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CHAPTER

INTRODUCTION

1.1 General Background

There is nothing wrong about mass production, but usually the process is a
form of the straight-line assembly line system./The decision to transform straight-line
assembly systems to U-shaped assembly dine“Systems constitutes a major layout
design change and investmenté for aééembly operations. Proponents of the lean
manufacturing and just-iastime” (JIT) philosophies assert that U-shaped assembly
systems offer several benefiis over traditional straight-line layouts (Cheng et al.,
2000) including an improvement inlabor productivity. U-lines have become popular
in order to obtain the'main benefits 0f smoothed workload, multi-skilled workforce
and other principles ofithe JI'T philosopﬁ&:. JMany researchers agree that U-lines are
one of the most important components'f-for-' a successful implementation of JIT
production systems (Monden, 1993 and Miitenburg, 2001a). Approximately 75% of
U-lines in the world are arranged to producégtrzigre than one product type or different
models of a product on the same line (Milteﬁbﬁfg,— 2001a). This type of production is
called mixed-model-production. The U-lines on which inixed-model production is
performed are called mixed-model U-lines (MMULs). Although mixed-model straight
lines are widely used' in traditional production systems; MMULs have become a
cornerstone of JIT systems-as they are used fo'improve quality and productivity and to
adapt demand changes quickly and cost effectively;’A MMUL has several advantages
over its equivalent straight line. Since workers work closed to each other in a MMUL,
visibility, commuilications and interaction are‘improved. This‘also-cnables workers to
help each other solve problems and to improve their skills. Such multi-skilled workers
will then be more capable of responding to changes in cycle time or output rate of the
MMUL. The number of workers required on a MMUL is never more than that

required on a straight line.

In general, the traditional scheduling problems such as job shop, flexible flow

shop or assembly line problems likely express the general forms which are more



complicated beneficial than the specific forms. After surveying relevant literature
papers, this research problem which is more complex and practical in the real
situation fulfills rightsizing, worker-machine assignment, and worker’s mobility
reasonably. Filled in the gaps, the interesting issue for assembly line problems is
worker allocation in U-shaped mixed-model assembly lines with manually operated
machines under multiple objectives. In this dissertation proposal, the first section
describes the general background. Secondly, the importance of related problems is
addressed. In the third section, the literature;review is presented. The statement of
problem is identified in the fourth section: Fifthly, the objective of this dissertation is
proposed. In the next sixth and seventh parts, the"dissertation scope and contribution
are given. In the following scetion, the processes of research methodology are
presented in order. Finally, the'plan of work and references are shown.

1.1.1 Definitiof of assembly line

An assembly line is a manuqutl}_ring process in which component parts
are added to a product in'a sequential mariii;;r to create a finished product. Assembly
lines are special flow-line production syste;-n—é!,\_yhich are of great importance in the
industrial production of high quantity stand?dized commodities. Recently, assembly
lines even gain importance 1n low volume prbt_iilc:[ion of ciistomized products (mass-
customization). Duc7to high capital requirements when inétalling or redesigning a
line, its configuration planning is of great relevance for practitioners. Accordingly,
this attracted attention  of several researchers, who tried to support real-world

configuration plafining by/Suitedjoptiniization models!
1.1.1.1 Definition of line balancing

Balancing an assembly line means allocating the basic
assembly tasks to be carried out to different stations, pursuing specific goals and all in
compliance with given constraints. In other words, balancing a line means

determining the number of stations to be used and the tasks allocated to each station.



1.1.1.2 Assembly line balancing objective

The assembly line balancing objective is to balance the task
workload across workstations so that no workstation has an excessively high or low

task workload.
1.1.1.3 Definition of worker allocation

The worker allocation sproblem consists of providing a
simultaneous solution to a double assignment: (1) tasks to stations; and (2) available
workers to stations. In manufacturing, the purpose of worker allocation is to minimize
the labor costs, by telling a production facility what to-make, when, with which staff,

and on which equipmeant. I‘

v

1.1.2 Classification of assemi)ly line balancing and

worker allocation problems

Research on assembly line bala-';lzl:_eing has focused primarily on the so
called SALBP (Simple Assembly Line B_Er_l;g_ir‘lg Problem) (Ghosh and Gagnon,
1989). In SALBP the compléxity has beéﬂ reduced considerably by introducing
several simplifying assumﬁt@r?sWﬁh fegard to the objecﬁvc;, function and restrictions
considered, SALBP can further be divided info a range of sub-problems (SALBP-F,
SALBP-1, SALBP-2, VSALBP—E, see Table 1.1) which have been subject to extensive
research latetsln ‘other words, two types of flow lines are distinguished. The first type
is dedicated toithe production of one single product (a single model line). The second
type s dedicated.to the.assembly of.more.than.one,model (mixed and multi flow
lines). With an linéreasing requirément for tlexibility of productioti, metivated by fast
changes in technology and by customer demand for greater product variety, mixed-
model assembly lines are replacing the traditional mass production assembly lines.

Mixed-model production is important to respond to diversified expectations of today

customer persp ective.



Table 1.1 Versions of SALBP

Cycle time ¢

Given Minimize
No. m of stations Given SALBP-F SALBP-2
Minimize SALBP-1 SALBP-E

In spite of the enormous academic effort in assembly line balancing, there
remains a considerable gap between requirements of real configuration problems and
the capability of academic research development. Several issues to assembly line

design and problems have been proposed in thesSection of literature review.

In SALBP-1 the'aim is.to_minimize the number of stations given a target cycle
time, and then the assembly line' worker allocation problem of type I can be also
constructed. Howevegy'the sworker alloc;}tio_n problem of assembly line processes in
this research is mainlybased on the U—s};lgi'[)ed Assembly Line Balancing Problem of

type I (UALBP-I).

1.1.3 Doctoral framework -

18

Figure 1.1 illustrates the doctofa;l-framework in this study. All stages
are proposed as follows: the research problem of the Non-deterministic Polynomial-
time hard (NP-hard)‘class, mathematical model, approximation method, validation of

all algorithms, and experimental results, conclusion and discussion.

Approximation.
. Solution .
NP-Hard FExact Solutlpn CNSGAIT Vatidation Expermental Results
—>..- Mathematical =2 — . > Conclusion and
Problem - MA £ Allalgorithms ; ]
Model Discussion
- COIN
- PSONK

Figure 1.1 Framework of the doctoral dissertation



1.1.4 Brief expected outcomes

Two main expected outcomes of this research are developed in brief as

follows:

1) This research first contributes the worker-machine assignment with
minimum number of workers in U-shaped assembly lines that are no automated
machines. Its expected outcomes are also loops of U-shaped machines assigned to
each worker having no crossing path understfwo objective functions of smoothed
workload in a sense of equity and minimum walking time to save the space needed for
the actual size of a U-shaped line a;ld shorten the distance for communication
between workers.

.

2) The existing sglution processes of multi-objective evolutionary algorithms

are applied to searchsthe Parefo-optimal ffogtier. Moreover, the comparisons of their

computational results give us the performd'glce of algorithms.

1.2 Importance of Related P?fgplems

g

There are many imperétive problems in this research. The importance of the
worker allocation pfoblems is given first in this section. Then, the physical
importance of the mixed-model U-shaped assembly line problem is addressed in the

following section.
1.2.1 Importance of the worker allocation problem

This research focuses on'the worker allocation is because it is one of
the most important decisions that can achieve productivity gains and rightsizing in a
labor intensive manufacturing system. If one worker can only attend one machine,
then the required number of workers is proportional to the number of machines in a
workstation. However, one worker operating a few machines is more interesting in

this research.



1.2.2 Importance of U-shaped Mixed-Model Assembly Line
Problems (UMMALPs)

1.2.2.1 Benefits of the U-shaped cell

The Shingo Prize for excellence in manufacturing also
encourages the use of U-lines (ANOM., 1994). Through the achievement of these
goals the manufacturing ‘cell’ becomes ansimportant weapon in the reduction of
production cost. There are many papers that'tevealadvantages of the u-shaped layout
over the linear layout (Qhne-and Nakade, 1997;-Urban, 1998; Cheng et al., 2000;
Aase et al., 2004, Hwang etal.»2008; Hwang and Katayama, 2009. Obviously, the
reported benefits are impressive when a company changes from traditional production
lines to U-shaped lines. Productivity improved by an average of 40-80%. Work in
process (WIP) drops by 60:85%./Lead tifge; reduces by 50-75%. Defective rate drops
by 40-80% (Miltenburg; 2001b): Chené} et al. (2000) found collectively that the
following benefits and fagtors favering U—hng:s arc better volume flexibility, worker
flexibility, number of workstations, material handling, visibility and teamwork, and

rework: et eslhe

a) vohzu;geg flexibility: Th-é i)roduction rate of a line in a JIT
environment changq’s*fréé']ﬁeﬁﬁyf In such an environment; a U-line is preferred to a
straight line because of its volume flexibility. By increasing or decreasing the number
of workers on the liné, a company can adjust the prodliction rate as required. This

level of volume flexibility is hardet to ©btaint with a'straightline:

b) worker flexibility: Since’walking distance'is shorter on a U-
shapethan' on jalstraight line, it is easier for one worker ito oversee several work

centers.

¢) number of workstations: According to Figure 1.2 by Aase et
al. (2004), without the issue of walking time, the number of workstations required on

a U-line is never be more than, and sometimes less than, that required on a straight



line. This is because there are more possibilities for grouping tasks into workstations

on a U-line.
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Figure 1.2¢Balances for the SALB and SULB problems

d) material handlinig; A U-line eliminates the need for special
material-handling equipment such as econveyors and special material-handling
workers. Instead, production weikers moiférr‘prpducts from machine to machine. It
comforts for dropping raw materials and -p1clkmg up finished goods because the

entrance and the exit of the lifie are in the same position.

e) visibility and teamwork: The-compact size of a U-line
improves visibility and communication. This enhances*“teamwork, gives a greater
sense of belonging, and increases responsibility and ownership compared to a straight
line, where workers ate spread out along a long lin¢ and may beseparated by walls of

inventory.

f) rework: A tenet of Total Quality Management (TQM) is
quality at the source, which calls for correcting quality problems as soon as possible
after they occur by returning a defective product to the station where it was produced.
In a U-line, the distance to return the defective product is short, making it easier to
follow this tenet. This is in contrast to the traditional policy of sending the defective

product to a separate rework area.



In another viewpoint of U-line benefits by Clegg et al. (1999;
p.131), the U-shaped cell is used to achieve three goals:

The first of these is shojinka, flexibility in the number of
workers in the cell so that demand changes can readily be adapted to. Working inside
the ‘U’, workers are required to operate more than one workstation simultaneously

and must learn to perform all operations through job rotation.

The second goal is the reduction of unnecessary processes in
the progressive system through the continuousimprovement of work processes and

machines for the numbgeref workers required in a work cell.

THE third/is fhe introduction of ‘one-piece flow’ of work-in-
progress units by replacing ‘planned-eeﬁter production’ with JIT demand-pull,
eliminating large-batch jprodugction (ba'-sed; on economic order quantities) and

drastically reducing machine set-up itnes. 4,

1.2.2.2 U-shaped mixed—moz_ié];zhssembly line problems

The Mixed-Model Assémbly Lines (MMALs) consist of
finding a feasible line batance; i:e:-an assignment of each fask to a station such that
the precedence constraints and some restrictions are fulfilled. The MMALs have
become popular in recent years as an integral part of JIT production systems under
increasing produet variety- Among thesmanysnew,produetion-lines, they are being
arranged as a_‘U=shaped line™ rather than ‘a straight line ‘as' Usshaped mixed-model
assembly lines (UMMALSs). In any#case, a U-shaped line providesimore alternatives
for assigning tasks ‘to ‘workers. (or workstations) than compatable” straight lines
because workers can handle not only adjacent tasks, but also tasks on both sides of the
U-shaped line. Another advantage is that a U-shaped line allows workers to work
closely together, in turn both saving the space needed for the actual size of a U-shaped
line and shortening the distance for communication between workers, creating a safer
work environment. For the lack of a better team, a U-shaped line is set up to be ‘user
friendly’ and possibly even to make work more satisfying since workers can easily be

involved in team work communication. Therefore, it is not only scientifically



effective because it is ergonomically fit, increases production output and saves on
space, but it is also sociologically effective simply because it places the workers in
close proximity. In addition, U-shaped lines could minimize workers; consequently,
the workers at each workstation are required to possess more skills than on straight

lines in some cases (Hwang and Katayama, 2009).

1.3 Problem Statement

This dissertation addresses the workceallocation problems in the assembly
line having some special chvironments. First, the description of the problem
development is describedan this section. Secondly, the research gaps and research

questions are presented inthe following section.

1.3.1 Problem developnient from the real situation to the

research problems

The reported benefits are iff;__i)‘rels§ive when a company changes from
traditional production lines to U-Shaped IinesTf;oductiVity improves by an average of
40-80%. Work in process (WIP) drops by60:85% Leadtime reduces by 50-75%.
Defective rate drops:by 40-80% (Miltenburg, 2001b): in a traditional production
system, an order is generated in certain batches, that 1s, each order or job could have a
quantity of more than one. Just-in-time (JIT) production system is adopted extensively
in today’s manufactusing-industry, suechyas-apparel, industry to-meet the production
demand (Guo et al., 2006a). Mixed-model" assembly line balancing is an approach
employed to handle increasing product variety (Gue, et al., 2006b).@Moreover, the JIT
is ong | of/interestingycases in U-shaped mixed-model|production’ lines studied by
Miltenburg (2002) and Kara et al. (2007). For the system, each order may be unique
(a single product type and one piece). In other words, volume of each order generated
is the batch size of one. Work-in-process in the system is always constant. In the
recent decades, many apparel manufactures have installed several production systems
on their apparel assembly line such as the traditional progressive bundle system and
the automated Unit Production System (UPS) by Song et al. (2006). The assembly

line to be studied in this paper is a modular production system (or a single U-line).
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The U-shaped assembly line worker allocation problem is studied because the
conditions of unbalanced straight line due to customized products and workers cut off.
There are no automated processing machines in the production system. After each
worker operates an item at a machine, a worker walks several patterns such as a
circular loop, a rectangular loop or a straight-line loop and takes it to the next machine
and at the end of each intra cell and generally a worker hands it over to the adjacent
worker along the sequence of U-line. From some of sample companies, there is no
equity of workload although line efficien¢y has been improved for a year. In practice,
most of companies track on the assembly ling'psoblem of type F (by given number of
workstations and given cyele time) and improve line efficiency by escaping the
complexity of the problemsHoweyver, solving bettermethods, it is essential to study

on the problem of type du(by minimum number of workstations at given cycle time).

In brief, the system deait w1th 1s the U-shaped manual assembly line of
type 1. Each worker performs all assem'—bly; tasks allocated to a given workstation
without crossing path. Thege are a single ﬁr_oduct and different product types (models)

under a product family. f

1.3.1.1 Major system features

“U=shaped production line can be described as a special type of
cellular manufacturing used in JIT production systems and Lean Manufacturing. The
U-line arranges machines around a U-shaped line in the order in which production
operations are-serial. Workersswork inside the U-line.; One worker supervises both the
entrance and' the "exit-of the line.~In "apparel’industry, ‘the 'machine’s efficiency is
determined by the worker’s performance. Maghine-work is netsseparated from
worker-work, that 'is,\machines work dependently. Standard operation charts specify
exactly'how all work is done. U-lines are rebalanced periodically when production
requirements change. The U-line satisfies the flow manufacturing principle. This
requires workers to be multi-skilled to operate several different machines or processes
and they also have same capability. A worker’s efficiency varies in different
operations, but they are determined with deterministic manual times. It also requires
workers to work standing up and walking because they need to operate different

machines. U-lines may be simple or complex, depending on the number of tasks to be
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performed, the production volume and setup times. From the study, setup times are
negligible. Therefore, U-lines can be operated as single-model and mixed-model lines
where each worker is able to produce any product in any cycle. However, if setup
times are larger, multiple U-lines that are scoped in this research are formed and
dedicated to different products. In the facet of the worker, all of the workers who are
selected will be allocated for the new job. Each worker will only work on one

machine at a time.

1.3.2 Research gaps

Even though U-shaped assembly line balancing problems have been
studied by several previous séscarchers from the literature review, the multi-objective
worker allocation problem s havdly stul'c_iied in the U-shaped manual assembly line.
The simultaneous optimization of Vworlig}. sizes, cycle times, line balancing, job
sequencing, and multi-funcgion worker "}all'ocation is an extremely complex and
difficult problem to solve (Heike ‘et al.:,_f-_2lOJ()1), but this research limits to study
selected three issues of worker sizes; cycle.i_*tj;me.s and line balancing. As a result, some

gaps where this research should berfrulﬁlled a,lje;;g_ﬁ tollows:

- This research problem is the single-U-line that is one of several U-

line types (Miltenbuig, 2001b).

- The“single U-line layout is mapped to"several dimensions of the

front, back ‘and side of U-line, named the side U-line ratios.

- Worker allocationgis designed how to assign grouped tasks unto
workers ™ (or yworkstations): in/ the single U-line with equity of
workload and minimum walking path, which is necessary non-value

added.

In the next section, some problem examples are presented to assist in

understanding this problem.
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1.4 Research Objective

This research objective is to develop a new evolutionary algorithm that
allocates the minimum number of workers in a U-shaped manual assembly line to
minimize both the deviation of operation times of workers and their walking time

simultaneously.

1.5 Scope of the Study

Some broad issues are ignored in the scope of the study and can be developed

further:
—  when andthow'torgbalance the U-line;
—  how to balanée and sequence the U-line at the same time;

— how to study worker alloca;g_ioh problems in other types of complex U-

lines.

#

There are three comporients of the workér allocation problems in the single U-
shaped manual assembly line: €1} input paféiﬁeters; (2) assembly line characteristics

and a set of constraints; and (3) objective functions.
1.5.1 Input'parameters

In any time period, 'the number of'jobs is deterministic and job arrivals
come from not only new customer ©rders but alse.remaining jobsfrem the previous
planning period that'is not achieved. Each of the n jobs is-an entity worked on many
operations. No job priority constraint is allowed, that is, each job is allowed to start its
processing whenever it is ready. These jobs are sorted by the daily production order
excluding the sequencing problem. Any job is part of UALWAP-type 1. Twenty-five
problems consisting of eleven precedence graphs and various given cycle times are

representative of all jobs.
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1.5.2 Assembly line characteristics and a set of constraints

This section provides the detailed limitations of the existing research as

follows:

1. Although assembly line balancing from the literature survey has
given us many standard problems such as SALBP-1, SALBP-2, MMALBP and so
forth, only the standard assembly line problem, named UALBP. The UALBP-1 is
narrowed down in this research.

2. Givenprecedence graphs for an assembly line are produced from the

process of making intermediatedparts to the final assembly line.
|

3. Nowadays shofer proiuét life cycles and increased demands for
customization make 1t difficult to produi;e some products on traditional production
lines. The modern assembly line is necé:sfsellr}{ to fulfill customized orders, but not
lacking of the high volumes of a continuoxigf; line (Mass customization). Just-in-time

manufacturing is determined /,with elemem:s;.,pf takt time, standard work, flow

manufacturing on U-shaped lines; pull prO(igT(_;ti_on, and jidoka not allowing defective

o el

parts to go from a machine to the next.

4. Processing times of all tasks in each precedence graphs are

determined.
5. Eachtask s assignied to only one machine and one worker.
6. Theprecedence;relationship among tasks must beysatisfied.
7. Each station is manned by one worker (no crossing path).

8. Workers are assumed to be homogeneous and multi-functional skill

(same efficiency on a same operation) although it is not stable even when working in
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the same operation due to human factors such as worker’s emotion, motivation, skill

level and experience or other uncertainties like machine breakdowns.

9. The transportation time of parts between any two machines is

negligible.

10. Jobs are available for processing at the next machine immediately

after completing processing at the previous machine with one kanban tray.

11. Preempfion is not permitted, that'is, when an operation is started, it

must be completed withoutanteriuption.

12. Theze'is no buffer in elvery machine.

. 4

13. No maching breakdz)wn 1s due to steadiness of scheduled

maintenance. -

14. Raw materials supply to ei_ifs:tjages of the line is unlimited.

15. The system is under one piece flow manufacturing moving one
workpiece at a time-between operations within a U=lne: it keeps work-in-process at
the lowest possible level. It encourages work balance, better quality and a host of

internal improvements.

16" Data used'in 'this "dissertation’-are gathered from the previous

problems and real situation.

1.5.3 Objective functions for the research problems

The multiple objective functions are three minimum objectives:
number of workstations (m), deviation of operation times of workers (DOW) and

walking time (WT).
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1.6 Research Contribution

The expected outcomes derive from this proposed research include:

1. The first contribution of this research develops the existing and new worker
allocation problems of the single U-shaped assembly line having manually operated

machines in several fixed layouts;

2. The second contribution gives us/werker-machine assignment and walking
path of each worker reducing the deviation of operation times of workers and walking

time;

3. Thirdly, thesameliorated heuristic algorithm is applied from existing solution
processes of Multi-ObjectiverEyolutionary Algorithms (MOEAs), which are employed

to search Pareto-optimal frontier.

4. Finally, the proposed methodolégy may be utilized to some other industries

having the same circumstances.

#

1.7 Dissertation Structure

The outling ef this dissertation 15 organized as toillows. Chapter I states the
general background;” statement of problem, objective, scope of study, and
contribution. The relcvant literature of U-line problems, assembly line balancing
problems, worker,allogation problemssand.solution-techniques.is reviewed in Chapter
II. The research”methodology' is<'presented” in ‘ehapter III* In chapter IV, the
mathematical model is formulated tinder the single U-shaped assembly line worker
allocation problems ‘with the! consideration of walking time. Then, an illustrative
example is presented. Based on the complexity of the problem, Chapter V provides
the multi-objective evolutionary algorithms of NSGA-II, MA, COIN, and PSONK. In
Chapter VI, all of computational results are proposed, compared, and discussed.
However, the initialized parameters input to four algorithms in this chapter are
prepared. Finally, the conclusion of this research is presented and the future directions

are also suggested in Chapter VII.



CHAPTER 11

LITERATURE REVIEW

2.1 Introduction

To regain competitive edge, the just-in-time manufacturing is crucial to
respond diversified expectations of customer perspective. The line balancing of
modern assembly lines has been an interestingtopic, especially in such areas as a U-
line and worker allocation. Mostof the Ti)revious line balancing approaches attempted
to solve how to assign the tasks to an ordered sequence of stations so that the
precedence relations should satisfied and some measures of effectiveness should be
optimized. However, the" worker factors are seldom considered in solving the
assembly line balanging problem. They‘a@ also widely ignored in the real life
situations of labor ingensive ‘industry such as apparel manufacturing. The line
balancing problem can bg replaced with the Worker allocation problem, in which the
goal is to determine which assigned machines are handled by each of workers. In the
following sections in this chaptet, ptevious worlés are reviewed on U-shaped assembly
lines, line balancing problems; Wworker allocaﬁ'dﬁ; problems, exact solutions, and multi-

objective evolutionaty algorithms.
2.2 History of Assembly Lines

Basic' productien layout formats by which-departments are arranged in a
facility are defined by the general pattern of work flow; there are thtee basic types and
one hybrid type/respectively (Chase.let al., 1998). In|a-fixed-position layout, the
product remains at one location. Manufacturing equipment is moved to the product
rather than vice versa. A process layout (also called a job-shop or functional layout) is
a format which similar equipment or functions are grouped together, such as all lathes
in one area and all stamping machines in another. A product layout (also called a
flow-shop layout) is one which equipment or work processes are arranged according
to the progressive steps by which the product is made. The part for each part is, in

effect, a straight line. An assembly line is a special case of product layout. In a
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general sense, the term assembly line refers to progressive assembly linked by some
material handling device. The usual assumption is that some form of pacing is present
and the allowable processing time is equivalent for all workstations. Within this broad
definition, there are important differences among line types. A few of these are
material handling devices (belt or roller conveyor, overhead crane); line configuration
(U-shape, straight, branching); pacing (mechanical, human); product mix (one product
or multiple products); workstation characteristics (workers may sit, stand, or walk
with the line); and length of the line (féws or many workers). These characteristics

may be classified clearly by Boysen ef al. (2006):

A group technolegy (ccliular) layout groups dissimilar machines into work
centers (or cells) to work an products that have similar shapes and processing
requirements. A group.technoelogy (GT) iayout 1s similar to process layout in that cells
are designed to perform.a specific set-of .pfbcesses, and it is similar to product layout
in that the cells are dedigated to a limite'—(i range of products. A cell involves multi-
functional employees and arranges in‘a U-;haped way.

To ease the communication beﬁ;}:‘cr;rll._. researchers and practitioners, the
development of assembly lines and-a classiﬁ@ﬁén scheme of assembly line balancing
problems are reviewed (Boysen ef al., 2007) _fhis issa valuable step in identifying
remaining research ehatlenges which might contribute to-closing the gap. Assembly
line balancing problems (ALBP) arise whenever an assembly line is configured,
redesigned or adjusted. The first published paper of the assembly line balancing
problem (ALBP)swassmade, by Salveseny(1955);whe suggested-a linear programming
solution. Since then,~the “topic of line balancing- has been-of great interest to
researchers. There are exact methods to solve the ALB problems. (€.g. Jackson, 1956;
Bowinan, 1960; Van*Assche .and Herroelen, 1978 Mamoud, 1989; Hackman et al.,
1989; Sarin et al., 1999). However, since the ALB problem falls into the NP hard
class of combinatorial optimization problems (Gutjahr and Nemhauser, 1964),
numerous research efforts have been developed consistently from the efficient
algorithms for obtaining optimal solutions to computer-efficient approximation
algorithms or heuristics (e.g. Kilbridge and Wester, 1961; Helgeson and Birnie, 1961;
Hoffman, 1963; Mansoor, 1964; Arcus, 1966; Baybar, 1986a). In addition, with the

growth of knowledge on the ALB problem, review articles are necessary to organize
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and summarize the finding for the researchers and practitioners. In fact, several
articles (e.g. Kilbridge and Wester, 1962; Mastor, 1970; Johnson,1981; Talbot et
al.,1986; Baybars, 1986b; Ghosh and Gagnon, 1989; Erel and Sarin, 1998) have
reviewed the work published on this problem. Characteristics of balancing problems
summarized into Kriengkorakot and Pianthong (2007) give some classification
schemes (cf Ghosh and Gagnon, 1989; Becker and Scholl, 2006) as follows:

I.  Ghosh and Gagnon (1989) classified the ALBP into four categories shown
in Figure 2.1: (1) Single Model DeterministicASMD); (2) Single Model stochastic
(SMS); (3) Multi/Mixed Meodel Deterministie(MMD); (4) Multi/Mixed Model
stochastic (MMS).

II. Becker and#'Schell /(2006) have classified the main characteristics of
assembly line balancingproblems considered in their several constraints and different
objectives as shown'in Eigure 2.2. It illustrated the classification of assembly line

balancing problems.

Assembly Line Balancing (ALB)

Single Model Multi/Mixed Model
I I
I | I |
Deterministic Stochastic Deterministic Stochastic
(SMD) (SMS) (MMD) (MMS)
Simple General ¢ Simple General Simple Generaly, +Simple General
Case Case Case Case Case Case Case Case

(SALB) (GALB) (SALB) = (GALB) (SALB) ' (GALB) (SALB) (GALB)

Figure 2.1 Classification of assembly line balancing literature

(Ghosh and Gagnon, 1989)
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Assembly line balancing problems

Simple assembly line balancing problems General assembly line balancing problems
(SALBP) (GALBP)
SALBP-1 || SALBP-2 SALBP-E || SALBP-F MALBP/MSP UALBP Others

Figure 2.2 Classification ot assemblysine balancing problems

(Beckerand Scholl, 2006)

(1) SALBP: The simplc assembly line balancing problem is relevant to
straight single product assembly lines where only precedence constraints between

tasks are considered:

- Type 1 (SALBP-1) of this problem consists of assigning tasks to work
stations such that the number of stations (mj is minimized for a given production rate

(fixed cycle time, c).

- Type2 (SALBP-2) is to minimize cycle time (maximize the production

rate) for a given number of stations (m1).

- Type E (SALBP-E) is the most general problem version maximizing
the line efficiencyl(E) thereby sitmultaneetsly midimiZing'e and m considering their

interrelationship.

- TypesE (SALBP-F) is a feasibility problem which 'is to establish

whethér or not a feasible line balance exists for a given combination of m and c.

(2) GALBP: In the literature, all problem types which generalize or remove
some assumptions of SALBP are called the generalized assembly line balancing
problem (GALBP). This class of problems including UALBP and MALBP is very
large and contains all problem extensions that might be relevant into practice

including equipment selection, processing alternatives, assignment restrictions and so on.
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- MALBP and MSP: The mixed-model assembly line balancing problem
(MALBP) and Mixed-model sequencing problem (MSP) produce several models of a
basic product in an intermixed sequence. Besides the MALBP, which has to assign
tasks to stations considering the different task times for the different models and find
a number of stations and a cycle time as well as a line balance such that a capacity- or
even cost-oriented objective is optimized (Scholl, 1999, Chapter 3.2.2). However, the
problem is more difficult than in the single-model case, because the station times of
the different models have to be smoothed for.€aeh station (Merengo et al., 1999). The
better this balancing works, the better selutions-aré possible in the connected mixed-
model sequencing problem:The MSP has to find a'sequence of all model units to be
produced such that inefficieneies (work overload, linc stoppage, off-line repair and so
forth) are minimized. (Bard ef al.,/1992; Scholl et al., 1998).

- UALBP: The U-ling asserr;bly- balancing problem (UALBP) considers
the case of U-shapedi(single produet) ags_embly lines, where stations are arranged
within the shape of U. As a conéeqhence, -;Ai(')raléers are allowed to work on either side
of the U, that is, on earlysand late tasks 1Jn-thle production process simultaneously.
Therefore, modified precedence constrainté?h;;fe to be observed. By analogy with
SALBP, different problem t&péé can be d-i;;f-i_ri'é_llished. (Miltenburg and Wijngaard,
1994; Urban, 1998&; Scholl-and Klein; 1999; Ereleral; 2001).

2.2.1 Level of automation

There are two kinds of automated level as follows:

1) Manual lines: | Insspite of the majorfadvances im the automation of
assembly processes, there are still many assembly systems which mainly or
completely rely on manual labor. Manual lines are especially common where work
pieces are fragile or if work pieces need to be seized frequently. In countries where
wage costs are low, manual labor can also be a cost efficient alternative to expensive

automated machinery.
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2) Automated lines: Fully automated lines are mainly implement
wherever the work environments is in some form hostile to human beings, as for
instance in the body and paint shops of the automobile industry, or where industrial
robots are able to perform tasks more economically and with a higher precision (e.g.

metal processing tasks).
2.3 Mixed-Model Assembly Lines (MMAL:S) in Just-In-Time

Just-In-Time (JIT) has revolutionizéd thesmanufacturing world. In the late
1980s everyone was interested-in implementing JI'F-to their manufacturing firm. JIT
means producing what is needed when needed and no more. Anything over the
minimum amount necessacy‘is viewed as waste, because effort and material expended
for something not needed and gannot be utilized now. This definition of JIT leaves no
room for surplus or safety stock. No safely. stocks are allowed because if you cannot
use it at present, you do mot alsg need to f:nake it. The JIT principles relate to the four
Ms that imposes additional conditions dfl'_:,thJ_e labor mtensive line: Man (multiple
skills); Method (flow production; manual’ or conveyor line and visual control);
Material (immediate detection); and Mac]ﬁﬁc;} (flow line layout and small and
inexpensive machines). In addition, five cl_?_t_ﬁér_lt_s that approach JIT are takt time,
flow manufacturing lon U—shabed productibﬁ lines, standard work, pull production
control, and jidoka ,(Miltenburg, 2001b). A goal of JIT production system is cycle

time (C;) = takt time (C ) for cach 7 Mixed-model production is crucial to respond

diversified expectations’ of today’s customer perspective. In such a production
environment,“more than one product with similar production characteristics or
different models of a product are produced or assembled on the same line. The use of
a U-linegthat-often adopts the .strategy; of imixing, produets models is an important
element in JIT production.’ It'enables to easily adjust production facilities to demand
changes, and increase labor productivity. Many benefits of U-lines utilized in JIT
environment are reported in the literature (Monden, 1983; Miltenburg and Wijngaard,
1994; Cheng et al., 2000; Miltenburg, 2001b) including increasing productivity,
reduced work-in-process inventory, shorter throughput and improved quality. A
successful utilization of mixed-model U-lines (MMULs) in a JIT environment

requires effective solutions to two important problems (Kara et al, 2007b and
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Miltenburg and Sparling, 1998): (i) the mixed-model U-line balancing (MMU/LB)
and (ii) the mixed-model U-line sequencing (MMUY/S). The contribution of MMULs
to JIT production can be increased by solving these two problems. However,

according to Figure 2.3 how to accomplish the strategy of JIT is summarized by

combining Kara et al. (2007b) and Davis et al. (2003).
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2.4 Research on U-shaped Mixed-Model Assembly Lines
(MMUALs)

2.4.1 U-shaped assembly lines

Since the focus of this study is the UALBP-1, the literature on U-
shaped assembly lines is reviewed. Mitenburg and Wijngaard (1994) were the first to
compare a U-shaped line with a straight Jin€,_They use a dynamic programming
procedure and heuristic methods developed foi.the SALBP to solve the UALBP.
Based on the work of Schrage-and Bakér (1978) they develop forward and backward
“ideals” that are used to provide sets of feasible tasks: Workstations are assigned tasks
by simultaneously mowing sbackward ‘and forward through the network. Their
computational results show that the dynamic programming and modified heuristics
worked well, though*dynamic programrﬁ_ing was used only for problem sets up to
eleven tasks. An integer programming us"le_dra “phantom” network to move forward
and backward through the network; and wéis':"'af)'_le to optimally solve problems with up
to forty-five tasks. Miltenburg (1998) andf};_z_"qs_the U-line facility problem where a
multi-line station may include :tasks fremltwo adjacent U-lines. A dynamic
programming approach is-used: Sparling (1998) also.investigates the multiple U-line
problems and presents-seveial-heuiistic-appioaches-to-sotve the N U-line facility
problem. More complex U-lines, which are not a single-or simple U-line, are named
multi-lines in a single' U, double-dependent U-lines, embedded U-lines, figure-eight-
pattern U-lines, and_multi=U-line facility. “Hardly are travel time between tasks
considered; howewver) at present only both of Miltenburg (2001a) and Shewchuk
(2008) considered walking time. Miltenburg (2001a)’s 10-task problem of a single U-
line ‘was  studied-hierarchically ‘in USALBP-1. Tt igives us the optimal number of
workstations with walking distance (one unit for adjacent machines at the same row
and two units for opposite machines). Shewchuk (2008) studied the same problem of
5-20 machines with walking time (one second for adjacent machines at the same row
and two units for opposite machines). They are the same constraint that is assumed for
the following experiments in this research. However, Shewchuk (2008) did not refer

to the input of precedence graph. As a result, its optimum number of workstations
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with walking time cannot be compared. This research relaxes Shewchuk’s assumption

that not guarantee minimum walking times in the paper (Shewchuk, 2008, p.3,489).

2.4.2 U-shaped mixed-model assembly line balancing

The characteristics of modern assembly lines found in many assembly
operations today (Bukchin et al, 2002). The first mixed-model U-line balancing
problem (MUALBP) was addressed by Sparling and Miltenburg (1998). They adapt
the four-step mixed-model straight-line procedure of Thomopoulos (1967, 1970) and
set the initial balance using a branch and bound-algorithm. A smoothing algorithm
using a search procedureds thenused to reduce thenmbalance of the line for a given
sequence of models. Characteristics of imixed-model U-shaped assembly lines were
also described in Miltenburg (2002) and Kara e dl. (2007). Kim et al. (2000) apply
genetic algorithms to the mixed-model;— b—shaped line balancing and sequencing
problem. All three genetic falgorithm i-cdepresentations developed by the authors
generated better results than traditional }ii_erarchical approaches. In conclusion, the
single-model and mixed-model U-shapeai:a;sembly line balancing problems are

oll i
interesting in both a practical and a theoretical ylicproint.

2.4.3 Datassets of U-shaped A-s':s-'-éﬁ-ilily Line Balancing
Problems-1 (UALBP-I) ’

The well-known Talbot data set is based on 12 precedence networks
with 8-111 tasks, each of'which lis'.combined with several eyclejtimes to build a total
of 64 instances (Talbot ez al. 1986). Miltenburg (1998) noted that U-line problem sets
with .more~than twenty-six tasks, may be too.difficult te solye.in mere restricted
constraints.'However, "The! Scholl 'data“sets are \coinposed-of 168 instances with 25-
297 tasks (Scholl, 1999). All instances form the combined data set with 269 instances.
Complete descriptions of all data sets are given in Scholl (1999, chapter 7.2) and can
be downloaded from the web at ‘http://www.bwl.tu-darmstadt.de/bwl3/forsch/
projekte/alb/index.htm’ or ‘http://www.assembly-line-balancing.de’. These sets are

used for testing ULINO which is applied directly to the UALBP of type 1.
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2.5 Literature Survey on the Worker Allocation Problems

2.5.1 Early work on worker allocation problems

Assembly line balancing (ALB) problem has been widely studied and
strongly reviewed by Song et al (2006). Most of the previous line balancing
approaches attempted to solve the same problem, which is defined as how to assign
the tasks to an ordered sequence of stations s that the precedence relations should
satisfied and some measures of effectiveness.should be optimized. However, the
worker factors are seldom considered in solving the ALB problem. It is widely
ignored that in the real liferSituations|of labor mtensive industry, such as apparel
manufacturing, even withethe ©Optimal task sequence employed, and minimized idle
time (or cycle time)“obtaificd; the production line still cannot be balanced in most
cases because of the efficiency variance ;'1mong workers and uncertain efficiency of
the same worker in diffefentitgations, The worker efficiency is revealed to be greatly

influenced by such factors as worker’s emeotion, motivation, health, skill level and

experience of doing the similar opgnation pfﬁi/jously (Kannan and Jensen, 2004)

W '-!]J

Based on the fact that the-r.jvai_r;iance of worker efficiency leads to
production line imbalqnce in those industries that still heavily rely on labor skills, the
problem to balance<assembly production line optimally with the consideration of
worker efficiency variance in thus raised. If a single worker can handle multiple
machines, the line balancing problem can e replaced with the ‘worker allocation’
problem, whete the goal is to determine which grouped machines are handled by each
worker (Shewehuk, 2008). As right worker allocation, that is to allocate workers to
operationscsorthatgach eperationrcanchave thesame efficieneyy isvyitaljto keep line-
balancing, this study proposes an optimization solution to solve the above problem by
obtaining an optimal worker allocation before production based on predicted worker

efficiency.

Most scheduling models assume that the number of workers available
is equal to the number of machines in a production line, especially on the progressive

bundle system. However, in practice on the modular production system there are
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fewer workers than machines. Chen (1991) addressed problems where a worker
handles more than one machine. He formulated the problem of sequencing the
operations performed by workers in a cell as a Mixed Integer Program (MIP) to find a

cyclic worker walking pattern corresponding to minimum makespan.

Much of the existing literature solves the worker allocation problem by
mathematical programming by assuming both deterministic data and single objective.
Vembu and Srinivasan (1997) incotporated principles of JIT production to the
combined problem of worker allocation and sequencing batches of jobs on the single
goal of minimizing the makespan. Existing literature invariably solves the worker
allocation problem usingmathecmatical programming that uses deterministic data and
a simplified objective, Bhaskat and Srintvasan (1997) developed a MIP formulation to
solve a worker allocation problem, for cellular manufacturing systems. Its objective
was to balance the workload among cells;'— and to. minimize the production make-span.
They did not address the/detailed Worker-_:allocation decision for the different stages
within a cell. Ghinato'et al. (1997) devél_oped the Gray code transition sequences
method based on the generation of all posgii;)llé: solutions that initially satisfy only the
zone constraint to obtain the optimal aSSig-I-lil__:;;QI}E for problems with two workers and
ten machines. The optimal solutici satisﬁes%@hlér!é.e goals step by step. First, cycle time
is minimized and-{benaiEIGAICHORYOE e e dgviation of workload and
absolute deviation ofroutine time are subsequently realized. The solution method was
applied to three groups of problems with different configurations. Optimal
assignments were obtained and the results briefly discussed. It is likely to develop the
present work«(2 workers %10 machines)-tosany,dimension (7, workers x m machines).
Some traditional” ‘methods’ such~as " branch-and=bound " and* some metaheuristic
approaches such as genetic algorithms in such asproblem will be‘extended. Nakade
and Ohno(1999), ‘considered an optimization problem of finding an allocation of
workers at a U-shaped production line with multi-function workers to minimize the
cycle time under the deterministic processing and walking times assumptions. Ertay
and Ruan (2005) proposed a decision-making approach based on data envelopment
analysis (DEA) for determining the most efficient number of workers in U-shaped
cellular manufacturing system. It evaluated the performances of all decision-making

units (DMUs) by using simulation and only one line was considered. All of the above
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literature assumes a homogeneous skill in solving the worker allocation problem. In
other words, the difference in skill set is not considered. This study identifies the
minimum of workers required in the assembly line to obtain maximum output.
Having seized maximum output, this number is different for different job varieties in
the same line. Miralles et al. (2008) studied Assembly Line Worker Assignment and
Balancing Problem (ALWABP) providing a simultaneous solution to a double
assignment: (1) tasks to stations; and (2) available workers to stations. After defining
the mathematical model that aims to minimize the cycle time for this problem, a basic
Branch and Bound approach with three possible search strategies and different
parameters is presented. They-also propose-theuse of a Branch and Bound-based
heuristic for large problems and analyze the behawvior of both exact and heuristic
methods through experimental'studies. Hinally the implementation of these procedures
in a Shelters Work cenir forDisabled — the real environment which has inspired this
research — is described. At last, the study of Shewchuk (2008) differs from the widely-
investigated U-line assembly line balancin-;g problem in that the assignment of tasks to
line locations is fixed.#This paper addresg ‘the worker allocation problem for lean U-
shaped production lines where the (-)bjecti\-fieié are {0 minimize the quantity of workers
and maximize full work: such allpcationé JéfQ}cide the opportunity to eliminate the
least-utilized worker by improvifig processéT?aiécordingly. A mathematical model is
developed: the model allows for any alloé%ifigﬁ_éf machines to workers so long as
workers do not cross paths:—Walking times are consideied, where workers follow
circular paths and watk around other worker(s) on the line if necessary. A heuristic
algorithm for tackling the problem is developed, along with a procedure representing
the ‘traditional’ approach of constructing standard eperations reutines. Computational
experiments considering thiee line'sizes (up-to 20'machines) and'three takt time levels
are performed. The results show that the proposed=algorithm both improves upon the

traditional @pproach and fis more'likely.to provide optimal solutions,
2.5.2 Worker allocation in mixed-model assembly lines

Until now, rarely is the study of worker allocation in mixed-model or
U-shaped mixed-model assembly lines found. The paper of Shewchuk (2008) is

closest to the issue since lean manufacturing is imperatively relevant to mixed-model
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products. The gap of the approach that is not guarantee minimum walking times in the

paper is fulfilled in this research.

2.5.3 Worker allocation objective functions

In the study of decision making, terms such as multiple objectives,
multiple attributes, and multiple criteria are often used interchangeably. Multiple
objectives decision making (MODM) consists of a set of conflicting goals that cannot
be achieved simultaneously. The motivation to consider the problem of generating the
efficient set of the worker allocation problémacomes from the variety of industrial
cases where the criteria.zelated to minimum.number of workstations, smoothed
workload in a sense of equity and minimum walking time to save the space needed for
the actual size of a W=shaped line and slhorten distance for communication between

workers. _

Finally, their interesting sti}dyf 1s likely to complete more than a single
objective function and contribute the gaias of theoretical and practical U-shaped
assembly line worker allocation problemnis. 8

2.5.3.1 Comparisonof objeéﬁsge!{.functions for the UALBP

~Historieal-single-and-muitiple-oebjcctive functions have been
studied by several researchers. Efficiency and balance performance measures that are

two of three measures influencing to achieve just-in-time manufacturing (especially in

UALBP) in the:previous Figure are reviewed and shown.in Eigure 2.4.
2.6 Solution Approaches

2.6.1 Importance of exact algorithms

Exact searches have been known to be one of the most efficient
approaches in solving optimization problems as they can guarantee finding the
optimal solution satisfying all constraints and optimizing the objective value, if one

exists. On the other hand, they can prove as well the non-existence of a feasible
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solution. The mathematical programming formulation of worker allocation problems
can be provided in some papers (Miltenburg, 1998; Kuo and Yang, 2007; Miralles
et al., 2008). Generally they follow common approaches that are dynamic
programming, mixed integer programming, and branch and bound approaches.
However, it is well-known that optimal solutions can be found for only relatively

small size problems.

EFFICIENCY
1. Min. the number of wo akade ) he absolute workload
& Nishiwaki, 2008; She k )8 | deviation (Ghinato et al., 1997)
2. Min. the total cycle time (Ghing - . Min. the deviation of routine time
et al., 1997; othe ’ yetal., 1997)

3. Min. the multiplication of
skill levels (Kuo & Yangy 200
4. Min. the average lead time
Runa, 2005)
5. Max. the average operator uti
(Ertay & Runa, 2005)
6. Min. the makespan (Vembu &
Srinivasan, 1997)
7. Max. the work relatedness
8. Min. the work slackness s
9. Min. the mean flow time ( an
Jensen, 2004) :15)

Qs
V] j P ¢l g the 1Vir;1 cﬂ:le time under the
minimum number of workers (Nakade

ishiwaki, 2008)

| Gellishiwaki, 2008) g |
AN1INGTRE

Figure 2.4 Comparison of objective functions for the UALBP
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2.6.2 Importance of approximation algorithms

When facing NP-hard problems, metaheuristics (MH) and approximate
searches are often proposed to quickly obtain near-optimal solutions in stead of
seeking an optimal solution. This is particularly relevant in the context where the
problem is subject to frequent disturbances (the best solution is less important because
it will not remain optimal or even valid for a long time). MH methods include
techniques such as simulated annealing, tabu search, guided local search, or else
genetic algorithms and propose an approachvhere.a heuristic criterion (typically the
objective function) is used for guidingithe search process through the search space
(the set of the possiblertasks’~aliocations). Their search paradigm is based on an
iterative process wherfe we" start from an initial feasible solution and makes
incremental changes by’”rflodifying the current tasks® allocation at each iteration using
the objective function {0 i guide thisfp‘roo:e*s's towards better a set of solutions. In the
case of population—based MH such-‘as genétic ‘algorithms, the search process maintains
a population of solutions throughout the search process instead of a single solution
and follows a similar iterative 1mprovemefn1 process by applying genetic operators:
crossover, mutation and se}ectlon -The necessalfy interface needed by MH to support

solution modifications 1nc1udes an msertlorr operatlon which inserts a task before a

g

specified activity (tqur constructlon) and a swap operatlon which exchanges two

tasks (tour 1mprov€ment) From these operations, moré complex moves can be
derived to help guiding the search more efficiently (Voudouns etal., 2008).

2.6.2:.1-Complexity

It is excerpted from Gen“er al (2008) that computational
complexity theory is the study of the complexity of problems — that is, the difficulty
of solving them. Problems can be classified by complexity class according to the time
it takes for an algorithm to solve them as function of the problem size. For example,
the traveling salesman problem can be solved in time O(n’2") (where n is the size of
the network to visit). Even though a problem may be solvable computationally in
principle, in actual practice it may not be that simple. These problems might require

large amounts of time or an inordinate amount of space. Computational complexity
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may be approached from many different aspects. Computational complexity can be
investigated on the basis of time, memory or other resources used to solve the
problem. Time and space are two of the most important and popular considerations
when problems of complexity are analyzed. The time complexity of a problem is the
number of steps that it takes to solve an instance of the problem as a function of the
size of the input (usually measured in bits), using the most efficient algorithm. To
understand this intuitively, consider the example of an instance that is n bits long that
can be solved in n” steps. In this example we say the problem has a time complexity of
n’. Of course, the exact number of steps will.depend on exactly what machine or
language is being used. To avoid that preblemi, the'Big O notation is generally used. If
a problem has time complexity O(s’) on one typical.eomputer, then it will also have
complexity O(n°) on mest oher computers, so this notation allows us to generalize

away from the details of'a particular corrfputer.

2.6.3 Commornsolutions for?U-,shaped assembly line balancing

problems

Using exact solution- for sméﬂlieg’_ize problems of U-shaped assembly
line balancing are studied in some papers, _Ifi_s_ well known that traditional assembly
line balancing problems (ALBP) fall info- t-he NP-hard class of combinatorial
optimization problemé (Hwang et al., 2008). Since both the MALBP and the UALBP
are subsets of the ALBP, they are also NP-hard. Therefore, methods that evaluate the
entire solution space are not suitable for large sized problems and heuristics need to

be employed miorder'to efficiently search the solution space. However, heuristics may

become trapped at a local minimum as noted by Sparling and Miltenburg (1998).
2.6.3.1'Solution methods

Since the ALB model was first formulated by Helgeson et al.
(1954), many solution approaches have been proposed. Several optimum seeking
methods, such as linear programming (Salveson, 1955), integer programming
(Bowman, 1960), dynamic programming (Held et al., 1963) and branch-and-bound
approaches (Jackson, 1956) have been employed to deal with ALB. However, none
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of these methods has proven to be of practical use for large problems due to their
computational inefficiency. Since ALB models fall into the NP-hard class of
combinatorial optimization problems (Karp, 1972), in recent years, to provide an
alternative to traditional optimization techniques, numerous research efforts have been
directed towards the development of heuristics Dar-El (1973) and meta-heuristics.
While heuristic methods generating one or more feasible solutions were mostly
developed until the mid 1990s, meta-heuristics such as tabu search (Scholl, 1966),
simulated annealing (Suresh and. Sahu, 1994), genetic algorithms (Falkenauer and
Delchambre, 1992) and ant colony optimization (Bautista and Pereira, 2002) have
been the focus of researchers in ihe last decade. For more information, the reader can
refer to several review. studies, i.¢c. Baybars (1986a) that survey the exact (optimal)
methods, Talbot er al#(1986). that compare and evaluate the heuristic methods
developed, Ghosh and#Gagnon (1989)I that present a comprehensive review and
analysis of the different¢methods for deéién, balancing and scheduling of assembly
systems, Erel and Sarin (1998) that presen-; a comprehensive review of the procedures
for SMALB, MALB.and: MUALB moilf:ls, Rekiek et al. (2002) that focus on
optimization methods for the line Balanciﬁ;gjaﬁ-d resource planning steps of assembly
line design, Scholl and Begker (2006) that -;iés§?t a review and analysis of exact and
heuristic solution procedures for SALB, B?cker and Scholl (2006) that present a
survey on problemssand methods for GALBWl‘Eh features such as cost/profit oriented
objectives, equipment selection/process alternatives; paraliel stations/tasks, U-shaped
line layout, assignmént restrictions, stochastic task processing times and mixed model
assembly lines, Rekick and Delchambre (2006) that focus on solutions methods for
solving SALBsrand Ozmehmet Fasan and Tunali (2007)-that.present a comprehensive
review of GAs'approaches-used’ for'solving various-ALB'models. Among the meta-
heuristics, the application of genetictalgorithms (GAs) received considerable attention
fromfthe ‘tesearchers,  since it provides an alternative to| traditional optimization
techniques by using directed random searches to locate optimum solutions in complex
landscapes and it is also proven to be effective in various combinatorial optimization
problems. GAs are powerful and broadly applicable stochastic search and
optimization techniques based on principles from evolutionary theory (Gen and
Cheng, 2000). Falkenauer and Delchambre (1992) were the first to solve ALB with
GAs. Following Falkenauer and Delchambre (1992), application of GAs for solving
ALB models was studied by many researchers, e.g., Kim et al. (1996b); (Leu et al.
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(1994); Noorul Haq et al. (2006). However, most of the researchers focused on the
simplest version of the problem, with single objective and ignored the recent trends,
i.e. mixed-model production, U-shaped lines, and robotic lines, in the complex
assembly environments, where ALB models are multi-objective in nature Ozmehmet
Tasan and Tunali (2007). In the following section, multi-objective evolutionary

algorithms are described.

Another rational support of GAs acquisition

A number of attempis have been made to apply Genetic
Algorithms to other pieblems.such as traveling-salesman problem, production
planning and scheduling, fa€ility location problems, and cell design problems
(Venugopal and Narendfan, 1992; Guptalet al, 1993).

Combinatorial opti};lization 1s the process of finding one or
more best (optimal) selutigns in a well d;ﬁned discrete problem space. For a small
size problem, a branch-afd-bound -approaél-ii;l is often the most efficient way to solve
them. This research seems 0 use At Coldrij(fogtimization (ACO) for the solution of
the travel path problem, but not taking good_—_agzhe sub colony. This research is more

suitable for the sub=-structure brb"blem makiﬁg-'-féé_ﬂ‘itate to change into bit strings.
2632 Multi-objective evolutionary algorithms

Singe, thesl 950°s, some authors haye.beenusing concepts based
on Darwin’s ‘evolution-theory for the solution 'of optimization problems (Box, 1957;
Friedberg, 1958; Bremermann, 1962). Numerous, algorithms based on the same
concépts have been developed over the last 30 jyears./ They are usually described by
the term “evolutionary computation methods.” The most notable members of this
group are simple genetic algorithms (GA’s) (Holland, 1975; Goldberg, 1989),
evolution strategies (Rechenberg, 1973), evolutionary programming (Fogel, 1996),
classifier systems (Booker et al., 1989), and genetic programming (Koza, 1992). Back
et al. (1992) give an excellent review of evolutionary computation methods, and

highlight some recent developments in the field.
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Multi-objective optimization problem

In most cases, a multi-objective optimization problem (MOP)

can be described, without loss of generality, by using the following formulation:

Miizigzize J1(x0), f,(x),..., fr(x) 2.1)

where solution ' vector of decision variable for the
considered problem, Q is th asible ce and f,() is the i' objective

al solution for equation 2.1,
but rather a set of alte(— s. These sc s-are optimal in the wider sense

perior to them when all

objectives are considered. IS10n 3 1s said dominate a decision vector y

(2.2)

decision vector are CE 2 Pareto optiall. Figure 2.5 illustrates the

non-dominated solutions for a two-objective;minimization problem.
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Figure 2.5 Non-dominated or Pareto-optimal solutions
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Evolutionary algorithm in multi-objective optimization

Multi-objective  evolutionary algorithms (MOEAs) have
become popular and have been applied to a wide range of problems from social to
engineering problems (Coello ef al., 2002). In general, MOEAs are ideally suited to
the multi-objective problem because they are capable of searching multiple Pareto-
optimal solutions in a single run. The approximation of Pareto-optimal set involves
two conflicting objectives: (1) the distance fo the true Pareto front is to be minimized;
whereas (2) the diversity of the evolved solutions is to be maximized (Zitzler et al.,
2001). To achieve the first objective, a,Parcio=based fitness assignment is normally
designed to guide the search toward the truec Pareto optimal front (Fonseca and
Fleming, 1993). In thesview of the second objective, some MOEAs successfully
provide density estimagion methods to ﬁreserve the population diversity. Since last
two decades there are many MOEAs that were strongly reviewed by Chutima and
Pinkoompee (2008) as follows: Vector E\;_;lluated Genetic Algorithm (VEGA), Multi-
Objective Algorithm (MOGA ) (Fonseca :;ﬂd Fleming, 1993), Niched-Pareto Genetic
Algorithm (NPGA) (Homn ef al., - 1994) ﬁgn:aominated Sorting Genetic Algorithm
(NSGA) (Srinivas and Debs'1994), Pareto Stratum Niche Cubicle Genetic Algorithm
(Hyun et al., 1998), Strength Pareto Evolut— na.ry Strategy (SPEA), Pareto-Archived
Evolutionary Strategy (PAES) Niched- Pareto Genetic Algorithm II (NPGA-II),
Strength Pareto Evolutionary Algorithm 2 (SPEA 2); Non-dominated Sorting Genetic
Algorithm II (NSGA—II) (Deb et al., 2002), Rank Density Genetic Algorithm (RDGA)
(Lu and Yen, 2003), and Memetic Algorithm (MA) (Kumar and Singh, 2007;
Ishibushi, 2003).

This research studies amd, bases on four evolutionary
algorithms, that/. s, Non-dominated Sorting| Genetic “Algorithm-IT. (NSGA-II),
Memetic Algorithm (MA), COINcidence Algorithm (COIN), and Particle Swarm
Optimization (PSO) as follows.

1. NSGA-11

Non-dominated sorting genetic algorithm II (NSGA-II) is one

of the most popular genetic algorithms in recent years. It has the ability to find
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multiple Pareto-optimal solutions in one single run. In NSGA-II, the population is
sorted according to the level of non-domination. The diversity among non-dominated
solutions is maintained using a measure of density of solution in the neighborhood.
NSGA-II is able to find much better widespread solutions and better convergence near
the true pareto-optimal frontier in most problems. The steps and flowchart of NSGA-

11 is illustrated in the next section.

1. MA

Memetic-Algorithm (MA)-is-a-type of Evolutionary Algorithms
(EAs) that applies a separate local search algorithm to refine individuals. These
methods are inspired” by models  of a}daptation in nature systems that combine
evolutionary adaptatien of populations of i’r_ldividuals with individual learning with a
lifetime. Additionally, MA(hybrid EASLI.ISGS EAs to perform exploration and use
local search to exercise €xploitation. Coﬁ}bi‘ﬁing with local search is a strategy used
by many successful globaloptimization approaches, and MA has been recognized as a
powerful algorithmic paradigm for evolutioja_ngy computing. In particular, the relative

advantage of MA over EAS is their ability to be more consistent on complex search

spaces. T

, ‘In the framework of this research, the rbasic concept of MA and
MOEAs are used to enhance the performance of the original MOEAs as NSGA-II by
combining them with rlocal search. This study has not tried to specify an appropriate
local search direction tolall obtained solutions ‘since'it is time consuming. However, if
the solutions afjwhich the local search is applied are randomly selected, the improved
quality of the new.solutions may.not be guaranteed. Therefore,.an appropriate solution
is selected | by! using “binaryitonrmament 's¢lection. Furthermore)iwe.use the first
improvement which is an execution of local search that is terminated when no better
solution is found among k neighbors randomly generated from the current solution,
where k is a user-definable parameter. This stopping criterion of local search, called
early termination strategy, can help decease the computation time spent by local
search. The other strategy for decreasing the computation time is the reduction in the

number of neighboring solutions. The local search probability P, indicates the
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opportunity that the local search is applied. In our MA, a suitable local search that can
be used to improve the efficiency of NSGA 1II is searched. Seven local search
procedures are evaluated in the part of local search heuristics below. However, the

steps and flowchart of MA are illustrated in the next section.
Initial population

A set of N chromosomes is generated randomly as an initial set
of populations. The chromosome is representedsby a sequence of genes (tasks). The

position of gene in a sequence of the chromosome tépresents the task in the sequence.

Local search heupistics
|
Ouie a néw chromosome is created in the initial population, it
is improved by using local search. (In Tfac‘_s, local search can be performed after
obtaining initial solutions, new offspriilg and mutation. In this research, it is
determined after obtaining initial sdlutions-_-;é{glcf ‘mutation since our pilot runs indicated
that these two points were eno@gh for :)u-r ,MA to find significantly improved
solutions, pull the solutions out of the localﬁ?fimal, and reduce computational time.
The local searches-in this reéé’éifch are modlﬁea from Kumar and Singh (2007) that

also focuses on TSP-includimg the-followings:

o . Pairwise Interchange (PI): Select two arbitrary products
located at positions 7 andj, i # j, and, interchange them. It
consists of all possible swaps of pairs of products in a given

solution;

e Insertion Procedure or Shift Procedure (IP or SH): Remove
a product from one position and insert it back to any

position of the sequence;

e Adjacent Pairwise Interchange (API): This is a special case

of the PI where two products located at positions i and i+1
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(1<i<n-1) are interchanged to generate a neighboring

solution;

e 2-opt: A neighboring solution is obtained by selecting two

arbitrary products i and j and interchange them;

e 3-opt: In this case, 3 products are randomly selected and

osome into 4 segments by

and reinserts them in a different

B L T
B o

selecﬁ}n is based on the binary

tournament selection toﬁ.obéain suitable parents to further perform local search and

genetic operator. It Séﬁ ln.‘cir S (\'1 dates at random and
then choosinﬂ;uéﬁdiwm (gj ﬂﬁﬂhﬁi has lower rank or lower fitness
value_to rent. | i i\ﬁi!fl e or itness value,
AN S S TN A Y

q

Operator

a. Crossover

There are other crossover techniques available for

general sequencing problems, e.g. partially-mapped crossover (PMX; Goldberg and
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Lingle, 1985), cycle crossover (CX; Oliver et al, 1987), order crossover (OX)
(Michalewicz, 1996) and immediate successor relation crossover (ISRX; Hyun et al.,
1998). However, the two point-based weight mapping crossover (WMX) by Hwang
et al. (2008) is used in this research.

b. Inversion

Inversion is an operator that generates offspring from a
single parent. It first chooses two randomscut points in a parent. The elements

between the cut points are then rcversed.,

CoMutation

Mutation is performed irregularly so that a solution
could have an occasi6nal graif'that is unique from its parents. This is essentially done
so that diversity remains in the populatio"g. Mutation for this research is the simple

swapping of two unique gleménts in the sequence of interest.
#
o

r!”

L. COIN T

“/ Wattanapornprom et al. (2009) de\}eloped a new effective
evolutionary algorithm called combinatorial optimization with coincidence (COIN)
originally aiming to solve traveling salesman problems. Several benchmarks are
compared tothe €xpetiment of Roblés etial-(2002). The idea is-that most well-known
algorithms sugh as Genetic Algorithm (GA) search for good solutions by sampling
through crossover and mutation tasks without “much_exploitation” of the internal
structure 'of good solution sfrings. This may not only [geénerate large number of
inefficient solutions dissipated over the solution space but also consume long CPU
time. In contrast, COIN considers the internal structure of good solution strings and
memorizes paths that could lead to good solutions. COIN replaces high computation
time of crossover and mutation tasks of GA and employs a joint probability matrix as
a means to generate neighborhood solutions. It prioritizes the selection of the paths

with higher chances of moving towards good solutions.
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Apart from traditional learning from good solutions, COIN
allows learning from below average solutions as well. Any coincidence found in a
situation can be statistically described whether the situation is good or bad. Most
traditional algorithms always discard the bad solutions without utilizing any
information associated with them. In contrast, COIN learns from the coincidence
found in the bad solutions and uses this information to avoid such situations to be
recurrent; meanwhile, experiences from good coincidences are also used to construct
better solutions in Figure 2.6 (Sirovetnukul and Chutima, 2010b). Consequently, the
chances that the paths being parts of the bad selutions are always used in the new
generations are lessened. This lowers the nuinber of solutions to be considered and

hence increases the convengence speed.
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Figure 2.6 Good a;dbad solutions

‘COIN uses a joint probability matrix (generator) to create the
population. The generator i1s initialized so that it can generate a random tree with
equal probability for any configuration. The population is evaluated in the same way
as traditionalyevolutionary ' algorithms, Howeyer, " COIN rus¢syboth good and bad
solutions to update the generator. Initially, COIN searches from a fully connected tree
and then.incrementally strengthening.or weakening the, connections. ./As generations
pass by, ‘the probabilities of selecting certain paths 'are’ increased..or decreased
depending on the incidences found in the good or bad solutions. The algorithm of

COIN can be stated as follows.

1. To initialize the joint probability matrix (generator);

2. To generate the population using the generator;
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3. To evaluate the population;
4. To make diversity preservation;

5. To select the candidates according to two options: (a) good
solution selection (select the solutions in the first rank of the current Pareto frontier),
and (b) bad solution selection (select the solutions in the last rank of the current

Pareto frontier);

6. For each joint probability matrix H(x,x;), to adjust the

generator according to the reward and anishment scheme as Eq. (2.4);

X+ =x; ;(0)+ gt ) o) (0 D +’W{Zj‘:1pi,j(t+l)_z/ 11, (D24

_ kg
(n—l—npfr) 4 1 T

_}Vﬁere ' & the _element (i, /)of joint probability matrix
. 7 A 4 .
H(x;/x;), k = the learning coefﬁment. = :J,: the number of coincidences (x;,x;) found

in the good solutions, p;; = the number of coincidences (x;,x;)found in the bad
". F

solutions, ¢ = generation number T = the size thhe problem, and rp, = the number of the

direct predecessors of task i ; — i

e -

j_Z_"Ec3_:a.;:q:;qlgL:a._st:ca.tegtho_1:n.am.ta;1?n elitist solutions in the

population, and then’ repeat step 2 until the terminating condmon 1s met.
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Figure 2.7 Updating the generator
According to Figure 2.7, it illustrates the process of initializing

the generator, generating the first population, selection of good and not good

candidates and finally updating the generator using the selected candidates. The
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generator is initialized so that each node of the dependency is equally to 0.25. The
population is generated from the initiated generator. The candidates are sorted and
classified into three classes: high fitness, medium fitness, and low fitness. The high
fitness candidates are considered to be the good solutions while the low fitness

candidates are taken into account to be the not-good solutions in the population.

The COIN, which is the very up-to-date algorithm, is not
studied into the worker allocation problem of real world industrial application,
however. It is interesting to modify the single=objective COIN algorithm to the multi-
objective COIN algorithm ™ (Sirovetnukul aind-Chutima, 2010b) in the following
experiments. The flowehart of the modified COIN, named the multi-objective

coincidence algorithm,.is'alsosshown in the next section.

1v. PSO

The rengwned evolill-tionary combinatorial optimization, named
particle swarm optimization (PSO),V was derv-'é’.:l(-.):ped by Kennedy and Eberhart in 1995.
PSO is motivated by social behavior of bir-(-l;__é,_ﬂg)_pking or fish schooling Solutions are
represented by particles in the seaich space. Each of the particles keeps the path of the
best solution as thewlocal best (/best). A swarm- of particles-are identified to the best
location named the global best(gbest): The next move of particles is navigated by the
[best and gbest. To give an overview of directions and applications, a snapshot of the
PSO technique is also reviewed and described extensively (Poli ef al., 2007). PSO can
be used across' aylarge number, of applications such ,as coembinatorial optimization

problems (Salman‘et al, 2002; Tseng and Liao, 2008).

Similar. to | NSGA-II, the  decision| of ‘most optimization
problems is relevant to conflicts between multiple criteria in practice. Thus, a set of
solutions for multiple objectives are obtained as non-dominated solutions or a Pareto-
optimal frontier. Although a comprehensive review of the various Multi-Objective
PSO (MOPSO) papers is reported in Reyes-Sierria and Coello (2006), MOPSO is
extended to the modified PSO, name Particle Swarm Optimization with Negative
Knowledge (PSONK). The steps and the flowchart of PSONK are shown in the

following section.
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2.6.3.3 Heuristic rules

Mantazeri and Van Wassenhove (1990) found that no single
heuristic is the best of all the possible performance measures. Often a combination of
basic dispatching rules can perform significantly better. A lot of heuristic approaches
can be found in the literature to solve the simple and U-shaped line balancing
problems. However, there are a few papers for the U-shaped line balancing problem
using heuristics until now. Martinez and Duff (2004) proposed ten heuristic rules used
to find solutions to the U-shaped line balancingproblem of type I. All these heuristic
rules were previously uséd to solve the simpleline balancing problem, but some
modifications were mades The differénce between  the original versions and the
modified versions is_that tasks. arc available for assignment to a work station by
having all successors or all predecessorls previously assigned to a work station, and
when solving for the simple’ LBP, tasks.'—z{f'e available for assignment by having all
successors previously assigned only. Thei:ﬁrst heuristic rule is the Modified Ranked
Positional Weight progedure posted‘by M'I'rl_tenburg and Wijngaard (1994). The other
nine heuristics which aré introduced- in th1§ résearch for solving the U-shaped LBP
are: 2. Maximum Total Number of F ollowe-:;::fals’ks or Precedence Tasks, 3. Minimum
Total Number of Follower Tasks-6r Precedgb_lféé Tasks, 4. Maximum Task Time, 5.
Minimum Task Time, 6. Maximum Numl)-'f;r-'-;(_)%f_llmmediate Followers or Immediate
Precedence Tasks, </ Mimmmum Number of Immediate’ Followers or Immediate
precedence Tasks, 8~ Minimum U-line Upper Bound, 9. Minimum U-line Lower
Bound, 10. U-line Minimum Slack. The description of ten heuristic rules and
formulations saresexplained, in Martinez, and Duff;(2004,-pp288-289). The results
showed that'some“very simple heuristic ‘rules ‘preduced optimal or near optimal

solutions.

In addition to the minimum number of immediate followers or
immediate precedence tasks, nine of all rules in Martinez and Duff (2004) and other
six task assignment rules are used in Baykasoglu (2006). They consists of Random
Priority, Smallest Task Number, Greatest Average Ranked Positional Weight,
Smallest (Upper Bound Divided by the Number of Successors) and Greatest
(Processing Time Divided by the Upper Bound), and Greatest Number of Immediate

Predecessors. In other words, Baykasoglu (2006)’s heuristic rules cover Mertinez and
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Duff (2004)’s nine rules except for the minimum number of immediate followers or

immediate precedence tasks.

Finally, the existing heuristic rules are used to approach
optimal or near optimal solutions as much as possible. It is not essential to do
experiments for all existing heuristic rules to all problem sets. After dealing with one
problem set, the best heuristic rule will be representative for the rest of problem sets.
It means that feasible experimental subsets are reduced from doing total complete

enumeration.

2.6.3.4 Performance measures

Ingthis study, three performance measures are used to achieve
two goals of a multi-objeetive optimization: (1) convergence to the Pareto-optimal set,
and (2) maintenancesof diversity in the s‘c}lu}_ions of Pareto-optimal set. In Eq. (2.5),
the convergence of the obtained Pareto—fépﬁmal solution towards a true Pareto-set

(4") is the difference between the obtained solution set and true Pareto set.

>
ol 4

Mathematically, it is defined as folows.

=1

|A* | (2.5)

convergence(A) =

min

k k

4. < minf| i[—f" a8 )jz

(2.6)

In Eq. (2.6), /™ and f™ are maximum and minimum values

of k™ objective function in the true-Pareto set respectively. For this measure, lower
value indicates superiority of the solution set. When all solutions converge to Pareto-
optimal front, this metric is zero indicating that the obtained solution set has all
solutions in the true Pareto set. The true Pareto-optimal solution is obtained from
Non-dominated solutions from the combination of all three algorithms (NSGA-II,
MA, and COIN).
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The second measure is a spread metric. This measure computes
distribution of obtained Pareto-solution by calculating a relative distance between

consecutive solutions as shown in Eq. (2.7)

|41

df+d,+2|d,.—c7|
i=1

d(A4) = = —
sprea ( ) df+dl+(|A|—1)d (2.7)

where the parameter§ wd and d, are Euclidean distances

-,

between the extreme solutions-and boundary solutions of the obtained Pareto-optimal.
The value of this measuzeis zero for a uniform distribution, but it can be more than 1

when bad distribution isfound: |

Additionally, the tlgrd measure in Eq. (2.8) is the ratio of non-
dominated solutions which indicates the c?ve_rage of one sct over another. Let 4, be a
solution sets (j =1,2,...,J) . ,For comparing Ea___ch__J solution sets (4=4, U 4,...U A4,), the
ratio of non-dominated measure of the soﬁ;,{ig_n set A, with respect to the J solution
sets is the ratio of solutions in"4, that are n@(’;‘minated by any other solutions in 4,

which is defined as follows. ==~ -

|A,—{xeA.|EIyeA:y<rx}|
RNDS(A/'): 2 1|A| (2.8)
) L

where y < x'means the obtained solution x is dominated by the
true-Pareto, solution y . The higher ratio indicates‘superiority of one-solution set over

the other.

2.6.3.5 Comparison of objective functions

The correlation of objective functions is classified into positive and negative
slopes. According to Figure 2.8, there are four types of correlation, that is, Min-Max,

Max-Min, Min-Min, and Max-Max.
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2.7 Comparison of the Related Research

/

According to the prewous SCCthl’L of hterature review, scheme of relevant
works for worker allocation problems in U-sha,?ed mixed-model assembly lines are
summarized in Table 2.1. To gam more ben_ﬁts and modification in addition to Erel
and Sabuncuoglu (2001); summary of the' work conducted on U-shaped assembly
lines of type I is illusirated-in-Table2:2-Allof themrstudy the single objective, but the
problem decompos{tion is solved if multiple objectivesrare decided. No multi-
objective solutions to this research problem are found at this point. Finally, this
research study eonducts.~the, problems specification ~of ~single and mixed-model
products in several single’’'U-shaped assenibly lines, problem- sets of 7-297 tasks,
multiple objective functions with ¢éthe consideration of walkingatime, and multi-

objective evolutionary algorithm approached.
2.8 Limitations of the Existing Research

The literature reviewed at this point was accomplished by searching some

papers. Based on this search the following conclusions can be drawn as follows:
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- There has been no prior documented work in worker allocation in U-
shaped assembly lines of type I in the consideration of multiple objectives

at present;

- Most of the published paper works for worker allocation problems do not

focus on exact solutions, but evolutionary algorithms.

AULINENTNEINS
PRIAATUAMINYAE



Table 2.1 Scheme of relevant works forworker allocation problems
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Author(s) Year Research Problem Other Relatéd?efw Constraints / Optimization Solution
— _ Paramcter(s)” Objective(s) Method(s)
Hwang & 2009 Workload balancing in mixed-model lwPrecedence constraints Min. the number of Genetic approach
Katayama U-shaped assembly line systems 2. Sometestrictions workstations & Min.
the variation of workload
Miralles et al. 2008 Double assignment: tasks to stations leAssigned tasks foronly one worker inevery station Min. the cycle time Branch and bound
and available workers to stations 2. More than‘one taskifor each worker procedures
3. Some assumptions-€.g., deterministic processing times and
precedence relationships, serial paced line, no buffers,
speeifi¢ disabled workers limitations, and so on
Nakade & 2008 Optimal allocation of heterogeneous 1. Multiple heterogeneous multi-function workers Min. the overall cycle Proposed algorithm
Nishiwaki workers in U-shaped production line 2. All procgssing, operationjand walking times are time under the minimum
detgrministic ™ number of workers
Shewchuk 2008 Worker allocation in lean 1. Several constraints - {4 Min. the quantity of Developed
U-shaped production lines 2. Not gnarantée, minimumwalking time workers & Max. full work | heuristic algorithm
Kuo & Yang 2007 Mixed-skill multi-line worker Lithe total number of allocated skill category Min. the multiplication of | Mixed integer
allocation problem for cellular 2. thefmaximum fuumbet of workers assigned to a stafting and skill levels programming
manufacturing systems in an workstation —
anonymous TFT-LCD manufacturing 3. the ling/throughput of each product
company 4. some otherconstraints
Ertay & Ruan 2005 Labor assignment in U-shaped cellular | Different scenatios (Multi-criteria decision making) related to: Min. the average lead time | Simulation
manufacturing system - number of workers - & Max. the average modelling
- transfer batch size worker utilization
- demand level
Miltenburg 2002 Assignment of tasks to stations and'the ' | 1. Several constraints Min. the variation of work | Mathematical
selection of models sequencing 2. Some assumptions content in the stations & model and Genetic
simultaneously on mixed-model Min. the variation of algorithm
U-shaped production lines production for models and
parts
Miltenburg 2001b | U-shaped production lines: 1. W=line, layout andyoperations - -
A review of the theory and practice 2. Experiencesof manufacturing companies with U-lines
Miltenburg 1998 Balancing (Task assignment) U-lines 1. Cycle'time 'constraints Min. the number of Dynamic
in multiple U-line facility 2. Precedence constraints regular, crossover, and Programming
3. Location constraints multiline stations
4. Station-type donstraints
Vembu & 1997 Worker allocation and sequencing.in 1. Unconstraints Min. the makespan Heuristic, Genetic
Srinivasan product-line-cells with manually 2. Some assumptions Algorithm &
operated machines Enumeration

174
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Authors Problem description Walking Time Solutions
Miltenburg and Wijngaard Single model No DP formulation
(1994) RPWT-based heuristic
Miltenburg and Sparling Single model No DP-based exact algorithm
(1995) Depth-first and breath-first B&B
Ajenblit and Wainwright Single model No Genetic algorithm
(1998)
Miltenburg (1998) U-line facility with several No DP-based exact algorithm

individual U-lines
Sparling and Miltenburg Mixed model ATT nber orkstations No Heuristic
(1998) . -
Urban (1998) Single model er of workstations No IP formulation
Scholl and Klein (1999) Single model Upto s —.- Nur ;; et of workstations No B&B-based heuristic
Miltenburg (2001a) Single model 10 tasks ,Tﬁ workstations Yes ILP and DP formulation*®
B e T -f i

Shewchuk (2008) Lean single U-lines '-,E) to 20 machmes Yes Heuristic*
Hwang and Katayama Mixed model 9461 and 111 tasks ation No Genetic algorithm

(2009)

*  Walking time is set at one unit for adjacen t su EbL lnﬂ njmfulm iks

** Shewchuk [16] did not use the standard proﬂilems of precedence c°gnstra1nts and glven cycle t1me

s e e QI DI UMW e
additional travel is unclear. Ther search el'is mended.

6v
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CHAPTER III

RESEARCH METHODOLOGY

3.1 Introduction

The main purpose of this research is to study how assigned workers work
equity and they do not overlap inside a 'U-line_and how walking paths, which is
necessary non-value added are best established.«To achieve this purpose, the research
methodology is addressed step by step in this chapter. It explains the problem
environment that consists.ef theé smputs of seven to two hundred and ninety-seven
standard problems as wellfas a case study problem, decision variables, and their data
sets and lower bounds. Then,/the evolutignary optimization process of the U-shaped

manual assembly line worker allocation problems — type Lis also elaborated.

/

.
o ol i

3.2 Research Methodology

b Ay

After determining the context in Whiélﬁ?_i}orker allocation is being defined, the
methodology for worker-machtiie assignment is determined. This section addresses

the research methodology-ii-the-folowing steps:

1. To study a problem 1n a sctting;

2. Tosformulate a'mathematical model of the problem;
3. To use data sets of existing optimum workers;

4./ To develop/evolutionany algorithms obtaining a good solution as the final

optimum frontier;

5. To conduct computational experiments;

6. To make conclusion, discussion and future research directions.
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3.3 Problem Environment

The Just-in-time (JIT) production system has been adopted extensively in
today’s manufacturing industries such as the apparel industry to meet production
demands. A U-shaped production line can be described as a special type of cellular
manufacturing used in JIT production systems. In recent decades, many apparel
manufactures have installed several production systems on their apparel assembly
lines such as the traditional progressive bundle system and the automated unit
production system. The assembly line fo' be.studied in this paper is a modular
production system (or a single U-line). Ther¢ are'no automated processing machines
in the production systemAfter each worker operates.an item at a machine, a worker
walks with several patierns suchas a circular loop, a rectangular loop, or a straight-
line loop and takes it tosthe next machiné: and at the end of each intra loop. Generally
a worker hands it over £0 the adjacent W&rker along the sequence of U-line. From
some of the sample companics, there is ng equity of workload although line efficiency
has been continuouslyimproved. In prac‘i:'ice, most companies manage the assembly
line problem of type F (given number of -:'})varkstations and given cycle time) and
improve line efficiency by avoid@g the (;(J;__‘I:fipllﬂexity of the problem. However, this
paper studies the problem of t&pe F—the. mﬁlmum number of workstations at given
cycle times. The evolutionaril—&)rmbinatoria-l;6iifiliﬁization process of Single U-shaped
Assembly Line WorkerAtlocation Problems of type L (SUALWAPs-I) is illustrated in
Figure 3.1. Input: parameters, Controllable factors; VOutput responses, and
Mechanisms, named ICOM, are detailed in the next section. Then, after the model is
validated a multi-criteria optimization technmique;will be-applied-to find the set of non-
dominated solutions. “Fhe eriteria‘that can“be’considered” are:*minimum number of
workers, minimum deviation of opefation times ofworkers and minimum walking time.
Mechanisins are ‘identified info deterministic task times (manual time plus walking
time), identical skilled workers, no crossing path (i.e., a worker does not work with
any other station at the same time), and random priority rule. Finally, all of

evolutionary combinatorial algorithms are computed in the next section.



Controllable Factors

- Fixed layout of U-lines
(proportional tasks at the
side of the U-line)
1. 1:1:1(1/3) side U-line ratio
2. 1:4:4(1/9) side U-line ratio
- Worker movement rules

1. Displacement rule
2. % Average processing

52

Input Parameters

- Eleven precedence graphs
- Given cycle times

time
L

Outputs (Responses)

Type I: Min. the number of
workers (W) by given C

SUALW[}PS'_{{-;;{;@I}

A

-
Mechanisms (but

uncentrollable conditions not

- Min. the deviation of
operation times of
workers (DOW)

- Min. the walking time (WT)

considered)

- Detefmiinistictask times
-Manpal times ;.
- Walking-times’

= Identical skilled"workers

- No erossing pat}1 "

4 Heuristicirule (Randomness)

Evolutionary optimizer *
- Compafison of fOUMOEAS
- - JF‘

1SGATT ===
2. MA =
3..COIN i
4. PSONK

* To mod_‘i_fy the robust algorithms for the best workeZa-llocation in the U-shaped
manual assembly line worker allocation problem of type I (UALWAP-I)

Figure 3.1 Evolutionezry optimization process for worker’allocation problems in the
situation of the-single U-shaped-manual.assembly line of type I

3.3.1 Inputs of problem sets

The established benchmark data sets for SALBP are applicable to

UALBP which have been used for testing and comparing solution procedures in

almost all relevant studies since the early nineties. The well-known test sets of Talbot

et al. (1986) and Hoffmann (1990) for UALBP-I minimizing the number of

workstations for a given cycle time are required as data set. Ajenblit and Wainwright

(1998) applied GA to the 12 well-known datasets from the literature of traditional
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assembly line balancing (Talbot ef al., 1986) for the Type I U-shaped assembly line
balancing problem. When we considers all possible given cycle times used in their 12
datasets, there are 61 different problems. The 61 problems include six problems from
Merten, one problem from Bowman, five problems from Jaeschke, and so forth
ending with six problems from Arcus-111. Computational results comparing between
ideal (optimal) workstations (N), dynamic programming workstations (Npp) and GA
workstations (Nga) are shown in their Table (Ajenblit and Wainwright, 1998; p.100).
Moreover, various cycle times for.each problem are extended for same task problems
in Chiang and Urban (2006, p.1776). Data sets«of them are based on the RPWT of
Helgeson and Birnie (1961), as modified by Miltenburg and Wijngaard (1994).
However, this research uses data-sets of Scholl and Klein (1999) because they found

that the performance o ULINO was superior to RPWT (Erel ez al., 2001, p.3013).

Whenever'the computatioﬁ time is considered, to balance the U-lines it
depends on the number ofisubsets; which '—(iepcnds, in part, on the density and width of
the precedence graph./U-lines with densél;-_narrow precedence graphs were easier to
solve than U-lines with sparse,rw'ide preéé;dé-nce graphs (Miltenburg, 1998; p.16).
Density is the equal to the number of arcé-l:__iﬁ precedence graph divided by NT(NT-
1)/2 [Note: NT = number of tasks}eibid).

In this research; the reason is why the problem set of seven tasks is
started rather than 19-task, 61-task and 111-task problems by Hwang and Katayama
(2009)’s reference because this research first looks down into the single U-shaped
assembly line{ problem more sthan; the reference, of«the+ mixed-model U-shaped
assembly line problem: Thomopoulos®s (1970) 19=task and 'Kim et al. (2006)’s 61-
task problems were modified whereby tasks withsthe same number have the same
operdtion fime in'each model as'shown in the following Table. The'original data from
Arcus’s 111-task problem are used and cited in 1963. Secondly, the number of
machines and operators taken from the average Japanese and US U-line over 22 U-
line implementations are determined into ten machines and three workers. The
minimum and maximum machines are three and thirty-one (Miltenburg, 2001; p.210).
One machine should work at least one task and our study assumes that one task is
worked only one machine. The three-task problem is interesting, but the literature

review of tradition assembly line balancing is originated by seven-task’s Merten. As a
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result, this research focuses on it and ending with Arcus-111. This research does not
input the problem of 11-task’s Dar-El because they are the same number of tasks as
Jackson. The 9-task’s Bowman and Jaeschke problems are not input due to the
closeness of 7-task’s Merten. The 21-task’s Michell problem is not studied due to the
closeness of 19-task’s Thomopoulos. The 30-task’s Sawyer problem is not also
studied due to the closeness of 28-task’s Heskiaoff. For the problem of Arcus, the
111-task problem inputs place of the 83-task problem. Largest number of tasks is
regard as of the 297-task problem by Scholland Klein (1999). Significantly, 10-task’s
Miltenburg is necessary for the original locaonof a single U-shaped layout. Finally,

the 36-task problem of a case study is also studied:

For given'cycle times, this research scopes to study only three of each
problem with the minimum,middle and maximum values of Scholl and Klein (1999)
at the web ‘http://Www.assembly—line—Balancing.de’. Nevertheless, some data set
problems give us only ong cygle time. |

In this study we fake many-i\%eﬁ—known line balancing problems from
the literature. Each problem consists of a nan-lbler of tasks, task completion times and
precedence constraints. The cycle times ;a_f_e;’!;llso given from the literature. The
combination of different values gives 25 problelfl instances All precedence graphs are

shown in Figure 3.2-3:12-and Table 3:1-3:2:

3.3.1.1 rPrecedence graphs

Figure 3.2 Precedence network for the Merten’s 7-task test example



Figure 3.3 Precedeneenctwork for the Miltenburg’s 10-task test example

Figure 3.5 Precedence network for the Thomopoulos’s 19-task test example
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The elemental data pertaining to the assembly process are shown in
Table 3.1 excerpted from Hwang and Katayama (2009). In column I it is seen that K
= 19. Column II identifies the element times ¢z (j = 1, 2, 3; k=1, 2,..., 19). Column
IIT gives the average elemental time for all models (i.e. 7, k=1, 2,..., 19). Average
element times (1, ) calculated from the real demand of each model in Thomopoulos
(1970) are related to the precedence network of 19 tasks in Figure 3.5. The given

cycle time is equal to 2 minutes.

Table 3.1 ‘Element times (minute) foran example problem

(I) Eleient 'QYZE:lemenﬁTimes/Model )]
or T;ly /7 fl . .:2 3 Average Times

L M/ / < (ta)i (1) - (5)
1 of1 0 0.1 0.37
2 2 | (AR 4N 1.20
3 0 04 | 04 0.27
4 0.4 o NP 0.13
5 DY L T 0% 0.20
6 02404 g3l 0 0.07
7 06| 0.6-+1.40.6 0.60
8 0 05 0.5 0.33

9 -0 2| pAITE04 0.40
10 0 0 0.2 -.0.07
11 0.3 03 | 03 77030
o 0.5 0.5 0.5 - 0.50
13 0.1 0 01 [ 007
14 0.2 0.2 0.2 0.20
15 1.5 0 1.5 L.00
16 0 0.1 0 0.03
17 0.5 0.5 0 0.33
18 0.5 0.5 05 0.50
19 04 0.4 0 0.27
Total 8.0 5.8 76 7.13
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Figure 3.6 Prece stwork for the Heskiaof 8-task test example

ﬂ‘lJEJ’JVIEJVliWEJ’lﬂ‘i
Wﬂ?@ﬂﬂjﬂé o mwmaa

Another problem composed of 61 tasks is a practical one obtained from an
automobile company while Kim et al. are carrying out an industry project with the
company. Their precedence graph is not shown, but precedence relation is presented
at http://syslab.chonnam.ac.kr/links/data-mmulbs.doc and task times are excerpted
from Hwang and Katayama (2009).

Figure 3.8 Precedence network for the Kim’s 61-task test example




58

"
=

Figure 3.9 Pr = n\\\o 1gue’s 70-task test example
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Figure 3.10 Precedence network for the Arcus’s 111-task test example

Another problem composed of 297 tasks is obtained from data sets of
Scholl and Klein (1999). Their precedence graph is not illustrated, but precedence
relation and task times are presented numerically at http:/www.bwl.tu-
darmstadt.de/bwl3/forsch/projekte/alb/index.htm.

Figure 3.11 Precedence network for the Scholl and Klein’s 297-task test example
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Figure 3.12 Pre@
From /

shown in Table 3.2

The given cycle time i conds (calculated by cycle

put into the model.i

after doing the experigents n

ﬂﬁﬂﬁ%ﬁﬂﬁﬂﬂﬁﬂi
w28 A0k 0 iR 1121015 1 .

rest of lines (front and back). In other words, a worker does not walk across a line
from a front line to a back line, or vice versa, if a side line is very wide. There are a
few fixed U-line layouts that are assumed by Miltenburg (2001) and Cheng et al.
(2000). A number of tasks and side ratios are 10 (Miltenburg) and 2:4, 28 (Heskiaoft)
and 2:13, 30 (Sawyer) and 2:14, and 45 (Kilbridge&Wester) and 3:21.



Table 3.2 Deterministic manual times (seconds) for all models

Single Model Mixed Model
Task A B C Average 10:6:5 T
No. (MTa) | MTs) | MTe) | (MTwmi) | (21 pieces/ per
8 hours) piece
1 0.00 0.42 0.00 0.14 2.50 7.14
2 0.00 0.00 0.75 0.25 3.75 10.71
3 9.40 9.40 9.40 9.40 197.40 |  564.00
4 10.33 0.00 0.00 3.44 103.33 | 295.23
5 0.00 13.00 0:00 433 78.00 | 222.86
6 0.00 0.00 1.03 0.34 5.17 14.77
7 0.00 0:00 15.65 = 9] 7825 | 223.57
8 5.57 " 5.57 i 116.90 | 334.00
9 0.00 0.00 6.33 ol ] 31.67 90.49
10 3.48 3438 348 3.48 73.15 ] 209.00
11 3.13 343 3.13 Cp 65.80 | 188.00
12 317 i 0.00 2,11 50.67 | 144.77
13 0.00 0.00 3,73 3.73 18.67 53.34
14 £ o) sF & 3.15 3.15 66.15 | 189.00
15 2.63 263 263 2.63 5530 158.00
16 0.00 0.00 528 4 042 6.25 17.86
17 0.77 0.00 0.00 0.26 7.67 2191
18 0.00 1.68 0.00 0.53 9.60 2743
19 2.18 21318 218 2.18 45.85 | 131.00
20 428 4.28 428 4.28 89.95| 257.00
21 2.67 A 267 2:.67 56.00 | 160.00
22 2413 3.73 3.73 3.73 6240 | 17829
23 [FA0 1.40 1.40 1.40 29.40 84.00
24 743 7.13 Jalis S 149.80 | 428.00
25 1.53 1.53 1.53 1.53 32.20 92.00
26 2.07 2.07 2.07 2.07 4340 | 124.00
27 2.00 2,00 2.00 2:00 42.00 |  120.00
28 2.00 2.00 2.00 2.00 42.00 |  120.00
29 0.00 0.88 0.00 0.29 5.30 15.14
30 10.62 10.62 10.62 10.62 22295 | 637.00
3% 342 3142 3.42 342 TRTIS51 1 205.00
32 7.78 7.98 778 7.78 163454 467.00
33 428 4.28 4.28 4.28 89.95| 257.00
34 3.55 3.55 3.55 3.55 7455 213.00
35 3.50 3.50 3.50 3.50 73.50 |  210.00
36 3.20 3.20 3.20 3.20 67.20 | 192.00
Total
Time (s) | 10538 | 111.78 | 12147 | 115.90 2331.87 | 6662.51
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The shape of a single U-line layout effects on the results of
number of workers, DOW and WT. Consequently, two U-shaped layouts are fixed in
the symmetrical shape at the side ratio 1:1:1 (1/3) in Table 3.3 and in the rectangular
shape at the side ratio 1:4:4 (1/9) in Table 3.4. Although the size of a layout depends
on a facility location, the distance from one location to another location is determined
by the % average processing time described in the next chapter. Likewise,

Balakrishnan ef al. (2009) used 5% and 10% average processing times in their paper.

Table 3.3 Task location for data sets of A LBPs at the side ratio of 1:1:1 (1/3)

Number Side Front™ Back Cycle Number of
Problem oftasks Tasks Tasks. Tasks Time product models
1. Merten (1967) / | 5) 3 7 1
10
18
2. Miltenburg (2001) 10 2 4 4 10 1
R 10
3. Jackson (1956) 11 &\ 4 7 1
13
21
4. Thomopoulos (1970) 19 Gidda 6 6 120 3
5. Heskiaoff (1968) 28 10222440 9 138
= 256
= 342
6. Kilbridge& Wester(1961) 45 15 = 15 57 1
110
184
7. Kim (2006) 61 21 20 20 600 4
8. Tongue (1961) 70 24 23 23 160 1
251
527
9. Arcus (1963) 111 37 37 37 6,837* 5
7,916
17,067
10. Scholl&Klein (1999) 297 99 99 99 1,394 1
1,834
2,787
11. This case study 36 12 12 12 1,371 3

* Minimum cycle time (5,755) is less than the operation time
of 6,615. Thus, the feasible minimum cycle time from the data sets of UALBP-I is

replaced.
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Table 3.4 Task location for data sets of UALBPs at the side ratio of 1:4:4 (1/9)

Number  Side Front Back Cycle Number of

Problem of Tasks Tasks Tasks Tasks Time product models

1. Merten (1967) 7 1 3 3 7 1
10
18

2. Miltenburg (2001) 10 2 4 4 10 1
3. Jackson (1956) 11 ] 5 5 7

13 1
21

4. Thomopoulos (1970) 19 3 ] 8 120 3
5. Heskiaoff (1968) 28 4 > 12 138
256
342

6. Kilbridge&Wester (1961) 45 5 ! ] 20 57 1
110
184

7. Kim (2006) 61 V & \2 27 600 4

8. Tongue (1961) 70 8 3] 31 160 1
' 251
o, 527

9. Arcus (1963) 111 T 50 50 6,837* 5
7,916
e 17,067

10. Scholl&Klein (1999) 297 33 132 1320 1,394 1
1,834
2,787

11. This case study 36 4 16 16 1,371 3

3.3.3Data sets ‘and lower bounds

From data sets of Scholl and Kleinz(1999), Miltenbuirg (2001a) for the
10-task problem andyHwang et, al (2008) for the 19-task and,61:task problems,
UALBP-1 standard benchmarks in the section of literature review are established. The
procedure of U-line optimizer yielded promising results especially for the objective of
minimizing number of workers. To validate experimental results for our problems,
according to Table 3.5, the lower bound of number of workstations of some selected
problems extracting from the web at http://www.assembly-line-balancing.de,

Miltenburg (2001a), and Hwang et al. (2008) can be compared. However, the lower
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bound of workstations is minimized globally without the consideration of walking
path. In other words, the optimum solutions are the minimum number of workers with

no the walking constraint.

Table 3.5 Optimal results of UALBP-I obtained with ULINO (U LINe Otpimizer)

Network ULINO solutions (time limit
Number Density Cycle 500 seconds, PC 486 DX-2 66MHz)
Problem of Tasks D) Time Optimum workers [LB,UB]
1. Merten (1967) AN DR8I 7 5
10 3
8 2
2. Miltenburg (2001) 10— 0.0667 10 3
3. Jackson (1956) L 0:.2864 7 7
18, 4
b\ 3
4. Thomopoulos (1970) 19 0:12284 120 4 (From MATLAB 100 generations)
5. Heskiaoff (1968) 28 0.1032 138 8
o 256 4
342 3
6. Kilbridge & Wester 4
(1961) 45 0.0626¢ , 3/ 10
=110 6
— 3
7. Kim (2006) o1 0:0361 %4 600 9 (From MATLAB 150 generations)
8. Tongue (1961) 70 0.0356 _160 [22,23]
251 14
527 7
9. Arcus (1963) 111 0.0283 6,837 [22,23]
7,916 [19,20]
17,067 9
10. Scholl & Klein (1999) 297 | 10.0096 1,394 [50,51]
1,834 38
2,787 25
11. This case study 36 . 0.0587/) 1,87L. 5 (From MATLAB 100 generations)

Network density, a characteristic which measures the strength of this
relation, has been found to be an important factor in influencing heuristic performance
in previous investigations of the line balancing problem (Talbot et al., 1986). To
define density, let W be an N x N 0-1 matrix that represents a precedence ordering

relation P. For a given element o, of W, let o, =1 if X, e P, (i.e., if task i precedes
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task j) and o, =0if task i does not precede task j, or X, ¢ P,. Let d be the total number

of relations contained in P, or d =3, """, ;. The maximum number of relations that

can be included in P is N(N - 1)/2. The density of the assembly network is defined to
be the ratio: D = 2d/[N(N - 1)], or the ratio of the number of relations that exist to the
number which could exist. The measure 1 - D is the F-ratio used by Dar-El (1975),
and the measure D is referred to as order strength by Mastor (1970). Values of D

close to 1 indicate a highly intercont etwork, and fewer alternatives available

for assigning tasks to a work close to 0 indicate relatively fewer

precedence relationships, an signing tasks to a work station.

thwﬁom Table 3.5 are used for

In this evaluation, value

problem generation.

]

% g
AUEINENINYINT
RINNIUUNIININY



CHAPTER 1V

MATHEMATICAL SOLUTION APPROACHES

4.1 Introduction

In this chapter, the U-shaped manual assembly line worker allocation problem
is classified into the same nondeterministic polynomial time — hard (NP-hard) as the
combinatorial optimization problem. Although#it is essential to solve a large-sized
problem, an exact solution that is génerally accepted for solving a small-sized
problem is unavoidably.consideted in the begmning stage. The mathematical
formulation provides a bettepunderstanding of the problem in developing heuristic
procedures. Thus, the problem characteristies, mathematical formulation, assumptions
and an illustrative example are presented_“ind_this chapter. The collaborative with the
case study company is extremely importaﬁ:c in the process of model validation for the
problem. The investigation of gathered data fiom reviewed papers and a case study

helps to bridge some missing more completeiy.,

A popular notation used in assemblji'.'ﬁﬁe ‘balancing problems is reviewed in
the form of three basic elements [alfly] The first parameter (a) describes the
precedence graph characteristics. The second parameter (/) is the station and line
characteristics. The last parameter (y) contains the objectives. From the analytical
study of the reviewed liferature and Thai apparel companies, the viewpoint of the line
balancing problem.'is ‘developed to the single and mixed-model U-shaped manual
assembly line“balancing problem under the multiple objectives of the minimum
number of workets) the minimum deviation of opération times of workers (DOW) and
the minimum walking time (WT). In other words, this research problem focuses on the

notation of [mix|ujm, DOW, WT].

Finally, two minor research questions are also fulfilled at the end of this
chapter. First, how much is the appropriate walking time between tasks considered in
the U-line instead of the ignorance as the straight-line problem? Secondly, how do the

U-shaped layouts effect on walking time and a number of workers?
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4.2 Characteristics of a Single Assembly U-line

Although there are many types of U-lines, the configuration of this study is a
single U-shaped assembly line only. The U-line arranges machines or tasks around a
U-shaped line in the order in which production tasks are serial. The sequence of tasks
on the U-line is not fixed, making it possible to reallocate tasks to different line
locations. Thus, the assignment of tasks to line locations can be altered. The system is
one-piece flow manufacturing moving one/piece at a time between tasks within a U-
line. One floating worker supervises both the“entrance and the exit of the line. The
task efficiency is propestional to the worker’s-performance. Machine-work is not
separated from worker-worlk..Standard operation charts specify exactly how all work
is done. Workers can bestreallocated .periodically when production requirements
change (or cycle timefchanges). This rec‘i_ui’r_es workers to have multi-functional skills
to operate several differenf machines oL ltasks. It also requires workers to work
standing up and walking because theg:r, need to operate at different locations.
Whenever a worker arrives at a task, oiﬁ:q__, performs any needed tasks at the task
location, and then walks'to the next fask. Fbjllgwing the last task of a path, the worker
returns to the starting point and works or Wéﬁzga for the start of the next cycle. Any
succeeded part is put in a bin at the 10cation;.,_z_s}1_c‘ceeded part is moved to an adjacent
area in a single U-ling in sequeﬁce from entfaﬁce to exit. However, taking a succeeded

part in practice is conditioned as follows:

a. If next task is done by oneself and run in sequence along a single

U-line, the part will'be carried by oneself;

b. .If next.task. is.not.done by.oneself.and ,any opcration time of a
worker is Operatediless than!soime units'of cyele ‘time, a worker

may walk back to take a succeeded part by oneself;

c. If next task is not done by oneself and any operation time is
operated equal to cycle time, taking a succeeded part will be
prepared by a floating worker from signal of Andon light at that

machine.
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The characteristics of the single U-shaped assembly line worker allocation

problem of type I are shown in Figure 4.1.

Entrance

W Wetker (121, 2 . \0S)
M @ Maéhucior taski(k=1,2, ... 1)
Ty =gTravel Distance between task X and task Y (s)

- Task distance (ly)
—— — —— — ——_ Crossover distance (cj)
------------------------------ :Return distance (rj)
Q ¥Wortker

Figure 4.1 Mappinga diagram of a single U-shaped assembly line for

Jj workers and £ machine__s_- ;)q_grid arrangement

4.3 Exact Solution

First, this study focuses on obtaining a mathematical formulation for the
worker-machine assignment. problem on the_ single U-line of UALBP-type I (or D)

without the consideration of travel time, which appears to be a real case situation in

several manufacturing systems.

Integer linear programming (Urban, 1998; Scholl and Klein, 1999) and
dynamic programming (Miltenburg and Wijngaard, 1994; Miltenburg, 1998), linked
by Miltenburg (2001) are two modeling approaches that have been used to assign
tasks into stations (workers). To validate the results of the minimum of number of
workers and the shortest walking time from the 10-task problem at the ratio of 2:4:4,
this research refers to problem decomposition by Miltenburg (2001a). The former

result is solved with Integer Linear Programming (ILP). The latter result is solved
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with Dynamic Programming (DP). Furthermore, the study of Miltenburg also gives us

basic factors for this research.

Exact solution for worker allocation problem under the fixed workstation mode

There are two restrictions on the assignment of tasks to locations on the U-
shaped line. The first, is that the assignment must satisfy whatever technological
requirements exist for producing the product. These are specified as precedence
constraints on the order in which tasks mavy.be.completed. The second restriction
applies when the U-line works in fixed or overlapping workstation modes. In these
cases the assignment must also.permit tasks to-be grouped into a minimum number of
stations (workers).

.

The U-line may be deScribed as shown in Figure 4.2. Denote by a the point

where material enters the dine, and ‘@’ the g_oint where finished products leave. Let

each task k= 1,2, ... require;a distance /; 2:0 on the line. Define the middle of the line
to be a point e located a distance greater than or equal to the integer part of (3,/,)/2

from a. Define the front of the lineto be thé.lﬁ;cations from a to e, and the back of the

line to be the locations from a' tove-Let /- =‘H«e'z—e

| be the length of the front of the line

and B = |a’—¢| be the length of the back oftl-lé_l_i*rie‘, whete F+B >3,/ .

I I [ ..a
F=5
=

Front
Figure 4.2 The single U-line
Miltenburg (2001a) assumed that ten tasks, each requiring one unit of

distance, are to be placed around the U-shaped production line. The line begins at

point a and ends 10 locations later at point @’ The middle of the line is 10/2 = 5 units
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of distance from a. Thus, five tasks should be placed on the front of the line and five

tasks should be placed on the back.

Data set of Miltenburg (2001a, p.311)

Suppose C = 10; the manual task times are two time units for tasks 3, 4, 8, 9,

10, three time units for tasks 1, 7, and four time units for tasks 2, 5, 6; and the

precedence constraints are (3, 1), (.

One feasible solution by hand ealcu
According to he minimum three workers
i 11 1, but the minimum number

NS PN N I KR S B (=

W W

* All tasks are selected by a random heuristic rule.



4.4 Model Formulation

4.4.1 Notations

The notation used in this section can be summarized as follows:

,\ before task /can

sk at task &

Cp = cycle time at task k ass1gned to worker j

A u H RERTHE NS

AN INIALBIINEIRLL...

Fik = return distance at task time k assigned to worker ;

task time at task k assigned to worker

~
=
I

walking time at task & assigned to worker ;

3

70
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Decision variables

3 {1 if task k is located on front of line and assigned to worker ;,
Jk

0 otherwise.

{ if task & is located on back of line and assigned to worker 7,
0

otherwise.

3 {1 if task / is locat: front of line and assigned to worker ;,
7= -

7- ted")n b&nd assigned to worker 7,

odel for solving the

worker allocation prob cribed in'the f 1 tion.

of workers (workstations)

dual objectives. Besides

aiming to increase pr@uctiw er @ workers or the cycle time),

some other goals are u?portant for the adgljlon of high productivity achievements,

ie., a sense wgz n ﬁ ﬁtﬁl &Tﬂﬁ Hierarchically both

objective funcqlpns are calculated accord in the same unit of time from Eq. (4.2),

oL el Rtk DR T}

Then select x;,y;,z; to,

(ILP) Minimize z 4.1)

j=1%j
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After computing the minimum number of workers in the first step, it is
necessary to evaluate and minimize the deviation of operation times of workers

(DOW) and the walking time (WT) with Pareto-optimal frontier.

Objective functions:

||
IL Min%e Walking Time (WT)
[

AUBINENINEINT

L7
er the.criteria of DOW T

—
=
fam gl
oo
=

Vit

- They are significant metrics of shop-floor performance for the labor-

intensive industry.

- Lower idle time usually indicates more efficient utilization for a

worker.



73

4.4.3 Constraints

Subject to:
> j (x Kty jk) =1 for each operation £, (4.5)
(S —j+D)(xy—x;)20  forall (k,0)e P, 4.6)
XS —j+D(p=ya) 20 [ foptllk,l) e P, @7
-
XY k2 Elaly for alljs /. 4.8)

The firsg€onstraint'in Eq.1(4.5) ensures that every task is located on the
front or back of the line and is assig'ried te“ one worker. The next constraint in Eq. (4.6)
ensures that the precedenge constraints ar; satisfied for each task assigned to the front
of the line. The following €ounstraint in E‘|lq (4 7) does the same for the tasks of the
equation (6) assigned to the back of the hne In other words, constraint (4.6) enforces
task sequence assigned on the_ U= hne by a set of ordered pairs of tasks reflecting the
precedence relationships; for example == (FI) (5 10) and (6,9) is the ordered pair of

Miltenburg’s 10-task problem 1nd1cat1ng task k precedes task /. x, or/and X, is 1

when worker does_;'task & or/and task /. Otherwise, its iiqlﬁe is 0 or their values are
0. Constraints (4.7) is f_he same, but is reversed because task on the U-line can be also
assigned at the back lihe. The variables of X, y, and z arerbinary solution in Eq. (4.8).
However, Miltenburg (2001a) does not take walking distan¢e into account and may
not find the best U-line design. Thus, the last constraint of walking time in Eq. (4.9) is
essential to.complete the.worker.allocation.problem,, The, constraint proves that the
sum of the'manual task ‘time§' for the tasks in each worker'in the first.term and the
total walking distance in the second term does not exceed the cycle time, C. The
coefficient of walking time («)is varied by TDxy in Figure 4.1 or the percentage of
Average Processing Time (APT) from one task to another task. The average

processing time is defined as APT = > _ 7 /t.

W Z] ]k+a Zj(ljk+cjk+rjk)£C forall j, k 4.9)
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4.5 Assumptions

In this study, the SUALW APs-I is subjected to the following assumptions.

- A U-line comprises inexpensive and small non-automated machines. Several
identical machines may be found and machines are enough to be allocated in a single

U-line;

- Machines or tasks are located via a gridearrangement with the same distance
of %APT between adjacent task locations in‘thessame row. For other non-adjacent
task locations, the walking.distance is|calculated by the displacement of Euclidean
distance;

.

- Trained homogeneous skitled workers haye the same efficiency and multi-
functional skills and“are able to/operate zi_ily,processes or machines. They walk in a
circle inside the U-ling'(also called the zéln_e constraint — machines allocated to each

worker must be adjacently logated within a loop);

a2 M4

- A worker is assigned to-ene station {or one loop) only;
- All parameters-and-variables-such-as-processing times and walking times are

deterministic (known-and constant);

- The completion time. of a machine or task summed with many subordinate

tasks is known andia task cannotbe.split between two'or more workers;

- Precederiee elationships of the problem are consistent from model to model.
That is, if taskk precedes task/ in any model there is no other model where task/
must precede task k£ . Each unit of products is processed through all tasks in the same

precedence order;

- Setup times (assumed to be less than 10% compared with processing time)

are negligible. U-lines can be operated as single-model and mixed-model lines where
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each worker is able to produce any product in any cycle. Consequently, job sequence

is regardless at any period;

- The mixed-model task times use the weight of composite demand to
transform average task time into the task of a single model. However, a floating

worker may be assisted unless task times in some model are feasible;

- Learning effect has no consideration since it is assumed that worker
performance runs into steady state already:

The mathematicalemodcl of this researchis.not studied in depth because
minimizing the numbewof weorkers, DOW and WT at the same time make the exact

. X ]
solution too complex tosdecalwith. :

4.6 An Ilustrative' Example | ~

The feasible solutions arq,,startedfziigv_jth the Miltenburg’s 10-task problem.
Before solving computational ‘problems, stéii-‘ibr getting the exemplified values of
workers, DOW and WT are calculated by hgr;x_i' as follows:

1. The prececfiejrilciér 7gr;17p7h"707f Miltenburg ’s 10 tasks,.ie. (3,1), (5,10), (6,9) and

o . ' 1ti
deterministic manual times, i.e. TaskManual time_ 1°,2% 3% 4% 5% 6%, 7°, 8%, 9%, 10% are

used. The given cycle tiimesis ten time units.

2. It is"assumed that the assembly line worked at the steady state for a while

(becauselanymachines havemo jobs atithe transient state).

3. The priority-rule based procedure randomly generated by an illustrative of
string #12 in Table 4.2 is employed to represent the priority of the task node for

constructing a task sequence among candidates.
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Table 4.2 An example of the priority-based encoding procedure

Task 1‘2‘3‘4‘5‘6‘7‘8‘9‘10

N Priority Task

1 10‘8‘1‘2‘5‘6‘9‘4‘3‘7

P.S. All values are randomized by the function of randsample(1:10,10)
uniformly by MATLAB.

4. Task Sequence (T y le 4.3 is done by the precedence
constraints and the priority- pro ed to in the previous step.
d L
! T—

Table 4.3 ‘(— uenced by Pont and back work

No. " TS
1 f 4 =44
2 2 L8 7
3 356,81~
4 30,8 bl
5 ,A5.6,8 - 6
6 3485,3,9% 93 5
7 4,8 = 8
8 3, e 9%
g AT 4
10 \ 3
P.S. ( ither front or back U-line.

5. Area allocdm)n U-line layout (grid arrangemenmis shown in Figure 4.3.

LUITIECTIN
JUNRIAINYAY

4\3;2;1

task (10)
side(2)

Figure 4.3 U-line Layout

6. Adjacent matrix (From-To chart) of walking time under orthogonal distance
and displacement distance for U-line is shown in Table 4.4 and 4.5, respectively.

However, it is assumed that one time unit is equal to one distance unit.
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For example, the displacement gives us a travel distance of 2.24 distance units

(or time units), calculated as the sum of task distance (equivalent to location distance)

is a Euclidean distance worker. Note

€0,0,(=1,2)] = (O (=1)* +(0-2)? =224, where

that: Location 1 is assumed to be an origin (0,0).

Table 4.4 Orthogonal distance for U-line ! at the ratio of 2:4:4

side(2)

4 ,:" : "‘J':r__.

Walking \ ‘ I ' “'ol

Time R y 89|10
1o a2 5 [ a5 | 2

-_—
B 1| 3 [ ta | 3
i 1| 2 428l S el 4
3 244 A2 [z LS
From 74 Firi 1'_' SR 2 SRl 5
y'é FUs 2514 N R .
/ 7 J""5___ A3 o1 |1 M 2N
f{' Pt (o ‘9 2 |\ W 2
off 3 i 2 | sl fidll 3 |20 1N, N
f 2|5 [4s :5'::'34" AN -

J

Tk

Table 4.5 Displaceme 'fd__is’tance for Usline /() at the ratio of 2:4:4
Walking"| v ..-;-,‘-;:)—- .
» _1 |
Time "=t = 5 < 9 | 10
™M= | 1 | 2 | 3 |ssa]381 361083224 2
2 [k - 2255 | 292 | 288 224 | 2 | 224
3| 20| 1 | 1 158|212 224 2 | 224|283
Fﬂ q4'| 3 2 1 O711),1.58 | 2% {:2124-"2.83 | 3.61
b0 | la.84 |@ss [ hBel 074 [0 T W4y 158 | 2hoW2o2 | 381
Ure 3.81 | 292 | 2.12¢ 158 | 1 .| 071|158 255 | 3.54
qq R’l alets 12083 |f2iedl [L2] W 48 al7y - 1 2 3
el | 563 (1004 (059|505 [l 1188 [T+ - 17 |
9 |224| 2 |224|28 |29 |25 2 | 1 -
10| 2 |224|283|361 |38 |354] 3 | 2 | 1

7. In the next step, tasks are assigned to all workers (workstations) from the
above task sequence. A feasible U-shaped line balance is obtained with the cycle time
of a worker (C = 10 time units) and adjacent matrix by an example of orthogonal type.

Hand calculated results are shown in Table 8.12. Five number of workers (W = 5
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78

{2,10}, W3 ={6,5}, W4 =

{8,9,4}, W5 = {3}. While workers 1, 2, 3, 4, and 5 show cycle times of workers of 10,

10, 10, 10, and 2 time units and idle times of workers of 0, 0, 0, 0, and 8 time units,

consecutively.

In Figure 4.4, it is assumed that one worker works only one workstation

under a machine, in other words, workers walk no crossing path. Exemplified results

are shown in Table 4.6.

Table 4.6 An example of worker allocation in a single U-line

Worker f)r Tesk Task - ‘ Task asgignment on a U-line Total WT .
P e et Bk?g,’;}“‘ : ffr‘ie‘i’;t) ((fl)m“fﬁi’ (f:ﬁff{) (ﬁgi{;u-:n) ()
1 7 - 5t ) 3 3 _ 7
1 7 _i0 7 y 3 58] 2 0
2 2 710 2 4 4 _ 6
2 6 10 ‘10 e 2 48] 2 0
3 6 9 6 4 4 4 _ 6
3 5 9 5 1 4 51[9] 1 0
4 8 9 8 ) 3 2 2 _ 8
4 4 9 9 2 3[5] 1 4
4 4 _ 4 . % 3 [8] 2 0
5 3 _ 3 z 2 2 _ 8

P.S. 1. Several tasks from Table 4.3 illustr&'}é'oﬁly one task.in the front column

(column 2) and-back-colwiii-(colithiie-3)-due-io-small-Space

2. Negative sign-in task assignment on a U-line is located in the back of U-line.

Back

A el

|_|

»

01 Ot 4 —

-
|
|
|
|
|

J >

S — | |

1s] [e] [2] [7]
\\\» F=5 R
Front 4

Figure 4.4 An example of worker allocation in a single U-line
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Exemplified results are shown in Table 4.7.

Table 4.7 Final results of an example

String | Worker | WS | Manual Time | Travel Distance Time | Idle Sorting
Time | Assigned Tasks
12 1 1 6 4 0 1,7
2 2 6 4 0 12,10
3 3 8 2 0 16,5
4 4 6 5 0 89,4
5 5 2 0 8 |3

& is composed of two objective

Workers (DOW)

8. The calculation ¢

functions:

777 time umy

ﬂUEJ’J’VIEW]’ﬁWEJ’]ﬂ‘i

“Objective function H

QW’I@}?IJMM%WEJWH

WT

N t
ijlezl(ljk O )

(2+2)+(2+2)+H(1+1)+(1+1+1+2)+(0)

15 time units (or distance unit by assumption)
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To evaluate the objective or fitness functions, heuristic algorithms for task
allocation on the U-line have to be searched through both forward and backward
directions randomly and assigned to a consecutive worker in each loop with the
shortest path of all feasible task groups and the summation of task time and walking

time that is less than and equal to given cycle time.

For example, suppose that task sequence in the 10-task U-line is
[7,3,8,6,5,2,4,1,9,10], distance from task location to another task location is 0.14 s,
and a given cycle time is 10 s. The tasks ©f'the first worker are allocated with Eq.
(4.9) in Figure 4.5 and Table 4.8. As a gesult, the'task sequence [7,3,8,10] of the first
worker gives the walking-time minimum. After that, the cycle times of worker 2 to

worker j are computed.as'the same.

s
(e[ el

[a] [ «—
K F=5 L.._.._.._.._.._..:..|
Front ”

Figure4:5_Task allocation for the first worker

Table 4.8 Task allocation of.all feasible task groups for the first worker

Workenor, Task F Task Task assij on a U-line Total F WT

Workstation considered [ Task HWT 2)Manual () + (2) to I'dle tim'e
Front graph Back graph (ti(m)e unit) ((ti)me unit) (-1[-;;1; Ll:::e) (m(t)):gun;n) (time unit)
1 7 -10 7 - 3 3 - 7
(1-3 3 -10 3 0.14 2 2.14[5.14] 0.14 4.72
tasks) 8 -10 -10 0.31 2 2.31[7.45] 0.28 2.27
B e /2 e L) R A I K K L Y A
(4 tasks) 3 -10 3 0.14 2 2.14[5.14] 0.14 4.72
8 -10 8 0.14 2 2.14{7.28] 0.28 2.44
- -10 10 0.40 2 2.40[9.68] 0.28 0.04
1 7 -10,-9 7 - 3 3 - 7
(4 tasks) 3 -10,-9 3 0.14 2 2.14[5.14] | 0.14 4.72
8 -10,-9 -9 0.28 2 2.28[7.42] - -
8 -10 -10 0.14 2 2.14[9.56] 0.28 0.16
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Except for the task of a line across another line and the selected tasks of the
same line in sequence that are allocated as the procedure of Table 4.6, a number of
tasks in each worker for all possible task groups must be selected by the shortest path

of a worker as the procedure of Table 4.8.

e.g. Other patterns, that is, String #7 and String #11 as shown in Figure 4.6-4.7

String #7

Figure 4.6 Anothe exa g&}i % W ocation in a single U-line

String #11

Figure 4.7 Another example of worker allocation in a single U-line (continued)
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9. Several strings (examples) below are generated for getting several different
results, i.e. number of workers, DOW and WT. Likewise, calculating from step 1 to
step 8 is duplicated. The scatter plot including Pearson correlation -0.440 in Figure
4.8 makes confident preliminarily that two conflicting objectives are the Min.-Min.

problem. Five, six and seven workers in Figure 4.9 are come up with DOW and WT.

TS task=
String #0
String #1
String #2
String #3
String #4
String #5
String #6
String #7
String #8
String #9
String #10
String #11
String #12
String #13
String #14
String #15
String #16
String #17
String #18
String #19
String #20
String #21
String #22

8
8
3
7
2
3
9
2
7
7
2
6
7
4
5
4
3
10
6

v B e oo EEEE O W W

IR

wll¥
(tim--i) ﬂ'

DOW_WS5
e
=)

1

10 11 1I2 1I3 1I4 15 16
WT_WSS5 (time unit)

Figure 4.8 Scatter plot of DOW and WT for five workers from 14 strings



83

Scatterplot of DOW_WS vs WT for five, six and seven workers
6 Variable
—&— DOW_WS5* WT_WS5
n —®— DOW_WS6* WT_WS6
5 _ x| DOW_WS7* WT_WS7
§ .
~
=
5 4-
=
8]
2.
1- T T T T T T . P ‘r;
7 8 9 Tl 12 13 "1™ il 16_
WT (time un\it)

Figure 4.9 Scatter plot of DOW.and WT for five, six and seven workers from 23 strings
|

4.7 Complexityof theProblem

It is well-knowrnuthat'the treiditiona?l_ agsembly line balancing (ALB) problem is
NP-hard. The ALB problem is a special é;i_se of the (single-model) U-line balancing
problem, which, in turn, is a special-case 61%11@ MMULB problem. Consequently, the
MMULB problem is also NP-hard (Spaff_lii:g’ Jand Miltenburg, 1998). In another
viewpoint, minimizing walking titiie is eq;i_Va;lent to Traveling Salesman Problem

(TSP) O(n’2") that is'definitely NP-hard (Lenstra and Rin_nd(_)y Kan, 1981). Therefore,

from both significant substances it makes obviously strong that our research problem

is NP-hard and looks forward to evolutionary algorithms.in the next section.

4.8 Determination of Walking Time

In the previous papers(Miltenburg, 200 1a; Miltenburg, 200.1b; Miralles ef al.,
2008),ithe coefficient of walking time («)is required to travel a unit of distance or one
time unit. Thus, in this study the adjacent matrix (From-To chart) of walking times
under displacement distance for each problem of the symmetrical and rectangular
shape is initially constructed at one time unit from one task to another task. Each of
walking times between a pair of tasks is directly proportional to Euclidean distance
between locations. The example of walking times for the 10-task problem is shown in

Table 4.9. For example, the displacement gives us a travel distance of 0.7071 distance
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units (or time units), calculated as the sum of distance between task

[(3,0),3.5,0.5)| = \/(3.5-3)2 +(0.5-0)> =0.7071, where

is a Euclidean distance operator.

Note that: Location 1 is assumed to be an origin (0,0).

In practice, a worker keeps walking more than one second definitely.
However, Balakrishnan et al. (2009) assumingly use two values of travel time for
each problem instance, (i.e. walking time = the five or ten percentage of Average
Processing Times (APT), where APT is the'expected value of processing times which
is defined as 4rr=3, . # /e. In this study. thesvalues of APT percentage are varied
from 5% to 120% in Table4:i 1 to find out theamtialwalue that effects on the addition
of a number of workers for caeh of all problems. For an example, the adjacent matrix
of walking times forthe 10stask problem at the 2:4:4 U-shaped layout is exemplified
at 5% APT and shewn in Tablc 4.10, Afterwards, the matrix that specifies the

minimum APT percentage i§ input to_the solution of minimum walking time.

Table 4.9 Exemplified displacement distance for U-line 09 at one time unit from

one task to another task FiN

Walking — —J0_
Time 1 2 3 et Sl 7 8 9 10

0.0000 | 1.0000.| 2.0000 | 3.0000 | 3.5355 | 3.8079 | 3.6056 | 2.8284 | 2.2361 | 2.0000
1.0000 | 0.0600_| 1.0000 | 2.0000 | 2.5495 | 20155 28254 4 2.2361 | 2.0000 | 2.2361
2.0000 | 1,0000 [ 0.0000 | 1.0000 | 1.5811 | 2.1213 | 2.2361 [ 2.0000 | 2.2361 | 2.8284
3.0000 | 2.0000; | 1.0000 | 0.0000 | 0.7071 | 1.5811 | 2.0000 | 2.2361 | 2.8284 | 3.6056
3.5355 | 2.5495/ | 1.5811 | 0.7071 | 0.0000 | 1.0000 | 1.5811 | 2.1213 | 2.9155 | 3.8079
3.8079 | 2.9155 | 2.1213 | 1.5811 | 1.0000 | 0.0000 | 0.7071 | 1.5811 | 2.5495 | 3.5355
3.6056 | 2.8284 [#2.2361 | 2.0000 | 1.5811 | 0.7071 | 0.0000 | 1.0000 | 2.0000 | 3.0000
2.8284 |.2.2361 | 2.0000,|.2.236] J 2.12137].1.5811 |, 1.0000..} 0.0000 | 1.0000 | 2.0000
2.2361 |"2.0000. | 2.2361 | 2.8284 | 2.9155 |72.5495. | 2.0000" | 1.0000 | 0.0000 | 1.0000
2.0000 | 272361 2.82841] 3.6056 | 3.8079 | 3.5355./ 3.0000 |12.0000 | 1.0000 | 0.0000

From

OO0 Q[N ||| W| DN —

—
S

Table@«10 Fxemplified:displacement distance forUsline™«49 aty5% APT

side(2)

Walking To
Time 1 2 3 4 5 6 7 8 9 10

0.0000 | 0.1400 | 0.2800 | 0.4200 | 0.4956 | 0.5334 | 0.5054 | 0.3962 | 0.3136 | 0.2800
0.1400 | 0.0000 | 0.1400 | 0.2800 | 0.3570 | 0.4088 | 0.3962 | 0.3136 | 0.2800 | 0.3136
0.2800 | 0.1400 | 0.0000 | 0.1400 | 0.2212 | 0.2968 | 0.3136 | 0.2800 | 0.3136 | 0.3962
0.4200 | 0.2800 | 0.1400 | 0.0000 | 0.0994 | 0.2212 | 0.2800 | 0.3136 | 0.3962 | 0.5054
0.4956 | 0.3570 | 0.2212 | 0.0994 | 0.0000 | 0.1400 | 0.2212 | 0.2968 | 0.4088 | 0.5334
0.5334 | 0.4088 | 0.2968 | 0.2212 | 0.1400 | 0.0000 | 0.0994 | 0.2212 | 0.3570 | 0.4956
0.5054 | 0.3962 | 0.3136 | 0.2800 | 0.2212 | 0.0994 | 0.0000 | 0.1400 | 0.2800 | 0.4200
0.3962 | 0.3136 | 0.2800 | 0.3136 | 0.2968 | 0.2212 | 0.1400 | 0.0000 | 0.1400 | 0.2800
0.3136 | 0.2800 | 0.3136 | 0.3962 | 0.4088 | 0.3570 | 0.2800 | 0.1400 | 0.0000 | 0.1400
0.2800 | 0.3136 | 0.3962 | 0.5054 | 0.5334 | 0.4956 | 0.4200 | 0.2800 | 0.1400 | 0.0000

From

S0 |u|bfwio| —
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In this section, a variety of proposed average processing time percentage is
tested in every problem. The computational results of a number of workers at the
symmetrical and rectangular layouts are shown in Table 4.12 and 4.13, respectively.
A number of tasks that are representative in each problem are shown in the first
column. The second column displays the summation of processing times. The cycle
time is determined from test-bed problems (Miltenburg, 2001a; Scholl and Klein,
1999; Hwang and Katayama, 2009; Miralles' et al., 2008) in the third column. The
theoretical number of workers in the fourth e6lumn is calculated with the second
column divided by the third column. However, no any paper displays the minimum
number of workers for#=task {o"297-task U-shaped worker allocation problems with
mathematical optimization technique. Thus, the straight-line ULINO for the line
balancing problem of gype [(Scholl and II_(lein, 1999) is benchmarked as lower bound
on quantity of workers#in the fifth coluf_ral’r;l. The values of a number of workers in
various %APT displays from the colunip six to the column twenty-one in every
problem. The results show;that the greateé_ftzllleawalking time or %APT is, the larger a
number of workers are. An examblé 15 sh()\;_@ in Figure 4.10.

From the experimental results of sym@tri-_cal and rectangular U-shaped layouts
in Table 4.14, incrémenting a ﬁﬁmber of W('-)r-lgeqr_s ‘in the first objective is sensitive to
determining the walKing time at only the five percentage o1 average processing time
(or 0.14 to 65.61 seconds) in most problems. The 11-task problem is at the ten %APT
(or 0.42 seconds.); the 19-task problem is at the 20 %APT (or 4.08 s.); and the 45-task
problem is at'thel 5| %APT(of 1.84 seconds). Itimakésajconclision that a decision to
change a little walking time significantly effects the supplement of a larger number of
workers in a single U-line. At last, the fixed averagésprocess time percentage is shown
in the'second andythird colurens and the differences of a number of workers between
both layouts for all problems are shown in the fourth column. For an illustrative
example, the experiment of 19-task problem in Figure 4.10 shows that walking time
should be taken into account at the beginning of 20% average processing time (4.08
s.). After that, the difference of a number of workers between the symmetrical and

rectangular layouts is cut off at the distinguished line at 60 %APT in the same Figure.



Table 4.11 Average processing time perceniage of 5-120 for all problems
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C Average Walking time from one task to another task (s)
ycle ’
Problems / time | Processing

Number of tasks (s) time 5% 10% | 15% 1 20% | 25% | . 30% | 35% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | 110% | 120%

(s)

1. Merten

7 10 414 | 021| o041 | o624 088|104 |  124| 145| 66| 207 | 248| 290 | 331| 373| 414| 455| 497
2. M’genburg 10 28| 014| o028| o042| 4os6d 70| 08| o098 112| 140| 168| 196 | 224| 252| 280 308| 336
3. ;J"ﬁkson 13 418 | 021 | o042| o063| 084 |, 105 1250 146| 167| 209| 251 | 293| 334| 376| 418| 460| 502
4. ;r?ngpOUIOS 120 2042 | 102| 204| 306| 408 54+ 613f #15| 817 | 1021 | 1225 | 1429 | 1634 | 1838 | 2042 | 2246 | 24.50
5. }";gk'ac’ff 256 3657 | 1.83| 366 | 549 | 7.31| 644+ 1097 | 1280 | 1463 | 1829 | 21.94 | 2560 | 2026 | 3291 | 3657 | 4023 | 43.88
6. ﬂg”dge&weger 110 1227 | o061 | 123| 184| 245| Bo7| 368 429| 491 | .614| 736| 85| 98| 11.04| 1227 | 1350 | 1472
7. ﬂ;‘ 600 86.50 | 433 | 865 | 12080 1780|2163 25:95 30:28-—34:60-= 4325 | 51.90 | 60.55 | 69.20 | 77.85 | 86.50 | 95.15 | 103.80
8. Tongue 5

/2 51 50.14 | 251 | 501 | 752 #1003 | 1254 | 15.04 | 17.55 | 20067 2507 | 30.08 | 3510 | 4011 | 4513 | 5014 | 5515 | 60.17
9. fﬁf 7,916 1,312.23 | 65.61 | 131.22 | 196.83 | 262.45 | 328.06 | 393.67 | 459.28 | 524.89 | 656.12 | 787.34 | 918.56 | 1,050 | 1,181 | 1,312 | 1,443 | 1,575
10. /SSQ;’”&Kle'n 1,834 234.53 | 11.73 | 23454+ 35,18 | = 46.9%.| #58:63+| 1 70,36 |-82:00; | #98.84, | 447.27+| 140.72 | 164.17 | 187.62 | 211.08 | 234.53 | 257.98 | 281.44
11. Case study / 36 | 1,371 185.08 | 9.25 | 1851 | |27.76 || 37.021| 4627 | 55.53 |- 64.78 || 74.03)| | 92.54-| 111.05 | 129.56 | 148.07 | 166.58 | 185.08 | 203.59 | 222.10
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Table 4.12 Theoretical, straight-line and U-line numaber of workers at the symmetrical layout

M 2 @) “4)
No. of Sum. of Cycle Number of workers.at.the symmetrical layout
tasks | processing time Theory Straight line U-shaped line plus walking
times (s) (s) (2)/(3) ULINO 5% | 10% | 15% [.20% | 25% | 30% | 35% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | 110% | 120%
7 29 10 2.9 3 4 4 4 " 5 5 5, 5 6 6 6 7 7 7 7 7
10 28 10 2.8 3 4 4 4 4 4 4 0 3] 5 5 5 6 6 6 8 8
1 46 13 3.54 4 4 5 5 5 1] 6 6 6 6 8 8 8 9 9 9 9
19 388 120 3.23 4* 4 4 4 5 g ) 5 6 6 7 7 7 8 8 9 9
28 1,024 256 4 4 5 o 5 [¢ 6 6 7 y 8 8 9 9 10 10 11 11
45 552 110 5.02 6 6 6 y/ y 8 8 8 9 10 10 1 12 13 14 14 15
61 5,274 600 8.79 9* 10 14 12 13 13 14 % 15 17 18 20 20 22 23 25 27
70 3,510 251 13.98 14 17 18 19 20 22 22 23 =] 26 28 31 33 34 36 38 39
111 145,657 7,916 18.4 19 22 24 25 26 29 30 30 30 40 40 40 40 50 50 50 50
297 69,655 1,834 37.98 38 44 49 52 55 59 62 65 69 74 81 87 93 100 106 109 115
36 6,663 1,371 4.86 5** 6 v 7 8 Il 8 9 9 10 1 1 12 12 13 14 14
* Wattanapornprom et al., 2009
** Olanviwatchai, 2009
Table 4.13 Theoretical, straight-line and-U-line number of workers at the rectangular layout
M 2 @) (4)
No. of Sum. of Cycle Number of workers at the rectangular layout
tasks | processing time Theory Straight line U=shaped line plus walking
times (s) (s) (2)/(3) ULINO 5% | 40% | 15% | 20% | 25% | 30% | 35% | 40%+| 50% | 60% | 70% | 80% | 90% | 100% | 110% | 120%
7 29 10 2.9 3 4 4 4 5 5 5 - 5 6 6 6 7 7 7 7 7
10 28 10 2.8 3 4 4 4 4 4 4 5 5 5 5 5 6 6 6 8 8
1 46 13 3.54 4 4 4 5 5 5 5 6 6 6 8 8 8 9 9 9 10
19 388 120 3.23 4* 4 4 4 5 5 5 5 6 6 6 7 7 8 8 9 9
28 1,024 256 4 4 5 5 6 6 6 6 7 7 8 8 9 9 10 10 11 11
45 552 110 5.02 6 6 6 7 |’ 8 8 8 9 10 11 11 12 13 14 15 15
61 5,274 600 8.79 9* 10 11 12 12 13 14 15 15 17 18 19 20 22 23 25 27
70 3,510 251 13.98 14 16 18 19 20 21 22 23 25 27 28 30 32 34 36 38 40
111 145,657 7,916 18.4 19 22 24 25 27 28 30 31 33 36 39 41 44 47 50 52 54
297 69,655 1,834 37.98 38 44 48 52 55 58 62 65 69 75 81 87 93 100 106 109 114
36 6,663 1,371 4.86 ] 6 L 7 8 8 8 9 9 10 “dl 1 12 13 13 14 14

* Wattanapornprom et al., 2009
** Olanviwatchai, 2009
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Table 4.14 Fixed and different average processing time percentage for the 7-task to

297-task problems

Problem / % Average processing time
Number of tasks Symmetry Rectangle Difference

1. Merten / 7 5%= 021s 5%= 021§ -

2. Miltenburg /10 5%= 0.14s5 5%= 0.14¢ -

3. Jackson / 11 10%= 042510%= 042s30%= 1255
4. Thomopoulos / 19 20% = 4.08 §20%= 4.08 §70% = 14.29 s
5. Heskiaoft / 28 5%= 1.83 8 5% = 1.83515%= 5.49s
6. Kilbridge&Wester / 45.15% = 1.84 §°15% = 1.84560% = 7.36s
7. Kim / 61 5%= 4335 5% 433520%= 17.30s
8. Tongue / 70 5% = 2518 5%=_251§5%= 2515
9. Arcus / 111 SY =/ 65618 5% = 6561520%=262.45s
10. Scholl&Klein / 297 5% =/ 11.73 5 5% = 11.73s10% = 23.45s
11. Case study /36 5% <7 9259 5% = 9.25590% = 166.58 s

g ¢

' i . |
Scatterplot of number of workers vs %7-}.!-’.‘1 between symmetrical and rectangular shapes
4 =

Number of workers (persons)

Appropriate average

processing time line

33

i Distinguished line between
=, ! the symmetrical shape

- |and rectangular shape at
160% APT

V ariable

—@— Number of Workers_Sy mmetry
—I— Number of Workers_Rectangle

80 100

% Average Processing Time (seconds)

Figure 4.10 Appropriate average processing time line and distinguished line

between symmetrical and rectangular layouts for the 19-task problem




CHAPTER V

EVOLUTIONARY ALGORITHMS

5.1 Introduction

This chapter describes the experimental approaches that use multi-objective
evolutionary solution concepts, a case study and a comparative method. A multi-
objective optimization is related to the problem laswhich two or more two objectives
have to be optimized at-the-same time: The -multi-ebjective evolutionary algorithms
(MOEAs) have been applied.to” aswide range of problems from social to engineering
problems over almost'two decades: Although several versions of MOEAs have been
developed to find multiple Pageto-optimal solutions in one single simulation run, the
non-dominated sortingsgeneti¢ algorithni .(NSGA—H) 18 among the most favorable
evolutionary algorithm in terms of convé;;géhce speed and distribution of the Pareto
frontier. To perform more effective good Pjag,etg_)—optimal solutions, memetic algorithm
(MA) combines the exploration of population-based evolutionary adaptation and the
exploitation of individual local: search l-Iéé.r_ining. However, most well-known
algorithms such as NSGA-II and MA sea_r_c___h_;_s_)p]y for good solutions by sampling
through crossover and mutatibn operationé Without the useful exploitation of bad
solutions and thé. dnternal structure of order pairs .of permutation solutions.
Consequently, the combinatorial optimization with coincidence (COIN) for solving
permutation problems, .e.g. traveling salesman problems and the particle swarm

optimization/with negative knowledge (PSONK) are developed to fill in the gaps.

The.outling of this chaptet is in, the.following.. After the components of
experiments are presented, the main sections of evolutionary algorithms, i.e. NSGA-
I, MA, COIN, and PSONK are proposed in details including their demonstrative
examples. At the end of this chapter, the performance measures of multi-objective
algorithms are explained and exemplified. It is remarkable that if today’s computing
devices cannot solve large-sized problems in an acceptable time, the development of

faster computers would be able to solve a practical-sized problem in the future.
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5.2 Evolutionary Algorithms Development

In this section, the solution methods of NSGA-II, MA, COIN, and PSONK are
adopted, developed and exemplified to make final results and conclusion. The
computation of study performs all experiments using MATLAB R2008a. The test
environment is run on AMD Athlon™ 64 Processor 3500+ 2.21GHz with 960 MB
DDR-SDRAM.

5.3 Components of Initial Samplé kExperiments

Initial experiments* give ~us the exemplified results of optimal worker

allocation for each algorithm with determined parameters.

Input parameters

There are a few problems are exerﬂp'liﬁed in this section. In any time period,
the number of jobs is deterministie and job'a"rfivaIS come from not only new customer
orders but also remaining jobs from the pre{uous planning period that were not
completed. Each job is an entity worked',(")'r'r'-ﬁlany tasks. No job priority (i.e. no
preemption job) constraint is allowed: that is, each job.is allowed to start its
processing whenever it is ready. These jobs are sorted by the daily production order
excluding the sequencing problem. The precedence graphs of ten test-based problems
and a case study (7-task te=297-task assembly networks) and various cycle times (the
time which i§ available at each station to perform all the tasks assigned to the station)
are input in U-shaped assembly line.worker allocation problems. They are referred to
in the last ehaptet, |Given precedence graphs fot an assembly line.drel produced from
the process of making intermediate parts in the final assembly line. The 10-task
problem is exemplified into NSGA-II, MA, and COIN. The 11-task precedence graph

with the given cycle time of 13 seconds is also exemplified into PSONK.
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Decision variables

First, both of fixed U-line layouts at the side ratios of 1:1:1 (1/3) and 1:4:4
(1/9) are used at the same task location of front, back and side for 7-task and 10-task
problems. Other problems are different between both layouts. Secondly, a random
priority rule or a priority-based encoding method is used like Hwang et al. (2008).
The position of a gene was used to represent a task node, and the value of the gene
was used to represent the priority. of the task node for constructing a task sequence
among candidates. Finally, the worker movement rule of displacement is put into all

experiments.

Performance measures

Each of task sequenge distributed— into a Usling:is computed by a number of
workers and the codrdindte ©f/DOW and WT. Finally, the Pareto frontier of the
minimum number of workers (or the first‘rank) is illustrated in each of problems for

all algorithms.

Optimizers

The algorithms-of NSGA=I1;MA; COIN; and PSONK are described in the

following section.
5.4 Non-dominated Sorting Genetic Algorithms-11 (NSGA-II)

Deb. et, al-, (2002). suggested -a, nondeminated .. sorting-based..multiobjective
evolutionary algofithm (MOEA), nanmied Non-dominated Serting Genetic Algorithm-
II (NSGA-II). The algorithm of NSGA-II can be stated as follows.

1. To create an initial parent population of size N randomly;
2. To sort the population into several frontiers based on the fast non-
dominated sorting algorithm;

3. To calculate a crowding distance measure for each solution;
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4. To select the parent population into a mating pool based on the binary

crowded tournament selection;

5. To apply crossover and mutation operators to create an offspring population
of size N;

6. To combine the parent population with the offspring population and apply
an elitist mechanism to the combined population of size 2N for a new population of
size N;

7. To repeat the step 2 until the terminating condition is met.

The procedure of NSGA-II (ibid.) is shownan-Figure 5.1.

5.4.1 Numericakexample

The 10-task problem of the single product with 10 cycle time (time
units) originated by Milteaburg (20012) 1’s used to elaborate the algorithm of NSGA-
II. The manual task times are two time uﬁjté for operations 3, 4, 8, 9, 10, three time
units for operations 1, 7,/and four time uﬂi—fs for operations 2, 5, 6. The precedence
constraints are (3,1), (5,10), and {6,9). Thé":’fpfe_d U-shaped layout of the side, front,
and back is 2, 4, and 4 respectively. The Wal.l-,e_iri;;; time from one task to another task is
the five percentage of average processing tlme Since the total operations time is

28, 0.05*(28/10)>=-0.14. _As.arcsult, thec walking time-matrix of 5% APT for each

element (x, ;) from ene task x to another task x =~ is-shown in Table 5.1. Task

assignment rule is randomized. Population size is ten chromosomes and two

generations are described steptby step asfollows:

Table 5.1 The walking time matrix of 5% APT

X; t0.X; 1 2 3 4 5 6 7 8 9 10

1 0.00 | 0.14 | 0.28 | 0.42 | 0.50 | 0.53 | 0.50 | 0.40 | 0.31 | 0.28
0.14 | 0.00 | 0.14 | 0.28 | 0.36 | 0.41 | 0.40 | 0.31 | 0.28 | 0.31
0.28 | 0.14 | 0.00 | 0.14 | 0.22 | 0.30 | 0.31 | 0.28 | 0.31 | 0.40
0.42 | 028 | 0.14 | 0.00 | 0.10 | 0.22 | 0.28 | 0.31 | 0.40 | 0.50
0.50 | 0.36 | 0.22 | 0.10 | 0.00 | 0.14 | 0.22 | 0.30 | 0.41 | 0.53
0.53 | 0.41 | 0.30 | 0.22 | 0.14 | 0.00 | 0.10 | 0.22 | 0.36 | 0.50
0.50 | 0.40 | 0.31 | 0.28 | 0.22 | 0.10 | 0.00 | 0.14 | 0.28 | 0.42
0.40 | 0.31 | 0.28 | 0.31 | 0.30 | 0.22 | 0.14 | 0.00 | 0.14 | 0.28
0.31 | 028 | 0.31 | 0.40 | 0.41 | 0.36 | 0.28 | 0.14 | 0.00 | 0.14
0.28 | 0.31 | 0.40 | 0.50 | 0.53 | 0.50 | 0.42 | 0.28 | 0.14 | 0.00

O | X [Q[n|[n|[s|[w]|p

—_
(=}
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Figure 5.1 Procedure of Non-dominated Sorting Genetic Algorithm-I1I: NSGA-II




94

5.4.1.1 Population generation

The random parent population P, of size N =10 chromosomes is

created. To work effectively with precedence constraints, the priority-based encoding
method (Gen and Cheng, 2000) is used. The position of a gene was used to represent a
task node, and the value of the gene was used to represent the priority of the task node
for constructing a task sequence among candidates. As is the proposed encoding
method, first randomly generate the inifial ¢hromosome as shown in procedure 1
(Figure 5.2). Each chromosome position is«<called a gene. Each gene will use the
priority of nodes in an assembly network. This-encoding method easily verifies any
permutation of the enceding to-correspond to the sequences so that most existing
genetic operators can gasily be applicd fo the encoding: Consequently, the priority task
of ten chromosomes is siowndn Table 5:2.

step 1: Input the priority atimbeg

it

task D 1 2 3

4 5 @ 7 i '.:f
priogity v (f ) : | 1 | 2 l 3 | &Tinu—[ ?j & 1%

el 11

procedure 1 :priority - based encoding
- [_l -| imput :number of tasks N

4 A output :chromosome vii)
step 2: Swapping two nodes gandomly '-’ ' for i=1to N
N ol il i) &= (LN)
et —m= - :
A ¥ Ay for i=1to|N /2]
wkIDi: 1 2 3 4 Y M= | j=random (1, N}
priarity v (7 ) : | I | 2 | 3 | 1 | 5 & IT_I g i 9 I_‘mj 1 | k =random (1, N):

A if j#k then

ok swap {v(j), v(k));
step 3: Output priogity=based chromosome ; swap (i wl _}}
) - outpul :ihe chromosome vif)

fask 113 : 1 2 3 4 5 3 7 £y 9 (1] 1

3 I 7 0 W 8 0 I

prionity v (i) : | g)

Figure 5.2 An example.priority-based encoding procedure (Hwang et al., 2008)

Table 5.2°Ten‘chromosomes by'the priority=based encoding method

Taske] mdv b 2 A3 od ot A 1bad B da dod 8o 49 | 10
N Priority task
1 1 7 9 10 2 8 6 4 3 5
2 5 3 4 6 7 8 1 2 10 9
3 7 8 4 3 9 6 10 1 5 2
4 10 2 8 4 3 1 7 9 6 5
5 3 1 10 9 8 2 7 6 4 5
6 7 10 6 2 3 1 9 8 4 5
7 4 10 9 5 1 8 3 6 2 7
8 10 8 5 1 3 9 7 2 4 6
9 1 5 8 10 3 2 9 7 6 4
10 4 6 8 9 1 5 7 2 3 10
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From the priority task, a chromosome is input into the Task
Sequence procedure. Task Sequence (TS) is constrained by the front precedence
matrix in Table 5.3 and the back precedence matrix in Table 5.4. Task assignment
into U-line is the same as the previous chapter in Table 4.3. Consequently, TS

chromosomes are shown in Table 5.5.

Table 5.3 The front precedence matrix of the 10-task problem

—
(=)

S| n| bW N —Z
o|lo|o|lololo|o~|oo|—
olo|lolololo|o|o|o|o|n
Ooldlole eloe oolw
o 'S oo lol oo
SO OO0 | O O | S
ololocool e o
olooololojoo|o|o|w
o|lo|lololoo|o|o|o|o|w
olo|loloi—|lojoo|o|o|v
o|lo|ololol~|looolo

Table 5.4 The back precedence matrix of the 10-task problem

—
(=)

S|o|o[waun|i|win|—Z
o|lo|o|lolojo|o|o|o|o|—
olo|lelalo|o|o|o|o|o|e
olo|loeclo|o|oe|— P
olo|o|®|o|Rig|etP el &
—|o|o|le|o|ola|ele sk
ol=lolelo|s|o|o|olale
Slo|oloieic|o|o|o|o|w
o|lo|lo|lolojo|o|o|o|o|w
o|lo|lo|lolojo|o|o|o|o|v

(=) [ [ ) fa ) fe) o) far) fan) Fen ] Fen)

Table 5.5 (Fen TS chromosomes (L1-L10) influenced by the front and back work

Task Sequence

N 1 2 3 4 5 6 7 8 9 10
L1l 4 8 k| 3 6 9 2 10 1 7
L2 10 % 9 1 8 7 6 4 5 3
L3 2 5 10 1 6 9 7 3 8 4
L4 6 5 7 9 2 10 4 8 1 3
L5 4 6 7 5 8 2 9 10 1 3
L6 8 4 5 9 1 3 7 6 10 2
L7 7 2 3 8 6 1 10 4 9 5
L8 7 3 9 8 5 6 2 1 4 10
L9 4 6 7 2 9 3 1 8 5 10
L10 3 2 10 7 1 9 8 5 6 4
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5.4.1.2 Population evaluation

As tabulating an example of worker allocation in a single U-
line in the chapter IV and with the five %APT of displacement distance from the

determination of walking time, three objective functions are shown in Table 5.6.

Table 5.6 Objective functions of ten TS chromosomes at the first generation

Chlr\;)mosome Number of DOW | /WT Paret.o Crowding Distance

umber workers Frontier
L8 4 2.6404 24336 1 Infinite
L4 4 3.0844,| 1.7206 1 Infinite
L10 4 2.7660 | 2.4234 2 Infinite
L3 4 2.8630 |.2.3324 s 2.0000
L5 4 301341 | 17388 ) Infinite
L2 4 208331} 24584 <, Infinite
L1 4 316619 1.9600 3 Infinite
L6 4 3.2481-}:2.4822 4 Infinite
L9 4 4.08521"1.9600 4 Infinite
L7 4 3:4085.412.5200 5 Infinite

54.1.3 Non—dominéted sor;tijpg' and crowding distance

o

Non-dominated sorting 1s then used to classify the population
into a number of Pareto fionts. The first front1§ the best inrthe combined population.
The archive is created by Sélécting fionts based on their rankings. If the number of
individuals in the afchive 1s smaller than the population size, the next front will be
selected and so on. If adding front would result in the number of individuals in the
archive exceeding theyinittal population-size, @ jtruncationsoperator is applied to that
front based on the ‘crowded tournament ‘selection by which ‘the’ winner of two same

rank solutions is the one that has the"greater crowding distance.

The diversity mechanism is exercised when many individuals
of the current generation do not dominate each other and only some of them have to
be selected. It calculates density information of each individual. The one with lower
density has a higher chance to be selected since less non-dominated solutions are
clustering around (higher diversity). The density estimation technique for NSGA I
and MALI uses the crowding distance method (Deb et al., 2002).
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5.4.1.4 Binary tournament selection

In the process of binary tournament selection, after doing non-
dominated sorting fitness values are transformed to dummy fitness values from the

minimum value to maximum value. The probability pi of giand the cumulative

probability are calculated. The roulette wheel and binary tournament selection are
shown in Table 5.7 and Table 5.8. The number of chromosome (string) from each row
in binary tournament selection is selected with higher dummy fitness, but higher
crowding distance is chosen if the dummy fithess is not different. However, if the

crowding distance is alse. the same, one -of twe chromosomes in that row is

randomized.
Table/5.7 Roulette wheel
String No. | DOW Wi Hitness Value | Dummy Fitness | Crowding Distance pi qi
L1 3.6619 | 149600 3 ) Infinite 0.0909 | 0.0909
L2 2.8331 | 2.4584 3 g Infinite 0.0909 | 0.1818
L3 2.8630 | 2.3324 2 . 4 2.0000 0.1212 | 0.3030
L4 3.0844 | 1.7206 { 5% Infinite 0.1515 | 0.4545
L5 3.1341 | 1.7388 2 4 Infinite 0.1212 | 0.5757
L6 3.2481 | 2.4822 4 2 Infinite 0.0606 | 0.6363
L7 3.4085 | 2.5200 3 1 Infinite 0.0303 | 0.6666
L8 2.6404 | 2.1336 1 5 Infinite 0.1515 | 0.8181
L9 4.0852 |.1.9600 4 2 Infinite 0.0606 | 0.8787
L10 2.7660. | 2.4234 - 4 Infinite 0.1212 1
Total 33 1

Table 5.8 Binary tournament selection

No. Population_1 Population 2 No_String
rl qi>rl | No_string | Dummy r2 qi>r2 No_string | Dummy | Selected

1 0.2272 | 0.3030 L3 4 0.5163 0.5757 LS 4 L5

2 0.4582" [0.5757 LS 4 047032 0:8181 I8 5 L8

3 0.5825 | 0.6363 L6 2 0.5092 0.5757 L5 4 L5

4 0:0743 | 0.0909 L1 3 0.1932 0.6363 L6 2 L1

5 0.7709 | 0.8181 L8 5 0.3139 0.4545 L4 5 L8

6 0.6382 | 0.6666 L7 1 0.9866 1 L10 4 L10

7 0.5029 | 0.5757 L5 4 0.9477 1 L10 4 L5

8 0.1131 | 0.1818 L2 3 0.8121 0.8181 L8 5 L8

9 0.1221 | 0.1818 L2 3 0.7627 0.8181 L8 5 L8
10 | 0.7218 | 0.8181 L8 5 0.6516 0.6666 L7 1 L8

After that, the solutions of parents are shown in Table 5.9.
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Table 5.9 Chromosomes of parents

String N Task Seq

selected 1 2 3 4 5 6 7 8 9 10
L5 1 4 6 7 5 8 2 9 10 1 3
LS 2 7 3 9 8 5 6 2 1 4 10
L5 3 4 6 7 5 8 2 9 10 1 3
L1 4 4 8 5 3 6 9 2 10 1 7
LS 5 7 3 9 8 5 6 2 1 4 10
L10 6 3 2 10 I 1 9 8 5 6 4
L5 7 4 6 7/ 5 3 2 9 10 1 3
L8 8 7 3 9 8 3 6 2 1 4 10
LS 9 7 3 9 8 5 6 2 1 4 10
LS 10 7 3 9 8 S 6 2 1 4 10

5.4.1.5Crossover

Rromythe initial parameter setting, the crossover probability is
assumed to be 0.7. /The weight mapping crossover (WMX) is used by

0.7 %10 =7 chromosomes./They are randomized as shown in Table 5.10.

Table 5.10 -WMX crossover chromosomes

String N Task Seq

selected I 2 3 4 5 6 7 8 9 10
L10 1 3 > 10 e 1 9 8 5 6 4
L5 2 4 6 7 5 8 2 9 10 1 3
L5 3 4 6 7 5 8 2 9 10 1 3
LS 4 7 3 9 8 5 6 2 1 4 10
LS 5 7 3 9 8 5 6 2 1 4 10
L1 6 4 8 5 3 6 9 2 10 1 7
LS 7 G 3 9 8 5 6 2 1 4 10

Hereby: the) poSition-based crossover operdtoriof the weight
mapping crossover (WMX) (Hwang et al., 2008) can be randomly selected as a two-
point crossover of a real number string and a remapping by weight order of different
real number strings. This WMX operator is shown in Figure 5.3. However, there are
only three pairs of seven chromosomes essential to use all for making various

solutions. Thus, one of them is randomized to make a new pair of chromosomes.
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Step 11 select the substring af random substring selected

poran [+ ]2 [ _IIZI
|=IIu| + [T = - ]

Step 27 determine mapping relationship

Step 31 legalise offspring withynapgin

new chromosomes are sh

Table 5 yeight mapping crossover
g

String | ‘f"-ﬂ_:‘i?""-“’- sk Seq

selected 1 2 IR 3 6 7 8 9 10
L | 1 [ 3 [«2 [T10 9 6 | 4
L5* 2 e 0 | 1 3
L5* 3 A 9 10 1 3
L8* 4 T8 6 2 1 4 10
L8* 5 7+ 3 9 | 8 | 5 10
L1* 6 4 & 8 5 3 |
L8* M . ™y | 4 10
L5** ﬁ 2 1 9¢l 10 [ 1 3
L8** 94 3 8 5 6 2 1 4 10
Lg=x | 10 | 3 8 | 54 6 ; 2 ;-r" 4 10

* N& 1@% erd 'QM V()‘uso]er 7 = d E‘

** Old chromosomes that is not selected to do WMX crossover

5.4.1.6 Mutation

From the initial parameter setting, the mutation probability is

assumed to be 0.3. The mutation (inversion) is used by 0.3x10=3 chromosomes.
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After doing the procedure of mutation crossover, one new randomized chromosome is

shown in Table 5.12.

Table 5.12 Offspring after mutation

String N Task Seq

selected 1 2 3 4 5 6 7 8 9 10
L10* 1 3 2 10 7 8 1 9 5 6 4
L5* 2 4 6 7 5 2 9 8 10 1 3
L5* 3 4 5 8 U 6 2 9 10 1 3
L8* 4 7 5 LN 3 9 6 2 1 4 10
L8* 5 7 | 2 NN L 3 | 4 1 6 | 10
L1* 6 4 4 8 5 3 10 6 2 9 1
L8* 7 3 7 9 8 5 6 2 1 4 10
L5** 8 4 6 7 5 8 2 9 10 1 3
L8** 9 7 3 9 8 5 6 2 1 4 10
L8** 10 7 3 0 8 5 6 2 1 4 10

10 combing ten chromosomes of parents and ten chromosomes

of offspring, Rt = Pt\U Qf as shown in Table 5.13.

Table 5.13 Combinationof parents-and offspring chromosomes

_ " Task Seq

Ri=ProOt ) N e e T 6 [ 7 [ 8 19 10
1 | 416 1 7.0 5F8l 2191013

2077 | 3 | 9 | 8 | 5 %2 | 1| 4|10
a6 T 7 5 ealor) 9| 10 1] 3

4 a8 5l 3bel o] 2 1017

. 547 | 319 1815 6] 214710
6 |3 | 2 10| 71119 856 4

T L4 6 b A S &2 o 10 1] 3
RT3 ol a8 0vsl 6/l 211 410

O 1 7131918 15621114710

10 7 ] 3 |79 | 8 | & 6 | 2 i | 4 | 10
DARNSA a1 N? Vel A 21 6 | 4

D N4 Ggojoa s || D | od g9qi104| 1 | 3
345 817 61219 1013

4 7158 1319 6 2111410

51 71 21918 5 |3 4] 1610

6] 4| 48 53106 21091

o 171 31 7198 5] 6] 21 1| 410
8 46 7158 219 1013

9 7139185 6 211410

20 7 3 1985 6] 211410
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Using the fast non-dominated sorting algorithm, the non-
dominated fronts F1,F2,...,Fk in Rt are identified. Values of crowding distance for all

chromosomes are identified. They are shown in Table 5.14 and Figure 5.4.

Table 5.14 Non-dominated sorting and crowing distance of parents and offspring at

the first generation

Chromosome No. | DOW | WT | Fitness Value | Crowding Distance
2 2.6404 | 2.1336 1 Infinite
17 2.6404 | 2.1336 1 Infinite
5 2.6404 | 2.1336 1 Infinite
8 2.6404.| 2.1336 1 Infinite
9 2164041 2.1336 1 Infinite
10 27640471:2.1386 1 Infinite
19 2764044 2/1386 1 Infinite
20 2:6404/1,2:1336 1 Infinite
13 20397/ 1.7388 1 Infinite
11 2.6744 [2.4632 2 Infinite
6 276608 | 24234+ 2 2.0000
12 3. QP2 11 73834 ' % Infinite
16 301049 | 2:09304 3 Infinite
1 P. 1341 g3 3RaE 8 Infinite
18 31341 [+1' 73884 4 3 Infinite
3 31341 F 17388474 3 Infinite
7 31341 [ 1.7388 - 3 Infinite
4 3.6619°0:1.9600 " 1s 4 Infinite
14 40382129036 5 Infinite
15 - 40845 19 (349 ——— Infinite
Scatterph'pt':of DOW and WT of parents and offpring chromosomes forthe 10-task problem
3.0
2.8
2.6
g 2.4 P
§ 2.2 .
2.0 First-ranked front ° ¢
1.8- v
1.6 : : : : : : : :
2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25
DOW (seconds)

Figure 5.4 Scatterplot of DOW and WT of parents and offpring chromosomes for the
10-task problem
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5.4.1.7 Next generation

In the second generation ( Pt+1), first ten chromosomes with
solving non-dominated sorting and crowding distance shown in Table 5.15 are input
instead of the initial population from the first generation. If fitness value and
crowding distance are the same, a chromosome is randomly selected. For example, at
the tenth position of population, the chromosome 12 is selected and the chromosome

11 is discarded.

Table 5.15 Ten chromoesomes ( Pt +1)wised in the second generation

No Chromosome Task Seq

' No. Wl 3 L4l | 7] 8] 9] 10
1 2 A8 LS | 2] 1] 4] 10
2 17 30 98 s e | 2] 1] 4110
3 5 TALM o8 s e [ 2] 14710
4 8 U3 =94 856 | 2] 1] 4]10
5 9 T B 9N s e [ 2] 1] 4710
6 10 2103 ol s B5ule [ 2] 1] 4710
7 19  F 30604088 %N 6 | 2 1 | 4] 10
8 20 74 3.9 R 56 [ 2] 1] 41]10
9 13 4158 Flwl 6] 2 9]10]1]3
10 12 4 %617 51219 8]10]1]3

5.4.1.8 Elitism strategy

Elitism is the mechanism of constantly updating and keeping
the best solutions found so far. An archive with a fixed number of elitists is
established. NSGA I sets the ‘archive 'sizevequal to the initialypopulation size. The
current archive! is determined by combining the current archive and the previous
archive. ;The ~non-dominated..individuals, generated, by ,the.~combined elitists are
considered ‘as a set of tentativeelitists® These individuals-are added to the original
archive. The non-dominated solutions residing in the archive are updated and the

dominated ones are discarded.

Only the different solutions in the first non-dominated frontier
are filled in the current elitist list. If the number of solutions in the first non-

dominated frontier is less than or equal to the size of the elitist list, the new elitist list
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will contain all solutions of the first non-dominated frontier. For example, three
different solutions at the first-ranked fitness of the first generation are shown in Table
5.16. Otherwise, two solutions from the first non-dominated solutions are randomly
selected and then the solution with larger crowding distance measure and not being
selected before is added to the new elitist list. This approach not only ensures that all
solutions in the elitist list are non-dominated solutions but also promoting diversity of

the solutions.

Table 5.16 Elitist solutions af the first generation

No Chromosome ) Task Seq
' No. ! 2 3 4 S 6 7 8 9 10
1 13 4 5 8 % 6 2 9 10 1 3
17 3 7 9 8 3 6 2 1 4 10
3 20 A 3 o3 [\8 S 6 2 1 4 10

Adfter that, the steps‘ldf population evaluation to elitism strategy

are repeated in every generation until the ferminating condition is met.

5.4.2 Exemplified results 7_

/
oy

An example of 100 striI.rgs:!j.-at Max.100 generations for the
displacement rule is, shown in Figure 5.5. b-.éi‘iéfj of 100 strings at the first generation
and the Pareto-optithal-frontier-of -30-strings-at-iax: 100 generations (the final
frontier) are shown=in Figure 5.6, in which the scatter plot including Pearson
Correlation -0.965 and P-value = 0 that make confident that two conflicting objectives
are the Min.-Min. preblem. Experimental.results .of final.task.sequence; front and

back task positionyDOW, WTland number 6f workers are the seCtion of answers.

Example

Solution: Run NSGAII algorithm at (10 tasks, 30 strings, 10 cycle time, 100 gen., 0.7
Pc, 0.3 Pm, 35% APT =1 second)

Answers:

WT DOW =
1.0981 17.3200 5.0000
13736 15.6600 5.0000




1.5384
1.5688
1.6733
2.0702
2.2500
2.4495
3.1988
3.2249
4.1710
4.2238
4.3874
4.4059
5.5291
5.5634
5.6121
6.2249

task seq =
1 8
10 7
4 1
3 10
10 7
35

4

iﬂﬁwmmmmnmmaa

task_pos =
2 1

D= =N

1
2
2
1

14.8400 5.0000
14.5200 5.0000
14.0000 5.0000
12.5000 5.0000
10.8400 5.0000
10.0000 5.0000
9.7100 5.0000
9.4200
9.1600
8.5800
7.4200
6.8400
6.0000
5.4200
4.8400
4.0000

109 248 4 6 7

1°4ﬂﬂﬂﬂﬂﬂﬂ§ﬂ81ﬂi

N = = N =
—_ = N =
—_ = N =N

Pk

[

ek

ok

ot
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L1 o2 1 1 1 111
2 01 1 1 1 1 1 1 2 1

TR U N U N N U BRI

TR U N U N N U BRI

L1 o202 11 1 11
define_station =

11 2 2 3 3 4 4

112 203

112 203

112 2 03

112 2 03

112 2

112 2

112 2

112 2

112 3
WT DOW J=

1.0981 17.3200 5.0000

1.3736 15.6600._ 5.0000"

15384 14.84000 =5.0000

1.5688 14.5200

1.6733 14.0000 “5.0000

2.0702 gj

s i 5wsﬂswsﬂni
24495 10,0000 5.0000
3@%’]‘@@@5&]“1’17?7]8']@&]
32049 94200 5.0000

Elapsed time is 2231.032257 seconds.

105



106

Scatterplot of WI'_100gen_5-8 vs DOW_100gen_5-8_Displacement_NSGAII
] iabi
17.5 —o— :Il\ﬁrrialoggen_s * DOW_100gen_5
—— WT_100gen_6 * DOW_100gen_6
— 4~ WT_100gen_7 * DOW_100gen_7
15.04 —A - WT_100gen_8 * DOW_100gen_8
¥ 125
c
]
b1
», 10.0
7.5 n
[}
<
5.0 *
A
6
Figure 5.5 DOW vs. 0, 7/a rkers at 30 strings and 100 gen. (Pc=0.7,
Pm=0.3)

\\\\ vs DOW_100gen_Displacement

Variable

WT100 * DOW 100

’ WT_1gen * DOW_1gen
15.04 o 3 i — @ — WT_100gen * DOW_100gen

12.54

10.0

WT (seconds)

7.51

5.0

DOW (seconds)

Flgasma R P T VAT T Y- (TR

‘compared with” DOW vs. WT for 5, 6, 7 and 8 workers at 30 strings and
100 gen. (Pc=0.7, Pm=0.3)

5.5 Memetic Algorithms (MA)

MA or MNSGA-II is a memetic version of NSGA-II. Appropriate local searches

can additionally embed into several positions of the NSGA-II’s algorithm, i.e. after initial
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population, after crossover, and after mutation (Lacomme et al., 2004). The number of
places to apply local search has a direct effect on the quality of solution and computation
time. Hence, if computation time needs to be saved, local search should be taken only at
some specific steps in the algorithm of MA rather than at all possible steps. In this
research, local search is chosen after obtaining initial solution and after mutation since
pilot experiments and our previous research (Chutima and Pinkoompee, 2008) indicate
that these two points are enough to find significantly improved solutions, pull the
solutions out of the local optimal, and reduce, computational time. The algorithm of MA

can be stated as follows.

1. To create an initial. parent population of size.i. randomly;
2. To apply a logal seawch to.the nitial parent population;

3. To sort the population/into’ several frontiers based on the fast non-dominated

sorting algorithm;

4. To calculate a crowding.distance measure for each solution;

#

5. To select the parent population into 'a'rg,ating pool based on the binary crowded

tournament selection;

6. To apply|ciossover-and-mutation-operators-to-ereate an offspring population of

size N;
7. To apply a local search to the offspring population;

8. To ¢ombine the parent population with the offspring population and apply an

elitist'meechanism to,theycombined-population of size~2 Nefor aynewspopulation of size N;

9. To repeat the step 3 until the terminating condition is met.

The procedure of MA (Chutima and Pinkoompee, 2008) is shown in Figure
5.7.
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Gepresentation and InitializatioD

!

Improve solution by local search
procedure

Evaluation objectiv
N Y
"-._;_.1|

'

Apply crossove I
create offspring populations -

AU RETINGIN

Elitist strategy

AR EREANI NN Y
!

q improvem

Copy offspring to Pis4

Figure 5.7 Procedure of Memetic Algorithms: MA
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Four local searches modified from Kumar and Singh (2007) originally developed
to solve traveling salesman problems by repeatedly exchanging edges of the tour until no
improvement is attained are examined including Pairwise Interchange (PI), Insertion
Procedures (IP), 2-Opt, and 3-Opt. Three criteria are used to test whether to accept a
move that a local search heuristic creates a neighbor solution from the current solution as
follows: (1) to accept the new solution if f(x)is descendent, (2) to accept the new
solution if f,(x)is descendent, and (3) to accept the new solution if £ (x)is the same or

descendent and £, (x)is descendent; or to accept the new solution if f,(x)is the same or

descendent and f(x) is descendent.

The local searchuinthe inttial experiments is-the 2-opt method that is one of
several local searches from Kamar and Singh (2007). A neighboring solution (2-opt)
is obtained by selectingffwo arbitrary products / and ; and interchange them as shown
in Figure 5.8. =¥

Individual A _
Position /1 2 3 4.5 6,7 8 910 11 12

A Bg"ég clATADIE|D| B/ C[B

Exchange position-3,-12 ~—=
Individual A’

Al B[B| c| A| ALD| E| D| B| C{ Ei

Figure 5.8 Procedure of 2-opt local search

5.5.1 Numerical example

The core procedure and illustrative examples are not different from
NSGA-II. Only the step of Local Search is put in two positions after doing the initial
parent population and offspring population. Assumed that probability is equal to 0.2

that means 20% of all solutions will be subjected to local search. In addition, if the
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solutions on which the local search is applied are randomly selected, the improved
quality of the new solutions may not be guaranteed. Hence, to select an appropriate

solution to apply the local search, binary tournament selection is used.

5.5.1.1 Local search after initial population

Initial population generation is the first step in the proposed
MA. A set of ten exemplified chromosomes as shown in Table 5.17 is generated
randomly as an initial set of populations. First, local search after the initial population

is exemplified.

Table"S.47 Initial parent.population

N Task Sequence

1 2 3 4 5 6 7 8 9 10
1 4 8 5 3 6 9 2 10 1 7
2 10 2 9 1 R 7 6 4 5 3
3 2 5 10 1 "a 9 7 3 8 4
4 6 5 7 9 9, 10 4 8 1 3
5 4 6 7 5 Y 3 9 10 1 3
6 8 4 5 9 Y 3 7 6 10 2
7 7 2 3 8 il | 10 4 9 5
8 7 3 9 8 =" 6 2 1 4 10
9 4 6 7 ) o f4=3 1 8 5 10
10 3 2 10 7 1 9 8 5 6 4

Local search after initial population by the method of Pairwise
Interchange (PI) is done.only once. PI selects two arbitrary tasks located at positions i

and j, i # jl.and interchange them to generate a neighboring solution. All possible

swaps of pairs'of tasks in a given solution are feasible. e.g.:

Parent 48 536924017
Neighbor 48 526931017

For example, eight chromosomes are selected with the
procedure of binary tournament as shown in Table 5.18. Then, two neighboring

solutions from local search with PI are shown in Table 5.19.
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Table 5.18 Two chromosomes from binary tournament selection

Task Sequence

N 1 2 3 4 5 6 7 8 9 10
2 10 2 9 1 8 7 6 4 5 3
5 4 6 7 5 8 2 9 10 1 3
1 4 8 5 3 6 9 2 10 1 7
3 2 5 10 1 6 9 7 3 8 4
4 6 5 7 9 2 10 4 8 1 3
5 4 6 7 5 8 2 9 10 1 3
6 8 4 5 9 1 3 7 6 10 2
7 7 2 3 8 6 1 10 4 9 5
8 7 3 9 8 5 0 2 1 4 10
9 4 6 ” 2 9 3 1 8 5 10
10 3 2 10 " 1 ) 8 5 6 4
Table 5.19"Twomeighboring solutions from local search with PI

N Task Sequence
1 2 3 4 5 6 7 8 9 10
L2 10 7 9 1 S48\ X 6 4 5 3
L5 4 6 9 5 8 3 7 10 1 3
1 4 8 ) 3 6 9 2 10 1 7
3 2 5 10 1 6 9 7 3 8 4
4 6 5 7, 9 = 10 4 8 1 3
5 4 6 7 . 8 > 9 10 1 3
6 8 4 5 % 1 3 7 6 10 2
7 7 2 3 8 67l 10 4 9 5
8 7 3 = 8 5 6 v 1 4 10
9 4 6 7 2 9 3 1 8 5 10
10 3 2 10 7 1 9 8 5 6 4

Afternthat, each of two selected chromosomes is compared
between a chromosome and a neighboring.solution with two ebjective functions by
previous acceptance rules. If chromosome L2 and L5 are accepted rather than
chromosome2tand; 5 by those deceptance tules, Table 5.19! is input to the crossover

operator.

5.5.1.2 Local search after offspring

Secondly, local search after the mutation population is
exemplified. Ten chromosomes of offspring population obtained after doing mutation

are exemplified and shown in Table 5.20.




Table 5.20 Offspring population
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String N Task Seq

selected 1 2 3 4 5 6 7 8 9 10
10 1 3 2 10 7 8 1 9 5 6 4
5 2 4 6 7 5 2 9 8 10 1 3
5 3 4 5 8 7 6 2 9 10 1 3
8 4 7 5 8 3 9 6 2 1 4 10
8 5 7 2 9 8 5 3 4 1 6 10
1 6 4 4 3 5 3 10 6 2 9 1
8 7 3 7 9 3 & 6 2 1 4 10
5 8 4 6 i 5 3 2 9 10 1 3
8 9 7 3 9 8 5 6 2 1 4 10
8 10 7 3 9 8 5 6 2 1 4 10

Local seaseh after mutation population by the method of Insertion

Procedure (IP) is donc in every generation. 1P removes a task from one position i and

then insert it back to afly pesition’; wher€ i # j of a given position. e.g.:

Parent

Neighbor

32@%7819564

327819410[564

For example, two chromosomes are selected with the procedure of

binary tournament*as: shown in Table 5.21. Then, two neighboring solutions from

local search with PI are shown in Table 5.22.

Table 5.21 ‘"Two_chtomosonies from binary tournament selection

N Task Sequence

1 2 3 4 S 6 . g 9 10
1 3 X 10 7 8 | 4 5 6 4
2 4 6 7 5 2 9 8 10 1 3
3 4 5 8 7 6 2 9 10 1 3
4 7 5 8 3 9 6 2 1 4 10
5 7 2 9 8 5 3 4 1 6 10
6 4 4 8 5 3 10 6 2 9 1
7 3 7 9 8 5 6 2 1 4 10
8 4 6 7 5 8 2 9 10 1 3
9 7 3 9 8 5 6 2 1 4 10
10 7 3 9 8 5 6 2 1 4 10
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Table 5.22 Two neighboring solutions from local search with PI

N Task Sequence

1 2 3 4 5 6 7 8 9 10
L2 4 6 7 5 2 9 8 1 3 10
L3 4 5 7 6 2 8 9 10 1 3
1 3 2 10 7 8 1 9 5 6 4
4 7 5 8 3 9 6 2 1 4 10
5 7 2 9 8 S 3 4 1 6 10
6 4 4 8 >, F, 10 6 2 9 1
7 3 7 9 8 5 6 2 1 4 10
8 4 6 A 5 8 2 9 10 1 3
9 7 3 9 8 5 6 2 1 4 10
10 7 3 9 8 5 6 2 1 4 10

After that, caech of/two-selected chromosomes is compared between a
chromosome and a neighboring solution with two objective functions by previous
acceptance rules. If chromosome 1.2 and\L3 are accepted rather than chromosome 2
and 3 by those acceptanceirules, Table 5:22 is input to the procedure of evaluation

population.

5.5.2 Exemplified results

Dataof 100 strings at the first generation aand the Pareto-optimal
frontier of 100 strings at Max. 100 generations for the displacement rule are shown in
Figure 5.9. Figure 5.10 illustrates 100 strings at the first generation for only five
workers on the final Pareto-optimal frontier. Experimental results of final task
sequence; front and back task/position; DOW, 'WT and mumber of workers are the

section of answers below.

Example
Solution: Run Memetic Algorithms at (10 tasks, 100 strings, 10 cycle time, 100 gen.,

0.7 Pc, 0.3 Py, PL=10.8,35% APT =1 second)

Answers:

WT_DOW =
1.0535 17.3200 5.0000
1.2978 16.1800 5.0000
1.3736 15.6600 5.0000




1.5384
1.5688
1.6733
2.0702
2.1257
2.2500
2.4495
3.2249
4.1244
4.1778
43331
4.4059
5.3184
5.5782
5.6121
6.3836

task seq =
1 3

2
3
3
4
8
5
9

O© = 0 O = = =

5

task pos=
2 1

1 1
2 1
2 1

ARRIN T

14.8400 5.0000
14.5200 5.0000
14.0000 5.0000
12.5000 5.0000
11.6600 5.0000
10.8400 5.0000
10.0000 5.0000
9.4200
9.1600
8.5800
7.4200
6.8400
6.0000
5.4200
4.8400
4.0000

1

2
a

1IN

2
842 6 3 4 10‘5

310 64

10 4

N = N =

ITNYINT
1IN

114
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2 1 1 1 1 1 2 1 1 1
21 1 2 1 1 1 1 1 1
11 1 2 1 1 1 1 1 1
2 2 1 1 1 1 1 2 1 1
2 1 1 1 1 1 1 1 1 1
11 1 1 2 2 1 1 1 1
11 1 2 2 1 1 1 1 1

define_station =
1

e e e e e e T e T = S
e e e e e e T W = S
N N O R NS R S S S S ("I S I S
O R S R S S I O S S "I\ N \S)

WT_DOW_J =
10535 173200 5,00
12978 161500 510000
13736

lwﬁﬁmﬁﬁwswswswnﬁ

%ﬁ‘@%éﬁ%mmmmaa

2.1257 11.6600 5.0000
2.2500 10.8400 5.0000
2.4495 10.0000 5.0000
3.2249 9.4200 5.0000

Elapsed time is 1770.545626 seconds.
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Scatterplot of DOW vs WT at 100 strings & 100 gen. (Pc=0.7, Pm=0.3, P1=0.8) for Displacement

17 5 i Variable

—@— WT5_100gen * DOW5_100gen
—ll— WT6_100gen * DOW6_100gen
- WT7_100gen * DOW7_100gen
WT8_100gen * DOW8_100gen
—» - WT5_1gen * DOWS5_1gen
—— WT6_1gen * DOW6_1gen
—W— WT7_1gen * DOW7_1gen
—=~— WT_100strings_1gen * DOW_100strings_1gen

15.04

12.54

10.04

WT (seconds)

7.54

5.0+

Figure 5.9 DOWs. WT for5. 6 and 100 strings and 1 gen.
DE=0. 4P 3, Pi=0.8) " compared with’ DOW vs. WT for 5, 6, 7

and 8

Scatterplot of DOW vs WT at 100 st¥ii Pc , Pm=0.3, P1=0.8) for displacement

17.5+
5 5.100gen * DOW5_100gen

Ogen * DOW6_100gen
OW?7_100gen
15.0- Nzt W8 /100gen

WT (seconds)

-,
=
oo
oD

s ¥ ¢ S Y,
Q‘I&WW NI AN T1INEIN L A

1 2 3 4 5 6 7
DOW (seconds)

Figure 5.10 DOW vs. WT for 5 workers at 51 selected strings from first 100 strings
and 1 gen. ‘compared with’ DOW vs. WT for 5, 6, 7 and 8 workers
at 100 strings and 100 gen. (Pc=0.7,Pm=0.3,P1=0.8)
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5.6 COINcidence Algorithm (COIN)

Wattanapornprom et al. (2009) developed a new effective evolutionary
algorithm called combinatorial optimization with coincidence (COIN) originally
aiming for solving traveling salesman problems. The idea is that most well-known
algorithms such as Genetic Algorithm (GA) searches for good solutions by sampling
through crossover and mutation operations without much exploitation of the internal
structure of good solution strings. This may not only generate large number of
inefficient solutions dissipated over the soluon.space but also consume long CPU
time. In contrast, COIN-considers the internal-strueture of good solution strings and
memorizes paths that could lead 0 good solutions. COIN replaces high computation
time of crossover and mutagion operationls of GA and employs joint probability matrix
as a means to generate neighberhood solﬁt%ons. It prioritizes the selection of the paths
with higher chances ofmoving towards gépld solutions.

Apart from traditional learning from:good solutions, COIN allows learning from
below average solutions as well, "Any cg),lnc1dence found in a situation can be
statistically described Whether the 51tuat1(;n,,1s good or bad. Most traditional
algorithms always discard the bad solutlons without utilizing any information
associated with them, In contrast COIN learns from the coiricidence found in the bad
solutions and uses thi*s"iﬁ'ﬁ)r?niti’dﬁ"to avoid such situations to recurrent; meanwhile,
experiences from good coincidences are also used to construct better solutions in
Figure 5.11. Consequétltly, the chances that the paths beihg parts of the bad solutions
are always uSediinl thel nEw {générations «arellesséned.y This dowers the number of

solutions to be,considered and hence increases the convergence Speed.

709 4
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Figure 5.11 Good and bad solutions
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COIN uses a joint probability matrix (generator) to create the population. The
generator is initialized so that it can generate a random tree with equal probability for
any configuration. The population is evaluated in the same way as traditional
evolutionary algorithms. However, COIN uses both good and bad solutions to update
the generator. Initially, COIN searches from a fully connected tree and then
incrementally strengthening or weakening the connections. As generations pass by,
the probabilities of selecting certain paths are increased or decreased depending on the
incidences found in the good or bad solutions. The procedure of COINcidence

algorithm is described in Figure 5.12 and canbestated as follows.

1. To initialize the joint probabilitj; matrix (generator);
2. To generate the populationusing the generator;

3. To evaluate thespopulation;

4. To rank the spopulation (Goldbér_g’s Pareto ranking) and make diversity

preservation;

#

[
18

5. To select the candidates-acecording te_—ti;({'b options: (a) good solution selection
(select the solutions in the first rank of the current Pareto frontier), and (b) bad

solution selection (sclect-the-solutions-in-the-last-rank-of-the current Pareto frontier);

6. For each joint.probability matrix H(x,x;), to adjust the generator according to
the reward and punishment-scheme.as Eq.(5.1);

3

x @+ =x; (O {r, @+ —p; ;t+D}+

=
(n—1-np;) -1

wher@ x, /5 the glément (,)of joint probability matrix ‘H(x, /x;)k /= the learning
coefficient, 7, ; = the number of coincidences (x;,x;) found in the good solutions, p, ;

> TiLj i

= the number of coincidences (x;,x;)found in the bad solutions, : = generation number,

1

n = the size of the problem, and np, = the number of the direct predecessors of task ; ;

7. To apply a strategy to maintain elitist solutions in the population, and then

repeat the step 2 until the terminating condition is met.

L X+ )=+ DY,

—

)
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5.6.1 Numerical example

The 10-task problem of the single product with 10-minute cycle time
originated by Miltenburg (2001a) is used to elaborate the algorithm of COIN. The
manual task times are two time units for tasks 3, 4, 8, 9, 10, three time units for tasks
1, 7, and four time units for tasks 2, 5, 6. The precedence constraints are (3,1), (5,10),
and (6,9). The fixed U-shaped layout of ‘the side, front, and back is 2, 4, and 4
respectively. The walking time from one fask to another task is five percent of
average processing time, Since the totaltasks time is 28, 0.05*%(28/10) = 0.14. As

a result, the walking time matwiX of 5% APT for each clement (x, ;) is shown in Table

5.23. The task assignmengtule is randomized. Learning probability (k)and reward or

punishment values arc assumed to be 0:1: Population size is ten chromosomes and

two generations are described stop by step as follows.

Table 323 Thewalking tine matrix of 5% APT

xtox; | 1 [ 2 F3404 |5 e | 7| 8 | 9 |10
1000|014 0281042050053 | 0.50 | 0.40 | 031 | 0.28
0.14 [0.00 | 0.14 | 0.28 | 0.36 | 0.41 [0.40 | 031 | 0.28 | 031
0.28 {0014 | 0.00 | 0.14 | 022 | 0.30 | 0.31/| 0.28 | 0.31 | 0.40
042 | 0.28 | 0.14 | 0.00{ 0.10 | 0.22 | 0.28 | 0.31 | 0.40 | 0.50
0.50 | 0.36' |20.22 | 0.10 | 0.00 | 0.14 | 0.22 | 0.30 | 0.41 | 0.53
0'53/].041 | 0.30 | 0.22] 0.14 10.00 | 0.10 | 0222 | 0.36 | 0.50
050 | 0.40 | 0.31 | 0,28 | 022 [ 0.10 | 0.00 | 0.14_| 0.28 | 0.42
0407 031510284 10139 | 6.5077)0229/0.14]|0.06)( 0.14 | 0.28
0.31 | 028 | 0.31 | 0.40 | 0.41 | 0.36 | 0.28 | 0.14 | 0.00 | 0.14
0.28 | 0.31 | 0.40 | 0.50 | 0.53 | 0.50 | 0.42 | 0.28 | 0.14 | 0.00

O | N ||| AW N

[
<

5.6.1.1 Joint probability matrix initialization

The number of tasks to be considered is 10. Therefore, the

dimension of From-To joint probability matrix H(x;,x;) is the matrix 10x10. The
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value of each element ( x,,;) in the matrix is the probability of selecting task j after

task 7. In order to incorporate some precedence relationship into the matrix, in each
row the element which belongs to the direct predecessor of the task is set to 0 to
prohibit producing such a task before its direct predecessor. For example, the direct

predecessor of task 1 is task 3; hence, x,,,= 0. Also, x,,,= 0, since it cannot move

within itself. Initially, the value of the remaining elements in the first row of the

matrix are equal to 1/(n—1-np,)=1/(10-1-1)=0.125. Continuing this computation

for all the remaining tasks (rows), the initial joint probability matrix is shown in Table
5.24.

Table'5 24 Jnitial joint probability matrix

Task 1 2 3 4 5 6 7 8 9 10

1 0.0000 | 0.125040.0000 | 0:1250 0.1250 0.1250 | 0.1250 | 0.1250 | 0.1250 | 0.1250

2 0.1111 | 0.0000 | 01141 [fO. 4111 [-0. 4117 0111 | 01111 | 0.1111 | 0.1111 | 0.1111

3 0.1111 | 0.111T | 0.0000 | .0.1111 0.]11_1_ (0.1111 | 0.1T11 | 0.1111 | O.1111 | 0.1111

4 0.1111 | 0.1111 (70.1141 | 0.0000 | O.111L | 0.1111 | 0.1111 | 0.1111 | O.1111 | 0.1111

5 0.1111 | 0.1111 | 011114 0311 | 00000 [ 01111 | 0.1111 | 0.1111 | 0.1111 | 0.1111

6 0.1111 | 0.1111 | 0.111= 04141 | -0 1L T (00000 | 0.1111 | 0.1111 | 0.1111 | 0.1111

7 0.1111 | 01111 {01111 | 01111 | 0.1111 0.1111 0.0000°4 0.1111 | 0.1111 | 0.1111

8 0.1111 | 0.ITLL, [ 0.1111 | O.1111 | O.1111 | 0.1111 | 0.1t1T | 0.0000 | 0.1111 | 0.1111

9 0.1250 | 0.1250" | 0.1250 | 0.1250 | 0.1250 | 0.0000 | 0.1250 | 0.1250 | 0.0000 | 0.1250

10 0.1250.1.0.1250 [ 0.1250_|.0.1250 | 0.00007| 0.1250 | 0.1250_| 0.1250 | 0.1250 | 0.0000

5.6.1.2 Population generation

The order ‘representation scheme is used to create-chromosomes.
The task order list in a chromosome is created by moving forward from one task to
another task. If more than one possible task can be selected, the probability of
selecting any task will depend on its value on the joint probability matrix. In each
generation, the first task (or the first order pair) is selected from the current elitist of
the first Pareto-ranked chromosome(s). The same probability of selection will be

randomized. For example, task 7 is randomly selected for the first position. After
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selecting the row of task 7, the set of eligible tasks comprises tasks 1 to 6 and 8 to 10.
From row 7 of the joint probability matrix, a task is randomly selected according to its

probability of selection (p,, =0.1111, for;=1,2,3,4,5,6,8,9,10). Supposing that

task 6 is selected, the new set of eligible tasks becomes tasks 1 to 5 and 8 to 10. This
mechanism is continued as long as all positions in the task order list are filled in and
the task order list of L,={7,6,2,3,1,4,8,9,5,10} is obtained. As the population size is
assumed to be 10, the nine remaining initial population consists of chromosomes
L~={8,6,5,3,1,9,10,2,4,7}, L;={5,4.6,8,93.2,1,7,10}, L,~{8,5,7,2,104,6,3.9,1}, Ls={3,
1,7,6,8,549,10,2}, Ls~{3,74,8,5,6,1,10,2.9}, +L—{53,2,6,4,109,1,8,7}, Ls={4,8,7.5,
10,6,3,2,1,9}, L—{2.,4,7,.8,6,359,5,10,1 }sand Lg=125356,8,4,1,7,5,10,9}.

5.6.1.3*Population/evaluation

Toffind ténfative tasks to be allocated on the U-line, all tasks
have to be searched through the task T(;rder list in both forward and backward
directions. The tentative task on forwardfli_)r backward searching is found first. The
task has its task time and walking time tog the next task less than or equal to the
remaining worker cycle time. If both forwéf:fl_fquld backward tentative tasks are found,
either one is selected randomly. If:any task—from the task order list has not yet being
allocated, a new warkstation is opened. Th'i"s;"ii'r*(-)_cédure is repeated for the remaining
task order list to obfain-the-number-of workers-(or-workStations), walking time and
worker load distribution for each of them. An example chromosome (L;) is shown in
Table 5.25. The deviation of operation times of workers'is calculated from Eq. (4.2)

with C, =728, 9.46,,6.46,and,, 6:28 srespectiyelys, Thus, it is.equal to 2.918 time
units. The walking times of 0.14,0:14, 0.14, 0.14,70.10, 0.22, 0.10, 0.10, 0.14, 0.22,

0.14, and 0,14 are summed and the total walking*time is equal to1.72 time units.
Having obtained feasible worker,allocations three gbjectives have to be evaluated for
each chromosome. Table 5.26 indicates that all chromosomes give the same number
of workstations; therefore, all of them are eligible for Pareto ranking based on
Deviation of Operation times of Workers (DOW) and Walking Time (WT) objectives.
The Pareto ranking technique proposed by Goldberg (Deb et al., 2002) is used to
classify the population into non-dominated frontiers with a dummy fitness value that

lower value is better. They are assigned to each chromosome in Figure 5.13.



Table 5.25 An example of worker allocation in a single U-line
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Task assignment on (€] “4) Q) 5)-3)-4)

w a U-line

0 Task Task (€Y} 2) Total WT | Given | Idle time
r | considered | considered M+ Q) to cycle (time

k Front Back Task WT | Task | Cycletime | Origin | time unit)

e graph graph (time | time (time unit) (time

r unit) | (time unit)

unit)

1 7 -10 7 - 3 3 - 10 7

1 6 - 10 6 0.14 4 4.14 [7.14] 0.14 2.72
2 2 -10 2 - 4 4 - 10 6

2 3 -10 3 0.14 3 2.14 [6.14] 0.14 3.72
2 1 - 10 1 0.10 3 3.10 [9.24] 0.22 0.54
3 4 -10 4 - D 2 - 10 8

3 8 - 10 8 0.10 ) 2.10[4.10] 0.10 5.80
3 9 - 10 9 0.14 2 2.14.[6.24] 0.22 3.54
4 5 - 10 S | 4 4 - 10 6

4 - - 10 10.7}.0.14 %, 2.1476.14] 0.14 3.72

Table 5.26 Objective functions of ezlch chromosome from the first generation

i -

Chromosome | Number of DOW. |+ WT Paret.o Crowding Distance
Number workers 4 Frontier
L5 4 2.8608 {31.7373 1 Infinite
L1 4 29179 11,7197 1 Infinite
L10 4 & 71 2.8608'| 17783 2 Infinite
L2* 4 ,3.1136. 11,7197 2 Infinite
L3* 4 31136 1719]J 2 Infinite
L8 4 296051 17960 | 3 Infinite
L7 4 e A5A007 AMSTNAR 4 Infinite
LA4** 4 3.6619 | 1.9593 5 Infinite
Lo** | 4 3:6619°[ 19593 5 Infinite
L6 4 4.0981 | 2.2400 6 Infinite
Scatterplot of Pareto frontier
2.3
L6
Frontier#6

2.2
% Z.IW
é 2.0
E L4,L9
2 Frontier#5
g 1.9 u

Frontier#4
e — qL10 ;g
'fQ#ZrL L2,L3
1.74#11  #1 ' #2 ' ' ' ' '
3.00 3.25 3.50 3.75 4.00 4,25
Dev iation of Operation times of Workers (seconds)

Figure 5.13 Pareto frontier of each chromosome
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5.6.1.4 Diversity preservation

COIN employs a crowding distance approach (Deb et al., 2002)
to generate a diversified population uniformly spread over the Pareto frontier and
avoids a genetic drift phenomenon (a few clusters of populations being formed in the
solution space). The salient characteristic of this approach is that there is no need to
define any parameter in calculating a measure of population density around a solution.
The crowding distances computed for all solutions are infinite since at least two
solutions are found for each frontier. Althoughi-both objectives of the chromosome L,
are the same as L3, and L, arc the samé-l as Lo, task sequence of each chromosome is
different.

5.6.1.5 Solution selection” «

Having defined thé} Pareto frontier, the good solution is the
chromosome located on the first Pareto frdﬁg,ie,r_. (dummy fitness = 1) and there is only
one chromosome by the multiplieation ofﬁr_eward value and population sizes, i.e.
0.1*10 = 1 solution. However,ithere are two é@}lutions (L; and Ls) in the first rank.
One of both is randomized,r_i:_er. Lis, = {3,_1?_7,_;,_(3,_8_,5,4,9,10,2}. In contrast, the bad
solution is one located on therrlast Pareto fféntier (dummy fitness = 6) and there is
only one chromosameé by the multiplication of punishment Vélue and population sizes,
ie. 0.1%10 =1, L~{3,7.4.8,5,6,1,10,2,9}

5.6.1.6 Joint probability matrix adjustment

The adjustment of the jointsprobability matrix/is crucial to the

perfofthance of COIN. Reward will be given to x,,; if the order pair (7, /) is in the

good solution to increase the chance of selection in the next round. For example, the
first order pair (3,1) is the good solution of the chromosome Ls = {3,1,7,6,8,
5,4,9,10,2}. Assumed that k =0.1; therefore, the value of x;,; where i=3and j=1is
increased by k/(n—1-np;)= 0.1/(10-1-0)=0.0111. The updated value of x,,, of

the order pair (3,1) becomes 0.1111 +0.0111 = 0.1222. The values of the other order

pairs located in the same row of the order pair (3,1) is reduced by
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k/(n-1-np,)* = 0.1/(10-~1-0)>=0.1/81=0.0012 For example, the value X5,
where i=3 and j=1 is 0.1222 -0.0012 = 0.121. For the other positions of j in the

third row, each adjusted joint probability is 0.1111 - 0.0012 = 0.1099.Previously, the

summation of probability of x,,, is equal to one. Continuing this procedure to all

order pairs located in the good solution; the revised joint probability matrix is

obtained in Table 5.27.

Table 5.27 Revised joint probab litymatrix (good solution)

Task | 1 2 3 4 |5 6 7 8 9 10
0.0000 | 0.1238 | 0.0000.{-0:1238 | 0.1238 [ 0.1238 | 0.1349 | 0.1238 | 0.1238 | 0.1238
0.1111 | 0.0000 | 0.1 LLi=t 0T LL | 0.1001 [ 0.1411 [ 01111 [ 0.1111 [ 0.1111 [ 0.1111
0.1210 | 0.1099410.0000°] 0:1099 | 01099 | 0.1099 [ 0:1099 | 0.1099 | 0.1099 | 0.1099
0.1099 | 0.1099 | 010991 0:0000 |-0:1099 | 0.1099 | 0.1099 | 0.1099 | 0.1210 | 0.1099
0.1099 | 0.1099 | 010994 011210 | 0.0000 | 0.1099 |.0.1099 | 0.1099 | 0.1099 | 0.1099
0.1099 | 0.1099 [40.1099 |10.1099 | 0.1099 | 0.0000 | 0.1099 | 0.1210 | 0.1099 | 0.1099
0.1099 | 0.1099 | 04099 0:1099 | 0.1099 | 0.1210 | 0.0000 | 0.1099 | 0.1099 | 0.1099
0.1099 | 0.1099 [0:1099 | 0.1099 | 0.1210 | 0:1099 | 0.1099 | 0.0000 | 0.1099 | 0.1099
0.1238 | 0.1238 | 0.1238 | 0.1238 | 0.1238 [0.0000 | 0.1238 | 0.1238 | 0.0000 | 0.1349
0.1238 | 0.1349 | 01238 | 0.1238:| 0.0000 | 0.1238 | 0.1238 | 0.1238 | 0.1238 | 0.0000

=
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On the contrary, if the order pair (7, /) is in the bad solution,

X5 will be penalized to reduce the ‘chance of selection in the next round. For

example, the first order pair (3,7) is in the bad solution of the chromosome
L~1{3,7,4,8,5,6,1,10,2,9}. Assuming that &=0.1; hence, the value of x,,, where i=3
and j=7 is decreased by k/(n—1-np,)=0.1/10—1-0)=0.0111. The updated
value of x;, [ of thejorder pair|(3,7), which is later adjusted from Table 5.27 becomes
0.1099 — 0.0111 = 0.0988. The values of the otheworder pairs locatéd/in the same row
of the order| pair’/(3,7) fsly incréased | by k&/(n+1—np,)’=0.1/(10-1-0)* =
0.1/81=0.0012.For example, the value x,, where i=3and ;=7 is 0.0988 +

0.0012 = 0.1000. For the position of j=1 in the 3" row, the adjusted joint
probability is 0.1210 + 0.0012 = 0.1222. For the other positions of j in the third row,
each adjusted joint probability is 0.1099 +0.0012=0.1111. Continuing this

procedure to all order pairs located in the bad solution, the revised joint probability

matrix is obtained in Table 5.28.
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Table 5.28 Revised joint probability matrix (bad solution)

Task 1 2 3 4 5 6 7 8 9 10

0.0000 | 0.1250 | 0.0000 | 0.1250 | 0.1250 | 0.1250 | 0.1361 | 0.1250 | 0.1250 | 0.1139
0.1123 | 0.0000 | 0.1123 | 0.1123 | 0.1123 | 0.1123 | 0.1123 | 0.1123 | 0.1012 | 0.1123
0.1222 | 0.1111 | 0.0000 | 0.1111 | 0.1111 | 0.1111 | 0.1000 | 0.1111 | 0.1111 | 0.1111
0.1111 | 0.1111 | 0.1111 | 0.0000 | 0.1111 | 0.1111 | 0.1111 | 0.1000 | 0.1222 | 0.1111
0.1111 | 0.1111 | 0.1111 | 0.1222 | 0.0000 | 0.1000 | 0.1111 | 0.1111 | 0.1111 | 0.1111
0.1000 | 0.1111 | 0.1111 | 0.1111 } Q.E1L1 | 0.0000 | 0.1111 | 0.1222 | 0.1111 | 0.1111
0.1111 | 0.1111 | 0.1111 | 0.1000 | 0.1 LT L#| 0.1222 | 0.0000 | 0.1111 | 0.1111 | 0.1111
0.1111 | 0.1111 | 0.1111 | Q. 1111 | O.F LT 01111 | 0.1111 | 0.0000 | 0.1111 | 0.1111
0.1238 | 0.1238 | 0.1238 | 0.1238 | 0.12384°0.0000 | 0.1238 | 0.1238 | 0.0000 | 0.1349
0.1250 | 0.1250 | 01250 | 0.1250 | 0.0000.] 0.1250 " 0.1250 | 0.1250 | 0.1250 | 0.0000
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5.6.1.7°Elitism

Tot'keep jthe best solutions found and to survive in the next
generation, COIN uses an external list vx;ith,r.the same size as the population size to
store elitist solutions. All non-dominated élo_lutions created in the previous population
are combined with the cufrent elitist solutidii;é. -.Goldberg’s Pareto ranking technique is
used to classify the combined population 1nt6 several non-dominated frontiers. Only
the solutions in the first non-dominated frorft'r&fare filled in the new elitist list. If the
number of solutions,in the first hon—domina;[éd_ frontier.is less than or equal to the size
of the elitist list,  the-new-eltist-list-wili-contam-aili-Solutions of the first non-
dominated frontier. Otherwise, tournament selection for Pareto domination (Horn et
al., 1994) is exercised. Two solutions from the first non-dominated solutions are
randomly selected and then the.solution, with larger crowding-distance measure and
not being selected"before (s added ' to thetnew ‘elitist list. 'THis approach not only
ensures that all solutions in the elitist list are mon-dominated solutions but also
promboting diversity of the solutions: According to our example, the\first-ranked elitist
list from the first generation is 1,={7,6,2,3,1,4,8,9,5,10} and Ls={3,1,7,6,8,5,4,9,10,
2}. From Table 5.29, the task order list of the population size is L;={7,6,2,3,1,4,89,5,10},
L;={82,75,1043,6,19}, L;~{84,72,5,639,1,10}, L;~{3,5,74,2,10,1,689}, Li5~{4,3,5,7,1,10,6,
92,8}, Li={54,32,10,7,69,1 8}, L;~={83,2,1,54,7,10,69}, L;5~{6,5,4,29,7.8,103,1}, L;5={7.5,8,3,
6,109,124}, and L,~{2,5,3,1,8,6,9,104,7}. The solutions in the current first non-dominated
frontier is L;~{7,6,23,1489,5,10}, L;={84,725639,1,10}, L;~{43,5,7,1,10,692.8} and
Lx={2,53,1,869,104,7}. When the number of the combined solutions is less than the
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size of the elitist list, both solutions are added to the new elitist. Hence, five good
solutions of current elitist list are L; or L;~{7,6,2,3,1,4.89,5,10}, L={3,1,7,6,8,54.9,102},
L;7={84,7,2,56,39,1,10}, L;5={4,3.5,7,1,10,6,9,2,8} and L,~{2,5,3,1,8,69,10,4,7}.

Table 5.29 Objective functions of each chromosome from the second generation

Chromosome Number Pareto | Crowding
Number of DOW wT Frontier | Distance
workers

L15 4 2.8338 1.8193 1 Infinite
L13 4 2.9090 323 1 2.0000
L11* 4 29179 gur AHET 1 Infinite
L20* 4 2.9179 L7197 1 Infinite
L18 4 3.6878 1.9366 2 Infinite
L16** 4 40792 1.9593 3 Infinite
L17** 4 4.0792 1.9593 3 Infinite
L12%** 4 4 0898 AR5 4 Infinite
L14%%* 4 40853 | 119593 4 Infinite
L]9*** 4 4.0853 | 1.9593 4 Infinite

5.6.1.8 Worker allocation =+

Finally, /the results . offy 10-task worker allocation of a
chromosome L; or L;; in a single U-shapep_i ?gss_embly line are exemplified in Table
5.30 and Figure 5.14jand 5.15. Previously, its d;tailed calcuilation is clearly described
in Table 5.25.

Table 5.30 Final exemplified results of Miltenburg’s 10-task worker allocation

problem for'a chromosomesL; on'L}

Travel

Chromosome | Worker Mgnual distance I‘dle Allqggted tasks

time | tithe 3

time

lorll 1 7 0.14 272 | 7@3),6(#)
2 9 0.24 054 124),312),1(3)
3 6 0.24 354 14(2),8(1),9(2)

4 6 0.14 372 | 5(@),10(2)
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Figure 5.15 Work load rout‘ ' éj} ation of four workers: solid line =

manual time; ways Gyine "..f“‘ king time; dashed line = idle time

5.6.2 Exemy
A
Data of 1100, strings at thegfirst generation and the Pareto-optimal

ot of 105} lo] i b e MR Ak d ERbeens e v shown i

Figure 5.16. Figure 5.17 111ustrates 100 strings at the first generation for only five

AN TR e

section of answers below.

Example
Solution: Run COINcidence Algorithm at (10 tasks, 100 strings, 10 cycle time, 100
gen., k=0.1, 35% APT =1 second)
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Answers:

WT _DOW =

1.0535 17.3200 5.0000

1.2978 16.1800 5.0000

1.3736 15.6600 5.0000

1.5384 14.8400 5.0000

1.5688 14.5200 5.0000

1.6733 14.0000 5.0000

2.0702 12.5000

2.1257 11.6600

22500 10.8400

2.4495 10.0000

3.6878 9.7100

42970  9.3200

4.5334  6.8400

task seq =

1 4 7 2

3 2 9 4 7 6

8§ 10 1 4 7

410 1 849 3 7

1 4 8 277

8 9 10 7 2' 3 4

2 3 9 8 5407 1 4 6w
;1 AULANENTNYINT
§ 10 sU3 2 4 6 9 1
R IRIN T & 1INY1AY
ARTANT T8 T
task pos=

21 1 1 2 1 2 1 1
11 2 1 1 1 1 2 1
1 2 2 1 1 1 1 2 1
1 2 2 1 2 1 1 1 1



—_ = = N = = DN
—_ = NN =N

define_station =

11 2 2
11 2 2
11 2 2
11 2 2
11 2 2
11 2 2
11 2 2
11 2 2
11 2 2
11 2 2
11 2 2

WT_DOW_J =

1.3736
1.5384

2.07%2
2.1257
2.2500
2.4495
3.6878

Elapsed time is 506.407990 seconds.

O S SO NG TR NG T
e e e T e T e S =

1
1
1
1
1
1
1

12.5000
11.6600
10.8400
10.0000

9.7100

Y
1.0535 17.3200 5.0000
12978 16.1800 5.0000

ih

5.0000
5.0000
5.0000
5.0000
5.0000

HANYNITNEINT

RIS U INYA Y
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Scatterplot of WT_100gen_5-6 workers vs DOW_100gen_5-6 workers_Displacement COIN

18 Variable
—@— WT5_100gen * DOWS5_100gen
—— WT6_100gen * DO W6_100gen
161
~ 147
()]
©
c
8
(] 12_
2
E 10_
n
\
8 \
6_ T
4 5
Figure 5.16 DOW v trings and 100 gen. (k=0.1)
Scatterplot of WT'vs DOV th 100 gen._Displacement
18 ) Variable
—@— WT5_100gen * DOWS5_100gen
—B— WT6_100gen * DOW6_100gen
16 047 WT586_1gen * DOWS58&6_1gen
=~ 147
B ¢
2 1 =\
8 ¢ o 9 of I
.| AUY I NN
10+ , : - 8
4 P R /?
) =" \ /
;  ad
o
1 2 3 4 5
DOW (seconds)

Figure 5.17 DOW vs. WT for 5 and 6 workers at 100 strings and 1 gen. (k=0.1)
‘compared with” DOW vs. WT for 5 and 6 workers at 100 strings and
100 gen. (k=0.1)
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5.7 Particle Swarm Optimization with Negative Knowledge

(PSONK)

In this section, particle swarm optimization with negative knowledge for
solving multi-objective optimization is proposed. It contributes mainly to avoid
producing bad solutions. The mechanism of the PSONK algorithm (Sirovetnukul and
Chutima, 2010a) is illustrated in Figure 5.18 and also described by making an
illustrative example in Section 5.6.1. [t begins by initializing the joint probability
matrix and first walk matrix. Then, velocityis'nosmalized to be the probability value
into the velocity matrix.«Goeed-and bad solutions-are rewarded and punished in the
updated joint probability matsx with %, which is the cocfficient of the learning step.
Good solutions from-the fisst rank of Pareto frontier are kept in the elitist list of each
generation. The generating evaluation and updating steps are repeated until a terminated

condition is met.

Initialize the matrices of first walk, joint probability,
and yelocity for each particle

-
o

Generate.a number of particles in each swarm
and a number of gwarms

Evaluate obj ectivé_functions for
each particle of all swarms
[
Compute-the Local best (L best) and Compute the Global best (G best) and

Local worst (L worst) for each particle | | Global worst (G worst) of all swarms
for Dl = Pli_Xli for D2: Pgl_Xgl

Store non-dominated solutions in

the elitist list
[

Compute the velocity-from
Vo= w Vo f ciriDy #7¢ 13Dy

Update the velocity matrix, joint
probability matrix, and first walk matrix

Preserve elitist strategy
(Store best non-
dominated solutions)

Figure 5.18 Structure of PSONK algorithm
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Before starting with PSONK, the representative knowledge of multiobjective
PSO that searches only for good solutions is proved by the experimental pilot runs.
For instance by 45 tasks at the cycle time of 110 seconds, the results of solutions as
shown in Figure 5.19 concludes that the multiobjective PSO is less efficiency than
PSONK or PSONK increases the convergence speed than PSO. As a result, the novel
DPSO algorithm namely PSONK is operated in the following section.

500 -

450 -

400 -

350 -

300 -

WT (seconds)

250 -

200 -

Figure 5.19 PSIIOxith reward only vs. PSONK ‘ t?’eward and punishment
5.7.1 Numjr'ic E
¢ o Q

S LTI LT A« e e
Jackson (19 -se z],e ime bviously ‘exe fied to elaborate the
algorithm of PSONK at the first cheration ste step. The precédéence diagram of
v oA e 35 01 14 1121716

9

2 2 6 5
m m
O—8—U

Figure 5.20 Jackson’s 11-task precedence diagram
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5.7.1.1 First walk and joint probability matrices

First, the dimension of the From-To joint probability matrix is
initiated at 11x11. The value of each element from row to column in the matrix is the
probability of selecting task at the column after task at the row. Except for the zero
diagonal values that cannot move within themselves, the rest of From-To joint
probability values are equal to 1/(11-1)=0.1. To randomize the first task in each
particle, the dimension of the first walk probability matrix is set off at 1x11. Its values
are equally distributed at 1/11=0.0909., The imtial velocity matrix is launched at a

zero matrix of 11x11.
5.7.1.2 Fask sequence

Secondly, two swar};ls,that arc that entire collection of particles
and four particles offcach swarm are :Ie_xempliﬁed. Each of eight particles are
randomized in the first task from the first w’alk probability matrix and the rest of the
tasks (10 tasks) are selected from the F'xgm—To joint probability matrix by
incorporating the precedence relationship to _ﬁr&ﬁibit producing a task before its direct
predecessor. After that, an eight feasible tas-lg'-s:é—ci]_u'ence, named eight particles, is bent
in the shape of Uy tierfrom the first swarm: P = 11:54,2,6,8,3,7,109,11}, P;, =
{1,5,2,4,3,7,9,6,8,10,11%, P;3= {1,5,3.2.4.7,6,8,10,9,11}, and P, = {1,2,6,3,8,5,10,4,7,9,11};
and from the second swarm: P»; = {1,2,3,5,4,7,9,6,8,10,11}, P»,= {1,4,2,5,6,8,3,10,7,9,11}, P»;
= {1,5,3,2,6,8,457,9510, 11 }; and Ros= {1,52.6,8:10,3,47.9, L1}

5.7.1.3 Fitness evaluation

Thirdly, to evaluate the objective or fitness functions, tasks
allocated on the U-line have to be searched through both forward and backward
directions randomly and assigned to a worker in each loop with the shortest path and
the summation of task time and walking time that is less than and equal to given cycle
time. From Table 4.14, reasonable walking time from a location to another location is

determined by 0.42 (Sirovetnukul and Chutima, 2010b).
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5.7.1.4 Non-dominated sorting

Fourthly, non-dominated sorting in Table I'V is computed to sort

the first rank for the /best and the last rank for the /worst in each swarm.

Table 5.31 Non-dominated sorting for local particles

Particle | DOW | WT | Rank | Crowding distance | Local
14 2.7580 | 8.0033 1 Infinity [best
13 3.1125 [.7.5605 1 1.1804 lbest
12 3.2284904.7940 | 1 1.6822 [best
11 4.6274..4.5479 | 1 Infinity [best
14 2.75807"8.0033 1 Infinity Iworst
13 3.1 L2 L5605 1 1.1804 Iworst
12 322841 447940 | \ 1 1.6822 Iworst
11 4607744 USATO 2 1 Infinity Iworst
21 3.3006 F45479 1 414 Infinity [best
24 346758 43019 2.0000 [best
22 4.2002 F395401f -7 & Infinite Ibest

2 Infinity Iworst

23 36067 | 4.8959

In MOPSO;-the glol-)‘é:ﬂfchtor controls the entire swarm to the
global Pareto frontier. For the selection of the éfobal best and worst, four particles of
each of two swarms are combined to sort non-dominated solutions in Table 5.32. The

first and last ranks are-icpiesentative-foi-the-gbest-and-gworst.

Table5.32 Non-dominated sorting for global particles

Pasticle | DOW ! |"/WT | |JRank | 'Crowding distance | Global
4 (14)+ 2.7580'| 8.0033 | "1 Infinity gbest
3(13) [3.1125]7.5605 | 1 1.1187 gbest
212)w,| 3:2284 1+4.7940 | 4 1 0:875,1 ghest
5(21),7 33016 | 4.5479 |1 04316 ghest
8(24) |3.6755[4.3019| 1 0.7697 gbest
6 (22) |4.2002 | 3.9540 1 Infinity gbest
7(23) |3.6067 | 4.8959 | 2 Infinity gworst
1(11) 14.6274 145479 | 2 Infinity gworst

Only the solutions at the first rank of gbest are stored in the

new elitist list to be survived in the next generation.
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5.7.1.5 Velocity matrix

In the fifth step, the velocity matrix is computed from Eq. (5.2).
V(,j))=wxV(i-1,j)+cxrxD +c xrxD, (5.2)

where i is the generation, j is the swarm, D; is the updated local matrix, and D; is the
updated global matrix. For the first swarm, the velocity matrix of zero is improved
with each of the particles of /best, /worst, gbest, and gworst. Reward and punishment
are given to the order pair of tasks with learning step probability (7) assumed to be
0.1. An order pair of tasks in each of all particles is added by the ratio of learning
probability (») divided-by (numbcr of tasks - 2). The remaining tasks of the particle
are reduced by 7/(t-2) #Bacheof ihe two swarms is updated and exemplified in the first

!
swarm in Table 5.33. Later, anotherswarm is done on the same procedure.

]

Table 583 fThe Velocity;}matrix of a sample swarm

From/To 1 2 3 4 Siedbgl Ap / 8 9 10 11
1 0.000] 0.020] =0.005] 0.007_: 10:007|,-0.005 -0.005 -0.005 -0.005 -0.005 -0.005
2 -0.005]  0.000, 0.007| 0:020 0.007/ %0.005 -0.005] -0.005 -0.005] -0.005 -0.005
3 -0.005| -0.005| 0.000] ,,0.007} . 0.007/.-0.005/ -0.005| 0.007 -0.005 0.007| -0.005
4 -0.005] -0.005] 0.007| "0:000- -0.005| -0.005 0.032] -0.005 -0.005] -0.005 -0.005
5 -0.005 0.020| -0.005|--0.005 0.000/ . 0.007 -0.005/ -0.0035 -0.005] 0.007 -0.005
6 -0.005] -0.005] _0.007| =0.005/ -0.005" 0.000 =0.005| .0.032] -0.005] -0.005] -0.005
7 -0.005 -0.005[ -0.005| -0.005 -0.005/ 0.007 0.000+-0.005 0.044| -0.017| -0.005
8 -0.005] -0.005=0:005["=0:017—0:007=0:005=0:005/- 0.000 -0.005] 0.044 -0.005
9 -0.005] -0:605] -0.005| -0.005/ -0.005| 0.020, -0.005/"=0.005 0.000] -0.017 0.032
10 -0.005 -0.005] 0.007 0.007, -0.005 -0.005 0.007| -0.005 -0.005 0.000, 0.007
11 0.000  0.000] 0.000] 0.000 0.000[ 0.000 0.000° 0.000[ 0.000[ 0.000 0.000

Then, the adjustment)of' the joint probability matrix X(i,j) is
improved with the mixture of the latest velocity matrix Vi, j) normalized by the min-
max mnormalized procedure, and the jprevious, jeint-prebability matrix #X(i-/, j). Joint

probability matrix s also improved for all swarms.

To update and enter the first task into U-line, the first walk
matrix is improved to each of the particles of /best, [worst, gbest, and gworst. Similar
to adjusting reward and punishment before, an example of the first walk matrix of the

first swarm is updated and shown in Table 5.34.
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Table 5.34 The first walk matrix of a sample swarm

| 2 3 4 5 6 7 8 9 10 | 11
0.135 1 0.09 ] 0.09 | 0.09 | 0.09 ] 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09

5.7.1.6 Worker allocation

Finally, the updated matrices of velocity, joint probability, and
first walk are used in the next iteration until theterminating condition is met. The 11-
task U-shaped worker allocation of a_feasible particle (Py,) is illustrated in Figure
5.21.

Figure 5.21 An example fouthe 1 l—té{sk_yvorker allocation of 13 cycle time

2 dd

5.7.2 Exemplified results

Data“of 100 strings at the first genmeration and the Pareto-optimal
frontier of 100 strings-at Max. 100 generations for the displacement rule are shown in
Figure 5.22. Experimental‘fesults of final task sequence; front and back task position;

DOW, WT and number of workers are the section of answers below.

Example
Solution: Run PSONK Algorithm at (11 tasks, 10 swarms&10 particles, Ci, Ca, o =1,

13 cycle time, 100 gen., r1, 12=0.1, 10% APT = 0.42 second, symmetrical layout)

Answers:

WT _DOW =
1.7381 11.1636 5.0000
1.8821 10.7394 5.0000



1.8859
1.9357
1.9582
2.0348
2.0846
2.1013
2.1887
2.2423
2.3017
2.3231
2.3803
2.4668
2.4950
2.5622
2.6491
2.6803
2.7443
2.9666
2.9695
3.0159
3.3605
3.3631
3.3706
4.7231
4.7683
4.8766

104622 5.0000
10.1178  5.0000
9.9078  5.0000
9.5508  5.0000
9.2106 5.0000
9.1266  5.0000
9.0636 5.0000
8.8536 50000
8.5008
8.4252
8.0262
7.6020
7.1736
6.6108
6.4764
6.1782
5.4936
5.0400
47964 5.0000

4.7418+,5.0000
47292 50000
4.4982

4.4436
ﬁmzﬁﬁ ‘wamwmm

3. 9018 6.0000

sﬂ%ﬁ’}@\ﬁoﬂ‘iﬂ! UA1AINYAY

TS task minWS =

5

—_ o o e e

5
5
2
3

2 6 3 4 7 9 8 10 11
32 6 8 10 4 7 9 11
2 6 8 10 3 4 7 9 11
36 8 10 4 5 7 9 11
2 5 6 4 8 10 7 9 11

138



139

11
11

2 6 8 10 4 5 3 7 9
3 10 4 7 9
3
3
5
10

5
5

1

5 2 6 8

2 6 8

2 6 8
2 4 6 8

11
11
11
11

4 7 9
4 7 9

10
10
10
8

7 9
7 9

10 9

1

3
8

2 4 6

5
3

11

52 4 7 6

1

5
3
5

3

1

Station

5
2

5
3

2 2 3 4 4
5 4 4

1

5

3

54 4 3

5

5

4 4 5

3



W = = W = RN =, N =R =R NN
W = = W = B =N == BB

WT DOW J=

1.7381
1.8821
1.8859
1.9357
1.9582
2.0348
2.0846
2.1013
2.1887
2.2423
2.3017

2%%’1@@?1)‘5&3»11&’1’37]8’1@8

2.3803
2.4668
2.4950
2.5622
2.6491
2.6803
2.7443

— W = = B W
W » A W BN W W W

“n W B~ b LW L W A A

AW R W W LN W R B

A A A A B W LD W LI L W

N = W BN = W

11.1636
10.7394
10.4622
10.1178  5.0000
9.9078+,5.00¢
:‘_',;'5,:_—:-:-:-:—"
92106 3P0

9.1266 ooo

ﬁmzﬁ ‘namwmm

8. 5008 5.0000

8.0262 5.0000
7.6020 5.0000
7.1736  5.0000
6.6108 5.0000
6.4764 5.0000
6.1782 5.0000
5.4936 5.0000
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2.9666
2.9695
3.0159
3.3605
3.3631
3.3706

5.0400
4.7964
4.7418
4.7292
4.4982
4.4436

5.0000
5.0000
5.0000
5.0000
5.0000
5.0000

WT (seconds)

Scatterplot of D .I’f’fm ! roble =13 s) at 100 gen.

12
114

101

ariable
WT5_100gen * DOW5_100gen
6_100gen * DOW6_100gen

gure 522-DOW vs. WT fors/and 6 workers at 100 gen.

ﬂUEJ’JVIEmﬁWEJ’Iﬂi
ammmmummmaﬂ
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5.8 Comparisons of Performance Measures

If all objective functions are minimized, a feasible solution x is said to
dominate another feasible solution y (x - y) as shown in Figure 5.23. A solution is

said to be Pareto optimal if it is not improved by any other solution. The set of all

feasible non-dominated solutions is referred to as the Pareto optimal set.

A
8_
- 7
g Solution O
= 6 —
Q
S
L 5
@ 47
s 4 (@)
Q y
2
8 3 —
(@] (2,6)
2 Q
X
. i
0 0 | -

1 2 3 4 5 NSNS L8
Objective Function 2

Figure 5.23 Non-dominated solution

The Pareto optimal set shown in Figure 5.24 is a solution frontier from only
one solution set which is_ compared with the othef-Pareto optimal sets from the other
solution sets. It isynecessary to identifyithe reference solution frontier, which refers to
the optimal solution, named the true Pareto optimal solution set. However, the true
Pareto optimal solution set is not able to compute from existing solution sets, but it is
estimated by the approximation of obtained sets. Thus, the approximate true Pareto
optimal solution set is employed to compare with the others. To identify the

approximate true Pareto set, obtained Pareto optimal sets have to be plotted in the
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same graph to find the local solution which is unable to be dominated as shown in

Figure 5.25.

Pareto Optimal Solution .

Pareto Optimal Solution Set—()—

Objective Function 1

—
nSet1+
Optimal Solution Set 2 —@—

Obtained Pareto Optimal Solution Set 3 —@—

X eaitaniiring

~

LN
|

2
Obgiveémion 1

w

N
|

—_

1T T 1T T T T 1 >
1 2 3 4 5 6 7 8
Objective Function 2

Figure 5.25 Obtained Pareto optimal solution set
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In Figure 5.26, the approximate true Pareto optimal solution set may not be
computed from all solutions. Only dominated solutions are selected as obtained values
for calculating the approximate true Pareto optimal solution set. The approximate true
Pareto optimal solution set is employed to compare the performance measures of each
solution frontier, that is, convergence to the Pareto-optimal set and Ratio of non-

dominated solution in the following section.

Objective Function 1

Objective Function 2

AUAINANINEANS. .
ARIRIAIUNBIINEAY

The solutions of an obtained Pareto optimal set (NSGA-II) and an
approximate true Pareto optimal set are exemplified and shown in Table 5.35 and

Figure 5.27.
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Table 5.35 Obtained Pareto optimal set of NSGA-II and

approximate true Pareto optimal set

Solutions No. fix)=DOwW L X)=WT
1 2.6179 1.9108
Obtained Pareto 2 2.7419 1.4849
optimal set 3 27655 1.3109
4 2.8199 1.1370
' 29036 2.9008
24 2. 3921, 2.6922
3F N 2.4730 2.3940
4% : 2.4928 23114
F* ] 255 2.1770
6% 72,5300 2.1616
7% 2.5654 2.1434
g "~ 2.5681 2.0860
Approximate true 9% - 2.6012 2.0314
Pareto optimal set
10* 2.6105 1.9600
15 26179 1.9108
12* 2.6208 1.7542
i i 216922, 1.6730
14* 276983 1.4994
15* 27419 1.4849
16% 2.7655 1.3109
17* 2.8199 1.1370
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Scatterplot of NSGA-II Pareto set and true Pareto optimal set
3_0— Variable
Lifﬂlji‘?ffél;?fp;.'i?‘;‘b o, ue ares o e
2.54
~~
()]
©
c
e
g 2.0
)
1.5+
Figure 5.27 Obtai : 2 5 timal solution ofNSGA Il and
i e al solutions
r y 2
Fromthe-chaplertly i et £ ] in Eq. (2.6) and
i
0
convergence(A) =-=— indBq. (2.5) are computed step by step, where 4 = obtained

ool f A LIV BV i

solutions, k number of objective fanctions, x = Gbtained Pareto g mal solutions, y

- bl A 3N AN Vi)

betwee11 x and y.

1 ean distance

Step 1. From Table 5.35, the normalized Euclidean distance of f; (x),
named DOW, is computed with f™® = 2.5756, f;™* =2.8199, and the matrix of f;
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£1(2.6179)— £,(2.3756) ’ ~ [2.6179—2.3756j2=
S = e 2.8199-2.3756

0.2974. The rest of results are computed as the same way and shown in Table 5.36.

(x) and f; (v). For example, [

Table 5.36 Normalized Euclidean distance of f; (x), DOW

NSGA-II Pareto solutions 2.6179 2.7419 2.7655 2.8199

0.29 " 0.6797 0.7701 1.0000

0.7063 0.9271

0.4334 0.6096

0.3767 0.5420

0.2923 0.4397

0.2788 0.4231

0.2028 0.3281

0.1974 0.3212

0.1367 0.2423

0.1217 0.2221

3-0000 : 07 0.1104 0.2067

0.1061 0.2008

10.0272 0.0826
J

0.0327 | )_'._ '] 0.0229 0.0749

0.0028 0.0308

0.1104 0.0028 0.0000 0.0150

150 0.0000

q W?@b&ﬂﬁaﬁu STt b T F K TR

named WT, is computed with £;™" = 1.137, f£i™* =2.9008, and the matrix of f (x)

2 2
[,(1.4849) - £,(2.6922) | _ [1.4819—2.6922) — 0.4685.
Sfomax _ pmin 2.9008-1.137

The rest of results are shown in Table 5.37.

and £, (v). For example, [



Table 5.37 Normalized Euclidean distance of £ (x), WT
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NSGA-II Pareto solutions

1.9108 1.4849 1.3109 1.1370
0.3150 0.6444 0.8125 1.0000
0.1963 0.4685 0.6133 0.7775
0.0751 02657 03771 0.5079
0.0516 0.2196 03218 0.4433
0.02 0.1540 0.2411 0.3477
1472 0.2326 0.3375

4 Z 0.2228 0.3256

09 0.1931 0.2895
0.1669 02571

08 0.1354 02177
0001 0.1157 0.1925
0.0079 0.0632 0.1224
0 * 0.0421 0.0923
- _g:' : 0.0114 0.0422
583 18,0, 0.0097 | 00389
i 0097 0.0000 0.0097
0.0000

0.0097

Step ﬂl‘he square root of summation of@OW and WT in Table 5.36

and 5.37 is EJ % ﬂﬁﬁw ﬁ }iﬁ ﬁ rest of results are
calculated a@lﬁn le

q R HBIINYLE Yo s

(d) of DOW and WT is computed, ie., d,= mm \/Z[

k=1

S ()= /()

2.

2
K —
min', JZ[M] - min(0.7826,1.1507,1.2580,1.4142);,  min(0.6712,

fkm‘”‘_

1.0433,1.1487,1.3056), ,..., min(0.6318,0.2641,0.1572,0),7. After that, the average
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minimum distance or convergence is the total minimum distance divided by the

A

17
Sa Y
number of true Pareto optimal solutions, i.e., convergence(NSGA—1II)= |=114—| = =11—7 =

(0'7286+0i67742+"'+0) =0.2072. The results are shown in Table 5.39.

Table 5.38 Normalized Eu'I idean distance (d;) of DOW and WT

NSGA-II Pareto solutions ' 3 4
826y | =1e1507_ 1.2580 1.4142
74 043 1.1487 13056
0.9003 1.0571
3 0.8358 0.9926
7 07303 0.8873
12420 \ 0.7151 0.8721
L0771 0.6524 0.8085
0.1498: 0. 0.6249 0.7815
/780780 4 0.5510 0.7067
0.0325 000 0.5071 0.6632
) 04754 0.6318
0.4114 0.5686
46 0.2634 0.4183
02952 |, 0.0985 0.1852 0.3422
o> re
‘i&.b 1120 0.2641
04754 | 0.'1%% r gooo 0.1572
2 W b ,eapé’n 0.0000
J oY
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Table 5.39 Average minimum distance of DOW and WT

NSGA-II Pareto
1 2 3 4 Min (ds)
solutions

0.7826 1.1507 1.4142 1.2580 0.7826

0.6742 1.0433 1.3056 1.1487 0.6742

0.4259 0.7950 1.0571 0.9003 0.4259

3422 0.1852 0.0985

0.3618 7307 | 0.9926 | 0.8358 | 03618
0.8873 | 0.7303 | 02573

0. 8721 | 07151 | 02420

0. 8085 | 0.6524 | 0.1771

| o 07815 | 0.6249 | 0.1498
14o. 67 | 05510 | 0.0780

/| 040 05071 | 0.0325

00 | 03691 | 0.6318 | 04754 | 0.0000
90| 0312 6 | 04114 | 0.0890
248 |- 183 | 02634 | 0.1546

il

=
l
!

03691 | 02641 | 0.1120 | 0.0000

5721 0.0000 0.0000

0.1572 0.0000

1 um distance 3.5232

~ . Average | 0.2072

AUYANENINYNS

5.8.2 Spread of non-dominated solutions

ARIANN 3TN IRIINYINY

|41
d,+d,+) |d-d

From the chapter II, spread(A)= = in Eq. (2.7) is
P e A Ty S )

computed step by step, where d, and d, are Euclidean distances between extreme

solutions and boundary of the obtained non-dominated set, is the number of

obtained solutions, d is the average of all distances d, i=12,., A|—l, assuming
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that there are solutions on the best non-dominated front. With 4 solutions, there are

(A-1) consecutive distances.

Step 1. The obtained Pareto set of NSGA-II, i.e., {(2.6179, 1.9108),
(2.7419, 1.4849), (2.7655, 1.3109), (2.8199, 1.1370)} is exemplified. The consecutive

distances (d,) are computed by the normalized equation of \/i{%} and
k=1 Jk —Jk

shown in Table 5.40. For example, at tho objectives of DOW and WT, d,ord, is

£ (D)= £(2) 2+ LO=ARY _ I(2.6179—2.7419)2+(1.9108—1.4849j2 _
£ fmin f—— \\ 2819926179 1.9108—1.137

4-1
0.8245. After that, the'avezage distauce is calculated by Z‘%d’ =0.4762.

v

Table 5.40 Consejeutive distances (d,)

NSGA-II / ‘Normalized
No. — Fuclidean distance
£(x) ) i) S
L. 26179 | 19168 1 03768 1 03029 | 4otd; | 08245
2. 2.7419 1.4849 0.0136  =.0.0506 d, 0.2534
3. 27655 1310900725 ——00505 1| % °t9, | 03508
4. 2.8199 1.137 Average distance (d ) 0.4762

Step. 2.* The spread measure 18 \computed by spread (NSGA-II) =

0.8425+0.3508 +[(0.8245-0.4762)+(0.2534-0.4762) +(0.3508 —0.4762)]  1.8718
0.824 5403508 # [ (4++1)#0 4762 2.6039

=0.7188.

5.8.3 Ratio of non-dominated solutions

This measure simply counts the number of solutions which are
members of the Pareto optimal set. The measure of ratio of non-dominated solution

can be written in Eq. (2.8) from the chapter II and computed step by step as shown in




Table 5.41. R,,s(4,)=

|4, —{xed,|Iyed:y<x}|

|4, |
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means that the ratio of solutions in

4,are not dominated by any other solutions in 4 ,where 4is a solution set

(j=L2,.,J), A=4 U A4,..U4,, y=<x means the obtained solution x is dominated

by the true Pareto solution y.

Table 5.41 Ratio of non-dominated solutions (NSGA-II)

True Pareto Obtained Parcto solutions of NSGA-II
optimal No. 1 2 3 4
solutions (2.6179,1.9108) | (2.7419,1.4849).| (2.7655,1.3109) | (2.8199,1.137) Value

(2.3756,2.9008) | 1 0 0 0 0 0
(2.3921,2.6922) | 2 0 0 0 0 0
(2.4730,2.3940) | 3 0 0 0 0 0
(2.4928,2.3114) | 4 0 04 0 0 0
(2.5253,2.1770) | 5 0 0 0 0 0
(2.5309,2.1616) | 6 0 0 0 0 0
(2.5654,2.1434) | 7 0 0 0 0 0
(2.5681,2.0860) | 8 0 0 0 0 0
(2.6012,2.0314) | 9 0 0 0 0 0
(2.6105,1.9600) | 10 0 0 0 0 0
(2.6179,1.9108) | 11 1 0 0 0 1
(2.6208,1.7542) | 12 0 0 0 0 0
(2.6922,1.6730)7{ 13 0 0 0 0 0
(2.6983,1.4994) | 14 0 0 0 0 0
(2.7419,1.4849) | 15 0 1 0 0 1
(2.765541.3109) || 16 0 0 1 0 1
(2.8199,1.1370) | 17 0 0 0 1 1
Total value 4
Ratio of non-dominated solutions (NSGA-II) 1
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Step 1. The sizes of matrix are determined by the number of obtained

Pareto solutions (x) and the number of true Pareto optimal solutions (y).

Step 2. The Pareto dominance is compared between x and y. If an
obtained Pareto solution (x) is equal to a true Pareto optimal solution (y), then the

value of x and y is the value of 1. If not, the value is 0.

Step 3. The values in each row of true Pareto optimal solutions are
summed into the last column in Table 541 Finally, the ratio of non-dominated

solutions is calculated by the total value divided by the number of obtained Pareto

solutions (Total value / ‘A Jl)' Forcxample, the ratio of NSGA-II is equal to 4/4 = 1.

!
5.8.4 Central processing unit,(CPU time)

it

The Centgal Brogessing U‘g;it‘-(CP[D or processor is the portion of a
computer system that/Carries out the 1nstruct10ns of a computer program, and is the
primary element carrying out the computer s functlons This term has been in use in
the computer industry at I€ast since the early 1960s. 1t is used for the purpose of
comparing algorithms and compared at.the same iterations for each other. It is shown

in the elapsed time, after the termlnatlng COIldlthIl is met e.g. Elapsed time is

115.373901 seconds

5.8.5 Exemplified results

Solutions of DOW"and" WT of NSGA-II'and PSONK obtained from
the previous algorithms are exemplified and input to find out trué-Pareto optimal
solutions. /After that, each of solutions of NSGA-Il.and PSONK is ‘compared to true-

Pareto optimal solutions.
Example:

Inputs

DOW_NSGA-II WT_NSGA-II DOW_PSONK WT_PSONK
1.2.6179 1.1.9108 1. 23756 1. 2.9008
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DOW_NSGA-II WT_NSGA-II DOW_PSONK WT_PSONK
2.2.7419 2.1.4849 2. 23921 2. 2.6922
3.2.7655 3.1.3109 3. 24730 3. 23940
4.2.8199 4.1.1370 4. 2.4928 4. 23114
5. 2.5253 5. 2.1770
6. 2.5309 6. 2.1616
7. 2.5654 7. 2.1434
2.5681 8. 2.0860
9. 2.0314
10. 1.9600
11.1.7542
12.1.6730
13. 1.4994
14.1.4812
15.1.4588

|
¥

2.5309 2.1616

AuE InyudvEnng

- & 26012 2:0314 au
AWIAIN T 81 5H) 21
q 2.6179 1.9108

2.6208 1.7542

2.6922 1.6730

2.6983 1.4994

27419 1.4849

27655 1.3109

2.8199 1.1370
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ans = Convergence to the Pareto optimal set
Spread of non-dominated solutions

Ratio of non-dominated solutions

NSGA-II PSONK
ans = 0.2072 ans = 0.0236
0.7188 0.7646
1.0000 / 0.8667
The con the btaﬂ-optimal solutions towards a
true Pareto-set is the t10n set and the true-Pareto
set. The lower the valu \- rgence ic is. The second measure
is a spread metric. Thi as ) - ite i'. )n of the obtained Pareto-

solutions by calculating a relative istance e ‘H c \ ecutive solutions. The value
of this measure is zero toibu ion, it can be more than zero when
bad distribution is found. [Fhe third measure is the \o‘ of non-dominated solutions

which indicates the coverage of one set over a 1other. The higher ratio indicates

]

ﬂUEJ’JVIEW]’ﬁWEJ']ﬂ‘i
QW’]ﬁNﬂ‘iﬂd UA1AINYAY



CHAPTER VI

EXPERIMENTS AND
COMPUTATIONAL RESULTS

6.1 Introduction

There are two fundamental perfortaances that are quality solutions and
running time to decide what-a good heuristic-is seleeted. This chapter is organized in
the following. First, it provides the findings of experimental parameter settings such
as number of generations, populaiion size, reward and punishment probability, and so
on. Then, experimental results of NSGA-II, MA, COIN; and PSONK are proposed
and input to evaluatg' the performancés. of algorithms in terms of the former
performances of convepgenge fothe Paf.etfj—optimal set, spread of non-dominated
solutions and ratio of non-dominated sb__l_u‘g_ions; and the latter performance of
processing time. Finally, the discussion of‘all algorithms and given cycle times is

taken into account. w2

6.2 Findings of Experimental Pafémeter Settings

In this section; there are many factors related t0 parameter settings in the

SUALWAPs. Their reférenee values are deseribed in the following section.
6.2.1 Number of generations

Olanviwatchai (2009) was used as a starting point for parameter
settings. The selection of number of generations was based on quality solutions by
extensive pilot runs. Having done that, the number of generations of 19-task, 36-task,
61-task, and 111-task problems are 100, 100, 150, and 300, respectively. For example,
after increasing the number of generations from one, four, fifty, and one hundred
better solutions are improved as the Pareto-optimal frontier from the 36-task problem

with the COIN algorithm shown in Figure 6.1. In this study, the number of generation
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of 100, 150, 300, and 50 are set to tiny task at 7-45 tasks, small task at 61-40 tasks,

medium task at 111 tasks, and large task at 297 tasks, respectively.

6.2.2 Population size

Small population size results in the local optimum due to a genetic drift
phenomenon (a few clusters of populations being formed in the solution space), but
overpopulation may lose computational time. Thus, Hwang and Katayama (2009)

claim that the population size should be set o100 in the U-line balancing problem.

-
Scatterplot of COIN_36tasks. 1GENvs4GENvs50GENvs100GEN
400
350- ¢ _ .
3 I\
= 1 <
2 3001 ! ¥
= | . ‘
g\ ) | f Variable
= | r —@— WT * COIN_G1 DOW
8 7504 . : —B— WT_4* COIN_G4 DOW
s Aok 22204 WT_50 * COIN_G50_DOW
| = —& - WT_100 * COIN_G100_DOW
A__ N 7o
~
200 - I
———a—————————— ) —a
800 850 900 950 1000 - 1050 1100 1150
| Deviation of Operation times of Wor!(ers (DOwW)

Figur€ 6.4 Ceniparison/ofigéneration [y4, 50; and100syvith COIN for
the36-task problem (C = 1,371 seconds)

6.2.3 Selection method

Binary tournament selection method is used to choose strings or
population size. Binary tournament is run to determine a relative fitness ranking.
Initially the entire population is in the tournament. Two members are selected at
random to compete against each other with only the winner of the competition
progressing to the next level of the tournament. Binary tournament selection implies

that two individuals directly compete for selection.
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6.2.4 Pareto-based approach

There are a few Pareto based ranking methods, that is, Belegundu, Goldberg
and Fonseca and Fleming. Goldberg's ranking or non-dominated sorting (Deb et al.,
2002) is applied in this study. It assigns equal probability of reproduction to all non-
dominated individuals in the population. The method consisted of assigning rank 1 to
the non dominated individuals and removing them from contention, then finding a

new set of non dominated individuals, ranked 2, and so forth.
6.2.5 Density information .

The use” ofsthescrowed | comparison operator, which basically is a
computation of the efowding distance of each solution, as a diversity operator by
NSGA-II wa able to produce’a better C_lisltribution of the generated nondominated
solutions. Thus, it is likely applied int@ other multi-objectieve algorithms. It is
obviously supported that Raquel and Na{a}, (2005) claim that crowding distance is
effective in multiobjective particle §warm optimization. They present an approach that
extends the Particle Swarm Optimization (P'SQ} algorithm to handle multiobjective
optimization problems by ci,n’(_:orporating Eeﬂ .mechanism of crowding distance
computation into the algorithmrof PSO, speéiﬁcally on global best selection and in the
deletion method of an external archive of nondominated Solutions. The crowding
distance mechanism together with a mutation operator maintains the diversity of
nondominated solutions.in_the external archive. The performance of this approach is
evaluated ontest functions and metrics from 'literature. 'The tesults show that the
proposed approach is highly competitive in converging towards the Pareto front and

generates, a-well distributed set.of-nondominated solutions,

6.2.6 Crossover method

In line balancing problems and others, several crossover operators have
been proposed to create an offspring such as partially-mapped crossover (PMX),
order crossover (OX), and modified order crossover (modOX). However, the two

point-based weight mapping crossover (WMX) by Hwang et al. (2008) is used in this
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study. Crossover probability (P¢) is set to 0.7. In addition, Zhang and Gen (2009) also
use weight mapped crossover (WMX) for worker allocation in an assembly line

balancing problem.
6.2.7 Mutation method

In genetic algorithms of computing, mutation is a genetic operator used
to maintain genetic diversity from one gemeration of a population of algorithm
chromosomes to the next. It is analogous.tosbiological mutation. The purpose of
mutation in GAs is preserving and intcoducing diversity. Mutation should allow the
algorithm to avoid local'minima by preventing the population of chromosomes from
becoming too similar.t0 cach'other. Reciprocal exchange mutation probability (Py) is

|
set to 0.3 by Hwang ezal. (2008) and reférred to in this study.

6.2.8 Local search = = J

i

Four local searches!_rmnodiﬁéﬂ;‘_f_r‘om Kumar and Singh (2007) originally

developed to solved traveling salesman prob-[ei_i}s by repeatedly exchanging edges of

tour until no improvement is atfained are examined including Pair wise Interchange

(PI), Insertion Procédures (IP), 2—Opt, and 3-Opt. The number of places to apply local

search has a directicffect on the quality of solution and gamputation time. Hence, if
computation time neé_ds to be saved, local search should be taken only at some
specific steps in the algorithm of MA rather than at all possible steps. In this research,
local searchesyare chosen to take after ‘obtaining initial Solution and after mutation due
to previous research (Chutima and Pinkoompee, 2008). Consequently, PI is set to
local.search.after initial stage.and.IP is set.to, local-search after.mutation,in this study.

Local search probability (P;) is setto 0.8 as the samie Ishibuchi er @/ (2003).
6.2.9 Heuristic

The proposed approach employs a randomly task assignment heuristic

rule in this study.
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6.2.10 Reward and punishment probability

To study the effect of reward and punishment of good and bad
instances in multi-objective problems, the multi-objective COIN is tested in a multi-
objective TSP problem. Wattanapornprom et al. (2009) set up an experiment using
kroal00 and krob100 as a dual-objective 100 tours TSP problem obtained from the
TSPLIB. The population size used in the experiment is 500 and the learning step k or
the reward and punishment probability is equal to 0.1. Furthermore, it is also set to 0.1

after testing pilot runs in the U-line balancing problems by Olanviwatchai (2009).
6.2.11 Cognitive, social and inertia weights

In the.experiments of Salman e al. (2002)’s task assignment problem,

the following values #for sthe weights ;of cognitive component (C;) and social
component (C) is set o Iin Eq. «(5.2). The inertia weight (@) is also set to 1

approximately in the same equation.

6.3 Experimental Results of NSi}X-II, MA, COIN, and
PSONK o~

Metaheuristics can be used to fine-tune parameters. When there are several
parameters, it is quite tedious to fine-tune these parameters using an experimental
design. Aftet, doing the /pilot/ run i the- last| chapter; ‘the “algorithm applies the

following parameters throughout the simulations.
6.3.1 Initialization of all algorithms

Initialization of NSGA-II

The algorithm applies the following parameters throughout the

simulations.



Parameters of NSGA-I1
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Assumption

Hwang and Katayama (2009)

Hwang and Katayama (2009)

Hwang ef al. (2008)

Fixed layout: Side ratio 1:1 (1/3) and
Side ratio 1:4 (1/9)

Task assignment Random

rule:

Crossover: Weight mapping crossover
(WMX)

Crossover

probability:

Mutation:

Mutation

probability:

Population size:
Walking time in
each problem:

Generation:

mmmﬂuﬂﬁmﬁv

‘{Woﬁwﬁ]griﬁeters throughout the

rorim AN NI

®INYIA Y

Assumption
Hwang and Katayama (2009)

Hwang and Katayama (2009)

Fixed yout Side ratio 1:1 (1/3) and
Side ratio 1:4 (1/9)

Task assignment Random

rule:

Crossover: Weight mapping crossover
(WMX)

Crossover Pc=0.7

Hwang et al. (2008)
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probability:

Mutation: Swap or reciprocal mutation Hwang and Katayama (2009)
Mutation Py =03 Hwang et al. (2008)
probability:

Local search after Pairwise Interchange (PI) Olanviwatchai (2009)

initial population:

Local search after Insertion Procedure (IP) Olanviwatchai (2009)

’l/// Chutima and Pinkoompee

__—F S (2008)

\‘Hwang et al. (2008)

mutation:
Local search

probability:

Walking time in
each problem:

Generation: 4 ‘ Hes i anviwatchai (2009)

Olanviwatchai (2009)

Assumption

1
Q‘he algorlthm apphes the following parameters throughout the

Sl“‘“latl"nsﬂ'lJﬂ’J‘l’IEJVl‘ﬁWﬂ']ﬂ‘i

Parameters of COIN

i Al AT IIAN T BHAE B

Side ratio 1:4 (1/9)

Task assignment Random Hwang and Katayama (2009)
rule:

Learning probability: &= 0.1 Wattanapornprom et al. (2009)
Population size: 100 Hwang ef al. (2008)

Walking time in % APT at the end of Pilot run

each problem: Chapter 1V
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Generation: 100 for 7 to 45 tasks Olanviwatchai (2009)
150 for 61 and 70 tasks Olanviwatchai (2009)
300 for 111 tasks Olanviwatchai (2009)
1 day (the same as 111 tasks) Assumption
for 297 tasks
Initialization of PSONK

!%))Wing parameters throughout the
J
!. —

simulations.

Parameters of PSO
Fixed layout:

Task assignment N = ang and Katayama (2009)
rule: waa
Number of particles
in each swarm
Number of swarms 10* Assumption

; ﬂ,r et al. (2002)
Social component . 7 o =7 mian et al. (2002)
E 0] Axﬂmption
Learning coefficient:  #;,2, = 0.1 Wattanapornprom et al. (2009)

ks || VAR ) IS

each problem:" | Chapter I V

MRS

300 for 111 tasks Olanviwatchai (2009)

Cognitive componeh

Inertia weight

1 day (the same as 111 tasks) Assumption
for 297 tasks

* Number of swarms x number of particles in each swarm 10 x 10 = /00 [Population

size’s Hwang et al. (2008)]
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6.3.2 Comparison of the computational results and analysis

All objective values of DOW and WT at the minimum number of
workers in each problem of NSGA-II, MA, COIN, and PSONK are shown thoroughly
in Appendix A and supplementary CD-ROM. To access the achievement of DOW
and WT goals, these experiments are compared among all algorithms by the Pareto-

optimal frontier in four aspects:
1. Convergence to the Pareto-optimal set;
2. Spread to the Pareto-optimal sct;
3. Ratio ofmon-dominated solution;

4. Pro€essing time compared with the same'iterations.

In order sto demonstraté} the effectiveness of four approaches,
computational results are obtaingd ona sét- of single U-shaped assembly line worker
allocation problems with multiplerobjectir_\%_c-;s:. For given cycle times, this research
aims to study at most three values of each--__-p;rgl__)lem with the minimum, middle and
maximum values. Walking distance is calcql;a’ft_ed with displacement. It is assumed that
one walking unit (second) is 'équivalent tz)-_(;l_erwalking distance unit (pace). To
validate the feasibility of workers (workstations), experificntal results are compared
with ULINO data sets of lower bounds available from http://www.assembly-line-
balancing.de. All algorithms are programmed by using MATLAB R2008a, and the set
of test problefiis @rd solvedior an AMDAthlan'Y 64 Proegssot3500+ 2.21 GHz PC
with 960 MB DDR-SDRAM. All iumbers of workers are feasible and most are the
same. All results are shown in Table 6.1-6.4 at théside ratio of 1:1:¥ (1/3) and Table
6.5-6.8 at the sidewatio of 1:4:4 (1/9).

The best algorithm should provide the convergence and spread of the
solution to zero and its ratio to one. COIN and PSONK seems to perform better than
NSGA-II for most problem sets between Columns IV-VI. Furthermore, in terms of
CPU time in the last column, the multi-objective PSONK is faster than COIN and
much faster than NSGA-IT and MA. However, comparing NSGAII, MA, COIN, and
PSONK, MA takes maximize CPU time for all problems.
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According to an example at the side ratio of 1:4:4 (1/9) cited in
Sirovetnukul and Chutima (2010a), the results of NSGA-II and PSONK shown in Fig.
6.2 are also compared at the 11-task problem. At the minimum number of five
workers, the best Pareto-optimum frontier gives the same good solutions as pointed
out in Fig. 6.2 for both algorithms. In terms of convergence and ratio of non-
dominated solutions, PSONK is more potential, but spread is quite similar. The
performances of three measures of at least 45 tasks are the same as the previous
results of the 11-task problem. In contrast t9 most small-sized problems between 7-28
tasks, NSGA-II is preferable to PSONK. ' Howewver, the 70-task problem at the cycle
time of 160 seconds and the 1 11-task problcm at'6.837 seconds are not relevant to
these measures since PSONK provides fewer workers.than the minimum with NSGA-
II. For the 61-task problem and the large problem of 297 tasks, NSGA-II provides
fewer workers than thesinifum' with PSONK. In CPU time, not only PSONK can
reach Pareto-optimum selutions faster th.ar’l'. NSGA-IT for a sample problem, but also

the rest of problems are definitely fast cori-vergence rapidity.

J

|
Scatterplot of DOW vs WT at -l;linimumﬁi'é workers'f‘:"iﬁle first 100 popsizes with NSGA-II and PSONK
104 -y Variable
— [> WT_First_NSGAIL_11_13 * DOW_First_NSGAII_11_13
. —ll - WT_NSGA-II_11_13 * DOW_NSGA-I_11_13
__; WT PSONK 11 13 * DOW PSONK 11 13
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Figure 6.2 NSGA-II vs. PSONK for the 11-task problem of 13 cycle time
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The three-dimensional scatter plotting of all algorithms are compared
and shown in Figure 6.3-6.6. The tiny, small, medium, and large problems as seen in
the following pictures are exemplified with the problems of 11 tasks given 21
seconds, 70 tasks given 527 seconds, 111 tasks given 17,067 seconds, and 297 tasks

given 2,787 seconds.

3-D plot with a grid for NSGA-Il (O), MA (*), COIN (O), PSNOK (*) at m=3

m (number of workers)
w

254
2.
2 12
25
‘ 8
Ll i 4 WT (seconds)
— )
Figure 6.3 3-D u_:|' at the side ratio for 11 L‘g sk problem of 21 seconds

AULINENTNEINS
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3-D plot with a grid for NSGA-Il (O), MA (*) at m=8 COIN (O), PSNOK (*) at m=9

85

m (number of workers)

‘ 1200
1000

50 .
800

DOW (seco

Figure 6.4 3-D graph at le, ratig 11 3) for 70-task problem of 527 seconds

s r
3-D plot with a grid for NSGA-II{O), MA =10 COIN (O), PSNOK (*) at m=11

—
—

.!I -
- ,
i s e i

Autneninens
AN IUAMINYIRY.

of workers)

-
o
o

m (nﬁmber

2000

2500 1 WT (seconds)
DOW (seconds)

Figure 6.5 3-D graph at the side ratio 1:1:1 (1/3) for 111-task problem of 17,067 seconds
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3-D plot with a grid for NSGA-II (O), MA (*)

at m=29 COIN (O), PSNOK (*) at m=30

30 R
O
<
S
‘5 29.5]
@ g
o - L
E 2] — | :

150 \ e 10000

>
200 \\\\gz\ =N
==
f ot <", 7000
300 6000 WT (seconds)

DOW.(seconds)

Figure 6.6 3-D graph at'the side ratio-1:1:1(1/3) for 297-task problem of 2,787 seconds

it

6.4 Discussion of NSGA-IL, MA, -CVOIN, and PSONK

This study is-mainly about the worker allocation-for U-shaped assembly line
with four multi-objective algorithms. Since COIN originated only one generator with
negative knowledge, @ new PSONK! has been developed with the addition of negative
knowledge to renowned PSO. In particular, local best and global best recognize the
positive knowledgs appearifig in the “order paits’ of the good solution by giving an
increased reward to the updated joint probability matrix. In contrast, the negative
knowledge, which is often remiss in NSGA-II and MA algorithms, is found in the
order pairs of the bad solution. To prevent undesired solutions, it is utilized for local
worst and global worst to reduce the updated joint probability. The comparative study
shows that in most problems the proposed PSONK produces solution sets that are

preferable to NSGA-II, MA, and COIN in terms of convergence and CPU time.
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Table 6.1 NSGA-II with displacement for worker allocation at the side ratio of 1:1:1 (1/3)

Cycle No.of  Convergence Spread Ratio Time

Problem / Task Time workers (seconds)

1.Merten /7 7 6 0 0.5364 1 1,084

10 4 0.1295  0.7188 1 1,569

18 2 0.0082  0.5077 1 968

2 Miltenburg / 10 10 E 0.0502  0.6582  0.6667 2,712

3.Jackson /11 7 Y 0:0067  0.4849 1 2,325

13 5 0.0393  0.4894  0.7895 3,103

2 3 0.0322 0.6846  0.6471 2,606

4. Thomopoulos 120 # 0.9368 " 0.6088 0 4,557
/19

5.Heskiaoff 138 9 0.0259°  0.6337  0.3415 4,737

/28 256 3 0.0349  0.5136  0.1905 4,977

342 4 0.0290 0.5634  0.2759 6,836

6.Kilbridge & 57 14 | - - - 11,809

Wester / 45 110 7 0,0820  0.7459  0.2000 11,418

184 7 None** None** Nome** 11,735

7.Kim / 61 600 11 i - - 27388

8.Tongue / 70 160 29 - - - 35,672

251 17 None** None** None** 30,714

527 8 0.1576  0.7131 0 27,301

9.Arcus / 111 6,83 7% 27 : - - 159,981

7,916 23 - - - 133,348

17,067 10 0.4523. . 0.7500 0 114,256

10. Scholl & 1,394 62 - : - 144817

Klein /297 1,834 46 - - - 144,147

2,787 29 0.3414  0.7500  0.5000 166,070

11.Case study /36 1,371 6 0.0329  0.7636  0.2951 3,438

*  Minimum cycle time (5,755) is less than the operation time of 6,615. Thus,

the feasible minimum cycle time from the data sets of UALBP-I is replaced.

** One local optimal solution (or one coordinate) on the DOW and WT
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Table 6.2 MA (PI) with displacement for worker allocation at the side ratio of 1:1:1 (1/3)

Cycle No.of  Convergence Spread Ratio Time

Problem / Task Time workers (seconds)

1.Merten/ 7 7 6 0 05364 1 2,034

10 4 0.0161  0.7068 1 1,981

18 2 0 0.6884 1 1,301

2.Miltenburg / 10 10 4 0.0068  0.8109  0.8571 1,782

3.Jackson/ 11 7 9 0.0007 05343  0.9474 2,068

13 5 0.0183 0.6141  0.7308 1,620

T 3 0.0001  0.7806 1 1,504

4. Thomopoulos 120 5 0.8045- 0.7650 0 2,941
/19

5.Heskiaoff 138 o= 0.1874 1 0.8333 4,322

/28 256 5 0.0155 0.7675  0.7531 3,869

342 4 0.0013° 0.6517 0.9596 3,727

6.Kilbridge & 57 13 0.1714 1 0 4,928

Wester / 45 110 7 0.0035 0.5763 1 5,069

184 4 0.0030  0.6911 1 5,952

7.Kim /61 600 10 - - - - 13,079

8.Tongue / 70 160 28 - - - 22,499

251 17 0.0123 . 0.8065 0.9333 16,361

527 8 0 0.7841 1 16,118

9.Arcus / 111 6,837 g - - - 122,022

7916 22 0.3897 0.7798 1 113,651

17,067 10 0 1L 0.8571 114,134

10. Scholl ‘& 1,394 61 - : - 485,946

Klein / 297 1,834 45 None** None** None** 506,220

2,787 29 0.1678  0.7518 1 488,792

11.Case study/ 36 1,371 6 0.0100  0.7007  0.6900 3,681

*  Minimum cycle time (5,755) is less than the operation time of 6,615. Thus,

the feasible minimum cycle time from the data sets of UALBP-I is replaced.

** One local optimal solution (or one coordinate) on the DOW and WT
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Table 6.3 COIN with displacement for worker allocation at the side ratio of 1:1:1 (1/3)

Cycle No.of  Convergence Spread Ratio Time

Problem / Task Time workers (seconds)

1.Merten / 7 7 6 None** None** None** 246

10 4 0.0743  0.8252  0.5000 276

18 2 0.1425  0.7559 1 255

2 Miltenburg / 10 10 4 0.0340  0.8447  0.3333 354

3.Jackson / 11 7 9 00147 05072 09333 278

o 5 0.0412  0.5399  0.5000 350

21 3 0.0322 0.6846  0.3846 423

4. Thomopoulos 120 5 0.8513 0.6563 0 485
/19

5.Heskiaoff 138 9= 0.0259  0.6337  0.3415 638

/28 256 5 0.0795 0.7036  0.5781 591

342 4 . 0.14047 0.6953  0.3077 742

6.Kilbridge & 5% 13 0.0672 0.7726  0.6364 965

Wester / 45 110 7 00958 04768 01000 1,029

184 5 . - i - 1134

7.Kim /61 600 11 - - - 1,819

8.Tongue / 70 160 26 - - - 2,298

251 17 0.1118 . 0.6091  0.2500 2,562

527 9 - - - 2,122

9.Arcus / 111 6,837 26 - - - 7,397

7916 22 0.0765 ~0.7818  0.6667 7,491

17,067 1] - - - 7,631

10. Scholl ‘& 1,394 60 00597 1.0.7667 1 5,852

Klein / 297 1,834 45 0.1616  0.6761 1 5,716

2,787 30 - - - 5,744

11.Case study/ 36 1,371 6 0.5187  0.5560 0 801

*  Minimum cycle time (5,755) is less than the operation time of 6,615. Thus,

the feasible minimum cycle time from the data sets of UALBP-I is replaced.

** One local optimal solution (or one coordinate) on the DOW and WT
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Table 6.4 PSONK with displacement for worker allocation at the side ratio of 1:1:1 (1/3)

Cycle No.of  Convergence  Spread Ratio Time

Problem / Task Time workers (seconds)

1.Merten / 7 7 6 None** None** None** 109

10 4 0.1023  0.7438  0.6000 121

18 2 0.1425  0.7559 1 103

2 Miltenburg / 10 10 4 0.0418  0.7646  0.1333 155

3.Jackson/ 11 ! 9 0.0094  0.5258  0.8824 168

- 5 0.0154  0.5988  0.7083 153

21 3 0.0915  0.6051  0.2667 129

4. Thomopoulos 120 3 0.8289 . 0.6109 0 233
/19

5.Heskiaoff 138 o 0.0248  0.6470  0.4167 437

/28 256 5 0.0220 ~ 0.6559  0.3611 315

342 4 0.1396° 0.7903  0.3529 293

6.Kilbridge & 53 13 0.0189 0.5921  0.8824 533

Wester / 45 110 7 01612 0.7323 0 510

184 5 . - i i 532

7.Kim /61 600 11 - - - 1,230

8.Tongue / 70 160 27 - - - 1,578

251 17 0.1253,  0.6545 0 1,633

527 9 - - - 1,462

9.Arcus / 111 6)8377* 25 - - - 5,100

7916 22 0.1744" ~ 0.7500 1 5,712

17,067 11 - - - 5,114

10. Scholl ‘& 1,394 60 0:0607. 1_0.7272% 10.5714 5,522

Klein / 297 1,834 45 0.0880  0.6612  0.8000 5,239

2,787 30 - - - 5,503

11.Case study/ 36 1,371 6 0.0523  0.8859  0.6267 374

*  Minimum cycle time (5,755) is less than the operation time of 6,615. Thus,

the feasible minimum cycle time from the data sets of UALBP-I is replaced.

** One local optimal solution (or one coordinate) on the DOW and WT
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Table 6.5 NSGA-II with displacement for worker allocation at the side ratio of 1:4:4 (1/9)

Cycle No.of Convergence Spread Ratio Time

Problem / Task Time workers (seconds)

1.Merten / 7 7 6 0 0.5364 1 1,084

10 4 0.1295 0.7188 1 1,459

18 2 0.0082 0.5077 1 1,503

2.Miltenburg / 10 10 4 0.0855 0.4861 0.3889 3,384

3.Jackson/ 11 7 b 0.0522 0.5744 0.7778 3,417

13 5 0.1220 0.6738 0.1250 4,081

24 3 0.0445 0.7597 0.2857 3,053

4. Thomopoulos 120 5 0.1360 0.9145 0.1429 5,101
/19

5.Heskiaoff 138 9 ' 6.1195 0.6077 0 8,097

/28 256 5 04578 0.5073 0 6,782

342 4 0.0271 0.6507 0.0952 6,498

6.Kilbridge & 57 13 O.,3158 0.7500 0.5000 13,300

Wester / 45 110 7 00625 05194 0 11,354

184 4 (7).05575 0.5465 0.2000 10,358

7.Kim /61 600 10 Noné’;"’; None** None** 21,015

8.Tongue / 70 160 29 - - - 34,533

250 17 0.1655 0.8016 0.2500 33,043

527 8 0.0553 0.7918 0.2778 20,188

9.Arcus / 111 6,837% 1 - - - 103,151

7,916 23 - - - 95,679

17,067 10 0.0881 0.6559 0 95,257

10. Scholl & 1,394 60 None** None** None** 123,051

Klein /297 1,834 46 - - - 119,709

2,787 29 0.4261 0.7500 0 120,788

11.Case study /36 1,371 6 0.0201 0.6221 0.1957 3,489

*  Minimum cycle time (5,755) is less than the operation time of 6,615. Thus,

the feasible minimum cycle time from the data sets of UALBP-I is replaced.

** One local optimal solution (or one coordinate) on the DOW and WT
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Table 6.6 MA (PI) with displacement for worker allocation at the side ratio of 1:4:4 (1/9)

Cycle No.of  Convergence Spread Ratio Time

Problem / Task Time workers (seconds)

1.Merten/ 7 7 6 0 05364 1 1,058

10 4 0.0161  0.7068 1 1,389

18 2 0 0.6884 1 1,070

2 Miltenburg / 10 10 4 0.0076  0.7949  0.8800 1,756

3.Jackson/ 11 7 9 0.0062  0.7350 1 2,114

o 5 0.0074 0.5363  0.7600 1,835

21 3 0 08117 1 1,618

4. Thomopoulos 120 5 0.0108  0.6445 0.3731 2,901
/19

5.Heskiaoff 138 O 03147 . 0.8562  0.8750 4,163

/28 256 5 03337 0.7024 0 2,808

342 4 - 0.0001" 0.7258  0.9796 3,590

6.Kilbridge & 5% 13 02130 0.6652  0.6000 6,263

Wester / 45 110 7 00112 05992 07273 6,092

184 4 : 0.0181 0.6213  0.7065 6,159

7.Kim /61 600 10 e 0. £0.7651 1 12,552

8. Tongue / 70 160 27 None** "None** None** 16,583

251 17 0.0808 . 0.6058 1 16,657

527 8 0.0053  0.6743  0.7604 16,388

9.Arcus / 111 6,837 26 02059 40.6734 1 107,847

7,916 22 - - - 105,640

17,067 10 0:0124. _0.7559. 0.8046 102,541

10. Scholl ‘& 1,394 60 0! 1L.0.7500 1 483,324

Klein / 297 1,834 44 - - - 483971

2,787 29 0 0.8645 1 483,042

11.Case study/ 36 1,371 6 0.0044  0.7267  0.8415 3,707

*  Minimum cycle time (5,755) is less than the operation time of 6,615. Thus,

the feasible minimum cycle time from the data sets of UALBP-I is replaced.

** One local optimal solution (or one coordinate) on the DOW and WT
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Table 6.7 COIN with displacement for worker allocation at the side ratio of 1:4:4 (1/9)

Cycle No.of Convergence Spread Ratio Time

Problem / Task Time workers (seconds)

1.Merten / 7 7 6 None** None** None** 221

10 4 0.0743 0.8252 0.5000 234

18 2 0.1425 0.7559 1 231

2 Miltenburg / 10 10 4 0.0391 0.8108 0.1765 353

3.Jackson/ 11 7 9 00250 0.6902 0.7500 315

13 5 0:0316 0.6328 0.3636 489

2 3 0.0284 0.5706 0.2632 427

4. Thomopoulos 120 5 0.0132 0.5269 0.7083 510
/19

5.Heskiaoff 138 9 0.0175 0.5294 0.5128 834

/28 256 5 10.3847 0.7277 0 787

342 4 ., 0.1258 0.7517 0.1053 869

6.Kilbridge & g 13 { 6.2581 0.5961 1 1,072

Wester / 45 10 7 08389 07058 02969 926

184 4 0.6105 0.5256 0.3673 920

7.Kim / 61 600 11 i - S 1.859

8. Tongue / 70 160 2 0 0.5444 1 2,271

251 17 0.1162 0.4348 0.3571 2,323

527 8 0.0593 0.5745 0.3750 2,097

9.Arcus / 111 6,83 7* 26 0.1380 0.6210 0.8889 7,468

7,916 23 - - - 7,157

17,067 10 0.1070 0.6521 0.3673 7,196

10. Scholl '& 1,394 60 None#** None*# None** 5,548

Klein / 297 1,834 46 - - - 5,621

2,787 35 - - - 5,589

11.Case study /36 1,371 6 0.3393 0.6739 0.1071 825

*  Minimum cycle time (5,755) is less than the operation time of 6,615. Thus,

the feasible minimum cycle time from the data sets of UALBP-I is replaced.

** One local optimal solution (or one coordinate) on the DOW and WT
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Table 6.8 PSONK with displacement for worker allocation at the side ratio of 1:4:4 (1/9)

Cycle No.of Convergence  Spread Ratio Time

Problem / Task Time workers (seconds)

1.Merten / 7 7 6 None**  None**  None** 117

10 4 0.1023  0.7558  0.7500 139

18 2 0.1425  0.7559 1 115

2 Miltenburg / 10 10 4 0.0401  0.8390  0.2105 158

3.Jackson/ 11 7 9 0.0354  0.8404  0.9231 164

13 5 0.0278  0.5992  0.3478 161

a1 3 0.0196  0.5928  0.5417 143

4. Thomopoulos 129 3 0.0069 0.6418  0.3229 308
/19

5.Heskiaoff 138 5 0.0228 = 0.6505  0.2857 451

/28 256 5 0.3754  0.9054 0 430

342 4 , 0.1426 0.7935 0 430

6.Kilbridge & 57 13 0.0979  0.6456  0.3333 742

Wester / 45 110 7 00283 08041  0.5455 730

184 4 70.0036 0.7459  0.6058 722

7Kim /61 600 11 ~ i - - 1,420

8.Tongue / 70 160 27 0.1227 T 0.4320 0 1,853

251 17 0.1287 | 0.6513  0.3333 1,880

527 8 0.0482  0.6105  0.2667 2,113

9.Arcus/ 111 6,837* 26 None** % “None**  None** 6,194

7,916 23 - - - 6,455

17,067 10 0.0916. . 0.7579°+ 03721 6,101

10. Scholl ‘& 1,394 61 - - - 5,419

Klein / 297 1,834 47 - - - 5,203

2,787 31 - - - 5,305

11.Case study/ 36 1,371 6 0.0137  0.8548  0.2642 356

*  Minimum cycle time (5,755) is less than the operation time of 6,615. Thus,

the feasible minimum cycle time from the data sets of UALBP-I is replaced.

** One local optimal solution (or one coordinate) on the DOW and WT
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6.5 Discussion of Given Cycle Times

For the cycle time ratio that influences on the task allocation of a
problem by given cycle time from 7-task to 297-task problems, all the frequency
distributions are shown in Table 6.9. It is noticed that if the high values of a number
of tasks in the third column are skewed positively (asymmetric right skew, with a long
tail to one side), then the findings of selecting a number of tasks into an assigned-task
position in a U-line will be computed with long CPU time. On the contrary, the
frequency distribution is a negative (or left) skcwness; consequently, there are only
one or two tasks allocated-into-the given cyele-time. From Table 6.9, there are 22
cases, i.e. the cases of 3,4, and 6<25 for right skew distributions and the rest of cases
are three, i.e. the cases ofl, 2. and 5 for left skew distributions. By the graphical
expression, the histogram of task'time for the 11-task problem of the 13 cycle time is
exemplified and shown in Figure 67F mally, the tabulated results are shown

obviously that most of /€asgs are right skew and take long CPU time to allocate

candidate tasks to a position ina U-lne.

Table 6.9 Frequencydistribution for the eycle fime ratio data of 7-10 tasks

Case Interval class Intervalclass | Frequency.| Relative | Cumulative
/cycle time | of cycle time | of given cycle (No. of . |/ frequency | relative
(time units) ratio time tasks) frequency
1. 7 tasks 0<x=0.25 0<x<1.75 1 0.1429 0.1429

/7 0.25<%<0.50 1.75<x<3.50 1 0.1429 0.2858
0.50< x < 0:75 3.50<x<5.25 4 0.5714 0.8572
0.75 <xx | 5.25<m 7 1 0:1429 1
2.7 tasks 0<x<0.25 0<x<2.50 1 0.1429 0.1429
/10 0.25<x<0.50 2.50 < x <5.00 2 0.2857 0.4286
0.50<x<0.75 5.00<x<7.50 4 0.5714 1
0.752 x <1 750<% <10 0 0 1
3. 7 tasks 0<x <025 0<'x<4:50 3 0.4286 0.4286
/18 0.25<x<0.50 4.50<x<9.00 4 0.5714 1
0.50<x<0.75 9.00<x<13.50 0 0 1
0.75<x<1 13.50<x<18 0 0 1
4. 10 tasks 0<x<025 0<x<2.50 5 0.5000 0.5000
/10 0.25<x<0.50 2.50<x<5.00 5 0.5000 1
0.50<x<0.75 500<x<7.50 0 0 1
0.75<x<1 7.50<x<10 0 0 1
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Table 6.10 Frequency distribution for the cycle time ratio data of 11-61 tasks

Case Interval class Interval class | Frequency | Relative | Cumulative
/cycle time | of cycle time | of given cycle (No. of | frequency | relative
(time units) ratio time tasks) frequency
5. 11 tasks 0<x<025 0<x<1.75 1 0.0909 0.0909

7 0.25<x<0.50 1.75<x<3.50 3 0.2727 0.3636
0.50<x<0.75 3.50<x<5.25 4 0.3636 0.7273
0.75<x<1 525<x<7 3 0.2727 1
6. 11 tasks 0<x<025 0<x<3.25 4 0.3636 0.3636
/13 0.25<x<0.50 3.25<% < 6.50 6 0.5455 0.9091
0.50<x<0.75 6.50< x <9 75 1 0.0909 1
0.75<x<1 On75 <%l 115 0 0 1
7. 11 tasks 0<x<0.25 0<x<5.25 ) 0.4545 0.4545
/21 0.25<x <0150 5.25< x<10.50 6 0.5455 1
0.50 < x <075 10.50 < x<15.75 0 0 1
0.75<x<1 Tt ih kK 2) 0 0 1
8. 19 tasks 0<x<025 0< x <30 16 0.8421 0.8421
/120 0.25< x<0.50 30<x <60 I 0.0526 0.8947
0.50 < x < 0475 60'<x <90 % 0.1053 1
0.75<x<1 90=x<120 0 0 1
9. 28 tasks 0<x<025 0 Ix-£ 354 KA 0.6071 0.6071
/138 0.25<x<0.50 35< <69 6 0.2143 0.8214
0.50<x<0.75 69<'x <104 3 0.1071 0.9286
0.75<x<1 104<x <138 p.. 0.0714 1
10. 28 tasks 0<x<0.25 0<x<64 22 0.7857 0.7857
/256 0.25<x<0.50 64<x <128 6 0.2143 1
0.50<x<0.75 128 <.x < 192 0 0 1
0.75<x <1 192 <x <256 0 0 1
11. 28 tasks 0=%<0.25 03286 20 0.8929 0.8929
/342 0.25<4 < 0.50 86 <x<171 3 0.1071 1
0.50< x<0.75 171< x <257 0 0 1
0.75<x<1 257 <x<342 0 0 1
12. 45 tasks 0<x<025 0<x<14 32 0.7111 0.7111
/57 0.25 < < 0.50 143420 11 0.2444 0.9556
0.50< x1<.0.75 29<x <43 1 0.0222 0.9778
0.75<x<1 43< x <57 1 0.0222 1
13. 45.tasks 0.<x<0.25 0<x<28 43 0.9556 0.9556
/110 0.25'< x< 0150 28 <x <55 2 0.0444 1
0.50< x<0.75 55<x<83 0 0 1
0.75<x<1 83<x<110 0 0 1
14. 45 tasks 0<x<025 0<x<46 44 09778 0.9778
/184 0.25<x<0.50 46<x<92 1 0.0222 1
0.50< x<0.75 92<x<138 0 0 1
0.75<x<1 138<x <184 0 0 1
15. 61 tasks 0<x<025 0<x<150 58 0.9508 0.9508
/600 0.25<x<0.50 150 < x <300 3 0.0492 1
0.50<x<0.75 300 < x <450 0 0 1
0.75<x<1 450 < x < 600 0 0 1
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Table 6.11 Frequency distribution for the cycle time ratio data of 70-297 and 36 tasks

Case Interval class Interval class | Frequency | Relative | Cumulative
/cycle time | of cycle time | of given cycle (No. of | frequency | relative
(time units) ratio time tasks) frequency
16. 70 tasks 0<x<025 0<x<40 34 0.4857 0.4857

/160 0.25<x<0.50 40< x <80 22 0.3143 0.8000

0.50<x<0.75 80<x<120 7 0.1000 0.9000
0.75<x<1 120 < x <160 7 0.1000 1
17. 70 tasks 0<x<025 0<x<63 49 0.7000 0.7000
/251 0.25<x<0.50 63<x<126 15 0.2143 09143
0.50<x<0.75 126 <x < 188 6 0.0857 1
0.75<x<1 188 < x <251 0 0 1
18. 70 tasks 0<x<0.25 0< <132 65 0.9286 0.9286
/527 0.25<x<0.50 132 < x <264 - 0.0714 1
0.50<x<0.75 264 </x 395 0 0 1
0.75<x<1 395< x 45217 0 0 1
19. 111tasks 0< x <025 0'< x<1709 74 0.6667 0.6667
/6,837 0.25<x < 0.50 1709<x <3419 25 0.2252 0.8919
0.50< x <0754 /3419< <5128 8 0.0721 0.9640
0.75<x<1 5128 <lx < 6337 4 0.0360 1
20. 111tasks 0<x<025 0<x <1979 83 0.7477 0.7477
/1,916 0.25<x<0.50 19795 <3958 4 20 0.1802 0.9279
0.50< x < 0475 3958=< x< 5937 7 0.0631 0.9910
0.75<x<1 59375 % <7916 1 0.0090 1
21. 111tasks 0<x<0.25 0:< x <4402 106 0.9550 0.9550
17,067 | 025<x<0.50 4402 < x < 8534 5 0.0450 1
0.50< x <0.75 8534 < x <12800 0 0 1
0.75=<x<1 12800 < x < 17067 0 0 1
22. 297tasks 0<¥<0.25 0<x<349 251 0.8451 0.8451
/1,394 0.25 < x<0.50 349 < x < 697 33 0.1111 0.9562
0.50< %<0.75 697 < x <1046 10 0.0337 0.9899
0.75<x<1 1046 < x <1394 3 0.0101 1
23. 297tasks 0 <gxx 0.25 0 < 459 273 09192 0.9192
/1,834 0.25.< x< 0.50. 459< ¥ <917 19 0.0640 0.9832
0.50< x<0.75 917<x<1376 4 0.0135 0.9966
0.75<x<1 1376< x <1834 1 0.0034 1
24. 297tasks 0 x <025 0<% <697 285 0.9596 0.9596
12,187 0.25<x<0.50 697<'x 21394 12 0.0404 1
0.50<x<0.75 1394 < x <2090 0 0 1
0.75<x<1 2090 < x <2787 0 0 1
25. 36 tasks 0<x<0.25 0<x<343 32 0.8889 0.8889
/1,371 0.25<x<0.50 343< x <686 4 0.1111 1
0.50< x<0.75 686 < x <1028 0 0 1
0.75<x<1 1028 <x <1371 0 0 1
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CHAPTER VII

CONCLUSION AND RECOMMENDATION
FOR FUTURE RESEARCH

7.1 Introduction

This final chapter summarizes the findings.and conclusion of the research. The
exact algorithm was first=studied to discover-relevant factors on a small ten-task
problem. Four multi-objective evolutionary algorithms are then developed to solve
larger problems and a‘pracucalproblem: The summary of experimental results closes
the gap with the rescarch objcetive and research questions posed at the beginning of
the dissertation. Recommendation for fll;tlire research is presented in the issues of
bounds, heuristics, relaxation of some restriéﬁons, and extension of the problem into

other line configurations.
7.2 Conclusion

In conclusioti,_the importance of a U-shaped asscmibly line has increased to
respond more product, variety. Many manufactures use-mixed-model production to
produce different preducts on the same line. It helps them provide their customers
with a variety of produétsdn a timely and cOst effective manner. Much research work
has been done on the traditional line balancing problems. Recently, the U-shaped line
balancing problems have been researched for almost two decades. A U-line is widely
used’in just-in-timic production systems and well-Suited tola mixed-maodel production.
Previous research has compared a U-line to be more efficient than a straight line.
Workers must be trained to complete many tasks. It is more reasonable undertaking in
the fixed location layouts of all problems where only a limited number of tasks are
feasible for any worker. In general the location of task in many manufacturing settings
is fixed to a specific position of a production line due to machine and material
handling constraints. However, the model in this study can be modified because of the

existing industry conditions of manually small and inexpensive machines including
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mobility. The single assembly line balancing problem differs from the single U-
shaped assembly line balancing problem. In the assembly line balancing problem,
tasks may be assigned while moving through the graph in one direction (forward or
backward) only, whereas in the single U-shaped line balancing problem tasks may be
assigned to stations while moving through the precedence graph in two directions
(forward and backward) at the same time. For a single U-line as one of other U-
shaped types, there has been no prior documented work in the U-shaped worker
allocation with 7-task to 297-task standard problems under one-piece flow production
environment using the development of evoluitionary algorithms. Most of the published
work in optimum U-shaped worker allocation-problem did not take into account the
impact of walking time,-medium-sized and large-sized benchmarked problems, and
multi-criteria optimization. Lhe performance index of all algorithms in this study is
the minimum numbersof wotkers: Hiérarchically, the deviation of operations of
workers and walking time ate evaluated w1th multi-objective performance at the same
time as the Pareto-optimal frontier. The i:JLINO solutions of benchmarked data sets
without walking time are used as lower Bounds to come up with optimal solutions.
Subsequently, the impact of walkiﬁg time on the SUALWAPs of type I is conducted
and subjected to a constraint. From the -é;__-x‘p_q{imental results of symmetrical and
rectangular U-shaped layouts, incrementin_E a number of workers in the former
objective is sensitive to-determine the Wal-li-ifl_g_;t_ime at only five percent of average
processing time (equivalent to time units) in most problems. Just a few problems are
at the ten and twenty percentage of average processing time (equivalent to time units).
It gives the conclusion that a decision to change a little walking time significantly
effects the supplement, of a-larger number of workers;in-a single-U-line. After getting
the fixed % average processing 'time from'one task-to another‘task of all problems,
every worker is assigned to do task(§) by the consideration of the major objective and
mino#dual objectivesirespectively: Since the complexity of the problems falls into the
NP-hard class of combinatorial optimization problems, the four multi-objective
evolutionary algorithms of NSGA-II, MA, COIN, and PSONK are applied to
SUALWAPs and conducted experiments to evaluate the application. Non-dominated
Sorting Genetic Algorithm (NSGA-II) as a former multi-objective method is first
solved in these problems. Secondly, Memetic Algorithm (MA) is extended by adding
the concept of local search. Thirdly, combinatorial optimization with multi-objective

COINcidence algorithm (COIN) as a novel evolutionary algorithm at combinatorial
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optimization has been applied successfully to this dissertation and many industrial
engineering problems (Chongstitvatana et al., 2010). It recognizes the positive
knowledge appearing in the order pairs of the good solution by giving a marginal
reward (increased probability) to its related element of the joint probability matrix. In
contrast, the negative knowledge found in the order pairs of the bad solution, which is
often remiss in most algorithms, is also utilized in COIN (reduced probability) to
prevent undesirable solutions coincidentally found in this generation to be less
recurrent in the next generation. Then, the negative knowledge of the coincidence
algorithm is developed into Particle Swarm .©Optimization (PSO) as a renowned
evolutionary technique. The fouith algorithm of this study is called Particle Swarm
Optimization with Negative  Kinowledge (PSONK). From the results, it is quite
evident that PSONK previdesithe objective functions optimal comparing with NSGA -
I, MA, and COIN in meSt caSes. Besides, the CPU time is quite short as compared to
the others. In executing every algorithx.n,’" the algorithm takes significantly longer
times for larger problem setsibecause the'—,ltime is directly proportional to the number
of tasks.

Capacity planning is the process o-f:__-i}i_qx}tifying necessary resources to meet
fluctuating demands. Inadequate €apacity pEri;ing can lead to the loss of customer
demands. There are,three¢ phases for capaéif's;_—f)_lénning ag-follows. First, long-term
capacity planning is-the plan for future plant capacity made by an executive manager.
Secondly, medium-term capacity planning that is related to employment, layoffs,
overtime, etc. is the planning based on the assumption that the capacity of the plant
does not changes Finally,~shert-termscapacity splanning that-is related to material
availability, absenteeism rate, etc.-involves the ‘day to ‘day’ issues and decisions in
operations planning. Thus, assembly line balancing and worker allocation problems
are important tasks in, medium-term production planning that concern the installation
of the line and the division of work among stations. From the horizontal time, these
problems should be planned for making decisions before a few months. From doing
our experiments with four algorithms previously, the best case of PSONK in the 297-
task problem took a few hours only and even the worst case of MA taking the longest
time spent about six days in the same problem. It is no doubt to make a conclusion
that a decision maker from a plant can use the ameliorated algorithm of PSONK to

achieve the U-shaped assembly line worker allocation problem by time schedule.
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7.3 Recommendation for Future Research

Numerous research opportunities remain in the search for greater assembly
line efficiency and more accurate depiction of manufacturing situations and
difficulties although many aspects of U-shaped worker allocation were studied in this
dissertation. The objective of the dissertation was to model and investigate the
characteristics of U-shaped worker allocation problems and to propose a method of
solving them. Other directions and the /effectiveness of the algorithms may be

improved through further research into the following topics.

7.3.1 Bounds

Owing'to the feasibility of bound associated with the U-shaped worker
allocation problem, processing and walki;qg times are significant factors in algorithm
performance. Although! seyeral “bounds’ were introduced in the U-shaped line
balancing algorithms, the tightness of the B;')ynds should be also improved particularly
relative to U-shaped worker alloeation ﬁlgprithms and extended from the only
Miltenburg’s 10-task problem'to other st@défd problems. The tradeoff between
computational requirements_for -bound calgulg;tion and potential improvements in
algorithm performance must be evaluated. However, difficult worker allocation
problems such 1[1+ask and 297-task problems cannot-be solved optimally and

dictates the use of heuristic solution procedures.

7.3.2' Heuristics

Even (though“the \RSONK 'used jin this/ study” provadito be the best
effective evolutionary algorithm for solving SUALWAPs, the development of
PSONK procedures could be improved in the quality of solutions and the computation
time. The further improvements of PSONK should be focused on the memory of the
wrong first walk losing opportunity to make bad solutions and the addition of the

beneficial local search in MA to make better solutions.
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7.3.3 Relaxation of some restrictions for SUALWAPs

Some conditions may be relaxed in SUALWAPs as follows:

- A mixed-model version of the simple U-line can be developed.
Although some problems in this study input many products, task times from different
precedence graphs are averaged as a single product. The benefits for using mixed-
model U-lines having stochastic processing times remain untested. These issues may

involve more elaborate simulation methodology.

- In this study it is assumed that all'weikers have the same processing
time at each machine, lf'skills of workers are differcnt, then the worker allocation to
machines according tostheirskills will be taken info account. In practice, the skilled
worker has to wait for ghe completion of Bperations of a new worker in the U-line.
The problem for the stoghastic. model, 1;1 which processing and walking times are
stochastic, is also important. As a resul‘;;_ other computation algorithms should be

developed. "

- The relevance-of the learnir’i_g3éﬁrve on task assignment rules should

be considered as a significant topic. -

- The'model developed here is three of multiple criteria for the decision
making approach. A-decision maker may be interested“in measuring the success of

these problems from othersgroups of criteriat

< In addition, to achieve a “satisfactory” rather than “optimal” solution
other_goals. ile! max-min; min-max, and max‘max curyes'in addition fto a conflicting

goal (min-min curve) may be developed.

- Extending the proposed approaches by considering the worker’s
parallel workstations, fixed task locations, zoning constraints, etc. should be also

considered in the future study.
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- To allocate tasks in other real assembly U-lines, the distance that is

equivalent to %APT may be adjusted.

- Other possibilities may be taken into account for other important
aspects of real environments, e.g. the period time of rebalancing a U-line should be
studied; the balancing and sequencing problem should be fulfilled at the same time;

and the effect of setup times should be also considered on a new mixed-model

V//

7.3.4 Extensio ngle

sequencing U-line problem.

ker allocation into other

line co

More ¢ ar ped for practical problems

such as these where stati s \ s span more than one line. It
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An example of results of NSGA-II at the side ratio 1:1:1 (1/3)

7 tasks

Merten 7task cycle7 3:3:1

TS task minWS =

6 3 7 4 1 2 5
37 4 1 2 5 6
36 5 7 4 1 2
7 4 1 2 5 6 3
7 6 3 5 2 4 1

position =
2 2 2 2
2 2 2 1
2 2 2 2
2 2 1 1
2 2 2 2
WT DOW J=

2.0705 1.0708 .
2.0915 0.9392

2.1081 0.8400
2.1521 0.5940
2.1854 0.4200

Define Station =
1

—_— = =
N NN NN
W N W W W

Elapsed time is 1083. 639858 seconds.
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10 tasks

Miltenburg_10task cyclel0 4:4:2

TS task minW

8

10 6 7

3

1

5

6

7 4 10 9 2 5

1
9

oA

10 9 4 2

10 4

3

10

2 7 6

position
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WT DOW J=
23871 2.7566 4.0000
24071 2.6922  4.0000
24236 2.5074 4.0000
24705 22918 4.0000
2.5170 2.1882  4.0000
2.5208 2.1434 4.0000
2.5277 2.0622  4.0000
2.5332 2.0538 4.0000
2.5355 2.0356 4.0000
2.5747 2.0202
2.5836  1.9600
2.5845 1.9222
2.5971 1.8536
2.6208 1.7542
2.6344 1.6730
2.6850 1.5806
2.6869 1.5176
2.6891 1.4994
2.7246 1.4812
3.2759 1.4770
3.5418 1.4588

Define Station
1 1

SR SN )

PR DN

.2)
wgww

bt e e ek ek bk b e e e ek b ek e e e e e

»—l\)[\)»—»dl\ﬁ—»ﬂﬂ —_— N = RN = = N N = -

— e e b e b e b e b e e e e e e e e
¥

NNNI\JNUJENN
Nwwww@
Nwwwww

Elapsed time is 2711.902717 seconds.
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2.6

24+

11 tasks
Jackson 11task cyclel3 4:4 3 f%?" 54-;-

TS task minWs =
9 7 4.10

111 10 9 2 &
1 3 2 4 -| 10 g p—
] 6 3 9 7,
1
34310 NUNITNLINT
4
3 Yo 5 2 6 49 7 5.
p0s1 _
i qﬁﬁﬂ?ﬁuuﬁﬂ?ﬂﬂqaﬂ
1 %2 2 2 1 2 2 1 1 1 1
111 1 2 2 2 1 2 2 1
111 2 2 2 1 1 2 2 1
111 2 2 2 1 2 2 1 1
2 2 2 2 2 2 2 2 2 2 1
2 1 1 2 1 2 1 1 2 2 1
11 2 2 2 1 1 1 2 2 1
WT DOW J=

24633 7.3140 5.0000
2.6407 6.1054 5.0000

3.8

208
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2.7539 5.7794 5.0000

2.7919 5.4898 5.0000

29273 5.1419 5.0000

2.9369 4.7940 5.0000

3.2975 4.5479 5.0000

3.3658 4.4950 5.0000
Define Station =

1 1 2 2 3 3 4 4 5 5 5
1 1 2 2 3 3 4 4 4 5 5
1 1 2 2 3 3 4 4 5 5 5
1 11 2 2 3 3 4 5. 5
1 11 2 2 3 3 :
1 1 2 2 3 3 ¢

1 1 2 2 3

1 1 2 2 3

Elapsed time is 4081.09

7.5-
6.5

5.5
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19 tasks

4.

¢,

Thomopoulos 19task cycle120 8:8:3

TS task minWS =
Columns 1 through 17
15 12 8 18 9 16 6 7 3 2 5 1 10 4 11 14 19
10 16 19 17 18 2 8 6 14 15 12 9 7 5 13 11 4
19 18 14 16 10 6 4 2 8 3 9 5 11 13 15 1 7
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10 16 19 17 18 2 8 6 14 15 12 9 7 4 1 13 11

3 6 4 5 11 14 2 9 8 10 18 1 7 13 17 12 15

6 19 15 3 5 4 11 14 13 2 8 17 9 18 16 12 7

32 9 8 1 5 4 11 13 7 14 10 17 6 16 18 12
Columns 18 through 19

17 13
1 3

12 17

5 3

19 16

1 10

15 19
position =

Columns 1 through 17

2 2 2 2 2 L
2 2 2 2 N
2 2 2 2 s
2 2 2 2 B
1 2 1 1 Lo
2 2 2 1 S
1 1 1 1 LT
Columns 18 throu

2 1

11

11

11

11

11

11
WT DOW J=

50597 164.5488 250000

13.2397 130.5600" 5

13.3435 126.9663 _i[ .0000

13.8376 122.4000 50000
15.6794 121.5224
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Elapsed time is 5101.182266 seconds.
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An example of results o
L~

28 tasks LY

He skiaoff_28task_cyﬁ2 56 9:9:10

TS task mi s o
commslﬁm&’mﬂﬂ‘i M3
13 26922 28 17 20 14 § 9 7 6 21
2822202672716415&.183210}419
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An example of results of MA at the side ratio 1:4:4 (1/9)

45 tasks

Kilbridge&Wester 45task cycle110 20:20:5

TS task minWS =
Columns 1 through 21

2 8 74 43 37 10
18 16 23

2 8 39 7 / 9 6 10
18 16 24 /

1 7 39 43 59
18 16 23

1 39 43 , 9
18 23 16 - .

2 39 8 10
18 16 23

2 39 8 10
18 16 23

2 39 8 10
18 16 24

2 1 11 10
24 16 18
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2 8 1 11 10
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1 3 11 12 7 43 45 44 39 5 9 13 15 24 23 18 16
42 19 20 21

11 12 43 45 39 44 13 2 8 42 4 6 10 15 24 16 23
18 19 20 21

12 43 45 39 44 2 8 42 4 6 10 11 13 15 16 23 24
18 19 20 21

12 43 45 39 44 2 8 42 4 6 10 11 13 15 18 23 24
16 19 20 21

12 43 45 39 44 2 8 42 4 6 10 11 13 15 18 16 23
24 19 20 21

44 12 43 45 39 11 13 15 16 23 24

18 19 20 21
4 12 43 45 8 4!/ 11 13 15 18 16 23
24 19 20 21 f

12 43 45 37 3 95 G4 6 11 13 15 23 24
16 8 14 - b |

1 44 12 3 43 29 30 2 8 7 39 4
6 37 5

1 2 8 43 4 12 13 14 32 17
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17 11 43 45 13 15 18 16 24
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43 11 39 45 1 7 3 12 13 15 24 23 16 18 19 20 21
44 42 41 9
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44 42 41 9
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44 39 11 45 43 37 2 8 4 6 10 12 13 15 18 24 16
19 20 23 21

39 11 43 45 44 2 8 37 4 6 10 12 13 15 18 23 24
16 19 20 21

39 11 44 43 37 1 3 5 7 9 2 8 4 6 10 12 13 14
25 17 30
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7 14 17 25
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17 39 43 374544 2 4 1112 13 14 32
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1237 39 11y/' 13 15 18 16 24
23 19 20 21
12 37 39 43 8 15 18 23 16
19 24 20 21
1237 39 43 15 18 24 16
19 23 20 21
39 12 37 43 15 18 16 23
24 19 20 21
39 12 37 44 4 1 13 15 18 23 16
24 19 20 21
12 37 2 11 4 79 39 8 10 14 32
31 17 25 — —
12 37 44 45 39 28 4 13 15 18 16 19
23 24 20 21 %o
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12 37 2 1 3 7 39 8 5 9 43 11 13 14 17 15 31 27
29 24 30
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24 14 17 27929 30 23 33 34 36 35 32720 21 25 26 31
22 28 38 40

14 29 30 31 17 32 27 23 24 33 35 36 34 20 21 25 26
22 28 38 40
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7

10

29

25

29

17

17

17

18

16

3

23

27+

17

29

24

24

24

24

24

24

14 30 31

25

14

14

17

30

17

29

1

29

19

25

26"

16

30

29

31

23

23

23

23

23

23

26

25

30

31

17,

.Y,

31

2]

31

20

26

24

as

28

30

27

16

16

L6

16

16

16

32
17
31
27
26
28
227
28
07
21
5

32

29

27

32

33

32

53

33

33

%2

22

T 24

27 33

294y

27

33

29

32

26

29

30

29

26 18

33

34

18

18

18

18

18

18

29
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17 27 33 35 28 34

9 27 33 36 34 35 45

4

29

36

27

36

36

36

36

28

27

34

19

B3

36

36

19

19

19

19

19

19

19 20 21

22 33 34

17 27 33 35 28 34

34

33

34

34

34

34

33

18

35

33

34

34

32

33

33

33

33

33

33

28

28

30

28

30

28

35

19

36

34

31

28

28

34

35

34

34

34

34

17 27 33 36 35 34 25 3l

30

32

30

34

31

30

29

30

34

20

20

35

36

31

30

35

34

35

36

35

36

35

29

35

35

35

35

36

21

21

36

35

35

35

36

20

36

20

20

20

25

35

25

25

25

25

10

33

22

45

25

25

25

45

36

45

35

36

35

26

36

26

26

26

26

44

34

28

42

26

26

26

42

45

42

45

45

45

32 28 26 38

17 27 33 34 29 28 35 36 25 26



25 26 4 6 5 9

22 1 7 14 31 30
3 5 9 42

40 38 36 31 30 35
8§ 22 5 37

40 38 36 31 30 34
8§ 22 5 37

22 1 7 14 32 31
3 5 9 42

22 1 7 14 31 30
3 5 9 42

26 32 31 27 15 24
42 41 40 38

17 27 30 15 23 24
26 4 6 10

18 23 29 16 19..20
2803 5 9

32 30 27 26 31 .4
22 28 38 40

32 17 25 29 L6 19
28 38 40 43

15 16 18 19 24 23
2803 59

22 2 8 14 17+ 29
4 6 10 42

22 1 7 14 30 025
3 5 9 42

22 1 7 14 30 31
3 5 9 42

22 1 7 14 29 17
3 5 9 42

22 1 7 14 <4729
3 5 9 42

29 30 26 27 IS5 23
28 38 40 43 '

22 1 7 14 31% 29
3 5 9 42

3 5 O 15%23 24
36 4 6 10

1 7 28 o3 A 3 o5
35 84 36 26

27 37 4 6 10 3
35 32 25 26

27 37 4 6 10 3
35 32 25 26

27 37 4 6 10 3
35 32 25 26

32 30 27 31
22 28 38 40

32 30 27 31

22 28 38 40

25 26 4 6 5 9

<31

16
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32 17 27 33 34 29 28 35 36 25 26

32 10 28 29 34 33 27 26 25 17 14

32 35 10 28 29 33 27 26 25 17 14

17 27 33 36 34 28 30 29 35 25 26

32 17 27 33 34 29 28 35 36 25 26

23 16 29 18 19 33 34 36 20 35 45

16 18 /19020" 21 22 28 33 36 34 35

30 3N 262427 33 34 35 36 21 22

6.5 19 18 19.33 35 36 34 20 21

30 /31126 27 3336 34 35 20 21 22

]

2» 26 :25 33 35 34 29 36 20 21 22

31730 32 27 33 34 35 36 25 26 28

273335 34 136

217 - ieah 13

17 32 28 26 29

23 34 35 28 29 26

30 32112i'-33 34 36 25 26 28

3303227 33 34, 36 35 25 26 28

1624 1819 33 35 36 34 20 21 22

17 30 320,27 33 34 36 35 25 26 28

8719420 "2 22 728 W26 33 35 34

Q9 A 64 40 18 20 21722 .28 33

5 9 18 19 33 20 21 22 28

5 9 18 19 33 20 21 22 28

5 9 18 19 33 20 21 22 28

19 33 35 36 34 20 21

19 33 35 36 34 20 21
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29 32 25 30 17 31 27 26 16 19 33 35 34 20 36 21 22
28 38 40 41

20 21 24 31 23 32 17 26 27 33 35 36 34 22 28 38 40
4 6 10 41

20 21 22 6 10 17 27 26 28 3 5 9 24 33 35 36 34
38 40 39 41

32 16 23 25 18 19 33 35 34 20 21 22 28 36 26 38 40
4 6 10 41

17 27 33 35 34 31 32 36 29 20 21 3 S5 9 25 26 22
28 38 40 41

29 27 30 31 18 19
26 38 40 41

18 16 23 19 20

21 22 28 3 5 9 36

y /1 22 28 25 26 38 40
4 6 10 41 T :
27 37 43 39 26mb8eniO 36 3503420 3 5 9 21 22

28 38 40 4] e, | S

29 30 18 19 33 22 28 3.5 9 35 34 25 26
38 40 39 41 \\ -
0 \~\

29 30 18 19 5 9 35 25 26
38 40 39 41
Columns 43 through
41 42 44
41 42 44
41 42 44
41 42 44
41 42 44
41 42 44
41 42 44
41 42 44
41 42 44
41 42 44
41 42 44
41 42 44
41 42
41 42

3 5 BuIngndnenns
z%ajﬁ@aﬂmmumwmaﬂ

40 41
9 41 37
9 41 37
9 41 37
9 41 37
9 41 37
9 41 37
26 25 30
28 38 40



10
22

41
21

9 41

10

41

9 41

22
28
22
28
28
28
41
41
41
2
2
41
41
28
38
41
10
45
41
41
41
41
41
41
45
41
38
38
38
38
38
10
lO

42
42
42
42
42
42
42

21
22
21
22
22
22
42
40
40
4

4

40
40
22
40
40
29
42
40
40
40
40
40
40
42
40
40
40
40
40
40
29

Maﬁnimumawmaa

45
45
45
45
45
45

position =
Columns 1 through 21

ﬂUEJ’JVIEWI‘SWEJ’]ﬂ?

44
44
44
44
44
44
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1

1

1 1es1 1

ﬂUEJ’JVIHVIﬁWEJ’Iﬂi

1

1

2

1

ﬂﬁﬂzﬁﬂﬁﬁﬁﬂﬂiﬂ’]?ﬂﬂTQﬁ
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l

1

1
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ﬂUEJ’JVIEJVIﬁWEL 19

1 1

p—
—
p—
p—
p—
p—

1

1

1“1 1 1 1 1

Wﬁﬂﬂﬁ?ﬁmﬂﬁ R

1

1

2 2 2

2 2 2

1

1

\S)
—_

—_

—_

—_
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1

1

1 el 11

ﬂUEJ’JVIEJVIﬁWEL 19

1471

1

—

—

—

1

1

1

1

1

ﬂﬁﬂﬂﬂﬂ‘ﬁﬁmﬂﬁ R

1 1
1 1
1 1
1 1

—

—

—

—
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—_

Columns 22 through 42
1 1 1 1 1

[u—
—_

1

—_
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—_

—_

1

1 1 1
2

1 1 1
1

1 1 1
1

1 1 1
2

1 1 1
1

1 1 1
1

1 1 1
1

1 1 1
2

1 1 1
2

1 1 1
2

1 1 1
2

1 1 1
2

1 1

2 2 2 2 2
1
2 2 2 2 2

2

2

1

1

ﬂ’lJEJ’JVIEJTliﬂEJ’lﬂi |
ﬂmaﬂﬂ'smmﬂﬁﬂmﬁ’

1 1
1 1
1 1
1 1
1 1

1471

1

—_

—_

—_

—_

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 2
1 1 1
1 1 1
1 2 2
1 1 1
1 1 1
1 1 1
1 2 2
1 1 2
1 2 2
1 1 2
1 1 2
1 1 2

2 2 2 2

2 2 2 2
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p—
p—
—
—
—
—

1

1

1‘1&11111;11111

ﬂUEJ’JVIEJVIﬁWEL 19
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—

—

—

—
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W

e e e e e e e e S S SN S S Ol Sl SR SR SR S I SR N
e e e el e e e e e e e e e e =t C° 2N N° B NS I NG T (O T (O I (O I O NO I NS I O I NS I (O IE i (O I O R O]

3.1801
3.2613
3.4448
3.6099
3.8557
4.2386
4.4299
4.6839
4.7130

bt etk e ek ek pmd ek ek pmd ek ek ek pd e ek e bk pd pdd ek e pd b e b ek e b ek e e ek ek e

lﬂuﬂﬂﬂﬂﬂiwﬂﬂﬂﬁ
2 M’}ﬁmﬁmumqwmaa

199.3020
197.9551
196.2664
195.3294
195.1723
194.8584
194.3178
191.9549
191.2224

7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
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4.8669
5.1432
5.2341
5.4071
5.5972
5.6877
5.7260
6.0914
6.1468
6.1922
6.3984
6.5879
6.6837
6.9301
7.2668
7.3555
7.4973
7.7228
7.7561
7.8074
7.8252
7.9284
8.0277
8.1428
8.2608
8.3050
8.3266
8.4972
8.5750
8.7191
8.7229
8.8219
8.9060
9.0070
9.0338
9.0444
9.3092
9.3135
9.4666
9.5723
9.6029
9.6920
9.8921
10.0514
10.1310
10.1346
10.4922
10.6307
10.6390
10.7348

186.7307
184.7886
184.4594
184.4184
183.9639
180.8818
179.3982
178.7446
178.4449
175.9728
174.8486
173.8872
172.3773
170.7194
170.4085
168.7506
168.3843
167.0783
166.8652
166.2142
165.5768
164.6277
163.9190
163.7552
163.2430
163.0464
161.4221
160.0752
159.3664
159.1729
157.9463
157.5150
156.7592
156.5974
156.0042
155:1819
154.5335
1542820
153.9988
153.7313
153.5934
153.1956
149.7451
148.5487
148.1176
147.6398
145.9992
145.7729
144.9460
143.6620

7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
70000
7.0000
7:0000
7.0000
740000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7:0000
7.0000
7.0000
7.0000
7.0000
7.0000
’7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
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11.0002
11.0846
11.1045
11.1348
11.3072
11.3558
11.6983
11.8465
11.9756
12.1084
12.5494
12.6403
12.8048
12.8693
13.3842
15.2015

141.3930
141.3148
141.0325
140.9703
139.5715
139.1114
138.4320
136.9107
136.8553
134.3763
133.9509
133.2421
133.1606
131.5843
129.5621
127.9043

Define Station =
Columns 1 through

1 1

1 1

1 1

1 1

f—
p—

1 1
1 1
1 1
1 1

7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000
7.0000

7.0000
7.0000

7.

1

1

1

1

1

2

ﬂ‘UEJ’J mmwmm
: ammﬂ'swm’mam@

1

2Q02

2

2

2

2

2

3

3
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B

W

1

1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1

1

1

2

ﬂ’lJEJ’J‘VIEJYIiﬂEJﬂm
amaﬂn'smmmﬂm’a@

1

202

2

2

2

2

2

3

3
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W

W

1

1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1

1

1

2

ﬂumwamwmm
ammnfsmm«mma’a@

1

2

2

202

2

2

2

2

2

2

2

3

3

W

W
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1 1 1 1 3 3 3 3 3
4 4
1 1 1 1 3 3 3 3 4
4 4
1 1 1 1 2 3 3 3 3
3 3
1 1 1 1 3 3 3 4 4
4 4
1 1 1 1 3 3 3 4 4
4 4
1 1 1 1 3 3 3 4 4
4 4
Columns 22 through
4 4 5 5 6 6 6 7 7
7 7
4 4 4 4 6 6 6 7 17
7 7
4 4 5 5 6 6 6 7 7
7 7
4 4 5 5 6 6 6 7 7
7 7
4 4 5 5 6 6 6 7 7
7 7
4 4 6 6 7 7
7 7
““ﬂﬂsﬁl’?‘i’lﬂgﬂ‘ﬁwmﬂi””
7 7
4 5‘5 6 6 6 7 7
7
@Wﬂ‘ﬂﬂﬂ‘iﬂdiﬁm’mﬂ’}ﬂsﬂﬂ
7
44444 6 6 6 © 7 7
7 7
4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 7 17
7 7
4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 7 17
7 7

4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7
77



4

7

4 4 4 4 4

6

4 4 4 4 4

7

4 4 4 4 4

6

4

4

4 4

4 4

iﬂ 5u5

4

4

5

5

3
4298

5

5

5

5

5

S5

' 8] NINBIA
AR FUNPITNA Y,

4 4 4 4 4 4

5

5

5

5

5

5

5

5

6 6

%

505 6

5

5

5

5

5

6 6

6 6

6 6

6 6

6 6

6

6

6

6

6

6

6

6

6

6
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3

3

AN

; 4ﬂﬂﬂﬂﬂ‘§ﬁliiliﬂ’ﬁﬂ 7]

7
4 4 4 5 5
7
33
7
4 4 4 4 4
7

4 4 4 4 4
7

4 4 4

5

4

ﬂ 5
4 4 5 €55

J HUEJ’J NNINYANT

5

5

576

6

6

%

o

6

(o)

N

(o)

6

(o)
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3 4 4 4 6 6 6 6 7
77

3 4 4 4 6 7 7 71 1
77

3 4 4 4 6 6 6 6 7
77

4 4 4 4 6 6 6 71 17
77

4 4 4 4 6 6 7 7 7
77

3 3 4 4 6 6 6 6 7
77

4 4 4 4 6 6 6 7 7
77

4 4 4 4 : 6 6 7 1 1
77 .
4444444 6 6 6 7 17
77 '

Columns 43 through 45~ =
T 7 7 :

ﬂuﬁﬁmw%’wmm

WIANNIUNRIAINYIAY

AN I I N IR RN AN BN BN BN I T I EEN BEN BENEEN BEN RN
'n\]\]\l

BN N B B I N
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TNYINT
MUY

SN
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WEINEN

A

T 7 7
7
7
7

O T T S S S S o S o o S O ST S S o o S N N e o S T ol o N O L o o O S S S SN o SN N S

WAINT

Lo S L e S S S e S S S T o T e e O S e e O S S S O S S T e S [ e e e

77
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7
7

o e S L e e



BN BN BN BN |
NN NN
NN NN

Elapsed time is 6092.348994 seconds.

210

[ ]
200+ .‘
%o o
190
180+
170
160
150
140}
130+
[ ]
1201
2 4 16
61 tasks

Kim 61task cycle ﬁ""

TS task minWS =
Columns 1 through

3 %mm zﬁﬁf;s

mwm&ﬁiﬁ?ﬁiﬁfﬁﬂwﬁﬁ

28 29 30 31 34 32 33 5 6 7 8 10 9 13 11 12

24 25 1 2 3 21 28 29 30 31 32 33 4 5 6 7

21 35 36 37 38 42 4 5 6 7 8 9 10 11 12 28

24 25 21 28 29 30 31 34 32 33 4 5 6 7 8 9
Columns 33 through 48

30 34 31 32 33 42 43 44 48 45 47 49 50 21 22 23

41 35 36 37 38 42 43 44 48 45 47 49 50 21 22 23

8 9 10 11 12 34 43 44 47 48 45 49 50 22 23 27

29 30 34 31 32 33 43 44 47 48 45 49 50 22 23 27

249



10

25
25
53
53
27

11

27
27
54
54
53

position =
Columns 1 through 16

1 2 2

1 1 1

2 2 2

2 2 2

2 2 2
Columns 17

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1
Columns 33

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1
Columns 49 through 61

1 1 1

1 1 1

1 1 1 =

1 1 1

1 1 1

WT DOW J=

35 36 37
Columns 49 through 61

53
53
57
57
54

54
54
59
59
57

55
55
55
55
56

26.4259 533.8860 10.0000

26.6329 5
28.1561 4

29.9250 465:8266 10.0000

42 936 5
Defi on
Colu

s 1 throug

Q
wwwg‘»—a»—a.—u—u_
=]

7}

-l;.l;w:_u—.—.—.—

—
-l}-l}.hgr—dn»—t»—t»—t»—t
[

-lk-l;-lkcg‘rd»—t»—t»—t»—t

N — = N —

A~ A

1

2
1
1
2

A~ b b

42

56
56
56
56
59

NS \S RN O (S I V)

W

¢

NS \S RN O (S I V)

wn B

44

60
60
16
16
58

48

58
58
26
26
26

L

EHUINUNINYINT

NS \S RN O (S I V)

W D

2

[NSIN NS RN NS )

W D

2

NN NN

W D

45

61
61
61
61
61

3

W NN W

W D

16

17
17
17

W W W W W

W D

49

13
14
13
13
12

— — e

—

W W W W W

W O\ D

50 22 23

— — e

—

JHSUNRIINEAY

W W W W W

AN N
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AN Q W W
c
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o0 0 0 0 0 O
—
[

Elapsed time is 12551

— g} hhd

RN

Tongue 70task cycle251_2

540

520

500

480

460

440

420

w2

wn
covooBaoacaoanad e

&~ B

—
=3
]
(=1

—+
\O\O\O\O\OgO\O\O\O\O\
(=1

N
o)

(o))
[

NN NI

O O O O

&~ B

NN 09 NN

O

9}
[V}
9}
W
W

NN 99

9 10 10 10 10
10

()]

0 J 3 o0

10
10
10
10
10

()]

o0 OO OO o0 0

(o)}
[o)}

o0 OO OO o0 OO
o0 OO OO o0 OO

=

¢ o

;nﬁhﬁﬂaqnﬁ

TS task minWS =
Columns 1 through 16

15
15
15
9
15
15

1

1
5

5
0
1
1

69
16
30
11
16
5

70 9
18 9
1 16
15 1
69 9
16 41

10
10
18
16

5 70 41

9

11 5 30 41 24
17 19 24 22 1
69 9 10 41 70
2 3 41 68 70
10 30 24
17 70 30 24 69

16
57
11
17
17

18
58
24
69

11
18

TUNAINYIA Y

17 19 57
69 30 41
17 2 3

4

— W

7
2 3 18
10 3 4
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252

15 1 16 18 9 10 17 70 41 2 3 68 5 24 19 30
15 5 16 9 18 17 24 10 11 1 70 41 2 30 3 69
Columns 17 through 32

20 21 22 58 2 59 3 68 4 7 6 8 12 14 13 23

2 70 11 59 3 4 7 6 8 68 12 20 21 14 13 23

4 7 6 8 68 12 19 57 22 14 20 13 58 59 21 23
30 24 6 18 8 12 19 57 13 20 58 59 14 22 21 23
68 4 7 6 8 12 19 22 14 20 21 13 23 25 28 33
6 19 11 57 58 7 8 22 12 59 13 20 21 14 23 68
22 69 57 11 4 7 6 8 20 12 58 14 59 13 21 23
19 68 4 6 57 7 22 8 .58 12 20 14 21 13 59 23
Columns 33 through 48

25 29 31 27 32 33 26 34 2435 61 56 48 44 62 60
25 28 26 33 3127 32 34 29735 61 36 60 53 51 56
33 31 34 32 2502827 297 263561 60 56 48 51 49
33 25 27 28 2934 26. 31 32 355148 49 36 52 o6l
31 32 57 58 2627 459 34 29 35 53 56 61 51 62 44
33 31 32 3425 28 £6/20) 27 3576l 60 53 36 56 48
25 29 26 33 28 3 Q2F)34° 32 35 ol 44 62 48 51 56
25 28 33 297731 4324 26 434 227 35 44 61 60 36 45 48
Columns 49 through 64 =

53 45 51 46749463 47 36 520 64 66 67 54 37 38 65
52 62 48 54 44 63 f64 65 37 38 39 40 42 66 55 67
44 62 52 53 54 4450 36 63 55 37 38 39 40 64 66 46
53 56 62 44 54045 46 .47 SQ 60 37 63 64 38 67 66
63 64 67 66 60 45 36452 37 .48 54 55 49 38 39 46
49 44 62 37 51 6364 52 66 54 55 65 45 46 38 47
53 63 36 45 46 49 47 37 38 04 52 66 67 54 55 60
46 53 62 56 47 49 37 63 51 64 52 54 38 67 66 55
Columns 65 through 70

39 40 42 435055

45 49 43 467 47 50

47 65 67 42 43 50

39 65 40 42 43 50

65 40 42 47 43 #50

67 39 408 42 437 50

65 39 40 42 43 50

39 65 40° 42 43 50

Station =
Colimns | through 16

1 o011 11 4 5 5 5 5 5 5 10 10 10 10

1 1.1 8 8 10 10 10 10 10 10 11 11 11 11 11
1 1.1 1 1 4 4 4 5 5 5 5 5 6 6 6

2 2 2 3 3 3 4 4 4 4 5 5 5 5 55

2 2 2 2 3 3 3 3 3 3 3 4 4 4 6 6

1 1.1 1 1 5 5 5 5 5 5 6 6 7 7 7

2 2 2 9 9 10 10 10 10 10 12 12 12 12 12 12
2 2 2 3 3 4 4 4 4 5 5 5 5 5 55

Columns 17 through 32
111 11 11 11 13 13 13 14 16 17 17 16 16 15 15



12 12 12 12 14 15 15 16 17 17 16 16 15 14
6 7 7 7 9 9 9 9 9 10 10 12 12 12 13
55 8 8 9 9 9 9 11 11 11 13 13 13 15
7 7 7 7 8 8 8 8§ 11 11 11 12 13 13 14
8 8 8 8 8 9 9 9 9 9 12 12 12 13 13 15
12 15 15 15 15 15 16 16 17 17 17 14 14 14
6 6 6 6 7 7 7 7 7 8 8 8 9 9 9 11
Columns 33 through 48
4 13 12 12 12 12 9 9 9 9 9 8 8 8 8 8
31 9 9 9 9 7 7 7 7 7 7 6 6 6 6
13 13 14 14 15 15 16 17 17 17 16 16
16 17 17 16 16 15 ' 14 14 14 12 12
14 14 14 14 » 7 16 16 15 15
15 15 16 16 I a 14 14 14 11
13 11 11 11 6 6 6
11 12 12 12 14 14 14
Columns 49 through 64 ~
7 7 7 7 2 2
6 6 5 5 3 3
14 11 11 11 3 3 3
12 12 10 10 1 1 1
15 10 10 10 5 5 5
11 11 10 10 3 2 2
6 5 5 5 1 1
15 15 15 15 I 1 1
Columns 65 through 7
2 2 2 2 2 2
3 3 3 2
2 2 2 2
1 1 1 1.
1 1 1 1
2 2 2 27
1 1 1 1
1 1 1 1
WT DOW J=

s e a1 291 Y 871

291 17.0000

351%1§i\1ﬁ%m URIAINYIAY

36.9307 261.1324 17.0000
40.4166 260.6821 17.0000

29.4973 338.

Elapsed time is 2561.965907 seconds.

13

13

16
12
15
11

14

253



254

500

450+

400+

350

300

250
22 24

An example of results

111 tasks

TS task minWS =
Columns 1 through 16

84 81 89 80w 8¢ 7 10 12
84 85 &9 :-‘i'i:: 086 8] 90 — 7 9 5
85 1 80 8 ' 7 5 6
85 1 E 86 89 7

85 1 89 80 4 87 5 10 11 8 88 12
84 81 89 87 8 85 90 80, ,86 2 10
84 81

5 mw mﬁmwmm

81912 3 87 8 8 90 80 8 4 7
88 89 80 86 81F1 8 2490 3 4 6

ﬂ W] BISTRIl VE15 E Y 'lﬂ ‘%19"

&7 80 85 89 90 86 2

84 81 80 8 85 89 87 1 88 2 3 4 6 5 8 10
84 88 8 1 & 2 3 4 6 8 10 5 11 12 89 18
8 1 81 2 87 8 8 8 3 4 88 5 90 7 10 11
85 84 89 8 &1 1 8 2 3 4 8 6 8 10 9 7
81 80 8 8 84 1 8 8 & 90 2 3 4 7 9 6
84 81 8 1 8 80 8 2 8 8 9% 3 4 7 5 8

1 84 81 8 2 &8 8 87 3 4 9 8 5 6 10 11
84 1 81 8 8 &7 8 8 9 8 2 3 4 10 7 11



85
84
84
81
84
84
85
84
84
85
85
84
1
80
84
84
84
1
84
81
84
85
84
84
84
85
84
84

81
84
1
1
81
86
81
1
1
81
81
80
80
84
85
1
1
84
81
88

255

81 80 8 2 8 &7 90 3 4 6 8 8 7 10
8 1 81 2 3 8 87 8 8 4 90 10 9 8
8 1 87 88 2 3 4 9 5 8 10 80 86 12
8 2 84 89 8 & 90 3 4 6 8 10 5 8
88 80 8 2 &1 8 8 & 90 3 4 6 T 5
88 87 8 &8 8 88 1 9% 2 3 4 9 10 5
81 87 8 2 9 3 4 6 8 8 10 9 12 7
81 2 88 8 &7 90 8 & 3 4 8 10 5 6
88 89 87 80 8 1 9 & 2 3 4 7 5 8
81 1 8 8 2 3 4 6 8 10 8 7 5 &7
80 8 8 2 3 4. 5 8 8 10 12 11 13 18
81 2 3 88 & 89 80 8. 4 6 8 5 87 10
8 87 80 9086 2 84 &5+ 3 4 89 T 5 6
1 8 2 .3 4.8 8 4012 84 11 15 89 20
87 80 85wwd89 90w 2 “3wnde? 9 88 5 8
81 2 3 d6~8 80 86, 5S™855.7 9 87 90
80 88 85 80 86811 2 3 4.6 8 10 9 11
2 3 8T 836400 M6 I8 TI0 84 12 11

80 1 89/ 87  90//38985 86 23, 4 6 8 5
86 8471 #8944 38885 22587 90,34 10 5 6
86 1 8IF &8 WY 8 2 BA8A "y 7 9 8 5

81 188 243,406\ 8 10,8 7 5 8 12
89 80 88 86 /1 2 3 8l 4 7 .87 90 8 10
88 80 85 86481 .2 344 9 810 5 8 7
81 80 86,42/ 3 87 83 90 89 85 4 6 5 8
1 8 2 3 446 5 8.8 8 9 8 7 8l
88 87 90 85,18 80 8 2 3 4 9 8 6
85 1 8 2 3 4 6 8 9 8 7 5 10 12

Columns 17 through 32

6
8
8
90
18
9
12
7
89
9
89
88
8
90
17
12
87
10
6
12
12

8
6
10
10
9
7
5
10

12

17
17

11 13 49 5 21 20 17 15 26 82/16 9 14 22
10 120 AF=19—17—15 212682 16+ 20 14 23 22
12 9~ 17 14 23 16 28 32 1819 20 24 15
11 12 16 192118 17730 38 28 27 14 23 22
29 16 9 37 20 15 45 13 6 21 27 35 43 48
12 11 19 44 23 25 33048 17 28 29 37 30 15
6ol 1 | 200 119 NI7 L1513 921 | 26 #8218 14 16
9 1V 120 20 T16 K178 21% 28 7 k8 150 2613 82 27
12914 22 15 18 .25 31 29 21 34 42 13 47 56
12.. 14 23 _.25..34, 42 33, 24 =47, 13, (15, 26 .5 56
5160216 21 1181 15/119] 30 3827 [200 13 46
89 11 12 21 14 23 25 24 13 16 33 19 30 38
9 11 12 13 17 15 26 20 21 28 19 30 38 16
12 11 17 21 28 9 14 23 33 32 15 26 20 36
15 29 19 21 30 38 80 46 13 28 37 45 87 51
6 8 19 9 21 8 20 17 15 26 18 14 23 22
11 12 14 23 22 18 15 90 26 32 83 82 19 17
11 17 13 18 28 5 14 16 8 22 15 26 82 36
10 11 12 20 17 19 21 14 23 22 25 13 15 33
13 16 8 90 7 18 8 14 22 21 29 31 37 27
20 5 8 6 14 23 22 33 24 31 18 21 29 39



12
6
90
11
8
11
5
86
10
88
6
9
9
17
10
88
7
16
10
11
6
90
11
87
10
10
7
11

9
5
7
12
10
12
11
7
9
12
81
11
8
28
11
89
87
17
9
8
10
80
12
12
12
11
5
13

11
11
6
86
9
6
16
12
11
9
21
12
10
88
86
10
12
21
11
7
11
86
13
6
7
12
10
18

13
12
11

16
11

19

17

9

12

11
29

18
11

87

6

11
13

7

12
9

12

11
5
11
9
19
11
17

21
14
16
9
12
17
84
11
14
17
37
90
12
16
12
=
18
28
pr

12

90
16
20

17 A5 [26..82- 904 21

11
16

12
20

Columns 33 through 48

24
83
26
15
51
26
28
19
55
54
14
27
36
16
20
30
30
27
32
25
25

23
31
82
29
14
82
23
36
59
57
52
17
44
19
16
38
16
21
41
83
40

25
25
27
83
49
16
7
44
61
60
24
28
18
13
7
25
31
35
83
20
19

33

I o4 —54—
22+

35
24
38
34
35
57
68
22
46
29
82
26
16
33
29
31
35
28

30

21
46
25
36
43
30
67
64
29
36
82
27
86
31
29
23
34
39
37

16

18
23 33
21 18
20 7
16 20
21 28
21 15
19 14
23 22
14 23
87 90
7 29
21 12
S S
14 23
0
4 23
'
136 Iy
13
15

15 29
17
&9
15
27
15
20
22
33
22
16
o
20
18

14
19
15
14

¥
13
15 26 82

16

15414 23
21 20418
5 265221
15 2928
38 34 46
18
31 29 25
13 36 24
53 19 17
27 22 5
299307 |2
50 3829
9 62 24
55. 59 , 67
171 35, 37
44" 35 52
50 37 46
22 30 83
14 90 23
29 82 28
38 25 13
31 25 39
16 39 42
15 26 82
9 36 15

244

13615
119 24
15 268 17

17
21
13

5 89
20 15
15 29
14 19 17
35 19 21

7 14 23
26 82 19
30 38 16
32 24 31
13 18 21
14 45 25
EWBL 15
VY 15
2T
22 wi—dn

1 S ] S i
90 24 21

el RO\ 28

16 17

26
26
26
30
18
30
13
31
41
20
19
45
23
36
31
16
22

36

PR 20741 Si A6\, 9N, 29
14 23 22 27
19 20 30 28

82
22
14
38
15
38
18
27
&3
33
27
30
18
29
29
13
29

s, 3O 27
16023 30 32
14 23720 27

19
19

28
28
17
21
29
36
27
35
18
19
35
38
33
19
39
23
&3
18

14
17

1317 21 418 24 32

15429 30
13180 17
81 26 21
28
29
33
25 44
34 42
45 44
35 36
14 22
63 71
757
43 023
18 15
35 43
38 46
36 24
36 37
27 35
45 33
82 40
43 36
16 44

32
42
36
20
30
34
27,
43
58
17
31
20
27
41
25
32
46
37
26
28
&3

41
37
&3

38
20
36

ol

19
4

34
78
20
33
83
26
63
25
29
45
44
22
41
20
24
47
49
26

26
16
82

42
47
30
52
86
13
47
46
54
62
26
50
48
52
82
24
28
51
55
44
32

17
28
44

27
60
38
26
36
&3
32
24
37
20
32
43
14
24
27
27
52
34
58
40
82

19
32
82
27
26
44
14
23
17
83
30
46
24

83

27

25
38

28
22
14
24
38

41
13

19
37

35
30
34
32
26
32
83
49
&3
21
28
48
51
31
35
35
41
42
66
23
30

37
82
28
46
37
13
23
17
20
29

52
29

40
35
32
88
25
19
24
23

14
29

46
27

87

43
33
42
37
23
24
41
48
82
18
32
37
25
25
52
43
43
47
18
24
50

256



45
16
23
52
45
24
22
15
15
25
15
26
25
30
13
26
30
86
38
30
83
22
28
22
26
52
36
45

14
24
36
24
43
22
89
13
29
31
23
51
32
14
33
32
15
46
46
32
23
33
19
24
28
27
82
14

23
41
27
23
48
46
30
46
25
24
17
14
37
23
20
82
31
52
29
35
13
28
33
25
19
35
35
19

16
36
32
18
82
33
38
21
21
32
33
22
31
22
21
28
33
89
33
24
32
27
18
31
37
43
43
24

33
27
20
25
51
26
88
32
19
39
26
17
45
44
19
19
34
26
34
22
25
35
35
36
82
48
48
86

Columns 49 through 64

18
59
47
50
22
31
31
37
65
71
39
34
49
35
34
48
34
55
27
45
45

31
67
35
31
38
35
44
53
23
22
34
42
52
43
42
49
42
20
30
33
27

29
38
57
42
46
46
38
45
19
32
83
32
53
18
47
34
39
54
60
48
35

83

47
52
50
60
23
33
83
41
41
24
34
56
83
37
57
54
50
43

il

59
39

32

51
59
51
17
61
42
33
22
42
83
45
24
40
35
19
48

51
44
33
22
30
20
29
24

20
13
37
83
49
50
28
26

6 34

16
89
13
51
13
25
2
42
i
44
"3
I8
37
38
44
43
87
14

22

39

67
33
44
41
43
52
66
65
48
45
23
48
57
42
21
59
24
32
38

27
20
82
34
24
16
43
47
¥
15
43
Y |
82
31

46,

30

49
124
50

40
S5 = St—s—T—
60~

54
”
31
39
48
25
20
82
40
22
33
49
60
46
36
61
68
53
46

22
18
24
31
14
25
32
82
28
35
20
20
16
50
1%
48
20

P3 \
263
31

44
45
36
18
33
90
30
16

49
36
58
60
33
42
39
31
16
19
49
31
&3
39
58
52
45
67
38
51
13

30
31
35
13
22
31
24
52
13
41
28
31
26,
33
41
33
16
2
82

25

41

)

304

25

29

20

14
38 25
5131

36

44
39
54

43
24
39
28
74
36
26
31
40
59
44
47
44
57
30
34

&3
29
45
32
25
52
35
83
42
43

16
42
o
37
24
38
34
52
49
30
83

52
16

&0 5

44
24
65
59

47
47
53
40
27
31
33
49
39
29
67
47
60
58
29
38
42

27

22
26
38
16
43
20
47
48
82
28
39
83
15
53

29,
22
N
38
32
29
3%
51
22
49
23

48
27
43
56

39
54
40
34
30
16
44
82
34
37
54
56
55
66
37
34
47

35
25
44
34
17

48
43
26
40
83
23
13
31
26
31
37
44
27
34
35
51
21
16
22
23
53
25

53

46
48°

55
59
57
67
42
38
39
53
51
32
53
44
60
62
83
43
46
57

36
35
51
42
24
83
41
28
36
34
24
24
83
35
82
29
60
32
35
39
46
25
39
50
38
83
22
39

45
58
46
64
82

52
55
47

40
45
47
40
50
43
54
57
56
45
41
55

44
43
50
39
31
27
31
25
39
53
51
36
40
25
28
36
17
50
45
33
50
41
32
83
27
82
44
40

47
66
44
72

40
60
68
58

32
76
47
83
42
45
68
58
48
60
61
42
62

24
49
19
47
39
35
25
34
16
30
34
33
82

36
44
28
37
83
18
31
43
40
27
35
28
34
34

56
50
13
88
&3
58
37
57
41
29
59
37
47
47
55
39
58
50
65
47
58

50
34
83
57
53
43
33
18
44
38
42
32
19
45
45
37
56
31
34
21
33
36
34
35
83
53
83
42

60
45
37
61
41
49
46
33
36
27
60
58
56
56
32
68
59
62
70
59
59

257



25
19
41
40
34
82
53
39
37
37
31
83
41
43
27
83
54
41
42
83
39
24
30
43
31
36
50
47

31
39
31
56
28
39
39
29
27
15
38
25
47
38
35
41
27
45
20
29
29
31
43
48
25
44
46
90

34
42
25
41
23
34
37
41
35
26
32
41
60
34
43
49
55
24
17
38
26
48
38
23
34
37
52
55

39
47
34
55
&3
40
40
48
43
82
47
39
28
42
48
45
39
39
43
36
40
38
48
13
42
50
29
59

43
83
42
59
40
49
34
40
50
45
60
44
30
47
53
30
35
)
4
46
34
34
53
53
47
32
37
67

Columns 65 through 80

55
68
50
68
50
68
57
60
39
35
51
65
59
54
64
33
67
71
73
60
52

64
55
55
63
57
48
45
56
40
28
55
66
67
51
65
53
53
64
46
55
51

59
39
62
45
65
59
50
66
35
30
62
56
54
55
48
55
40
32
52
67
67

67

57~
71

62
58
21
61
64
45
38
56
54
58
59
72
64
44
43
28
52
53

51

;6 l, -

66
43

56

56
51
54
46
36
67
59
66
67
33
66
65
41
75
56
61

49
37
47
67
32
42
83
42
54
46
55
27
58
56
51
38
64
47
56
42
37
42
46
34
56
31
31

54

50

53
74
54
67
32
39
52
37
61
64
60
64
66
51
71
19
36
62
65

40
55
57
29
33
47
46
53
59
52
39
ol
68
55
34
5
58
&3
60
92
42
B,
52

40,

54

394
125
62

62
,5 2, —

40
41
64
64
62
32
44
43
50
39
57
57
31
57
68
70
48
58
54

42
62
60
62
36
18
52
33
56
90
54
50
55
62
42¢
51
46

59
54
141

e
40
7.
33
64
41
42
o

57
69
49
67
60
72
56
41
43
41
54
55
65
60
53
65
61
68
51
66
49

47
58
54
71
44
55
49
47
55
28
57
34
56
63
30
34
68
67
68

137

82

e
45
42,

60

40
41

60
59
43
64
42
32
36
54
62
42
59
42
64
58
47
46
40
54
]
47
47
49
b},

47
39
34
56

30 83

65
70
56
82
67
65
63
65
50
70
fAl
72
41
72
39
62
54
69
59
57
66

68

74
45
g
66
66
71
68
70
49
68
62
55
58
41
61
49
30
62
54
41

68
56
30
65
47
56
44
57
63
47
43
40
63
32
60
52
36
60
55
60
57
47
42
60
36
33
54
27

54
65
68
70
55
55
65
55
60
48
70
71
64
66
63
71
50
49
44
65
70

38
66
38
33
13
54
45
36
71
51
48
47
72
66
56
50
44
56
64
59
65
56
47
49
40
24
59
65

63

o
63"

76
62
74
5§
72
49
44
73
67
62
65
49
50
70
38
79
71
60

55
71
46
28
56
48
51
60
45
55
65
55
62
48
54
39
45
64
51
67
43
55
57
57
44
45
67
58

72
43
61
71
63
53
66
63
68
69
69
61
68
61
40
69
69
63
49
63
56

59
60
52
58
41
59
42
59
30
59
68
62
38
59
57
42
72
35
48
56
60
21
56
68
43
42
32
71

61
73
70
69
71
61
49
67
69
13
75
69
63
62
61
40
73
48
53
68
73

61
64
39
35
54
62
47
67
61
61
58
71
61
67
65
47
61
72
61
54
55
63
54
32
72
47
39
32

58
51
52
49
72
70
64
62
51
58
78
60
71
69
62
63
66
46
50
61
75

32
72
55
37
58
58
55
37
70
54
46
60
57
49
68
54
62
33
70
57
59
46
64
37
58
55
41
41

71
48
73
48
68
62
54
61
48
53
77
40
61
63
74
59
56
52
71
70
63
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58
68
62
45
57
71
62
49
67
57
67
43
66
71
49
58
71
55
39
55
61
52
60
58
59
62
33
61

57
40
58
72
65
57
50
68
64
65
62
48
27
60
38
66
50
62
59
62
62
53
55
66
67
71
57
33

65
48
66
61
66
65
59
55
73
62
71
56
74
53
59
59
74
82
62
63
58
57
62
55
46
57
60
70

48
53
48
82
50
63
67
61
75
56
40
54
54
57
64
56
52
51
71
82
66
65
72
59
68
60
64
56

41
74
61
63
64
66
61
62
40
67
56
68
35
46
55
20
57
58
33
40
54
58
59
56
74
56
55
73

Columns 81 through 96

69
49
69
58
74
71
70
70
64
46
58
74
72
71
76
67
64
65
67
69
71

70
40
64
66
61
76
69
73
53
52
66
76
74
68
69
72
51
73
56
64
68

73
62
72
65
69
69
73
71
72
50
64
63
76
74
70
74
72
75
69
73
64

74

73
70
63
72
74
73
75
"
68
69
70
73
76
75
53
64
75
79

66

78
53

76

73
75
75
74
79
63
70
70
73
75
70
91
78
78
78
72

66
50
71
43
55
41
54
58
49
64
52
61
70
a5
72
64
65
66
58
65
68

ogF Po,

67
67
66

64 584
163+
66

62

63

75

77
40
73
75
91
91
76
91
79
73
73
75
79
73
78
77
77
72
69

53
30
68
48
72
61
70
66
48
72
53
58
69
41
63
>,
43
74
66
68
48

58

04,

55

91
N S
75

ol
"
75
91
78
3
75
93
74
75
75
79
50
75
93
79
72
79
78

56
54
69
66
59
67
56
45
79
69
63
66
36
39
67
60
48

¥ \
693
158

69
61
68
54
76
66
ral
60

78
77
79
78
91
40
93
93
91
94
57
91
91
91
78
78
94
72
91
74
77

54
63
70
53
46
64
58
69
53
49
66
69
65
68
61
40
41
65
49

44

/0

500
74
63,

52

65
127

70
45
73
51
67
60
57
51
38
70
41
70
74
o1
44
68
49
71
40
71
71
60
65

45
57
68
40

69 64

93

79
74
oy
93
94
92
94
78
77
65
92
92
78
77
77
79
91
94
91
91

94
ot
94
4
94
79
Ty
76
93
66
76
77
79
93
71
79
74
94
63
94
93

46
76
65
36
74
69
60
65
72
71
36
59
43
64
69
63
76
68
23
64
67
54
63
s}
48
61
68
68

76
93
76
91
77
92
74
69
94
78
91
94
77
94
91
91
92
92
74
92
94

52
67
49
60
63
70
64
70
51
60
44
67
44
54
70
67
69
40
72
7
53
68
41
65
50
54
61
75

92

94
o

94
79
78
94
95
77
45
92
78
93
76
92
93
77
74
92
77
74

73
61
40
54
52
73
71
73
74
74
49
64
50
69
74
61
70
61
57
61
73
70
66
62
61
70
69
38

79
53
51
93
78
77
79
9%
92
92
93
93
94
92
93
94
95
93
93
93
76

67
69
53
70
60
68
65
75
58
36
61
72
59
51
58
72
51
76
73
50
49
62
71
41
65
59
70
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An example of results of PSONK at the side ratio 1:1:1 (1/3)

297 tasks
Scholl&Klein 297task cycle2787 99:99:99
TS task minWS =

Columns 1 through 16

1 2 3 4 111 134 221 83 27 8 S 6 90 259 266 8

138 191 1 2 3 4 109 94 48 /134 27 259 5 26 83 90
138 1 2 3 4 94 259 27 86/ 409" 48 93 221 40 111 247

Columns 17 through 32

136 22 94 247 13819L.-9 95 48 7139 56 25 61 65 109
247 95 136 139 266#40° 6/ 8 9 3130 111 221 297 7 142
105 191 223 3111047116 /162 172 179 “83 266 122 26 225 90
82

Columns 33 through 48 4

24 93 60 107314179 A2 14 .19 142 223 13 29 121 18 17
105 56 86 93 146 422 129 82 10 22 60 68 34 24 110 179
88 89 22 25 5 SS6f 5.6 104175 9.134 136 61 139 142
Columns 49 through 64 s

15 20 11 253 1287172040 - 82 152 4164 21 68 225 44 73 33
12 17 20 11 15 172 175 88 180 252 258 265 272 16 275 280
24 29 7 30 34 129 65 297 60 68 152 8 12 17 180 44

Columns 65 through: 80

26 16 49 38105 88 89 53 116 30 175 -122 297 34 110 129
290 162 141 13 73 25 253 29 33 38 21 61 223 225 65 44
49 141 33 38 121 13 14 128 253 11 252 15 164 151 167 73

Columns 81.through 96

23 35 42' 46 51 1627 141 260 To67 180+ 2670 2737 55 171 41 45
14 19 187151 41 49 53 .58 152 164 167 171 23 28 32 &9

18,53 163 171 .258 .19 .21 .16, 35. 42 46, 260.41.°58, 45 50

Columns 97 through 112

50 151 163 28 81 87 276 281 291 37 32 54 58 59 64 72
45 50 54 296 37 36 39 43 47 52 57 76 62 71 63 66
20 54 296 51 81 87 265 272 275 280 290 267 273 55 23 276

Columns 113 through 128

78 80 125 36 79 39 296 43 47 52 57 76 252 192 201 62
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