partially ordered set and suppose that

there exists a metric d in X such that (X,d) is a complete metric space. Suppose

that T :X →X is a continuous and nondecreasing mapping such that

ψ(d(Tx,Ty))≤ φ(d(x,y)),

for all x,y ∈X with x� y,where ψ is an altering distance function and φ : [0,∞)→

[0,∞) is continuous function with the condition: ψ(t)> φ(t) for all t > 0. If there

exists x0 ∈X such that x0 � Tx0, then T has a fixed point.

Later, Sawangsup and Sintunavarat [19] introduced the following con-

trol functions which is a weaker version of altering distance functions.
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Definition 2.8.28 ([19]). A function ψ : [0,∞)→ [0,∞) is said to be a weak

altering distance function if it satisfies the following conditions:

(ψ1′) ψ is lower semicontinuous and nondecreasing;

(ψ2) ψ(t) = 0 if and only if t= 0.

Example 2.8.29 ([19]). Define ψ1,ψ2,ψ3 : [0,∞)→ [0,∞) by

ψ1(t) =


ln(1 + t) if t≤ 1

t if t > 1
,

ψ2(t) =


t2 if t≤ 1

et−1 if t > 1
,

ψ3(t) =


t2

2 if t≤ 1

t2 if t > 1
.

Then ψ1,ψ2 and ψ3 are weak altering distance functions because ψ1,ψ2 and ψ3 are

lower semicontinuous and nondecreasing. Moreover, ψi(t) = 0 if and only if t = 0

for all i= 1,2,3.

The authors in [19] also used this concept to prove the following fixed

point results in metric spaces endowed with a transitive relation, which is a gen-

eralization of fixed point results of Yan et.al. [44].

Theorem 2.8.30 ([19]). Let (X,d) be a complete metric space and < be a tran-

sitive relation on X. Suppose that T :X→X is a continuous mappings and < is

T -closed such that

ψ(d(Tx,Ty))≤ φ(d(x,y)), (2.8.8)

for all x,y ∈X with (x,y) ∈ < ,where ψ is a weak altering distance function and

φ : [0,∞)→ [0,∞) is a right upper semicontinuous function such that ψ(t)> φ(t)

for all t > 0. If X(T ;<) := {x ∈X : (x,Tx) ∈ <} is a nonempty set, then T has a

fixed point.
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2.9 Positive definite matrices and positive semidefinite matrices

In this dissertation, we will use the following matrix notations: M(n)

denotes the set of all n×n complex matrices, Cn×1 is a set of all n× 1 vectors.

The entry in the ith row and jth column of the matrix A is denoted by, aij or [A]ij .

Definition 2.9.1. The transpose of m×n matrix A is defined to be the n×m

matrix AT obtained by interchanging rows and columns in A. More precisely, if

A= [aij ], then [AT ]ij = aji. For example,


1 2

3 4

5 6


T

=

 1 3 5

2 4 6

 .

Definition 2.9.2. For A= [aij ], the conjugate matrix is defined to be A= [aij ] ,

and the conjugate transpose of A is defined to be AT =AT . From now on, AT will

be denoted by A∗, so [A∗]ij = aji. Sometimes the matrix A∗ is called the adjoint

of A. For example,

 1−4i i 2

3 2 + i 0


∗

=


1 + 4i 3

−i 2− i

2 0

 .

Definition 2.9.3. A matrix A∈M(n) is said to be a Hermitian matrix whenever

A= A∗.

Now, we let H(n) denote the set of Hermitian matrices.

Example 2.9.4. A=

 2 2 + 2i

2−2i 4

 is a Hermitian matrix because

Ā=

 2 2−2i

2 + 2i 4

 and so A∗ = ĀT =

 2 2 + 2i

2−2i 4

= A.

Example 2.9.5. A=

 8 11i

−11i 0

 is a Hermitian matrix because
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Ā=

 8 −11i

11i 0

 and so A∗ = ĀT =

 8 11i

−11i 0

= A.

Definition 2.9.6. For an n×n matrix A, scalars λ and vectors xn×1 6= 0 satisfying

Ax= λx are called eigenvalues and eigenvectors of A, respectively.

Theorem 2.9.7. If A ∈M(n) is a Hermitian matrix, then all eigenvalues of A

are real numbers.

Example 2.9.8. Let A=

 2 1 + i

1− i 3

. Since A=A∗, we get A is a Hermitian

matrix. It is easy to see that 1 and 4 are eigenvalues of A.

Example 2.9.9. Let A =

 1 −i

i 1

. Since A = A∗, we get A is a Hermitian

matrix. It is easy to see that 0 and 2 are eigenvalues of A.

Lemma 2.9.10. For an m×n complex matrix A, the nonzero eigenvalues of A∗A

and AA∗ are equal and positive.

Example 2.9.11. Let A=

 i 2 + i 3

0 i −3i

. Then A∗ =


i 0

2 + i i

3 3i

 and so

AA∗ =

 15 1 + 7i

1−7i 10

 and A∗A=


1 1−2i −3i

1 + 2i 6 3−3i

3i 3 + 3i 18

 .

Therefore, eigenvalues of AA∗ are 5 and 20 and eigenvalues of A∗A are 0, 5 and

20. Note that all nonzero eigenvalues of A∗A and AA∗ are equal and positive.

Definition 2.9.12. Hermitian matrix A is called a positive definite matrix if

x∗Ax > 0

for every nonzero x ∈ Cn×1.

Definition 2.9.13. Hermitian matrix A is called a positive semidefinite matrix if

x∗Ax≥ 0

for every x ∈ Cn×1.
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Theorem 2.9.14. For a Hermitian matrix A, the following statements are equiv-

alent:

(a) A is positive definite;

(b) all eigenvalues of A are positive;

(c) A=B∗B for some nonsingular1 matrix B;

(d) A=B2 for some positive definite B. Such a B is unique. We write B =A
1
2

and call it the (positive definite) square root of A.

Let denote P (n) by the set of all positive definite matrices.

Example 2.9.15. From Example 2.9.8, we see that A is a Hermitian and eigen-

values of A are 1,4, which are positive. Therefore, A is a positive definite matrix.

Theorem 2.9.16. For a Hermitian matrix A, the following statements are equiv-

alent:

(a) A is positive semidefinite;

(b) all eigenvalues of A are nonnegative;

(c) A=B∗B for some matrix B;

(d) A = B2 for some positive semidefinite B. Such a B is unique. We write

B = A
1
2 and call it the (positive semidefinite) square root of A.

Let denote H+(n) by the set of all positive definite matrices.

Example 2.9.17. From Example 2.9.9, we see that A is a Hermitian matrix

and eigenvalues of A are 0,2, which are nonnegative. Therefore, A is a positive

semidefinite matrix.
1An n×n matrix A is called nonsingular or invertible if there exists an n×n matrix B such

that

AB = In = BA.

Any matrix B with the above property is called an inverse of A and it is denoted by A−1.
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Corollary 2.9.18. If A ∈M(n) is a positive semidefinite matrix, then so is each

Ak, k = 1,2, ...

Proposition 2.9.19. The sum of positive semidefinite matrices is a positive semidef-

inite matrix. Also, if A is a positive semidefinite matrix and a > 0, then aA is

also a positive semi-definite matrix.

Example 2.9.20. Let A =


2 0 0

0 3 −i

0 i 3

 and B =


1 0 0

0 2 0

0 0 2

. Since A = A∗

and B =B∗, we get A and B are Hermitian matrices. Moreover, eigenvalues of A

are 2,2,4 and eigenvalues of B are 1,2,2. Therefore, A and B are positive definite

matrices. Since

A+B =


3 0 0

0 5 −i

0 i 5

 ,
which A+B = (A+B)∗ and eigenvalues of A+B are 3,4,6. Therefore, A+B is

a positive semidefinite matrix. If a= 2, then

2A=


4 0 0

0 6 −2i

0 2i 6

 .

Note that 2A = (2A)∗ and eigenvalues of 2A are 4,4,8. Therefore, 2A is also

positive semidefinite matrix.

Theorem 2.9.21. If A ∈M(n) is a positive semidefinite matrix, and S is any

n×m matrix, then S∗AS is a positive semidefinite matrix.

Example 2.9.22. Let A =

 1 −i

i 1

 and S =

 1 1

2 0

. Now, we have A is a

positive semidefinite matrix and so

S∗AS =

 1 2

1 0


 1 −i

i 1


 1 1

2 0

=

 5 1 + 2i

1−2i 1

 .
Since S∗AS = (S∗AS)∗, we get S∗AS is a Hermitian matrix. That is, eigenvalues

of S∗AS are 0 and 6. This means that S∗AS is a positive semidefinite matrix.
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Notation 2.9.23. Let A,B ∈H(n). We write

• 0� A if A is a positive semidefinite matrix;

• 0≺ A if A is a positive definite matrix.

• A�B if B−A is a positive semidefinite matrix;

• A≺B if B−A is a positive definite matrix.

Note that (H(n),�) is a partially ordered set.

Theorem 2.9.24. Let A,B ∈H(n) and let S be an n×m matrix. If A�B, then

S∗AS � S∗BS.

Example 2.9.25. Let A =

 12 12i

−12i 12

 and B =

 5 5i

−5i 5

. Then, A and

B are Hermitian matrices and so

A−B =

 7 7i

−7i 7

 ,
which eigenvalues of A−B are 0 and 14. Thus, A−B are positive semidefinite.

This means that A�B. If S =

 −2i 3

4 1 + 3i

, then

S∗AS−S∗BS =

 28 14

14 7

 ,
which eigenvalues of S∗AS−S∗BS are 0 and 35. Therefore, S∗AS−S∗BS is also

positive semidefinite. This means that S∗AS � S∗BS.

2.10 Ky Fan norms and Thompson metrics

Definition 2.10.1. For m×n complex matrix A, the nonzero singular values of

A are the positive square roots of the nonzero eigenvalues of A∗A (and AA∗).

Example 2.10.2. From Example 2.9.11, the nonzero eigenvalues of A∗A (and

AA∗) are 5 and 20. Therefore, the nonzero singular values of A are
√

5 and 2
√

5.
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Proposition 2.10.3. If A is a Hermitian matrix, then its singular values are the

absolute values of its nonzero eigenvalues.

Example 2.10.4. From the Hermitian matrix A in Example 2.9.8, we get

A∗A=

 6 5 + 5i

5−5i 11


and so nonzero eigenvalues of A∗A are 1 and 16. Therefore, nonzero singular values

of A are
√

1 = 1 and
√

16 = 4, which are absolute values of nonzero eigenvalues of

A (|1|= 1 and |4|= 4).

Proposition 2.10.5. Let A be an n×n matrix, then
n∑
i=1

λi = tr(A), where λi are

eigenvalues of A.

Example 2.10.6. Let A =

 2 1 + i

1− i 3

. From Example 2.9.8, we know that

eigenvalues of A are 1 and 4. That is, λ1 = 1, λ2 = 4. Therefore,
2∑
i=1

λi = 1 + 4 =

5 = 2 + 3 = tr(A).

Example 2.10.7. Let A=

 1 −i

i 1

. From Example 2.9.9, we know that eigen-

values of A are 0 and 2. Assume that λ1 = 0, λ2 = 2. Therefore,
2∑
i=1

λi = 0 + 2 =

2 = 1 + 1 = tr(A).

Definition 2.10.8. 1. The spectral norm ‖ · ‖ :Mm×n(C)→ R is defined by

‖A‖=
√
λ+(A∗A)

for all A ∈Mm×n(C), where λ+(A∗A) is the largest eigenvalue of A∗A.

2. The Ky Fan norm (or trace norm) ‖ · ‖tr :M(n)→ R is defined by

‖A‖tr =
n∑
j=1

sj(A)

for all A ∈M(n), where sj(A), j = 1,2, . . . ,n are the singular values of A.

Ref. code: 25615909320441WJZ



38

Remark 2.10.9 ([17]). The set H(n) endowed with the trace norm is a complete

metric space.

Lemma 2.10.10 ([17]). Let A� 0 and B � 0 be n×n matrices. Then

0≤ tr(AB)≤ ‖A‖tr(B),

where ‖A‖ is the spectral norm of a matrix A.

Example 2.10.11. Let A=

 3 3i

−3i 3

 and B =

 4 4i

−4i 4

. It is easy to see

that A� 0 and B � 0 and tr(B) = 8. Since

AA∗ =

 3 3i

−3i 3


 3 3i

−3i 3

=

 18 18i

−18i 18

 ,
which eigenvalues of AA∗ are 0 and 36. Thus, ‖A‖=

√
λ+(A∗A) =

√
36 = 6. Since

AB =

 3 3i

−3i 3


 4 4i

−4i 4

=

 24 24i

−24i 24

 ,
we get tr(AB) = 24 + 24 = 48. Therefore,

0≤ 48 = tr(AB) = (6)(8) = ‖A‖tr(B).

Lemma 2.10.12 ([46]). If A ∈H(n) satisfies A≺ I, then ‖A‖< 1.

Example 2.10.13. Let A =


0.5 0 0

0 0.2 0

0 0 0.3

 and I =


1 0 0

0 1 0

0 0 1

. Since A =

A∗, we have A ∈H(n). Moreover,

I−A=


0.5 0 0

0 0.8 0

0 0 0.7

 ,

which eigenvalues of I−A are 0.5, 0.8 and 0.7. This implies that A≺ I. Consider

A∗A=


0.25 0 0

0 0.04 0

0 0 0.09

 ,
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which eigenvalues of I−A are 0.04, 0.09 and 0.25. Therefore,

‖A‖=
√
λ+(A∗A) =

√
0.25 = 0.5< 1.

Definition 2.10.14 ([21]). We use dT (,) as the Thompson metric on P (n), which

is defined by

dT (A,B) = log{max{α,β}}, (2.10.1)

where α= inf{δ :A≤ δB}=λ+(B− 1
2AB−

1
2 ), the maximum eigenvalue ofB− 1

2AB−
1
2

and β = inf{δ :A≤ δB}= λ+(A− 1
2BA−

1
2 ), the maximum eigenvalue of A− 1

2BA−
1
2 .

Remark 2.10.15 ([21]). The set P (n) is complete with respect to Thompson

metric dT .

The following properties of the Thompson metric for positive definite

Hermitian matrices in the form of a lemma will be useful later.

Lemma 2.10.16 ([47]). Let dT be the Thompson metric on P (n). Then the

following assertions hold:

(i) dT (A,B) = dT (A−1,B−1) = dT (MAM∗,MBM∗) for all A,B ∈ P (n) and

nonsingular matrix M ;

(ii) dT (Ar,Br)≤| r | dT (A,B) for all A,B ∈ P (n) and r ∈ [−1,1];

(iii) dT (A+B,C+D) ≤max{dT (A,C),dT (B,D)} for all A,B,C,D ∈ P (n). In

particular, dT (A+B,C+D)≤ dT (B,D).

Lemma 2.10.17 ([48]). Let A,B ∈ H(n). IF A � B � 0 (or A � B � 0), then

Aα�Bα� 0 (or Aα�Bα� 0) for all α∈ [0,1) and 0≺Aα≺Bα (or 0≺Aα�Bα)

or all α ∈ [−1,0).
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CHAPTER 3

FIXED POINT RESULTS

In this chapter, the existence and uniqueness of a fixed point of new

contraction mappings in the setting of metric spaces and b-metric spaces endowed

with binary relations are given. Our investigation will be divided to three sections.

3.1 Fixed point results for Zb<-contraction mappings

According to the concept of Z-contraction mappings with respect to

b-simulation functions, we will improve such mappings under an arbitrary binary

relation < namely Zb<-contraction mappings and investigate the existence and

uniqueness of a fixed point of Zb<-contraction mappings in b-metric spaces. Now,

we first give the definition of a b-d-self-closed as follows:

Definition 3.1.1. Let (X,d,b) be a b-metric space. A binary relation < defined

on X is called b-d-self-closed if whenever {xn} is an <-preserving sequence and

xn−→ x as n→∞, then there exists a subsequence {xnk} of {xn} with [xnk ,x]∈<

for all k ∈ N.

Let us denote Zb by the set of all b-simulation functions. Now we

introduce the concept of a Z-contraction mapping with respect to b-simulation

functions under an arbitrary binary relation < as follows:

Definition 3.1.2. Let (X,d,b) be a b-metric space, T :X→X be a mapping and

ξ ∈ Zb. If the following condition holds:

ξ(bd(Tx,Ty),d(x,y))≥ 0 for all x,y ∈X with (x,y) ∈ <, (3.1.1)

then T is called a Z-contraction mapping with respect to b-simulation functions ξ

under an arbitrary binary relation <. But for the sake of simplicity, we call only

Zb<-contraction mapping.
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First, we give the following useful proposition concerning the contrac-

tive condition of Zb<-contraction mappings.

Proposition 3.1.3. Let (X,b,d) be a b-metric space, < be a binary relation on X,

T be a self-mapping on X and ξ ∈ Zb. Then the following contractive conditions

are equivalent:

(i) ξ(bd(Tx,Ty),d(x,y))≥ 0, ∀x,y ∈X with (x,y) ∈ <,

(ii) ξ(bd(Tx,Ty),d(x,y))≥ 0, ∀x,y ∈X with [x,y] ∈ <.

Proof. The implication (ii)⇒ (i) is trivial. Conversely, assume that (i) holds.

Take x,y ∈ X with [x,y] ∈ <. If (x,y) ∈ <, then (ii) directly follows from (i).

Now, suppose that (y,x) ∈ <, then using the symmetry of d and (i), we get

ξ(bd(Tx,Ty),d(x,y)) = ξ(bd(Ty,Tx),d(y,x))≥ 0.

This shows that (i)⇒ (ii). This completes the proof.

The following lemma is needed to establish the fixed point result en-

dowed with a transitive relation.

Lemma 3.1.4. Let (X,b,d) be a b-metric space, < be a transitive relation on X,

T be a self-mapping on X. Suppose that the following conditions hold:

(i) X(T ;<) is nonempty;

(ii) < is T -closed;

(iii) there is a ξ ∈ Zb such that T is a Zb<-contraction mapping with respect to

ξ ∈ Zb.

If {xn} is a Picard sequence defined by xn = Txn−1 for all n ∈ N, where x0 ∈

X(T ;<) and xn−1 6= xn for all n ∈ N, then the following assertions holds:

(a) lim
n→∞d(xn,xn+1) = 0;
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(b) {xn} is a bounded sequence;

(c) {xn} is a Cauchy sequence.

Proof. Since (x0,Tx0) ∈ <, using the T -closedness of <, we get

(Tx0,T
2x0),(T 2x0,T

3x0), ...,(Tnx0,T
n+1x0), ... ∈ < (3.1.2)

and so (xn,xn+1) ∈ < for all n ∈ N0. By the condition (iii) and (ξ1), we have

0 ≤ ξ(bd(Tnx0,T
n+1x0),d(Tn−1x0,T

nx0))

< d(Tn−1x0,T
nx0)− bd(Tnx0,T

n+1x0),

for all n ∈ N. The above inequality show that for each n ∈ N

bd(xn,xn+1) < d(xn−1,xn),

which implies that {d(xn,xn+1)} is a monotonically decreasing sequence of positive

real numbers. So, there exists some c≥ 0 such that

lim
n→∞d(xn,xn+1) = c. (3.1.3)

Assume that c > 0. Setting sn := d(xn−1,xn), and tn := d(xn,xn+1) for all n ∈ N,

by the assumption (iii) and (ξ2), we get

0≤ limsup
n→∞

ξ(bd(xn,xn+1),d(xn−1,xn))< 0,

which is a contraction. Therefore, c= 0. This implies that

lim
n→∞d(xn,xn+1) = 0. (3.1.4)

Next, we show that the conclusion (b) holds. Suppose that {xn} is not a bounded

sequence. Then there exists a subsequence {xnk} of {xn} such that n1 = 1 and for

each k ∈ N, nk+1 is the minimum integer such that

d(xnk ,xnk+1)> 1 (3.1.5)

and

d(xnk ,xm)≤ 1 (3.1.6)
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for nk ≤ m ≤ nk+1− 1. By the inequalities (3.1.5), (3.1.6), and the triangle in-

equality of a b-metric space, we have

1 < d(xnk ,xnk+1)

≤ bd(xnk ,xnk+1−1) + bd(xnk+1−1,xnk+1)

≤ b+ bd(xnk+1−1,xnk+1). (3.1.7)

Letting k→∞ in (3.1.7) and using the fact in (a), we get

1≤ liminf
k→∞

d(xnk ,xnk+1)≤ limsup
k→∞

d(xnk ,xnk+1)≤ b. (3.1.8)

Again, from the assumption (iii) together with (ξ1) and the triangle inequality of

a b-metric space, we have

bd(xnk ,xnk+1) ≤ d(xnk−1,xnk+1−1)

≤ bd(xnk−1,xnk) + bd(xnk ,xnk+1−1)

≤ bd(xnk−1,xnk) + b. (3.1.9)

Letting k→∞ in the inequality (3.1.9) and using (3.1.8), we obtain that there

exists

lim
k→∞

d(xnk ,xnk+1) = 1 (3.1.10)

and

lim
k→∞

d(xnk−1,xnk+1−1) = b. (3.1.11)

Putting tk =: d(xnk ,xnk+1) and sk := d(xnk−1,xnk+1−1) in the condition (ξ2), we

get

0≤ limsup
k→∞

ξ(bd(xnk ,xnk+1),d(xnk−1,xnk+1−1))< 0, (3.1.12)

which is contradict. Therefore, {xn} is a bounded sequence.

Finally, we show that {xn} is a Cauchy sequence. Denote

Cn = sup{d(xi,xj) : i, j ≥ n} (3.1.13)

for all n ∈ N. It follows from the fact that {xn} is a bounded sequence. Then

Cn <∞ for all n ∈ N. Since {Cn} is a positive decreasing sequence, there exists

some C ≥ 0 such that

lim
n→∞Cn = C. (3.1.14)
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If C > 0, then for every k ∈ N, there exist nk, mk such that mk > nk ≥ k and

Ck−
1
k
< d(xnk ,xmk

)≤ Ck.

Therefore,

lim
n→∞d(xnk ,xmk

) = C. (3.1.15)

Since < is a transitive relation, we get (xnk−1,xmk−1) ∈ <. This implies that

ξ(bd(xnk ,xmk
),d(xnk−1,xmk−1))≥ 0. (3.1.16)

From (ξ1) and (3.1.13), we obtain

bd(xnk ,xmk
)≤ d(xnk−1,xmk−1)≤ Ck−1. (3.1.17)

Letting k→∞ in the inequality (3.1.17) and using (3.1.15), we get

bC ≤ liminf
k→∞

d(xnk−1,xmk−1)≤ limsup
k→∞

d(xnk−1,xmk−1)≤ C. (3.1.18)

If b > 1, the inequality (3.1.18) implies that C = 0. Suppose that b = 1. Putting

tk := d(xnk ,xmk
) and sk := d(xnk−1,xmk−1) in the condition (ξ2), we get

0≤ limsup
k→∞

ξ(bd(xnk ,xmk
),d(xnk−1,xmk−1))< 0, (3.1.19)

which is contradict. Therefore, C = 0 and so for each b≥ 1, we obtain

lim
n→∞Cn = 0.

Hence, {xn} is a Cauchy sequence. This completes the proof.

Now we establish the fixed point theorem of Zb<-contraction mappings

as follows:

Theorem 3.1.5. Let (X,b,d) be a complete b-metric space, < be a transitive

relation on X and T be a self-mapping on X. Suppose that the following conditions

hold:

(i) X(T ;<) is nonempty;
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(ii) < is T -closed;

(iii) there is a ξ ∈ Zb such that T is a Zb<-contraction mapping with respect to

ξ ∈ Zb;

(iv) T is continuous.

Then T has a fixed point. Moreover, for each x0 ∈X(T ;<), the Picard sequence

{xn} in X defined by xn = Txn−1 for all n ∈ N, converges to a fixed point of T .

Proof. Let x0 be an arbitrary point in X(T ;<). Put xn = Txn−1 = Tnx0 for all

n ∈ N0. If xn∗ = xn∗+1 for some n∗ ∈ N0, then xn∗ is a fixed point of T . Thus

we will assume that xn 6= xn+1 for all n ∈ N0. By Lemma 3.1.4, we have {xn} is

a Cauchy sequence. From the completeness of X, there exists x∗ ∈ X such that

xn → x∗ as n→∞. By condition (iv), we have Txn → Tx∗ as n→∞. This

implies that, Tx∗ = x∗. This completes the proof.

Theorem 3.1.6. Theorem 3.1.5 also holds if we replace hypothesis (iii) by the

following one

(v) < is b-d-self-closed.

Proof. The arguments of the proof of theorem 3.1.5 prove that there exists x∗ ∈X

such that xn→ x∗ as n→∞. Then there exists a subsequence {xnk} of {xn} with

[xnk ,x
∗] ∈ < (3.1.20)

for all k ∈ N. Suppose by contradiction that x∗ is not a fixed point of T . That is,

x∗ 6= Tx∗ and so d(x∗,Tx∗) > 0. Since xnk → x∗ as k→∞, there is k1 ∈ N such

that

d(xnk ,x
∗)< d(x∗,Tx∗) (3.1.21)

for all k ≥ k1. In particular, xnk 6= Tx∗ for all k ≥ k1. So

d(Txnk ,Tx
∗) = d(xnk+1,Tx

∗)> 0 (3.1.22)
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for all k ≥ k1. Since xn 6= xn+1 for all n ∈ N, it is impossible the condition that

there exists k2 ∈N such that xnk = x∗ for all k≥ k2. So there exists a subsequence

{xnσ(k)} of {xnk} such that xnσ(k) 6= x∗ for all k ∈ N. Next, let k3 ∈ N such that

σ(k3)≥ k1. By (3.1.21) and (3.1.22), we get

d(xnσ(k),x
∗)> 0 (3.1.23)

and

d(Txnσ(k),Tx
∗)> 0. (3.1.24)

for all k ≥ k3. Using (ξ1), and Proposition 3.1.3, we get

0≤ ξ(bd(Txnσ(k),Tx
∗),d(xnσ(k),x

∗))< d(xnσ(k),x
∗)− bd(Txnσ(k),Tx

∗).

for all k ≥ k3. This implies that

bd(Txnσ(k),Tx
∗)≤ d(xnσ(k),x

∗)

for all k ≥ k3. Using the triangle inequality and the symmetry of b-metric d, we

have

d(Tx∗,x∗) ≤ bd(Tx∗,xnσ(k)+1) + bd(xnσ(k)+1,x
∗)

= bd(xnσ(k)+1,Tx
∗) + bd(xnσ(k)+1,x

∗)

≤ d(xnσ(k),x
∗) + bd(xnσ(k)+1,x

∗) (3.1.25)

for all k ≥ k3. Letting k→∞ in the inequality (3.1.25), we get d(Tx∗,x∗) = 0.

That is, Tx∗ = x∗. This completes the proof.

Remark 3.1.7. Note that the transitivity of < is sufficient to guarantee the

existence of a fixed point of Zb<-contraction mappings in b-metric space.

The following theorem guarantees the uniqueness of the fixed point in

Theorems 3.1.5 (resp. Theorem 3.1.6).

Theorem 3.1.8. In addition to the hypothesis of Theorem 3.1.5 (resp.Theorem

3.1.6), suppose that the following condition holds:
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(u) Υ(x,y,<) is nonempty for all x,y ∈Fix(T ) := {z ∈X : z is a fixed point of T}.

Then T has a unique fixed point.

Proof. To prove uniqueness, assume x∗,y∗ are two fixed points of T such that

x∗ 6= y∗. Since Υ(x,y,<) is nonempty, for all x,y ∈ X, there exists a path (say

{z0, z1, z2, ..., zk}) of some finite length k in < from x to y so that

z0 = x∗, zk = y∗, (zi, zi+1) ∈ < for each i= 0,1,2, . . . ,k−1.

As < is transitive, we have

(z0, zk) ∈ <

for all i= 0,1,2, . . . ,k−1 and for all n ∈ N. Therefore,

0≤ ζ(bd(Tz0,T zk),d(z0, zk))< d(z0, zk)− bd(Tz0,T zk) = d(x∗,y∗)− bd(x∗,y∗).

That is,

bd(x∗,y∗) = bd(Tnx∗,Tny∗)< d(x∗,y∗)

which is a contradiction. This implies that T has a unique fixed point.

Remark 3.1.9. Note that we use the result in Theorem 3.1.8 to derive a criterion

for the existence of fixed points in some cases wherein several results in [24, 28]

cannot be guaranteed the existence of fixed points.

3.2 Fixed point results for (F,γ)<-contraction mappings

In this section, we prove the existence and uniqueness of a fixed point

of (F,γ)<-contraction mappings in metric spaces. We start our consideration by

giving the important concepts of two new control functions.

Definition 3.2.1. Let F be the set of all functions F : R+ → R satisfying the

following conditions:

(F2) for each sequence {αn}n∈N of positive numbers, lim
n→∞αn = 0 if and only if

lim
n→∞F (αn) =−∞;
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(F3′) F is lower semicontinuous.

Example 3.2.2. Define a mapping F : R+→ R by

1. F (α) =


−1
α if α≤ 3

−1
(α+1) if α > 3

,

2. F (α) =


−1
α +α if α≤ 2.8

2α−3 if α > 2.8
,

3. F (α) =


−1

1−eα if α≤ 2

ln(α−1) if α > 2
.

Definition 3.2.3. Let Γ be the set of all functions γ : R+ → R satisfying the

following conditions:

(γ1) for each sequence {αn}n∈N of positive numbers, lim
n→∞αn = 0 if and only if

lim
n→∞γ(αn) =−∞;

(γ2) γ is right upper semicontinuous.

Example 3.2.4. Define a mapping γ : R+→ R by

1. γ(α) =


−1
α if α < 4.6

cosα if α≥ 4.6
,

2. γ(α) =


ln
(
α
3 + sinα

)
if α < 3.2

sinα if α≥ 3.2
,

3. γ(α) =


lnα if α < 5

ln(α+ cosα) if α≥ 5
.

Note that every continuous function is lower semicontinuous and right

upper semicontinuous and so families F and Γ are larger than the family of func-

tions of Imdad et. al. in [49].
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Now, we introduce a new contraction mapping concerning control func-

tions in F and Γ in metric spaces endowed with a binary relation as follows:

Definition 3.2.5. Given a metric space (X,d) and a binary relation < on X, let

A= {(x,y) ∈ < : d(Tx,Ty)> 0}.

A self-mapping T on X is said to be (F,γ)<-contraction mapping if there exists

F ∈ F , γ ∈ Γ and τ > 0 such that

τ +F (d(Tx,Ty))≤ γ(d(x,y)) (3.2.1)

for all (x,y) ∈ A.

The following theorem shows the existence and uniqueness of a fixed

point for (F,γ)<-contraction mappings.

Theorem 3.2.6. Let (X,d) be a complete metric space, let < be a transitive

relation on X and let T be a self-mapping on X. Suppose that the following

conditions hold:

(a) X(T ;<) is nonempty;

(b) < is T -closed;

(c) T is continuous;

(d) T is an (F,γ)<-contraction mapping with F (α)> γ(α) for all α > 0.

Then T has a fixed point. Moreover, for each x0 ∈X(T ;<), the Picard sequence

{Tnx0} is convergent to the fixed point of T .

Proof. Let x0 be an arbitrary point in X(T ;<) and xn = Txn−1 = Tnx0 for all

n ∈ N0. If xn∗ = xn∗+1 for some n∗ ∈ N0, then xn∗ is a fixed point of T and the

proof is completed. So we assume that

xn 6= xn+1 (3.2.2)
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for all n ∈ N0 and so d(Txn,Txn+1)> 0 for all n ∈ N0. Since (x0,Tx0) ∈ <, using

that < is T -closed, we get

(xn,xn+1) ∈ < (3.2.3)

for all n∈N0. Thus (xn,xn+1)∈A for all n∈N0. Since T is an (F,γ)<-contraction

mapping, we have

F (d(xn,xn+1)) = F (d(Txn−1,Txn))≤ γ(d(xn−1,xn))− τ (3.2.4)

for all n ∈ N. Denote an = d(xn,xn+1) for all n ∈ N0. From (3.2.4), we obtain

F (an)≤ γ(an−1)− τ < F (an−1)− τ ≤ γ(an−2)−2τ ≤ ·· · ≤ γ(a0)−nτ (3.2.5)

for all n ∈ N. From (3.2.5), we obtain lim
n→∞F (an) = −∞, which together with

(F2), we have

lim
n→∞ an = 0. (3.2.6)

From (3.2.2) and (3.2.6), we get xn 6= xm for all n,m ∈ N0 with n 6= m. Now, we

will show that {xn} is a Cauchy sequence in X. Suppose by contradiction that

{xn} is not a Cauchy sequence. By Lemma 2.5.22 and (3.2.6), there exist ε > 0

and two subsequences {xn(k)} and {xm(k)} of {xn} such that n(k) > m(k) > k,

such that

lim
k→∞

d(xn(k),xm(k)) = lim
k→∞

d(xn(k)−1,xm(k)−1) = ε.

Since < is transitive, we have (xn(k)−1,xm(k)−1) ∈ <. Applying the condition (d),

we have

τ +F (d(xn(k),xm(k)))≤ γ(d(xn(k)−1,xm(k)−1))

and so

τ + liminf
k→∞

F (d(xn(k),xm(k))) ≤ liminf
k→∞

γ(d(xn(k)−1,xm(k)−1))

≤ limsup
k→∞

γ(d(xn(k)−1,xm(k)−1)).

Thus,

τ +F (ε)≤ γ(ε)< F (ε),

which is a contradiction. Hence, {xn} is a Cauchy sequence. By the completeness

of X, there exists x∗ ∈ X such that xn→ x∗ as n→∞. So it follows from the
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continuity of the mapping T that xn+1 = Txn→ Tx∗ as n→∞. This implies that

Tx∗ = x∗, that is, x∗ is a fixed point of T . This completes the proof.

Now, we give an example to illustrate the utility of Theorem 3.2.6.

Example 3.2.7. Let X = [0,∞) and d :X×X→ [0,∞) be the Euclidean metric

defined by d(x,y) = |x−y | for all x,y ∈X. Thus (X,d) is a complete metric space.

Consider the sequence {αn}n∈N defined as

αn = n

3 (n+ 1)(n+ 2) for all n ∈ N.

Define a binary relation < on X by

< := {(1,1)}∪{(1,αi) : i ∈ N}∪{(αi,αj) : i < j for all i, j ∈ N}.

So < is transitive relation. Define a mapping T :X →X by

Tx=



x if 0≤ x≤ 1,

dlnxe if 1≤ x≤ α1,(
x−α1
α2−α1

)
+ 1 if α1 ≤ x≤ α2,

αn−1(αn+1−x)+αn(x−αn)
αn+1−αn if αi ≤ x≤ αi+1 for all n ∈ N−{1,2}.

It is easy to see that T is continuous and < is T -closed. Now we show that T is

an (F,γ)<-contraction mapping with τ = 2 and F,γ : R+→ R which are defined

by

F (α) =


−1
α + 4

5α if α≤ 1.1,

−1
α +α if α > 1.1,

and γ(α) =


−1
α + 1

3α if α < 6.5,

−2
α +α if α≥ 6.5.

Let (x,y) ∈ A = {(x,y) ∈ < : d(Tx,Ty) > 0}. So we have to consider

into four cases.

Case I : if x = 1 and y = α2. Then d(x,y) = 7 and d(Tx,Ty) = 1 and

so

2 +F (d(Tx,Ty) = 2− 1
d(Tx,Ty) + 4

5d(Tx,Ty)≤− 2
d(x,y) +d(x,y) = γ(d(x,y)).
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Case II : if x = 1 and y = αi for all i > 2. Then d(x,y) = |1−αi| ≥ 19

and d(Tx,Ty) = |1−αi−1| ≥ 7 for all i > 2 and so

2|1−αi−1|− |1−αi| < 2|1−αi−1|

< |1−αi||1−αi−1|

< |1−αi||1−αi−1|(|1−αi|− |1−αi−1|−2)

⇒ 2 + 2
|1−αi|

− 1
|1−αi−1|

≤ |1−αi|− |1−αi−1|

⇒ 2− 1
|1−αi−1|

+ |1−αi−1| ≤ −
2

|1−αi|
+ |1−αi|.

That is,

2 +F (d(Tx,Ty) = 2− 1
d(Tx,Ty) +d(Tx,Ty)≤− 2

d(x,y) +d(x,y) = γ(d(x,y)).

Case III : if x = α1 and y = α2. Then d(x,y) = 6 and d(Tx,Ty) = 1

and so

2 +F (d(Tx,Ty) = 2− 1
d(Tx,Ty) + 4

5d(Tx,Ty)≤− 1
d(x,y) + 1

3d(x,y) = γ(d(x,y)).

Case IV : if x = αi and y = αj for all i, j ∈ N with i < j where (i, j) 6=

(1,2). Then d(x,y) = |αi−αj | ≥ 12 and d(Tx,Ty) = |αi−1−αj−1| ≥ 6. So

2|αi−1−αj−1|− |αi−αj | < 2|αi−1−αj−1|

< |αi−αj ||αi−1−αj−1|

< |αi−αj ||αi−1−αj−1|(|αi−αj |− |αi−1−αj−1|−2)

⇒ 2 + 2
|αi−αj |

− 1
|αi−1−αj−1|

≤ |αi−αj |− |αi−1−αj−1|

⇒ 2− 1
|αi−1−αj−1|

+ |αi−1−αj−1| ≤ −
2

|αi−αj |
+ |αi−αj |.

That is,

2 +F (d(Tx,Ty) = 2− 1
d(Tx,Ty) +d(Tx,Ty)≤− 2

d(x,y) +d(x,y) = γ(d(x,y)).
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From Case I, Case II, Case III, and Case IV, we can show that

2 +F (d(Tx,Ty)≤ γ(d(x,y))

for all (x,y) ∈ A.

This yields that T is an (F,γ)<-contraction with τ = 2. Moreover,

there exists x0 = 1 ∈ X such that (x0,Tx0) ∈ <. This shows that X(T ;<) is a

nonempty set. Therefore, all the conditions of Theorem 3.2.6 are satisfied and so

there exists a fixed point of T . In this case, T has infinite fixed points (see Figure

3.1).

Figure 3.1: Graphs of y = x and y = Tx in Example 3.2.7.

Remark 3.2.8. Note that fixed point theorems concerning F -contraction map-

pings in [49] can not be used to solve this example since F and γ are not continuous

and F (α) 6= γ(α) for all α > 0.

In the following result, we omit the continuity of T from Theorem 3.2.6.

Theorem 3.2.9. Theorem 3.2.6 also holds if we replace the hypothesis (c) by the

following one:
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(c′) (X,d) is <-nondecreasing-regular.

Proof. From the proof of Theorem 3.2.6, there exists x∗ ∈X such that xn→ x∗ as

n→∞. Since (xn,xn+1) ∈ <, it follows from (c′) that (xn,x∗) ∈ < for all n ∈ N.

Now we consider two case depending on L= {n ∈ N : Txn = Tx∗}.

Case I : If L is finite, there exist n0 ∈ N such that Txn 6= Tx∗ for all

n≥ n0. So we consider xn 6= x∗, d(xn,x∗)> 0 and d(Txn,Tx∗)> 0 for all n≥ n0.

Since T is (F,γ)<-contraction, we have

τ +F (d(Txn,Tx∗))≤ γ(d(xn,x∗))

for all n≥ n0. Since d(xn,x∗)→ 0 as n→∞, we have γ(d(xn,x∗))→∞ as n→∞

and so F (d(Txn,Tx∗))→∞ as n→∞. By (F2), we have d(Txn,Tx∗)→ 0 as

n→∞. This implies that Tx∗ = x∗ and so x∗ is a fixed point of T .

Case II : If L is infinite, then xn+1 = Txn = Tx∗ for all n ∈ L. Taking

n→∞, we get x∗ = Tx∗ and so x∗ is a fixed point of T .

Therefore, T has a fixed point. This completes the proof.

The following theorem guarantees the uniqueness of the fixed point in

Theorems 3.2.6 and 3.2.9.

Theorem 3.2.10. In addition to the hypothesis of Theorem 3.2.6 (respectively,

Theorem 3.2.9), Υ(x,y,<) is nonempty, for all x,y ∈Fix(T ). Then T has a unique

fixed point.

Proof. Suppose that x and y are two distinct fixed points of T . Then d(Tx,Ty) =

d(x,y)> 0. Since Υ(x,y,<) is nonempty, there is a path (say {z0, z1, z2, ..., zk}) of

some finite length k in < from x to y, so that

z0 = x, zk = y, (zi, zi+1) ∈ < for each i= 0,1,2, . . . ,k−1.

By the transitivity of <, we get

(x,z1) ∈ <, (z1, z2) ∈ <, . . . , (zk−1,y) ∈ < ⇒ (x,y) ∈ <.
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The contractivity condition (3.2.1) implies that

τ +F (d(x,y)) = τ +F (d(Tx,Ty))≤ γ(d(x,y)),

Since F (α)> γ(a) for all α > 0, it follows that

τ +F (d(x,y))< F (d(x,y)),

which is a contradiction because τ > 0. Thus T has a unique fixed point.

3.3 Fixed point results for (ψ,φ,<)-contraction mappings

In this section, we discuss the existence and uniqueness of fixed point

of (ψ,φ,<)-contraction mappings. So we introduce the following notations.

Ψ := {ψ : [0,∞)→ [0,∞) : ψ is lower semicontinuous and nondecreasing},

and

Φ := {φ : [0,∞)→ [0,∞) : φ is right upper semicontinuous}.

Here, it can be pointed out that every continuous function is lower

semicontinuous and right upper semicontinuous. So the class Ψ is larger than the

family of all weak altering distance functions and the family of all altering distance

functions. Now we give some examples of functions including the class of Ψ and

the class Φ, respectively.

Example 3.3.1. Define ψ1,ψ2,ψ3 : [0,∞)→ [0,∞) by

ψ1(s) =


ln(1 + s) + 1 if s≤ 1

s+ 1 if s > 1
,

ψ2(s) =


s2 if s≤ 1

es−1 if s > 1
,
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ψ3(s) =


es+ 1 if s≤ 1

3s+ 1 if s > 1
.

We see that ψ1,ψ2,ψ3 ∈ Ψ. (The graphs of functions ψ1,ψ2 and ψ3 are shown in

Figure 3.2).
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Figure 3.2: Graphs of ψ1,ψ2,ψ3 in Example 3.3.1.

Example 3.3.2. Define φ1,φ2,φ3 : [0,∞)→ [0,∞) by

φ1(s) =


s2 if s < 1

es−1 if s≥ 1
,

φ2(s) =


ln(1 + s) if s < 1

s if s≥ 1
,

φ3(s) =


s2

2 if s < 1

s2 if s≥ 1
.

We see that φ1,φ2,φ3 ∈ Φ. (The graphs of functions φ1,φ2 and φ3 are shown in

Figure 3.3).
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Figure 3.3: Graphs of φ1,φ2,φ3 in Example 3.3.2.

Based on the classes Ψ and Φ, we introduce the notion of a (ψ,φ,<)-

contraction as follows:

Definition 3.3.3. Let (X,d) be a metric space. A self-mapping T on X is said

to be a (ψ,φ,<)-contraction mapping if there exist ψ ∈Ψ and φ ∈ Φ such that

ψ(d(Tx,Ty))≤ φ(d(x,y))) (3.3.1)

for all x,y ∈X with x</y and Tx</Ty.

Now we give a useful proposition which immediate due to the sym-

metricity of d.

Proposition 3.3.4. Let (X,d) be a metric space, < be a binary relation on X, T :

X→X be a mapping, ψ ∈Ψ and φ∈Φ, then the following contractivity conditions

are equivalent:

(i) ψ(d(Tx,Ty))≤ φ(d(x,y)), ∀x,y ∈X with (x,y) ∈ <,

(ii) ψ(d(Tx,Ty))≤ φ(d(x,y)), ∀x,y ∈X with [x,y] ∈ <.
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Proposition 3.3.5. Let (X,d) be a metric space endowed with a binary relation

< and T be a self-mapping on X. Suppose that the following conditions hold:

(i) T is a (ψ,φ,<)-contraction with ψ(t)> φ(t) for all t > 0;

(ii) < is T -orbitally transitive;

(iii) X is (<,d)-increasing regular.

Then T is orbitally </-continuous.

Proof. Let x,u∈X and {nj} be a increasing sequence of positive integers. Suppose

that Tnjx→ u and Tnjx</Tnj+1x for all j ∈ N. Since < is T -orbitally transitive,

we get

TTnjx</Tu

for all j ∈ N. Using the condition (i), we have

ψ(d(TTnjx,Tu))≤ φ(d(Tnjx,u))< ψ(d(Tnjx,u)) (3.3.2)

for all j ∈ N. By the properties of ψ, we have

d(TTnjx,Tu)≤ d(Tnjx,u))

for all j ∈ N. So the sequence {d(TTnjx,Tu)} is decreasing and bounded below.

Then there exists c≥ 0 such that d(TTnjx,Tu)→ c as j→∞. By (3.3.2), property

of ψ and φ, taking j→∞ we get

ψ(c) ≤ liminf
j→∞

ψ(d(TTnjx,Tu))

≤ limsup
j→∞

ψ(d(TTnjx,Tu))

≤ limsup
j→∞

φ(d(TTnjx,Tu))

≤ φ(c).

Since ψ(t) > φ(t) for all t > 0, we have c = 0. That is, lim
j→∞

d(TTnjx,Tu) = 0.

Therefore, T is orbitally </-continuous.
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Proposition 3.3.6. Let (X,d) be a metric space endowed with a binary relation

< and T be a self-mapping on X. If the following conditions hold:

(i) T is a (ψ,φ,<)-contraction with ψ(t)> φ(t) for all t > 0;

(ii) ∅ 6= Fix(T ) is <s-connected.

Then T has a unique fixed point.

Proof. Suppose by contradiction that there exist x,y ∈ Fix(T ) such that x 6= y.

Then there exists a path in <s of some finite length m from x to y such that

u0 = x,um = y,ui 6= ui+1

and [ui,ui+1] ∈ < for all i ∈ {0,1, . . . ,m−1}. Since ui ∈ Fix(T ), we have Tui = ui

for all i ∈ {0,1, . . . ,m}. By the assumption (i), we have

ψ(d(ui,ui+1)) = ψ(d(Tui,Tui+1))≤ φ(d(ui,ui+1))< ψ(d(ui,ui+1))

for all i ∈ {0,1, . . . ,m−1}, which is a contradiction. Hence, T has a unique fixed

point.

Theorem 3.3.7. Let (X,d) be a metric space endowed with a binary relation <

and T be a self-mapping on X. Suppose that the following conditions hold:

(i) < is T -orbitally transitive;

(ii) there exists a (T,<)-Picard sequence;

(iii) TX is (<,d)-increasing precomplete;

(iv) T is a (ψ,φ,<)-contraction with ψ(t)> φ(t) for all t > 0;

(v) T is orbitally </-continuous.

Then T has a fixed point. Moreover, if {xn} is any (T,<)- Picard sequence, then

either {xn} contains a fixed point of T or {xn} converges to a fixed point of T .

Ref. code: 25615909320441WJZ



60

Proof. It follows from (i) that there exists a sequence {xn} ⊆X such that xn+1 =

Txn and xn<xn+1 for all n∈N. If there exists n∗ ∈N0 such that xn∗ = Txn∗ , then

xn∗ is a fixed point of T . So we assume that xn 6= xn+1 for all n ∈ N and then

d(xn,xn+1) > 0 for all n ∈ N. This implies that {xn} is <-increasing sequence.

From the contractive condition, we have

ψ(d(xn,xn+1)) = ψ(d(Txn−1,Txn))≤ φ(d(xn−1,xn))< ψ(d(xn−1,xn)) (3.3.3)

for all n ∈ N. Since ψ is a nondecreasing function, we have

d(xn,xn+1)< d(xn−1,xn)

for all n ∈ N. So, the sequence {d(xn,xn+1)} is decreasing and bounded below.

Then there exists p≥ 0 such that d(xn,xn+1)→ p as n→∞. By (3.3.3), property

of ψ and φ, taking n→∞ we have

ψ(p) ≤ liminf
n→∞ ψ(d(xn,xn+1))

≤ limsup
n→∞

ψ(d(xn,xn+1))

≤ limsup
n→∞

φ(d(xn−1,xn))

≤ φ(p).

Since ψ(t)> φ(t) for all t > 0, we have p= 0. That is,

lim
n→∞d(xn,xn+1) = 0. (3.3.4)

Now, we will show that {xn} is a Cauchy sequence. Assume that {xn}

is not a Cauchy sequence. By 3.3.4 and Lemma 2.5.22, there exist ε0 > 0 and two

sequences {xn(k)} and {xm(k)} of {xn} such that k ≤ n(k)≤m(k),

d(xn(k),xm(k)−1)≤ ε0 < d(xn(k),xm(k)) ∀k ∈ N0

and

lim
n→∞d(xn(k),xm(k)) = lim

n→∞d(xn(k)−1,xm(k)−1) = ε0.

Since < is T -orbitally transitive, we have

xn(k)−1</xm(k)−1 and Txn(k)−1</Txm(k)−1.
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It follows form (3.3.1), we get

ψ(d(Txn(k)−1,Txm(k)−1))≤ φ(d(xn(k)−1,xm(k)−1)).

Tanking k→∞ and using the property of ψ and φ we get

ψ(ε0) ≤ liminf
k→∞

ψ(d(Txn(k)−1,Txm(k)−1))

≤ limsup
k→∞

ψ(d(xn(k)−1,xm(k)−1))

≤ limsup
k→∞

φ(d(xn(k)−1,xm(k)−1))

≤ φ(ε0).

It follows that ε0 = 0, which is a contradiction. So {xn} is a Cauchy sequence and

it is also an <-increasing. By the <-increasingly precompleteness of TX, there

exists z ∈X such that xn→ z as n→∞.

Since Tnx0</Tn+1x0, it follows from orbitally </-continuity of T we

get xn+1→ Tz as n→∞. Therefore, Tz = z, that is z is a fixed point of T . This

completes the proof.

In the following result, we avoid the orbitally </-continuity of T .

Theorem 3.3.8. Theorem 3.3.7 also holds if we replace hypothesis (v) by the

following one

(iv) X is (<,d)-increasing regular.

Proof. It follows from Proposition 3.3.5 and Theorem 3.3.7 that T has a fixed

point.

The following theorem guarantees the uniqueness of the fixed point in

Theorem 3.3.7 (respectively, Theorem 3.3.8).

Theorem 3.3.9. In addition to the hypothesis of Theorem 3.3.7 (respectively,

Theorem 3.3.8), assume that Fix(T ) is <s-connected, then the fixed point of T is

unique.
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Proof. From Theorem 3.3.7 (respectively, Theorem 3.3.8), we get Fix(T ) 6= ∅. So

we can conclude from 3.3.6 that T has a unique fixed point.

Now, we give an example to illustrate the utility of Theorem 3.3.9.

Example 3.3.10. Let X = (0,∞) and d :X×X→ [0,∞) be the Euclidean metric

defined by d(x,y) = |x− y | for all x,y ∈X. Consider the sequence {αn} defined

as

αn = n(n+ 1)
2 for all n ∈ N.

Define a binary relation < on X by

< := {(α1,α1)}∪{(x,y) : 0< x < y ≤ 2}∪{(αi,αi+1) : i ∈ N\{1}}.

We now define a mapping T :X →X by

Tx=



α1 if 0< x≤ 2,

α1 +
(
α2(x−2)

α3

)
if 2≤ x≤ α2,

α1 + αi+1
αi+2

+


αi+2
αi+3

− αi+1
αi+2

αi+2−αi+1

(x−αi+1) if αi+1 ≤ x≤ αi+2, i= 1,2,3, . . . .

It is easy to see that T is orbitally </-continuous and TX is <-increasingly precom-

plete. Moreover, there exists (T,<)-Picard sequence since x0 = α1 ∈X such that

x0<Tx0 and < is T -closed. Next, we will show that T is a (ψ,φ,<)-contraction

with ψ(s)> φ(s) for all s > 0 and ψ, φ which are defined by

ψ(s) =


ln(1 + s) + 1 if s≤ 1

s+ 1 if s > 1
,

and

φ(s) =


ln(1 + s) if s < 1

s if s≥ 1
,

We see that ψ ∈Ψ and φ∈Φ with ψ(s)>φ(s) for all s> 0. Next, we will show that

T is an (ψ,φ,<)-contraction. Let x</y and Tx</Ty. This implies that x= αi and
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y = αi+1 for some i ∈ N\{1}. Then d(x,y)≥ d(α2,α3) = 3 and 0< d(Tx,Ty)< 1.

It follows that

ln(d(Tx,Ty) + 1) + 1≤ d(x,y) (3.3.5)

That is,

ψ(d(Tx,Ty))≤ φ(d(x,y)). (3.3.6)

This yields that T is an (ψ,φ,<)-contraction. Furthermore, it easy to show that

Fix(T ) is <s-connected. Therefore, all the conditions of Theorem 3.3.9 are satis-

fied and so T has a unique fixed point, namely x= 1 (see Figure 3.4).

Figure 3.4: Graphs of y = x and y = Tx in Example 3.3.10.

Remark 3.3.11. From the Example 3.3.10, ψ is not an altering distance function

and φ is not continuous. So fixed point result of Yan et al. in [44] are not

applicable. Moreover, a binary relation is not a transitive, so fixed point result

of Sawangsup et al. [19] are not applicable. It also can be pointed that the fixed

point results in [44, 50, 51, 52] are not applicable.
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CHAPTER 4

APPLICATIONS TO NONLINEAR MATRIX

EQUATIONS AND NUMERICAL EXPERIMENTS

In this chapter, we will show that how to use our fixed point results

in Chapter 3 for solving the existence and uniqueness of a solution of nonlinear

matrix equations.

4.1 Solutions of a nonlinear matrix equation arising from Zb<-contraction

mappings via Ky Fan norms

On the basis of the fixed point theorems in Section 3.1, we study the

nonlinear matrix equation

X =Q+
m∑
i=1

A∗iG(X)Ai, (4.1.1)

where A1,A2, . . . ,Am are arbitrary n×n matrices, Q is a Hermitian positive defi-

nite matrix and G is a continuous order preserving maps from the set of all n×n

Hermitian matrices H(n) into the set of all n×n positive definite matrices P (n)

such that G(0) = 0. In this process, we consider the nonlinear matrix equation

(4.1.1) in a complete b-metric space (H(n),Dtr) with the coefficient b = 2p−1,

where p≥ 1 is a real number, such that the b-metric Dtr induced by the Ky Fan

norm is defined by

Dtr(X,Y ) = (‖X−Y ‖tr)p

for all x,y ∈H(n).

Studying the existence and uniqueness of a solution of the nonlinear

matrix equation (4.1.1), we define a self-mapping K on H(n) by

K(X) =Q+
m∑
i=1

A∗iG(X)Ai (4.1.2)

for all X ∈H(n), where A1,A2, . . . ,Am are arbitrary n×n matrices, Q is a Hermi-

tian positive definite matrix and G is a continuous order preserving maps from the

Ref. code: 25615909320441WJZ



65

set of all n×n Hermitian matrices H(n) into the set of all n×n positive definite

matrices P (n) such that G(0) = 0.

Applying fixed point theorems for Zb<-contraction mappings, we will

show that K has a unique fixed point and then the nonlinear matrix equation

(4.1.1) has a unique solution. The following theorems guarantee the existence and

uniqueness of solution of the nonlinear matrix equation (4.1.1).

Theorem 4.1.1. Consider the matrix equation (4.1.1). Suppose that there exist

positive real numbers M and p≥ 1 such that

(i) for every X,Y ∈H(n) such that (X,Y ) ∈�, the following inequality hold:

|tr(G(Y )−G(X))|p ≤ 1
b

1
pM

[ψ(|tr(Y −X)|p)] , (4.1.3)

where b = 2p−1 and ψ : [0,∞)→ [0,∞) is a function such that ψ(t) < t for

all t > 0;

(ii)
m∑
i=1

AiA
∗
i ≺MIn and

m∑
i=1

A∗iG(Q)Ai � 0.

Then the matrix equation (4.1.1) has a solution. Moreover, the iteration

Xj =Q+
m∑
i=1

A∗iG(Xj−1)Ai (4.1.4)

for all j ∈ N, where X0 ∈ H(n) such that X0 � Q+
m∑
i=1

A∗iG(X0)Ai, converges in

the sense of b-metric Dtr to the solution of matrix equation (4.1.1).

Proof. Let a mapping K :H(n)→H(n) be defined by

K(X) =Q+
m∑
i=1

A∗iG(X)Ai for all X ∈H(n). (4.1.5)

Then K is well defined and � on H(n) is K-closed. Clearly, a fixed point of K is

a solution of the equation (4.1.1). Now, we will show that there is a b-simulation

function ξ so that K is Zb�-contraction mapping with respect to ξ.
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Let X,Y ∈ H(n) such that (X,Y ) ∈�. This means that X � Y and

thus G(X)� G(Y ). Therefore,

b(‖K(Y )−K(X)‖tr)p = b [tr(K(Y )−K(X))]p

= b

[
tr(

m∑
i=1

A∗i (G(Y )−G(X))Ai)
]p

= b

[
m∑
i=1

tr(A∗i (G(Y )−G(X))Ai)
]p

= b

[
m∑
i=1

tr(AiA∗i (G(Y )−G(X)))
]p

= b

[
tr
(
(
m∑
i=1

AiA
∗
i )(G(Y )−G(X))

)]p

≤ b

[
‖
m∑
i=1

AiA
∗
i ‖
]p

(‖G(Y )−G(X)‖tr)
p

≤ b

[
‖∑m

i=1AiA
∗
i ‖

b
1
pM

]p [
ψ
(
(‖(Y −X)‖tr)p

)]
< ψ

(
(‖(Y −X)‖tr)p

)
and then

0< ψ
(
(‖(Y −X)‖tr)p

)
− b(‖K(Y )−K(X)‖tr)p . (4.1.6)

Putting ξ(t,s) = ψ(s)− t for all s, t > 0, obviously ξ is a b-simulation function.

From the inequality (4.1.6), we have

0≤ ζ
(
b(‖K(Y )−K(X)‖tr)p ,(‖Y −X‖tr)p

)
. (4.1.7)

Therefore, K is a Zb�-contraction mapping.

From
m∑
i=1

A∗iG(Q)Ai � 0, we have Q�K(Q) and hence H(n)(K;�) 6= ∅.

This means that Q∈H(n)(K;�). Now from Theorem 3.1.5, there exists Z ∈H(n)

such that K(Z) = Z, that is, the matrix equation (4.1.1) has a solution.

Theorem 4.1.2. Under the assumptions of Theorem 4.1.1, the equation (4.1.1)

has a unique solution Z ∈H(n).

Proof. Since for every X,Y ∈ H(n) there is a greatest lower bound and a least

upper bound, we obtain that Υ(x,y,<) is nonempty for each x,y ∈H(n). Thus, it
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follows from Theorem 3.1.8 that K has a unique fixed point in H(n). This implies

that Equation (4.1.1) has a unique solution in H(n).

Next, we give a numerical example to show the correctness of Theorem

4.1.1.

Example 4.1.3. Let

Q=



7 3 0 0

3 7 3 0

0 3 7 3

0 0 3 7


, A1 =



−0.0558 0.0064 0 −0.2069

−0.0006 −0.0021 0 0

0.0201 0 0 0.1201

0.1212 0.3131 0.0003 0.0424


,

A2 =



0 0.0121 0.0666 0.1301

0.0341 0.0141 0.1201 0.2004

0.0011 0 0 0.0011

0.0114 0.0541 0.1111 0.0511


,

A3 =



0.0014 0.0021 −0.0421 −0.1158

0 0.1471 −0.0451 0.0112

0.0125 0.1214 0.01142 0.2999

0.1254 −0.1010 0.1241 0


.

Define ψ : [0,∞)→ [0,∞) by ψ(t) = t
2 . We consider Equation (4.1.1) with G(X) =

X that is

X =Q+A∗1(X)A1 +A∗2(X)A2 +A∗3(X)A3. (4.1.8)

All the hypotheses of Theorem 4.1.2 are satisfied with M = 1
4
√

2 and p = 2. We

will consider the iteration

Xj =Q+A∗1Xj−1A1 +A∗2Xj−1A2 +A∗3Xj−1A3 (4.1.9)

for all j ∈ N, where X0 = Q, and the error Ej := (‖Xj −Xj−1‖tr)p for all j ∈ N.

After 6 iterations, we can approximate a solution X̂ of Equation (4.1.8) by
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X̂ ≈X6 =



7.3321 3.3284 0.1998 0.4277

3.3284 8.2894 2.9635 0.5570

0.1998 2.9635 7.5132 3.5935

0.4277 0.5570 3.5935 8.9026


with E6 = 9.3708e−005.

Figure 4.1: The error of the iteration process (4.1.9) for the Equation (4.1.8) given

in Example 4.1.3.

4.2 Solutions of a nonlinear matrix equation arising from (F,γ)<-contraction

mappings via Thompson metrics

In this section, we apply fixed point results for (F,γ)<-contraction

mappings via Thompson metrics to solve the nonlinear matrix equation

Xr =Q+
m∑
i=1

A∗iGi(X)Ai, (4.2.1)

where r ≥ 1, A1,A2, . . . ,Am are n× n nonsingular matrices, Q is a Hermitian

positive definite matrix and G1,G2, . . . ,Gm are continuous order preserving self-

mappings on P (n).

Studying the existence and uniqueness of a solution of the nonlinear
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matrix equation (4.2.1), we define a self-mapping K on P (n) by

K(X) =
(
Q+

m∑
i=1

A∗iGi(X)Ai
) 1
r

(4.2.2)

for all X ∈ P (n), where r ≥ 1, A1,A2, . . . ,Am are n×n nonsingular matrices, Q

is a Hermitian positive definite matrix, and G1,G2, . . . ,Gm are continuous order

preserving self-mappings on P (n).

Applying fixed point theorems for (F,γ)<-contraction mappings, we

will show that K has a unique fixed point and then the nonlinear matrix equation

(4.2.1) has a unique positive definite solution. The following theorems guarantee

the existence and uniqueness of positive definite solution of the nonlinear matrix

equation (4.2.1).

Theorem 4.2.1. Consider the matrix equation (4.2.1). Let Q ∈ P (n) and for

each i = 1,2, . . . ,m Gi : P (n)→ P (n) be a continuous order-preserving mapping.

Suppose that there are positive number τ and r≥ 1 such that for every X,Y ∈P (n)

such that (X,Y ) ∈�, we have

dT (Gi(X),Gi(Y ))≤ rdT (X,Y )e−
1

b1+dT (X,Y )c−τ (4.2.3)

for all i = 1,2, . . . ,m. Then the matrix equation (4.2.1) has a unique positive

solution. Moreover, the iteration

Xj =
(
Q+

m∑
i=1

A∗iGi(Xj−1)Ai
) 1
r

(4.2.4)

for all j ∈ N, where X0 ∈ P (n) satisfies X0 �
(
Q+

m∑
i=1

A∗iGi(X0)Ai
) 1
r

, converges

in the sense of the Thompson metric dT to a unique solution of the matrix equation

(4.2.1).

Proof. From a self-mapping K on P (n) defined as the equation (4.2.2), it fol-

lows that K is well-defined, � on P (n) is K-closed, and a fixed point of K is

a positive solution of the matrix equation (4.2.1). Now we show that K is an

(F,γ)<-contraction mapping with τ > 0 and the mapping F,γ : R+→ R by
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F (α) = lnα and γ(α) = lnα− 1
b1+αc .

Let (X,Y ) ∈ A= {(X,Y ) ∈�:Gi(X) 6=Gi(Y ) ∀i= 1,2, . . . ,m}. Then X 6= Y and

(Gi(X),Gi(Y )) ∈� since Gi is an order preserving mapping. Then

dT (K(X),K(Y ))) = dT

(Q+
m∑
i=1

A∗iGi(X)Ai
) 1
r

,

(
Q+

m∑
i=1

A∗iGi(Y )Ai
) 1
r


≤ 1

r
dT

(
Q+

m∑
i=1

A∗iGi(X)Ai,Q+
m∑
i=1

A∗iGi(Y )Ai
)

≤ 1
r
dT

(
m∑
i=1

A∗iGi(X)Ai,
m∑
i=1

A∗iGi(Y )Ai
)

≤ 1
r

max
i∈{1,2,...,m}

dT (Gi(X),Gi(Y ))

≤ dT (X,Y )e−
1

b1+dT (X,Y )c−τ .

Thus,

ln(dT (K(X),K(Y )))) ≤ ln
(
dT (X,Y )e−

1
b1+dT (X,Y )c−τ

)
= ln(dT (X,Y ))− 1

b1 +dT (X,Y )c − τ

and so

τ + ln(dT (K(X),K(Y ))))≤ ln(dT (X,Y ))− 1
b1 +dT (X,Y )c .

Therefore, K is an (F,γ)<-contraction mapping with τ > 0. Moreover, there exists

Q
1
r ∈ P (n) such that

Q
1
r �

(
Q+

m∑
i=1

A∗iGi(Q
1
r )Ai

) 1
r

=K
(
Q

1
r

)
.

This implies that Q 1
r ∈ P (n)(K,�). Using Theorem 3.2.6, we conclude that there

exists X∗ ∈P (n) such that K(X∗) =X∗. That is, X∗ is a positive definite solution

of the Equation (4.2.1).

Finally, since for every X,Y ∈ P (n) there is a greatest lower bound

and a least upper bound, we have Υ(X,Y,<) is nonempty for each X,Y ∈ P (n).

Thus, it follows from Theorem 3.2.10 that K has a unique fixed point in P (n).

This implies that Equation (4.2.1) has a unique solution in P (n).
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The method in Theorem 4.2.1 for finding the solution of Equation

(4.2.1) is detailed in the following steps.

Step 1. Check that (4.2.3) holds for all i= 1,2, . . . ,m.

Step 2. Initialize the starting pointX0 ∈P (n) satisfyingX0�
(
Q+

m∑
i=1

A∗iGi(X0)Ai
) 1
r

.

Step 3. Set up E and e as the tolerances for the stopping criteria in the algorithm.

Step 4. Calculate a unique positive definite solution X̂ of the matrix equation (4.2.1)

from the iteration (4.2.4).

Based on the various techniques for approximating the root of matrices,

we have many choices for constructing the method for finding the solution of

Equation (4.2.1) by using the above steps. For instance, the algorithm for finding

the solution of Equation (4.2.1) by using our step with the Newton’s method [53]

is as follows.
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Algorithm for finding the solution of Equation (4.2.1)

1. Check that (4.2.3) holds for all i= 1,2, . . . ,m.

Initialize:

2. Set the starting point X0 ∈ P (n) satisfying X0 �
(
Q+

m∑
i=1

A∗iGi(X0)Ai
) 1
r

.

3. Set the E > 0 and e > 0 as the tolerances for the stopping criteria.

4. Set the iteration step j := 1.

do

5. Calculate Bj =Q+
m∑
i=1

A∗iGi(Xj−1)Ai.

6. Set Y1 :=Bj .

7. Set the iteration step k := 1.

do

8. Calculate Yk+1 := 1
r

[
(r−1)Yk +BjY

1−r
k

]
.

9. Update k := k+ 1.

while dT (Yk,Yk−1)≥ E

end while

10. Xj := Yk

11. Update j := j+ 1.

while dT (Xj−1,Xj−2)≥ e

end while

12. Obtain the solution X̂ :=Xj−1.

Ref. code: 25615909320441WJZ



73

We can summarize the suggested algorithm as in the flowchart in Fig.

4.4.

Start

X0,E,e

j← 1

Bj ←Q+
m∑
i=1

A∗iGi(Xj−1)Ai

Y1←Bj ,k← 1

Yk+1← 1
r

[
(r−1)Yk +BjY

1−r
k

]

k← k+ 1

dT (Yk,Yk−1)<E

Xj ← Yk

j← j+ 1

dT (Xj−1,Xj−2) < e

X̂ ←Xj−1

Stop

yes

no

yes

no

Figure 4.2: The flowchart of the algorithm for finding the solution of Equation

(4.2.1).
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4.3 Solutions of a nonlinear matrix equation arising from (ψ,φ,<)-

contraction mappings via Thompson metrics

In this section, we apply fixed point results for (ψ,φ,<)-contraction

mappings via Thompson metrics to solve the nonlinear matrix equation

Xr =Q+
m∑
i=1

A∗iGi(X)Ai, (4.3.1)

where r ≥ 1, A1,A2, . . . ,Am are n× n nonsingular matrices, Q is a Hermitian

positive definite matrix and G1,G2, . . . ,Gm are continuous order preserving self-

mappings on P (n).

Studying the existence and uniqueness of a solution of the nonlinear

matrix equation (4.3.1), we define a self-mapping K on P (n) by

K(X) =
(
Q+

m∑
i=1

A∗iGi(X)Ai
) 1
r

(4.3.2)

for all X ∈ P (n), where r ≥ 1, A1,A2, . . . ,Am are n×n nonsingular matrices, Q

is a Hermitian positive definite matrix and G1,G2, . . . ,Gm are continuous order

preserving self-mappings on P (n).

Applying fixed point theorems for (ψ,φ,<)-contraction mappings, we

will show that K defined as (4.3.2) has a unique fixed point and then the nonlinear

matrix equation (4.3.1) has a unique positive definite solution. The following

theorems guarantee the existence and uniqueness of positive definite solution of

the nonlinear matrix equation (4.3.1).

Theorem 4.3.1. Consider the matrix equation (4.3.1). Let Q ∈ P (n) and for

each i= 1,2, . . . ,m, Gi : P (n)→ P (n) be continuous order preserving mappings. If

for every X,Y ∈ P (n) such that X � Y with Gi(X) 6= Gi(Y ) there exists ψ ∈Ψ and

φ ∈ Φ with ψ(t)> φ(t) for all t > 0 such that

ψ
(1
r
dT (Gi(X),Gi(Y ))

)
≤ φ(dT (X,Y )) (4.3.3)

for all i = 1,2, . . . ,n, where r ∈ [1,∞). Then the matrix equation (4.3.1) has a
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solution. Moreover, the iteration

Xj =
(
Q+

m∑
i=1

A∗iGi(Xj−1)Ai
) 1
r

(4.3.4)

for all j ∈ N, where X0 ∈ P (n) satisfies X0 �
(
Q+

m∑
i=1

A∗iGi(X0)Ai
) 1
r

, converges

in the sense of the Thompson metric dT to a unique solution of the matrix equation

(4.3.1).

Proof. We define the mapping K : P (n)→ P (n) by

K(X) =
(
Q+

m∑
i=1

A∗iGi(X)Ai
) 1
r

for all X ∈ P (n). (4.3.5)

Then K is well defined, � on P (n) is K-closed and a fixed point of K is a solution of

equation (4.3.1). Now we show that K is a (ψ,φ,<)-contraction. Let X,Y ∈ P (n)

such that X � Y with Gi(X) 6= Gi(Y ). This implies that X ≺ Y . Since Gi are

order preserving mapping, we obtain that Gi(X)≺ Gi(Y ). Thus,

ψ (dT (K(X),K(Y ))) = ψ

dT
(Q+

m∑
i=1

A∗iGi(X)Ai
) 1
r

,

(
Q+

m∑
i=1

A∗iGi(Y )Ai
) 1
r




≤ ψ

(
1
r
dT

(
Q+

m∑
i=1

A∗iGi(X)Ai,Q+
m∑
i=1

A∗iGi(Y )Ai
))

≤ ψ

(
1
r
dT

(
m∑
i=1

A∗iGi(X)Ai,
m∑
i=1

A∗iGi(Y )Ai
))

≤ ψ
(1
r

max
i
dT (Gi(X),Gi(Y )

)
≤ φ(dT (X,Y )) .

So K is a (ψ,φ,<)-contraction. Moreover, there exists Q 1
r ∈ P (n) such that Q 1

r �

K
(
Q

1
r

)
. By Proposition 2.7.25, there exists (K �)-Picard sequence in P (n). From

Theorem 3.3.7, Kn
(
Q

1
r

)
converges to a solution Z of the matrix equation (4.3.1)

in P (n).

Similarly, we obtain the following theorems.

Theorem 4.3.2. Consider the matrix equation (4.3.1). Let Q ∈ P (n) and for

each i= 1,2, . . . ,m, Gi : P (n)→ P (n) be continuous order preserving mappings. If
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for every X,Y ∈ P (n) such that X � Y with Gi(X) 6= Gi(Y ) there exists ψ ∈Ψ and

φ ∈ Φ with ψ(t)> φ(t) for all t > 0 such that

ψ
(1
r
dT (Gi(X),Gi(Y ))

)
≤ φ(dT (X,Y )) (4.3.6)

for all i= 1,2, . . . ,n, where r ∈ [1,∞) and there exists X0 �K(X0) and K(Q
1
r ) is

convergent in (P (n),dT ), where the mapping K is denoted by X→
(
Q+

m∑
i=1

A∗iGi(X)Ai
) 1
r

.

Then the matrix equation (4.3.1) has a solution. Moreover, the iteration

Xj =
(
Q+

m∑
i=1

A∗iGi(Xj−1)Ai
) 1
r

(4.3.7)

for all j ∈ N, converges in the sense of the Thompson metric dT to a unique

solution of the matrix equation (4.3.1).

Theorem 4.3.3. In addition to the hypothesis of Theorem 4.3.1, the equation

(4.3.1) has a unique solution Z ∈ P (n).

Proof. From Theorem 4.3.1, we have Fix(K) 6= ∅. Since for every X,Y ∈ P (n)

there is a greatest lower bound and a least upper bound, we have Fix(K) is �s-

connected. It follows from Theorem 3.3.9 that K has a unique fixed point in P (n).

This implies that Equation (4.3.1) has a unique solution in P (n).

Next, we give a numerical example to show the correctness of Theorem

4.3.3.

Example 4.3.4. Let

Q=



0.0450 0.0225 0 0

0.0225 0.0450 0.0225 0

0 0.0225 0.0450 0.0225

0 0 0.0225 0.0450


, A1 =



0.0254 0.0214 0.1026 0.0146

0.0189 0.9141 0.3231 0.1069

0.0129 0.2254 0.3125 0.4412

0.9073 0.0264 0.0114 0.2034


,

A2 =



0.0321 0.5002 0.1407 0.7034

0.5011 0.9402 0.3102 0.1471

0.1761 0.2543 0.5001 0.7441

0.3147 0.2241 0.6105 0.1646


.

Ref. code: 25615909320441WJZ



77

Define G : P (n)→ P (n) by G1(X) = G2(X) =X
1
2 . Consider Equation (4.3.1) with

G1(X) = G2(X) =X
1
2 and r = 1 that is

X =Q+A∗1X
1
2A1 +A∗2X

1
2A2. (4.3.8)

Define functions ψ,φ : [0,∞)→ [0,∞) by ψ(t) = 2t and φ(t) = t for all [0,∞). Let

X,Y ∈ P (n) such that X � Y with Gi(X) 6= Gi(Y ). We see that Gi are continuous

order preserving for all i = 1,2. Then X � Y and Gi(X) � Gi(Y ) for all i = 1,2

and

dT (Gi(X),Gi(Y )) = dT (X
1
2 ,Y

1
2 )≤ 1

2dT (X,Y ). (4.3.9)

It follows that

ψ (dT (Gi(X),Gi(Y )))≤ φ(dT (X,Y )) (4.3.10)

for all i = 1,2. Moreover, there exists X0 = 16I4 such that 16I4 � K(16I4) and

(Kn(Q)) is convergent. All the hypotheses of Theorem 4.3.3, we can conclude that

the Equation 4.3.8 has a unique solution X̂ in P (n). We will consider the iteration

Xj =Q+A∗1X
1
2
j−1A1 +A∗2X

1
2
j−1A2, (4.3.11)

for all j ∈ N, where X0 = 16I4, and the error Ej := dT (Xj ,Xj−1) for all j ∈ N.

After 18 iterations, we can approximate a solution X̂ of Equation (4.3.8) by

X̂ ≈X8 =



2.4090 3.1286 2.1331 2.1313

3.1286 6.3328 3.9076 3.7938

2.1331 3.9076 2.8996 2.7232

2.1313 3.7938 2.7232 3.0994


with E18 = 5.0751e−06.

In addition, we can use another method involving Theorem 4.3.3 to

find the solution of Equation (4.3.1) by setting tolerances E and e as the following

steps.

Step 1. Check that (4.3.3) (or (4.3.6)) holds for all i= 1,2, . . . ,m.
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Figure 4.3: The error of the iteration process (4.3.11) for the Equation (4.3.8)

given in Example 4.3.4.

Step 2. Initialize the starting pointX0 ∈P (n) satisfyingX0�
(
Q+

m∑
i=1

A∗iGi(X0)Ai
) 1
r

(or set the starting point X0 =Q
1
2 ∈ P (n)).

Step 3. Set up E and e as the tolerances for the stopping criteria in the algorithm.

Step 4. Calculate a unique positive definite solution X̂ of the matrix equation (4.3.1)

from the iteration Xj =
(
Q+

m∑
i=1

A∗iGi(Xj−1)Ai
) 1
r

.

Based on the various techniques for approximating the root of matrices,

we have many choices for constructing the method for finding the solution of

Equation (4.3.1) by using the above steps. For instance, the algorithm for finding

the solution of Equation (4.3.1) by using our step with the Newton’s method [53]

is as follows.
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Algorithm for finding the solution of Equation (4.3.1)

1. Check that (4.3.3) (or (4.3.6)) holds for all i= 1,2, . . . ,m.

Initialize:

2. Set the starting point X0 ∈ P (n) satisfying X0 �
(
Q+

m∑
i=1

A∗iGi(X0)Ai
) 1
r

(or set the starting point X0 =Q
1
2 ∈ P (n)).

3. Set the E > 0 and e > 0 as the tolerances for the stopping criteria.

4. Set the iteration step j := 1.

do

5. Calculate Bj =Q+
m∑
i=1

A∗iGi(Xj−1)Ai.

6. Set Y1 :=Bj .

7. Set the iteration step k := 1.

do

8. Calculate Yk+1 := 1
r

[
(r−1)Yk +BjY

1−r
k

]
.

9. Update k := k+ 1.

while dT (Yk,Yk−1)≥ E

end while

10. Xj := Yk

11. Update j := j+ 1.

while dT (Xj−1,Xj−2)≥ e

end while

12. Obtain the solution X̂ :=Xj−1.
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We can summarize the suggested algorithm as in the flowchart in Fig.

4.4.

Start

X0,E,e

j← 1

Bj ←Q+
m∑
i=1

A∗iGi(Xj−1)Ai

Y1←Bj ,k← 1

Yk+1← 1
r

[
(r−1)Yk +BjY

1−r
k

]

k← k+ 1

dT (Yk,Yk−1)<E

Xj ← Yk

j← j+ 1

dT (Xj−1,Xj−2) < e

X̂ ←Xj−1

Stop

yes

no

yes

no

Figure 4.4: The flowchart of the algorithm for finding the solution of Equation

(4.3.1).
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this dissertation, we improved and generalized fixed point results in

the past and applied our obtained fixed point results to guarantee the existence

and uniqueness of a solution of nonlinear matrix equations. So we consider our

fixed point results in Chapter 3 and investigate our applications in Chapter 4,

respectively.

In Chapter 3, we improved several control functions and defined new

contraction mappings in terms of some control functions in the setting of metric

and b-metric spaces endowed with a binary relation.

In Section 3.1, we introduced the concept of Zb<-contraction mappings,

which are the extension from concepts of other previous known mappings as fol-

lows:

Banach

contraction

mapping

Z-

contraction

mappings

Zb-

contraction

mappings

Z<-

contraction

mappings
Zb<-contraction mappings

We also established fixed point results for Zb<-contraction mappings in complete

b-metric spaces endowed with a binary relation, which is more general than other

fixed point results in the literature.

In Section 3.2, we introduced the concept of (F,γ)<-contraction map-

pings, which are the extension from concepts of other previous known mappings

as follows:
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F -

contraction

mapping

(Wardowski)

Banach

contraction

mapping

F -

contraction

mapping

(Piri and

Kumam)

modified

(F,γ)<-contraction mappings

Moreover, we established fixed point results for (F,γ)<-contraction mappings in

complete metric spaces endowed with a binary relation and also gave an example

to illustrate the utility of our fixed point results such that other previous fixed

point results are not applicable.

In Section 3.3, we introduced the concept of (ψ,φ,<)-contraction map-

pings, which are the extension from concepts of other previous mappings as follows:

Contraction

mapping

concerning

altering

distance

function

Banach

contraction

mapping

Contraction

mapping

concerning

weak altering

distance

function

(ψ,φ,<)-contraction mappings

Furthermore, we established fixed point results for (ψ,φ,<)-contraction

mappings in complete metric spaces endowed with with a T -orbital transitivity

and also give an example to show the benefit of our fixed point results such that

other previous fixed point results are not applicable.

In Chapter 4, we applied our fixed point results to consider the exis-

tence and uniqueness of solution of nonlinear matrix equations as follows:
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Theorem 3.1.8 Nonlinear matrix equation 4.1.1
apply via Ky Fan norms

Theorem 3.2.10 Nonlinear matrix equation 4.2.1
apply via Thompson metrics

Theorem 3.3.9 Nonlinear matrix equation 4.3.1
apply via Thompson metrics

5.2 Recommendations

The advantages of our fixed point results in this dissertation are to

solve problems that some fixed point results in the past cannot be applied (see

Example 3.2.7 and Example 3.3.10). Indeed, the new contractive conditions in

our main results of this dissertation hold for each two elements which are related

under the weak condition with many conditions in this part.

However, our fixed point results in this dissertation cannot solve ev-

ery problems in the world. The development of several fixed point results are

necessary. So we pose the following open problems for further investigations.

• Can some conditions of b-simulation functions be reduced to weaker condi-

tions?

• Can the fixed point results for (F,γ)<-contraction mappings and (ψ,φ,<)-

contraction mappings be extended to b-metric spaces endowed with a binary

relation?

• Can the fixed point results for other contractions be applied to a nonlinear

matrix equation (4.1.1) and a nonlinear matrix equation (4.2.1)?
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