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CHAPTER I 

 

INTRODUCTION 

 
1.1 Introduction 

 

Batch crystallization which is an important separation and purification unit is 

widely used in many fields such as food, chemical and pharmaceutical to produce 

high value-added specialty chemicals with high purity, desired Crystal Size 

Distribution (CSD) and shape. In general, a batch cooling crystallization is one of the 

most method to apply in industrial processes owing to it operates easily. Cooling 

crystallization, supersaturation is generated by cooling, is applied to the solution 

which the solubility of solute depend on significantly temperature. On the other hand, 

evaporative crystallization, supersaturation can be created by evaporate, is more 

favorable than cooling crystallization if the solubility of solute depend on slightly 

temperature. With the object of enhancing the productivity of batch crystallization 

process, there are a number of researches focused on optimization and controlling 

both of batch crystallization by cooling and evaporation processes (Mukhopadhyay 

and Epstein, 1980; Neelakantan and Mukesh, 1979; Fagervik et al., 1988; Sowul and 

Epsteln, 1981; Fevotte et al., 1990; Mesbah et al., 2010). For examples, Paengjuntuek 

et al. (2008) studied the implementation of a dynamic optimization integrated with a 

nonlinear control strategy of batch crystallization process for the production of 

potassium sulfate. A generic model control (GMC) was used for control the 

crystallizer temperature following the desired profile and compared with conventional 

PI control techniques. Mesbah et al. (2010) presented a model-based control approach 

for optimal operation of a seeded fed-batch evaporative crystallization. The 

evaporative crystallization was operated at isothermal and vacuum pressure. 

Moreover, combining heating/cooling and evaporation in batch crystallization 

is also the main topic of interest due to it can produce higher supersaturation, higher 

crystal yield and larger crystal size than all conventional crystallization. This method 
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is only suitable for the system where the solubility varies significantly with 

temperature (Choong and Smith, 2004). The combined evaporative crystallization 

with other process presents several advantages such as reduce equipment 

requirements, time cycle and saving cost of separation and recovery in some case. 

Choong and Smith (2004) optimized and compared batch heating/cooling evaporative 

crystallization with the other crystallizations such as batch evaporative, semi-batch 

evaporative and batch cooling crystallizations. The results showed that the 

heating/cooling evaporative crystallization provided larger  average crystal size 35%, 

12% and 8% than crystallization by batch cooling and unseeded constant evaporation,   

batch seeded evaporative and semi-batch evaporative, respectively. In addition, 

heating/cooling evaporative crystallization increased the crystal yield to 47% higher 

than all modes of crystallization. Nevertheless, the process control to achieve a 

desired product is necessary. 

The batch crystallization process is high complexity and nonlinear system. 

One of the most effective techniques to solve this problem is an artificial neural 

network that is successfully applied to modeling the nonlinear system. An advantage 

of neural network is easy to design and use. The neural network estimates the 

relationship of input and output to explain the process. Kittisupakorn et al. (2005) 

applied neural network to predict the concentration of a hydrochloric acid in 

hydrochloric acid recovery process. Arpornwichanop and Shomchoam (2009) applied 

neural network to estimate the substrate concentration which use in optimal control in 

a fed-batch bioreactors. In addition, there are many researches applied neural network 

to modeling the nonlinear process (Nueaklong et al., 2011; Mujtaba et al., 2006; 

Georgieva and Azevedo, 2006; Wong et al., 2010; Charoenniyom et al., 2011). 

One goal in production is the control of product properties such as crystal size, 

purity and crystal size distributions that influence downstream processing operations 

such as filtering, drying and storage. The batch crystallization process is high 

complexity and nonlinear system. Consequently, the control of this process is a 

significant challenge that neural network is successfully applied to control of 

nonlinear system. For instance, Damour et al (2010) presented NMPC of an industrial 

crystallization process using model-based observers. A neural network model based 

on the estimate mass of crystal was used as internal model to predict the process 
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output. Besides, their work compared between NMPC and industrial data from a PID-

controlled process. Kittisupakorn et al. (2009) used neural network as a model in the 

model predictive control (MPC) algorithm for a steel pickling process. Furthermore, 

the neural network is applied with model based predictive control in many researches 

(Yu and Gomm, 2003; Ławryńczuk, 2008; Georgieva and Azevedo, 2007). 

The aim of this study is to improve the product quality by optimization and 

using a neural network to modeling and controlling of a batch heating/cooling 

evaporative crystallization. In a neural network section, the Lenvenberg-Marquaedt 

algorithm is used to train the neural network and the optimized structure of neural 

network is based on minimum the mean squared error (MSE) of training and testing 

data. For optimization, modeling and controlling of batch crystallization, the citric 

acid-water system is chosen as a case study (Choong and Smith, 2004). 
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1.2 Research Objectives 

 

 The main objectives of this research are: 

1. To investigate heating/cooling integrated with evaporation in batch 

crystallization in order to increase the crystal yield and crystal size. 

2. To model and control the batch heating/cooling evaporative crystallization by 

using the neural network. 

 

1.3 Scopes of Research 

 

 The main Scopes of this research are. 

1. Integration and optimization of heating/cooling and evaporation in batch 

crystallization is studied in this work. 

2. The batch heating/cooling evaporative crystallization is modeled by using 

neural network. The network is trained by using Lenvenberg-Marquaedt 

algorithm as well as determined base on MSE for the training data. The 

activation function is sigmoid function. 

3. Neural network based controller is applied to control temperature in the batch 

heating/cooling evaporative crystallizer. 

  

1.4 Contributions of Research 
 

 The main contributions of this research are: 

1. The effect of integration of heating/cooling and evaporation in batch 

crystallization affect on crystal size and crystal yield. 

2. Dynamic optimization of batch heating/cooling evaporative crystallizer to 

maximize average crystal size and crystal yield. 

3. The neural network model and controller for control the batch heating/cooling 

evaporative crystallization to target value desired. 
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1.5 Activity plan 
 

 The activity of this research can be listed as follows: 

1. Literature survey and review. 

2. Study MATLAB program. 

3. Simulate and validate a batch heating/cooling evaporative crystallization with 

citric acid/water system. 

4. Modeling neural network of a batch heating/cooling evaporative 

crystallization. 

5. Optimize the batch crystallization and design controller. 

6. Analyze and summarize the simulation results. 

7. Write thesis and prepare a manuscript for publication. 



CHAPTER II 

 

LITERATURE REVIEWS 

 
This chapter presents the literature reviews of crystallization process, 

application of neural network which consists of neural network forward model, neural 

network inverse model and neural network based model predictive control 

 

2.1 Crystallization process 

 

A crystallization process plays an important role in many industries. In batch 

crystallization processes, the quality of final crystal product is focused. There are 

many researches focused on improving the quality product which is crystal yield and 

crystal size. Combining heating/cooling and evaporation in batch crystallization is 

also the main topic of interest due to it can produce high supersaturation, high crystal 

yield and large crystal size (Choong and Smith, 2004; Mesbah et al, 2011; Fagervik et 

al, 1988) 

Mukhopadhyay and Epstein (1980) simulated the semi-batch evaporative 

crystallization of the citric acid-water system. The crystallizer was operated at 

constant temperature 50 ๐C and the feed flow rate was always equal to the evaporation 

rate. Resulting, the effect of changing flow rate was more pronounced than the effect 

of changing feed concentration. 

Neelakantan and Mukesh (1979) studied the development of a model for a 

multistage continuous evaporative crystallizer for the production of crystal sugar 

based on assumption constant temperature 70 ๐C in each stage, constant crystal 

growth rate and negligible nucleation. The results showed that when the number of 

stages was increased the crystal flow rate decreased and the coefficient of crystal size 

variation decreased. 

Fagervik et al. (1988) focused on an adaptive on-line simulation which is 

demonstrated by means of a developed adaptive on-line simulator connected with a 
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batch evaporative pilot plant crystallizer for sugar. As an adaptive model is able of 

predicting future behavior very accurately even of strongly non linear processes. The 

results presented on-line simulation an implementation of different control strategies 

has successfully been performed. 

Sowul and Epstein (1981) developed a procedure for estimating crystallization 

kinetic parameters based on transient crystal size distributions for continuous 

evaporative crystallizers. The crystallizer temperature was maintained at 75 ๐C and 

pressure was operated under a vacuum of 0.38 atm. 

Fevotte et al. (1990) presented a simple application of the non linear "L/A" 

controller to a batch evaporative crystallizer. A comparative study is proposed 

between the use of PID controller and the L/A algorithm. The simulation results 

presented the L/A algorithm which is easier to tune and more satisfactory behavior in 

closed loop than PID. 

Choong and Smith (2004) simulated and optimized three modes of evaporative 

crystallization: (i) batch unseeded and seeded evaporative crystallization, (ii) semi-

batch evaporative crystallization and (iii) heating/cooling evaporative crystallization. 

In first and second modes were simulated at isothermal 60 ๐C and third mode was 

simulated at non-isothermal which was decreased temperature from 60 ๐C to 40 ๐C. 

Furthermore, Choong and Smith simulated and optimized batch cooling 

crystallization. The results showed that the heating/cooling evaporative crystallization 

yielded an average crystal size, which was 35% larger than that produced by 

conventional and unseeded constant evaporation, 12% larger than that by batch 

seeded evaporative crystallization and 8% larger than that by semi-batch operation. In 

heating/cooling evaporative crystallization, the crystal yield can be increased to 47% 

higher than all modes of crystallization. 

Mesbah et al. (2011) presented a model-based control approach for optimal 

operation of a seeded fed-batch evaporative crystallization. The evaporative 

crystallization is operated at isothermally 50 ๐C and pressure 100 mbar. In additions, 

the crystallization of ammonium sulphate-water system based on assumptions 

constant of crystallizer volume, size independent growth of crystals and constant 

evaporation rate. 
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Mesbah et al. (2008) focused on an optimal control of the seeded fed-batch 

evaporative crystallization process. An optimal control problem pertinent to 

maximization of the batch crystal yield is solved using the sequential optimization 

approach. Experimental results also demonstrate that the application of the proposed 

optimal control strategy leads to a substantial increase in the crystal volume fraction 

at the end of the batch. 

 

2.2 Application of neural network 

 

2.2.1 Neural network forward model 

 

An artificial neural network is a mathematical structure that is used to model 

the linear or non-linear system. A neural network forward model is successfully to 

modeling the process which is complexity (Kittisupakorn et al., 2005; Charoenniyom 

et al., 2011; Nueaklong et al., 2011). The literatures on the designing of neural 

network are presented. 

Yang and Wei (2006) studied the development of a neural network model to 

predict crystallization kinetics such as crystal nucleation, growth, and agglomeration 

rates. The model was trained and validated with data obtained from an anti-solvent 

crystallization system that composed of ciprofloxacin hydrochloride, H2O, and 

ethanol. The result indicated that the neural network model gave much more-accurate 

prediction of the crystallization kinetics. The mean relative error of the predicted 

growth rates between this model and the measured data is generally <10% and, in 

some cases, is as good as 5%. 

Georgieva and Feyo de Azevedo (2006) focused on the benefits of applying 

hybrid strategy for dynamics behavior modeling of crystallization processes 

combining analytical and the artificial neural network (ANN) approaches and model 

predictive control (MPC) based on a feed forward neural network (FFNN) model in 

an industrial fed-batch evaporative sugar crystallization. The ANN was trained offline 

in batch mode with input-output data generated by the KBHM. 

Keong et al. (2004) designed the neural network to simulate and predict the 

crystallizer temperature of the Ni–P based amorphous alloys, as functions of alloy 
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composition and heating rate. The input parameters of the neural network (NN) model 

are alloy composition, heating rate of the heating processes, and processing 

parameters of the alloys. The output parameters are crystallization temperatures 

(onset, peak and end temperatures) of major crystallization reaction of the amorphous 

alloys. In training and testing, the neural network for the simulation and prediction of 

crystallization peak temperature showed a comparatively good result. 

Arpornwichanop and Shomchoam (2009) improved the control performance 

by hybrid neural network and on-line optimal control strategy and demonstrate for the 

control of a fed-batch bioreactor for ethanol fermentation. The information of 

unmeasured state variables obtained from the neural network as an on-line estimator 

was used to modify the optimal feed profile of the fed-batch reactor. The simulation 

results show that the neural network provides a good estimate of unmeasured 

variables and the on-line optimal control with the neural network estimator gives a 

better control performance. 

Kittisupakorn et al. (2005) described neural network models for the prediction 

of the concentration profile of a hydrochloric acid recovery process consisting of 

double fixed-bed ion exchange columns. Backpropagation and Lenvenberg-Marquardt 

techniques were used to train various neural network architectures and the accuracy of 

the obtained models were examined by using test data set. The optimal neural network 

architectures of this process can be determined by MSE minimization technique. The 

simulation results showed that multilayer feedforward neural network models with 

two hidden layers provide sufficiently accurate prediction of the concentration profile 

of the process. 

Wong et al. (2010) used of an artificial neural network (ANN) to model a 

lactose crystallization process and estimate lactose crystallization kinetic rates, 

nucleation, growth, and aggregation rates, under different processing conditions by 

using a mixed-suspension, mixed-product removal (MSMPR) crystallizer. The lactose 

crystallization kinetic rates were modeled both by the conventional power law 

relationship and by the feed-forward ANN architecture. The results revealed that the 

ANN approach gave a much better prediction of the kinetic rates. Compared to the 

power law model, the R2 and root mean-square error (RMSE) of the ANN approach 

improved by at least 49% and 33%, respectively. 
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Kumar et al. (2008) investigated modeling of a batch sucrose crystallization 

using neural network to predict the corresponding crystal growth rate and compared 

with conventional nonlinear regression analysis. A Levenberg-Marquardt algorithm 

and back propagation was used to train neural network. The simulation results showed 

that the optimal neural network consists of 4 input nodes, 10 hidden nodes and 1 

output nodes. The correlation coefficient between the experimentally determined 

crystal growth rate and the crystal growth rate by the neural network and nonlinear 

regression were 0.999 and 0.748, respectively. 

Mujtaba et al. (2006) studied three different types of nonlinear control 

strategies which were developed and implemented in batch reactors using neural 

network techniques. These are generic model control (GMC), direct inverse model 

control (DIC) and internal model control (IMC) strategies. The neural network was 

used as dynamic estimator, dynamic model (forward model) and control (inverse 

model). The simulation results showed all types of controllers performed well in 

tracking the optimal temperature profile and achieving target conversion to the 

desired product. However, the neural network used in DIC and IMC controllers need 

training beyond the nominal operating condition to cope with uncertainties better. 

Lin et al. (2010) applied a neural-network-based approximate dynamic 

programming (ADP) method in an industrial sucrose crystallization optimal control 

problem. The neural network model of the crystallization used the data from the 

actual sugar boiling process of sugar factory to train the network. The results of 

simulation showed the controller based on action dependent heuristic dynamic 

programming approach can optimize industrial sucrose crystallization. 

Charoenniyom et al. (2011) presented neural network modeling for the 

prediction of concentration profile of methacrylic acid in batch reactor of 

esterification reaction for a Methyl methacrylate (MMA) production process. And this 

work studied optimization to find optimal reactor temperature profile to maximum 

desired product. The simulations showed that the optimal neural network architecture 

of this process, which was 6 nodes in input layer, 8 nodes in 1st hidden layer and 13 

nodes in 2nd hidden layer, was a best structure network to predict concentration profile 

of methacrylic acid and reactor temperature. The MSE index of the data test is 

1.1101e-006. 
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Nueaklong et al. (2011) presented neural network modeling for hard chrome 

electroplating process to predict the plating solution temperature in hard chrome 

electroplating bath and inverse model-based control strategy for controlling plating 

solution temperature to the desired temperature range. Simulation results showed that 

6-6-1 appear to be the best for predict the plating solution temperature in hard chrome 

electroplating bath. In control strategy, the comparison of performance between 

NNDIC and PI controller under nominal and model mismatch cases, it was found the 

conventional PI controller better results in both cases. 

 

2.2.2 Neural network model based predictive control 

 

Model predictive control (MPC) is a control strategy which is computed based 

on an optimization that is formulated over a prediction horizon, using a model to 

predict the effect of future inputs on system states or outputs. Neural network model 

which is successfully to predict in optimization in MPC represent a mathematical 

model (Kittisupakorn et al., 2009; Ławryńczuk, 2008; Damour et al.; 2010). 

Yu and Gomm (2003) studied the multivariable neural network modeling and 

MPC technique for application to a MIMO laboratory-scaled chemical reactor. Three 

variables which were temperature, pH and dissolved oxygen were controlled in the 

reactor. On-line control results were presented to illustrate the closed-loop 

performance of the neural network model-based predictive control scheme, and a 

comparison is made with conventional PID control. 

Ławryńczuk (2008) studied artificial neural networks for modeling and 

temperature control using model predictive control of a yeast fermentation 

biochemical reactor. The neural model of the process was trained using available data 

sets generated from the fundamental model. As a result, the classical PID controller 

and the MPC algorithm based on a linear model were unable to control the process. 

But MPC algorithms based on neural models can control the process. 

Kittisupakorn et al. (2009) developed a multi-layer feedforward neural 

network model based predictive control. In the acid baths three variables under 

controlled are the hydrochloric acid concentrations. In the modeling, multiple input, 

single output recurrent neural network subsystem models were developed using 
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input–output data sets obtaining from mathematical model simulation. In the control 

(MPC) algorithm, the feedforward neural network models were used to predict the 

state variables over a prediction horizon within the model predictive control algorithm 

for searching the optimal control actions via sequential quadratic programming. The 

proposed algorithm was tested for control of a steel pickling process in several cases 

in simulation such as for set point tracking, disturbance, model mismatch and 

presence of noise. The results for the neural network model predictive control 

(NNMPC) overall showed better performance in the control of the system over the 

conventional PI controller in all cases. 

Georgieva and Feyo de Azevedo (2007) investigated modeling an industrial 

fed-batch evaporative sugar crystallization process combining analytical and artificial 

neural network (ANN) approaches and controlling by using Model Predictive Control 

(MPC) and Feedback Linearizing Control (FLC) based on an ANN nonlinear control. 

A comparison of MPC veasus FLC approaches were evaluated with respect to closed 

loop performance, constrains feasibility and computational efforts. MPC algorithm 

outperformed the FLC approach with respect to satisfactory reference tracking and 

smooth control action. However, the MPC is computationally much more involved 

since it requires an online numerical optimization, while for the FLC, an analytical 

control solution was determined. 

Damour et al. (2010) presented a nonlinear model-based predictive control 

(NMPC) approach applied to an industrial process. A neural network model based on 

the estimate mass of crystal was used as internal model to predict the process output. 

Besides, their work compared between NMPC and industrial data from a PID-

controlled process. The simulation results presented the NMPC strategy leaded to 

significant time and energy saving more than the PID-controlled process about 11%. 

 

2.2.3 Neural network inverse model 

 

One of the most applications of neural network is inverse modeling that is 

applied to control the process. Some researchers trained the neural network by 

feedback learning (Li and Häuβler, 1996; Yan et al., 2009) and some researchers 



13 

trained the neural network by feed forward learning (Hussain et al., 2001; Daosud et 

al. 2005). 

Li and Häuβler (1996) developed direct neural control systems by the 

proportional plus derivative control. Direct neural control systems were developed 

and trained by genetic algorithm. The optimal structure of neural network was 3-3-4-

1. The simulation results showed the response of the controlled system exhibits a 

satisfactory performance and a small overshoot. 

Nakanishi and Schaal (2004) presented the technique of feedback error 

learning (FEL) from the viewpoint of adaptive control. Numerical results 

demonstrated the significant difference in the stability property between the adaptive 

feedback formulation and the adaptive feed forward formulation, particularly when 

learning of unstable plant dynamics was considered. 

Gomi and Kawato (1990) proposed learning schemes using feedback error 

learning for a neural network model applied to adaptive nonlinear feedback control. 

After the neural network compensated perfectly or partially for the nonlinearity of the 

controlled object through learning, the response of the controlled object finally 

follows the desired response set in the conventional feedback controller. This learning 

scheme did not require the knowledge of the nonlinearity of a controlled object in 

advance. 

Yan et al. (2009) proposed an adaptive inverse controller for nonlinear 

discrete-time system. A compound neural network was constructed to identify the 

nonlinear system, which included a linear part to approximate the nonlinear system 

and a recurrent neural network to minimize the difference between the linear model 

and the real nonlinear system. The inverse model can be used to control both 

nonlinear dynamic discrete-time SISO and MIMO systems in real time. Simulation 

studies showed that the scheme is simple and affects good control accuracy and 

robustness. 

Hussain et al. (2001) presented the nonlinear inverse-model based control 

strategy to control an exothermic reactor. The utilization of two different inverse-

model schemes namely the direct inverse control and the internal-model control 

methods were shown for both set point and disturbance rejection cases. The overall 
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results for set point tracking were good in both control strategies but the direct inverse 

control method had limitations when dealing with disturbances. 

Guez et al. (1998) indicated how the neural network computation algorithms 

can be used for adaptive control and outlines resulting computational advantages. The 

neuromorphic control approach was compared to model reference adaptive control on 

a specific example. The utilization of neural networks for adaptive control offered 

definite speed advantages over traditional approaches for very large scale systems. 

Daosud et al (2005) investigated the use of neural network direct inverse 

model-based control strategy (NNDIC) to control a steel pickling process. The 

concentration of acid solution in the pickling step needs to be maintained at the 

optimum value in order to obtain the maximum reaction rate. The optimal neural 

network architectures are determined by the mean squared error (MSE) minimization 

technique. The robustness of the proposed inverse model neural network control 

strategy was investigated with respect to changes in disturbances, model mismatch 

and noise effects. Simulation results showed the superiority of the NNDIC controller 

in the cases involving disturbance, model mismatch and noise while the conventional 

controller gives better results in the nominal case. 



CHAPTER III 

 

THEORY 
 

In this chapter, the theoretical background of a crystallization process, neural 

network and model predictive control are described. 

 

3.1 Crystallization 
 

Crystallization is a separation and purification process, used in the production 

of a wide range of materials. It involves the formation of one or more solid phases 

from a liquid phase or amorphous solid phase. Crystallization is one of the older unit 

operations in the chemical industry and it differs from most unit operations because of 

the presence of a solid product. The main advantages of crystallization are a high 

purity in one process step, a low level of energy consumption and relatively mild 

process conditions. The crystallization process is taken place in two steps: nucleation 

of the crystal and crystal growth. The driving force of crystallization process is 

supersaturation. The terminologies involved in the crystallization process are shown 

below. 

 

3.1.1 Supersaturation 

 

Crystallization processes can take place only in supersaturated, or supercooled, 

phases. The rate of crystallization is often determined by the degree of supersaturation, 

the driving force for crystallization, which has been commonly expressed either as the 

difference in concentration between the supersaturated and saturated solutions. The most 

common definitions of supersaturation in industrial crystallization are the concentration 

driving force, ∆ܥ, the supersaturation ratio, S, and the relative supersaturation, ߪ௦ . The 

various definitions of the supersaturation are as follows: 
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3.1.2 Phase Diagram for Crystallization 

 

There are three region on a phase diagram for crystallization, as shown in 

Figure 3.1. The first region is below the equilibrium solubility curve between the 

liquid phase and the solid phase. This zone, called the unsaturated or undersaturated 

region, is the region in which any crystals present in the solution will dissolve until 

the saturation point is reached.  

 

 
Figure 3.1 Phase diagram of crystallization 
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The second region is called the metastable region. This region bounded 

between the supersolubility curve and the solubility. Here the solution is 

supersaturated, but the driving force is not enough to form nuclei or new crystals. If 

there are some crystals already present in the solution, they will grow in size so that 

the concentration is reduced to the equilibrium point, however no nuclei can be 

formed in a finite length of time. If there are not any crystals present in the solution 

then the solution will remain Metastable region  

The region above the supersolubility curve is called the labile region. If the 

solution is this region, spontaneous crystallization will occur and large amounts of 

crystal nuclei will be formed. 

 

3.1.3 Solubility  

 

For the process of crystallization, the solubility is a very important value 

because it determines the value of the supersaturation of the solution, which in turn 

partly determines the value of crystallization rate. The solubility often increases 

significantly with the temperature, which is demonstrated at higher temperature, 

commonly used in industrial crystallization, by the high viscosity of mother liquors 

and high dry solids content. However there are also other systems where the 

saturation concentration remains approximately constant or decreases with increasing 

temperature. 

 

3.1.4 Nucleation 

 

Nucleation of the crystals is the creation of the hypothetical solid particles in 

the solution. This includes the formation of small crystals nuclei in which there is or 

there is not a presence of the other crystals. The nucleation in case of no presence of 

other crystals is called primary nucleation. On the other hand, the nucleation in case 

of the presence of an influence of the existing macroscopic crystals in the solution is 

called secondary nucleation. Total nucleation is the summation of the effects of the 

primary and the secondary nucleation. The primary nucleation can occur in two 

conditions. 
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Figure 3.2 Solubility curve 

First is homogeneous nucleation, which is nucleation that is no influence of 

any other solids such as the wall of the crystallizer or particles of any foreign 

substances. Second is heterogeneous nucleation. This occurs when solid particles of 

foreign substances do an influence on the nucleation process by catalyzing and 

increasing the nucleation rate. For the primary nucleation, the homogeneous 

nucleation is rarely occurs in practice due to the high energy necessary to begin 

nucleation without a solid surface to catalyze the nucleation, except perhaps in some 

precipitation reaction. 

In secondary nucleation, the two kinds of secondary nucleation are known, a 

fluid-shear nucleation and a contact nucleation. The fluid-shear nucleation is take 

place when a growing crystal is swept away at the surface by the supersaturated 

solution. The swept-away-nuclei become grow to a new crystal. The contact 

nucleation is the result of collisions between existing crystals with one another or with 

the walls of the crystallizer and rotary agitators. This occurs at low supersaturation 

where the growth rate of the crystals is at the optimum for good quality. Contact 
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nucleation has been found to be the most effective and common method for 

nucleation because low energy is required and easy control without unstable 

operation. 
p

spp CCTkB )(*)( *−=  (3.4) 
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There is another method of crystals nucleation that to be avoided. This method 

is called spurious nucleation. The crystals are attrition, more likely to crushing than to 

real nucleation. This happened when crystals are impacted with the moving part of the 

crystallizer. The sources of crystals generating are presented in Figure 3.3. 

 
Figure 3.3 Various types of nucleation in crystallization 

 

3.1.5 Crystal Growth 

 

A crystal face is a planar surface that grows as existing steps or kinks on the 

surface area augmented by the incorporation of new solute molecules. Layers spread 

progressively across the face as new molecules attach themselves to the accessible 

and energetically favorable leading edges. At the microscopic level, solute molecules 

moving from the bulk solution adsorb on the crystal solid surface and are incorporated 

into the crystal lattice. A crystal face is a planar surface that grows as existing steps or 
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kinks on the surface are augmented by the incorporation of new solute molecules. 

Surface adsorption and diffusion determine whether a solute molecule is incorporated 

into the crystal or returns to the bulk phase. The observed growth rate is then caused 

by the flow of steps across the surface. 

 

3.1.6 Crystal Size Distribution 

 

The appearance and size range of a crystalline product is extremely important 

in crystallization. If further processing of the crystals is desired, large crystals with 

uniform size are important for washing, filtering, transportation, and storage. The 

importance lies in the fact that large crystals are easier to filter out of a solution than 

small crystals. Also, larger crystals have a smaller surface area to volume ratio, 

leading to a higher purity. This higher purity is due to less retention of mother liquor 

which contains impurities, and a smaller loss of yield when the crystals are washed to 

remove the mother liquor. The theoretical crystal size distribution can be estimated as 

a function of operating conditions with a fairly complicated mathematical process 

called population balance. 

 

3.1.7 Crystallization Methods 

 

Supersaturation can be generated by one or more of three methods. That is 

cooling, evaporation and antisolvent crystallization. (Tung et al., 2009) 

 

(i) Cooling crystallization 

 

Crystallization by cooling is commonly practiced for solutions in which 

solubility is a strong function of temperature. Because of it is energetically favorable 

and simple to operate. Cooling alone can achieve the desired degree of crystallization 

when solubility is sufficiently low at the termination of the cooling operation. In some 

cases, additional reduction in solubility is necessary to achieve the desired yield. 

However, a disadvantage of cooling method is the early fouling of the cooling 

surfaces and feed point with crystallizing solute. The effect factors to the 
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supersaturation profile either locally or globally for crystallization by cooling are 

following. 

• rate of cooling and wall temperature 

• width of the metastable region 

• nucleation rate and inherent crystal growth rate 

• presence or absence of seed and seed quantity 

• mixing and mass transfer 

• solvent system 

• impurities (dissolved and undissolved) 

 

(ii) Evaporative crystallization 

 

Increasing the concentration by evaporation or distillation is a common 

method of increasing supersaturation and inducing crystallization. Since solvent is 

removed over a finite period of time, it is inherently a semibatch operation. 

Semicontinuous or continuous operation is also possible. The evaporation or 

distillation can be run at atmospheric pressure, or at reduced pressure when substrate 

stability is not compatible with the required atmospheric distillation temperature. One 

of the primary advantages of evaporative procedures is that they can often be 

combined with other process operations to reduce equipment requirements and/or 

time cycles. In addition, it is possible in some cases to complete the crystallization 

without the addition of a second solvent, thereby avoiding the costs of separation and 

recovery. Some of the process advantages that may be realized are as follows: 

• combination with a change in solvent and simultaneous crystallization 

• combination with reaction and removal of a volatile reaction by-product and 

simultaneous crystallization 

• combination with cooling crystallization 

 

These operational advantages must be evaluated against the disadvantages that are 

discussed in the sections to follow. These disadvantages may include 

• difficulty in controlling mean particle size and particle size distribution (PSD) 
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• difficulty in determining the seed point 

• unpredictability on scale-up 

• inconsistent batch-to-batch performance 

 

(iii) Antisolvent crystallization 

 

Addition of an antisolvent is potentially the best method to achieve controlled 

and scalable particle size distribution (PSD). Control of both supersaturation and 

crystal growth area is readily achievable by control of the antisolvent addition rate. 

This control requires consideration of both the change in solubility as addition 

proceeds and the crystal growth area and is, therefore, potentially more complex than 

for the single-solvent processes of cooling and concentration. 

The obvious disadvantage of the antisolvent process is the necessity to 

introduce an additional solvent or solvents, thereby reducing the volumetric 

productivity and creating a solvent mixture requiring some form of 

purification/separation for downstream processing and/or recovery. 

 

Table 3.1 Advantage and disadvantage of crystallizer  

Crystallizer type Advantage Disadvantage 

Cooling - simple to operate 

 

- early fouling of the cooling 

surfaces and feed point with 

crystallizing solute 

   

Evaporation - combine with other process 

operations to reduce equipment 

requirements and/or time cycles 

- difficulty to control 

   

Antisolvent - easy to control - create a solvent mixture 

requiring separation for 

recovery. 
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3.2 Neural Network 

 

Neural network is an information-processing system that has certain 

performance characteristics in common with biological neural networks. Neural 

networks have been developed as generalizations of mathematical models of human 

cognition or neural biology, based on the assumptions that information processing 

occurs at many simple elements called neurons, signals are passed between neurons 

over connection links, each connection link has an associated weight and each neuron 

applies an activation function (usually nonlinear) to its net input to determine its 

output signal. Neural Network is a structure composed of a number of interconnected 

units (neuron by neuron, element by element). A Neuron consists of axons, dendrites, 

synapses and soma (cell body) as shown in Figure 3.4. The Axon acts as transmission 

line of the neuron. At the ends of the axon are complex, highly specialized structure 

called synapases. The dendrites receive the inputs from other cells and the soma 

integrates the inputs to transmit along the axon to the synapses. 

 

 
Figure 3.4 Axons, dendrites and synapse in a biological neuron 
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3.2.1 Components of Neural Network  

 

The neural network consists of many interconnected neurons or nodes. In each 

node, there are many components for creating the neural network. These components 

are described as the follow. 

 

 3.2.1.1 Weighting Factors 

 

Weight factors are the coefficients that determine the intensity of the network 

inputs. Each network input an associated weight that controls the connection strength. 

Weighting factors can be modified corresponding to various training sets and 

according to a network's specific topology. 

 

 3.2.1.2 Basis function 

 

Basis function is mathematical mapping with function u(w,x) which w, x refer 

to metric weight and input vector. Basis function is applied to combined and summed 

up the inputs and their corresponding weighting factors and passing to next step. 

There are two common forms of basis function. 

1) Linear basis function (LBF)  

 

Linear basis function is the most common basis function which is summation 

of multiplying each input and corresponding weight While (x1, x2, …, xn) represent 

the input vectors and (w1, w2, …, wn) represent the corresponding weight vectors. The 

linear basis function can be written by the following equation: 

 

ui(w,x)  =   ∑
=

n

j ixijw
1

 (3.6) 

 

2)  Radial basis function (RBF) 
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Radial basis function is more complex than linear basis function. The radial 

basis function can be written by the following equation: 

 

ui(w,x)  =   ∑
=

−
n

j
iji wx

1

2)(  (3.7) 

 

 3.2.1.3 Activation function 

 

The outputs of basis function are transmitted to activation function which 

transforms the results from summation to the network output. The activation function 

is linear functions or nonlinear functions that nonlinear functions are popular but 

linear functions are not useful because linear functions are limit. The most commonly 

used activation functions are summarized in Table 3.2 

Table 3.2 Activation functions of a neural network 

 

Activation functions Formula Characteristic 

Step 

⎩
⎨
⎧ >

otherwise   0
0    xif    1

 
Linear 

Ramp 

⎪
⎩

⎪
⎨

⎧

<
<
≥

-1   xif   1-
1    xif   
1    xif    1

x  

Linear 

Linear xxf =)(  Linear 

Sigmoid 
xe

xf −+
=

1
1)(  

Nonlinear 

Tan-Sigmoid 
xx

xx

ee
eexf −+

−+

+
−

=)(  
Nonlinear 

   

3.2.1.4 Error function 

 

In network training, the difference between the desired output value and 

predicted value by the network is used as the error signal to train the network. The 
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target of network training is minimum error. This error is transformed by the error 

function that has an effect on the network structure. These error functions are 

described as the follow 

 

1) Sum square error 

SSE = 
2

1

)(∑
=

−
N

i
ii py  (3.8) 

2) Mean square error 

MSE = 
2

1

)(1 ∑
=

−
N

i
ii py

N
 (3.9) 

3) Mean absolute error 

MAE = ∑
=

−
N

i
ii py

N 1

1  (3.10) 

which  iy  is the network output 

 ip  is the network target 

 

3.2.1.5 Learning Function 

 

The objective of the learning function is to modify the weighting factors that 

connect the inputs of each process element. The neural network learns new 

knowledge by adjusting these weighting factors and the learning ability of a neural 

network is determined by its architecture and by the algorithmic method chosen for 

training. There are two types of learning algorithm as shown in following. 

 

1) Supervised learning 

 

In supervised learning, an explicit signal is provided by the teacher 

throughout to guide the learning process that consists of the sets of input-

output examples. By the build in knowledge, the supervised is able to provide 

the neural networks with the desired respond for the training. During the 
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training, the output of neural network is compared to the desired output and 

weighting factors are adjusted by the network 

 

 
Figure 3.5 Supervised learning 

 

2) Unsupervised learning 

 

The unsupervised learning which is sometimes called self-supervised 

learning does not require an external teacher to guide the learning process. The 

network use only inputs data to learn. Unlike the supervised learning require 

an external teacher to provide training signals that guide the learning process. 

 
Figure 3.6 Unsupervised learning 
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3.2.2 Neural Network Architecture 

 

3.2.2.1 Network Structure 

 

Neural network structure can be divided into common types such as 

feedforward networks and feedback networks 

1) A feedforward neural network is a basic process neural network model, 

and is an information forward propagation network model that consists of some 

process neurons including the traditional time-invariant neuron as a special case. The 

signals travel from input to output one way only. There is no feedback in the network 

such as the output of any layer.  

 

 
Figure 3.7 Feedforward neural networks 

 

2) A feedback neural network has connections from output to input 

neurons. Such a neuron keeps a memory of previous state so that the next state 

depends not only on input signals but also on the previous states of the network. 
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Figure 3.8 Feedback neural networks 

 

3.2.2.2 Connection Structure 

 

An artificial neural network comprises the neuron and weight building blocks. 

The behavior of the network depends on the interaction between these building 

blocks. There are four common types of connections such as feedforward, feedback, 

lateral and time delayed connections. 

1) Feedforward Connections 

For the neural network models, the neurons data of a lower layer are 

propagated forward to neurons of an upper layer via feedforward connection 

networks. 

2) Feedback Connections 

For the neural network models, the feedback connections bring the data from 

neurons of an upper layer back to neurons of lower layer. 

3) Lateral Connections 

For the neural network model, the lateral connections allow the neurons to 

interact in the same layer. 
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4) Time Delayed Connections 

Delay element may be incorporated into the connections to yield temporal 

dynamics model. They are more suitable for temporal pattern recognition. 

 
Figure 3.9 Connection structures of neural networks 

 

3.2.2.3 Network Layers 

 

The layers of a neural network are divided into three types such as input layer, 

hidden layer and output layer. The input layer represents the raw information that is 

fed into the network. The hidden layer is between the input and output layer. The 

output layer is the last layer of the networks that depends on the activity of the hidden 

layers and the weights between the hidden and output layers. Figure 3.10 show a 

single-layer neural network and a multiple-layer neural network. 

 



31 

 

 
Figure 3.10 (a). A single-layer neural network (b). A multiple-layer neural network 
(MATLAB 2009) 

 

3.2.3 Training Algorithm 

 

The aim of network training is to minimize the error between targets and 

network outputs. Training is procedure that determines the optimal values of the 

connection weights and biases. Training begins by initially assigning arbitrary small 

random values to the weights. Training proceeds iteratively until a satisfactory model 

is obtained. 

 

 

(a). 

(b). 
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3.2.3.1 Back Propagation Algorithm (Zilouchian and Jamshidi, 2001) 

 

Back propagation algorithm is one of the most popular algorithms for training 

a network due to its success from both simplicity and applicability viewpoints. The 

algorithm consists of two phases: Training phase and recall phase. In the training 

phase, first, the weights of the network are randomly initialized. Then, the output of 

the network is calculated and compared to the desired value. In sequel, the error of the 

network is calculated and used to adjust the weights of the output layer. In a similar 

fashion, the network error is also propagated backward and used to update the weights 

of the previous layers. Figure 3.11 shows how the error values are generated and 

propagated for weights adjustments of the network. In the recall phase, only the 

feedforward computations using assigned weights from the training phase and input 

patterns take place. Figure 3.12 shows both the feedforward and back propagation 

paths. The feedforward process is used in both recall and training phases. On the other 

hand, as shown in Figure 3.12 (b), back propagation of error is only utilized in the 

training phase. In the training phase, the weight matrix is first randomly initialized. 

After that, the output of each layer is calculated starting from the input layer and 

moving forward toward the output layer. Thereafter, the error at the output layer is 

calculated by comparison of actual output and the desired value to update the weights 

of the output and hidden layers. 

 
Figure 3.11 Back propagation of the error in a two-layer network 
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a) Forward propagation (Training and Recall Phase) 

 

 
b) Backward propagation (Training Phase) 

Figure 3.12 Forward propagation in recall and training phase and backward 

propagation in training phase 

 

There are two different methods of updating the weights. In the first method, 

weights are updated for each of the input patterns using an iteration method. In the 

second method, an overall error for all the input output patterns of training sets is 

calculated. In other words, either each of the input patterns or all of the patterns 

together can be used for updating the weights. The training phase will be terminated 

when the error value is less than the minimum set value provided by the designer. One 

of the disadvantages of back propagation algorithm is that the training phase is very 

time consuming. During the recall phase, the network with the final weights resulting 

from the training process is employed. Therefore, for every input pattern in this phase, 

the output will be calculated using both linear calculation and nonlinear activation 

functions. The process provides a very fast performance of the network in the recall 

phase, which is one of its important advantages. The methodology of the conventional 

back propagation method is mentioned below 
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Inputs are summed and propagated to the hidden layer for a node j as: 

∑
=

+=
Ni

i jbipijWjnet
1

1  (3.11) 

Output from node j is given by 

)(2
jnetfja =  (3.12) 

where f is the transfer function or activation function used in the hidden nodes 

Hidden layer output is propagated to node k at the output layer given as: 

∑
=

+=
jN

j kbjakjWknet
1

2  (3.13) 

Output from the node k is: 

)(3
knetfka =  (3.14) 

Error is calculated at the output layer as: 

∑
=

−=
kN

k kakpe
1

2)3(
2
1  (3.15) 

Weights are adjusted along the negative gradient descent of the error, e as: 

kjw
e

kjw
∂
∂

−=Δ η  (3.16) 

Weights in the output and the hidden layers are then corrected using equations 

below: The constant η (called the learning rate, and nominally equal to one) is put in 

to speed up or slow down the learning if required. 

The gradient descent is simply the technique where parameters, such as 

weights and biases, are moved in the opposite direction to the error gradient. Each 

step down, the gradient results in smaller errors until an error minimum is reached. 

The network can get a better performance by using an approximation of Newton’s 

method called Levenberg-Marquardt. This technique is more powerful than the 

gradient descent, but also requires more memory. 
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3.2.3.2 Levenberg-Marquardt Method  

 

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was 

designed to approach second-order training speed without having to compute the 

Hessian matrix. When the performance function has the form of a sum of squares (as 

is typical in training feedforward networks), then the Hessian matrix can be 

approximated as (Othman, and Naseri, 2011) 

JTJH =  (3.17) 

and the gradient can be computed as 

eTJg =  (3.18) 

where J is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights and biases, and e is a vector of network errors. The Jacobian 

matrix can be computed through a standard back-propagation technique that is much 

less complex than computing the Hessian matrix. 

The Levenberg-Marquardt algorithm uses this approximation to the Hessian 

matrix in the following Newton-like update: 

eTJ_]IJTJ[kWkW 1
1 μ+−=+  (3.19) 

When the scalar µ is zero, this is just Newton's method, using the approximate 

Hessian matrix. When µ is large, this becomes gradient descent with a small step size. 

Newton's method is faster and more accurate near an error minimum, so the aim is to 

shift toward Newton's method as quickly as possible. Thus, µ is decreased after each 

successful step (reduction in performance function) and is increased only when a 

tentative step would increase the performance function. In this way, the performance 

function is always reduced at the each iteration of algorithm. 
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3.3 Model Predictive Control 

 

Model predictive control (MPC) differs from other control methods mainly in 

its implementation of the control actions. Usually, MPC solves a finite-horizon 

optimal control problem at each sampling instant, so that the control moves for the 

current time and a period of future time are obtained. MPC is a set of algorithms 

based on the models. MPC pays more attention to the function, than to the 

formulation, of the model. The function of a prediction model is based on the past 

information and the future inputs to predict the future output. Any collection of 

information, as long as it has the function of prediction, irrespective of the concrete 

form, can be the prediction model. (Seborg et al., 2004) 

The basic ideas of model predictive control are follows: 

1. Explicit use of a model to predict the process output at future time instants. 

2. Calculation of a control sequence minimizing an objective function. 

3. Receding strategy, so that at each instant the horizon is displaced towards 

the future that involves the application of the first control signal of the sequence 

calculated at each step. 

The methodology of all the controllers belonging to the MPC family is 

characterized by the following strategy, represented in Figure 3.13: 

The objective of the MPC calculations is to determine a sequence of control 

moves (that is, manipulated input changes) so that the predicted response moves to the 

set point in an optimal manner. The actual output y, predicted output ŷ  and 

manipulated input u are shown in Figure 3.13. At the current sampling instant, 

denoted by k, the MPC strategy calculates a set of M of values of the input [u(k+i-1), 

i=1,2,…,M]. The set consist of the current input u(k) and M-1 future inputs. The input 

is held constant after the M control moves. The inputs are calculated so that a set of P 

predicted output [ ŷ (k+i), i= 1, 2,…, P] reaches the set point in an optimal manner. 

The number of predictions P is referred to as the prediction horizon while the number 

of control moves M is called the control horizon. 
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Figure 3.13 MPC Strategy 

The idea of model predictive control is to utilize a model of the process in 

order to predict and optimize the future system behavior. The model form can be 

described by the following. 

ሶܺ ൌ ݂൫ܺሺݐሻ, ܷሺݐሻ൯ (3.20) 

The control law of the model predictive control is determined from the 

minimization of the controlled variable and manipulated variable. The optimization 

problem is as follows. (Kittisupakorn, 2008) 

Objective function :min  ൛ ଵܹሺܺ െ ܺ௦ሻଶ  ଶܹሺ∆ܷሻଶൟ݀ݐ௧
  (3.21) 

State space model : ሶܺ ൌ ݂൫ܺሺݐሻ, ܷሺݐሻ൯ (3.22) 

Manipulated variable constraint :ܷ   ܷ   ܷ௫ (3.23) 

State variable constraint :ܺ   ܺ   ܺ௫ (3.24) 

Terminal state constrain :ܺ൫ݐ  ൯ݐ ൌ  ܺ௦ (3.25) 
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where W1 and W2 are the weighting factors on the controlled and manipulated 

variables, respectively, tf is the terminal time, Umin and Umax are the minimum and 

maximum bounds of manipulated variables and Xmin and Xmax are the minimum and 

maximum bounds of state variables. 



CHAPTER IV 

 

MATHEMATICAL MODEL OF A BATCH 

HEATING/COOLING AND EVAPORATIVE 

CRYSTALLIZATION PROCESS 

 
4.1 Mathematical Model 

 

A mathematical model of a batch heating/cooling and evaporative 

crystallization consists of two mass balances of solute and solvent, energy balance 

and crystallization model (Choong and Smith, 2004). The assumptions are applied in 

this model include (1) agglomeration and breakage of crystals are negligible, (2) total 

nucleation rate is the sum of primary and secondary nucleation rates, (3) crystal size is 

independent growth, (4) the solution is well mixed and (5) crystal nuclei produced 

from primary and secondary nucleation have negligible size (Choong and Smith, 

2004). By performing mass balances, the following equations are obtained: 

The mass balance of solute: 

dt
M)lnd(C

dt
M)d(m

M
ρ-k

  
dt

dC
s

cvs −= 3

 (4.1) 

The mass balance of solvent: 

evap -Q 
dt

dM
=

 (4.2) 

where Cs is the concentration of solute, kv is the volumetric shape factor, ρc is the 

density of crystals, m3 is the third moment of crystal size, M is the mass of solvent 

and Qevap is the evaporation rate. 

The evaporation rate is a function of temperature and can be calculated by the 

following equation: (Apelblat et al., 1995; Wang et al., 1996) 
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πmRT
)A-Pα(P  Q sav

evap 2
=

 (4.3) 

)Tln(.
T

1571.31-58.9840-  Pln v 437711+=
 (4.4) 

where Pv is the saturation vapor pressure, Pa is the partial pressure in the crystallizer, 

As is the evaporation surface area, α is the evaporation coefficient, m is the molecular 

weight and R is the gas constant.
 

The energy balance around the crystallizer is shown as follows: 

totp

cvcrysevapevapjj

MC

M
dt

dmρkHQ-T)-H(TUA
  

dt
dT

3+
=

 (4.5) 

jpjj

jjjjsppjjjj

VCρ
-T)(TUA)-T(TCρF

  
dt

dT −
=

 (4.6) 

and 
Nr

cevap )T/T(abs  ArH −×= 1  (4.7) 

where T is the crystallizer temperature, U is the overall heat transfer coefficient, Aj is 

the total heat transfer surface area, Tj is the jacket temperature, Hevap is the heat of 

vaporization, Hcrys is the heat of crystallization, Cp is the heat capacity of the solution, 

Mtot is the total mass of solution, Fj is the water flow rate in jacket, ρj is the density of 

water in jacket, Cpj is the heat capacity of the water in jacket, Tjsp is the jacket 

temperature set point and Vj is the jacket volume. 

For the crystallization model can be describe by following equations. 

The crystal growth rate  
g*

sg )CC)(T(k  G −=
 (4.8)

 

where G is the crystal growth rate, kg is the crystal growth rate constant, C* is the 

solubility of the solute and g is the crystal growth rate exponent 

The Population Balance Equation with the assumption of crystal growth rate, 

variable volume and well mixed batch crystallizer: 

0  
dt

)M(lndn
L

)Gn(
t
n

=+
∂

∂
+

∂
∂

 (4.9) 
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where n is the number density of the crystals, L is the characteristic crystal length and 

M is the total mass of solvent at any instant of time. 

Mostly, the moment transformation method is applied to convert Eq. (4.9). 

The moment of the crystal size distribution are given in the following expression: 

dt
d(lnM)m-)B(B  

dt
dm

0sp +=0

 (4.10) 

and 

dt
)M(lndmBLiGm  

dt
dm

i
i

1-i
i −+= 0

 (4.11) 

where Bp and Bs are the primary and secondary nucleation rate, respectively, L0 is the 

characteristic crystal length of a newly formed crystal, and m0 and mi are the zero and 

i moment of crystal size ( i = 0, 1, 2, 3, 4,…), respectively. 

For nucleation, both primary and secondary nucleation is used to describe in 

the empirical power law form: 

Primary nucleation: 
p*

spp )C-(T)(Ck  B =  (4.12) 

Secondary nucleation: 
b
crys

s*
sss M)C-(T)(Ck  B =  (4.13) 

where kp and ks are the primary and secondary nucleation rate constant, respectively, 

p and s are primary and secondary nucleation rate exponent, respectively, Mcrys is the 

magma density of crystal and b is the magma density exponent. 

The solubility of the solute can be expressed by a polynomial equation. 
3

3
2

210 TCTCTCC  *C +++=
 (4.14) 

In this work, the objective functions of optimization are to maximize the 

average crystal size (weight mean crystal size), Law and the crystal yield. The 

expression for average crystal size and crystal yield are shown as follows: 

3

4
aw m

m
  L =

 (4.15) 

)t(M)t(C - )t(M)t(C  yield crystal ffss 00=  (4.16) 
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Figure 4.1 Comparison between mathematical model and Choong and Smith (2004) 

 

The mathematical model of the batch heating/cooling and evaporative 

crystallization consists of two mass balances of solute and solvent, energy balance 

and crystallization model is solved by using Matlab. To ensure the simulation results, 

the proposed model is validated with simulation data of Choong and Smith (2004) 

who simulated heating/cooling evaporative crystallization in citric acid–water system. 

In his work, the process was operated at constant evaporation rate and non-isothermal 

that was increased temperature from 60oC to 70oC and decrease to 40oC. The 

crystallizer temperature and supersaturation are shown in Figure 4.1. It can be seen 
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that the supersaturation and the crystallizer temperature profiles which generate from 

mathematical model and reference are similar. 

 

4.2 Crystallization and Physical Properties 
 

The crystallization kinetics and physical properties of citric acid-water system 

are shown in Table 4.1 and the initial values as shown in Table 4.2 which were 

excerpted from Bohlin and Rasmuson (1992),Choong and Smith (2004) as well as 

Alexander Apelblat (1995). 

 

Table 4.1 Crystallization and physical properties of citric acid–water system 

Symbol Unit Value 
Aj m2 0.07 
Ar kJ/kg 2891.83 
As m2 0.019 
b  0.84 
C0 kg/kgH2O 0.91176 
C1 kg/kgH2O ๐C 0.034857
C2 kg/kgH2O ๐C2 −2.8785 × 10−4 
C3 kg/kgH2O ๐C3 3.7228 × 10−6 
Cp kJ/kg ๐C 2.1745 
Cpj kJ/kg ๐C 4.184 
Fj 
g kg/s 

0.00003 
0.65 

Hcrys kJ/kg 117 
kg m/(s(kg/kg)g) 0:02652 exp(−3584/T ) 
kp no./((kg/kg)pkgH2O s) 1.0 x 10-7 
ks no./((kg/kg)s(kg/kg)bkgH2O s) 0:88774 exp(4781/T ) 
kv  0.52 
L0 m 10 x 10-6 
m kg/kmol 18 
Mcrys kg/kgH2O 0.024 
Nr  0.321 
p  3.54 
Pa kPa 10.1325 
R m3 Pa/K mol 8.314 
s 
Tc 
U 

K 
W/m2 ๐C 

0.543 
647.13 
0.5 

Vj m3 0.0014 
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Symbol Unit Value 
α  0.5 
ρc kg/m3 1540 
ρj kg/m3 1000 

 

Table 4.2 Initial value in this crystallization process 

Symbol Value 
T 
mi, i = 0, 1, 2, 3, 4 
M 
Cs 

60 ๐C 
0 
1.0 kg 
2.871 kg/kgH2O 

 

4.3 Dynamic optimization 

 

The dynamic optimization computes the optimal operating temperature policy 

to control the crystallizer. In batch crystallization process, the quality of crystal effect 

to downstream process such as filtration, drying and storage (Paengjuntuek et al., 

2008). In this study, the crystal quality which is crystal yield and crystal size is 

focused (Choong and Smith, 2004). The aims of the dynamic optimization are to 

maximize the crystal yield and the crystal size. In this work, two optimization 

problems are considered. 

 

Problem 1 (OPT1) 

max m4(tf)/m3(tf) (4.16) 

T(t) 

subject to 

the crystallizer model equations 

Tmin ≤T ≤Tmax (4.17) 

Law,min ≤Law≤ Law,max (4.18) 

Mmin ≤M (4.19) 
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Problem 2 (OPT2) 

min Cs(tf)*M(tf) (4.20) 

T(t) 

subject to 

the crystallizer model equations 

Tmin ≤T ≤Tmax (4.21) 

Law,min ≤Law≤ Law,max (4.22) 

Mmin ≤M (4.23) 

where Tmin and Tmax is chosen as 40 and 70 ๐C, respectively, Law,min and Law,max is 

chosen as 315 and 550 µm, respectively and the minimum total mass of solvent, Mmin, 

is 0.5 kg. The final batch time, tf, is 6500 s. 

The dynamic optimization calculates the optimal temperature profile by 

optimizing the objective function. Figure 4.2 shows crystallizer temperature profiles 

that provide maximum average crystal size (OPT1) and Figure 4.3 shows crystallizer 

temperature profiles that provide maximum crystal yield (OPT2). 

In the optimization order, it classifies into 4 sets which consist of 1, 5, 8, and 

10 intervals. In the optimization problems 1 and 2 get the maximum average crystal 

size and crystal yield at 10 intervals. The dynamic optimization is applied to be a set 

point of crystallizer temperature in PID control, neural network direct inverse control 

(NNDIC) and neural network model based predictive control (NNMPC). Moreover, it 

is applied in normal case and mismatch case for controlling. 

 

Table 4.3 The simulation results obtained from two dynamic optimization problems 

Problem Law(µm) Crystal yield (kg) 

OPT1 451 1.585 

OPT2 420 1.641 
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Figure 4.2 Temperature profile for the optimization problem 1 (OPT1) 
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Figure 4.3 Temperature profile for the optimization problem 2 (OPT2) 

 

The final product qualities in terms of average crystal size (Law) and crystal 

yield are shown in Table 4.3 It can be seen that OPT1 provides larger average crystal 

size than OPT2 about 6.46% but OPT2 gives more crystal yield than OPT1 about 

3.39%. Moreover the average crystal size and crystal yield which are obtained from 
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the heating/cooling evaporative crystallization method are more than cooling and 

evaporation method. From Table 4.4, it can be seen that the heating/cooling 

evaporative crystallization method produces the average crystal size of 19% and 30% 

larger than cooling and evaporation method, respectively as well as the obtained 

crystal yield from heating/cooling evaporative crystallization method is higher than 

cooling and evaporation method about 50%. 

 

Table 4.4 Comparison of the product quality among different crystallization method 

Method Law(µm) Crystal yield(kg) 

Unseeded coolinga 296 0.787 

Evaporationa 315 0.787 

Heating/cooling 
evaporative(OPT1) 

451 1.585 

Heating/cooling 
evaporative(OPT2) 420 1.641 

aObtained from Choong and Smith (2004) 



CHAPTER V 

 

NEURAL NETWORK FORWARD MODEL AND 

NEURAL NETWORK INVERSE MODEL FOR 

THE PROCESS 

 
5.1 Neural network forward model 

 

The neural networks consist of an input layer for receiving data from external 

source, one or some hidden layer(s) for processing input data and an output layer for 

displaying the output values. There are some neurons in each layer that are connected 

with some connections to previous and next layers. A neuron includes input and output 

values, weight factors and bias as well as transfer functions. The neural networks are 

trained using a training algorithm and a training data set in order to adjust the 

connection weights and biases. 

For this neural network, the weight factors and biases are the coefficients that 

determine the relationship of the network inputs by randomly. The neural network 

uses tan-sigmoid as activation function of the nodes in hidden layer and linear 

function is used as the activation function in its output layer. The Levenberg-

Marquardt algorithm is applied for training the network. The objective of neural 

network training is to minimize the error function which is mean square error (MSE) 

between the predicted neural network values and actual targeted value. The Eq.5.1 is 

shown the MSE calculation. 

 
2

1
)(1  ∑

=
−=

n

i
TT

n
MSE piaci

 (5.1) 

 

where n is the number of data, Tac is the actual targeted temperature value and Tp is 

the predicted neural network values. 
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Figure 5.1 Steps of neural network structure designing 

 

The steps of neural network structure designing are summarized in Figure 5.1. 

First step is preparing input and output data for training, validation and testing which 

are obtained by solving Eqs. (4.1) – (4.13) and varies the value of manipulated variable 

(jacket temperature set point, Tjsp) in step changes. Second step is to design the 

network structure and choose the error function. Next are to initialize the weight 

factors, train the network, test and validate the network and then examine the error. If 
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the error is unacceptable, the weight factors or structure will be reset to new values but 

if the error is acceptable, the neural network model will be obtained. 

In this part, the neural network is applied for modeling of the batch crystallizer 

to predict the future value of concentration profile, crystallizer temperature profile and 

jacket temperature profile. The input and output data pattern of neural network forward 

model is given in Figure 5.2. 

 

Neural network forward model 

 

 

Figure 5.2 Input and output data pattern for forward model 

 

The input and output data sets which consist of training, testing and validating 

data sets are obtained from mathematical model to train the neural network by varied 

the jacket temperature set point as shown in Figures 5.3-5.6. In the generated data for 

network training consist of plant certainty case called normal case and plant 

uncertainty cases that compose of -30% of U, +30% of Hcrys,-30% of Hevap, +30% of kg 

and +30% of kp. The input and output data sets which are trained in the neural network 

forward model are 18 sets. 

Cs(k-1) Cs(k) Cs(k+1) 

T(k-1) T(k) T(k+1) 

Tj(k-1) Tj(k) Tj(k+1) 

Tjsp(k-1) Tjsp(k) 

Output 

Input 
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Figure 5.3 The jacket temperature set point profile of data set 1 
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Figure 5.4 The crystallizer temperature and the concentration profile of data set 1 
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Figure 5.5 The jacket temperature set point profile of data set 2 
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Figure 5.6 The crystallizer temperature and the concentration profile of data set 2 

 

The data sets which are generated from mathematical model need to be 

normalized in order to overcome the significant minimum and maximum values used 
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in the training process. The raw process data generated are scaled down to between 

0.05-0.95 using the following equations: 

( )( )
( ) 050050950 .

valuevalue
..valuevaluevalue

minmax

minac
sd +

−
−−

=
 (5.2) 

and the actual value (scaled up) is given by 

( )( )
( ) min

minmaxsd
ac value

..
valuevalue.valuevalue +

−
−−

=
050950

050

 (5.3) 

where valuesd, valueac, valuemin, valuemax are the scaled down, actual, minimum and 

maximum values of the data, respectively. 

The input and output data sets which are normalized are integrated and 

randomized to train test and validate the neural network. The training, testing and 

validating data set are 60%, 30% and 10% of all data, respectively. Figures 5.7-5.8 

show the training data, testing data and validating data. 
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Figure 5.7 The jacket temperature set point and the jacket temperature profile of sum 

training data 
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Figure 5.8 The crystallizer temperature and the concentration profile of sum training 

data 

Figure 5.9 shows the final neural network structure is chosen to represent the 

forward model which is 8 input nodes that consists of CS(k-1), CS(k), T(k-1), T(k), 

Tj(k-1), Tj(k), Tjsp(k-1) and Tjsp(k) as well as 3 output nodes that is compose of 

Cs(k+1), T(k+1) and Tj(k+1).  

In the simulation demonstrates that the well-trained neural network can be used 

for modeling in order to predict the concentration, the crystallizer temperature and the 

jacket temperature profiles in this process. The optimal hidden layers for neural 

network forward model, input and output data pattern which is [8-14-10-3] (8 nodes in 

input layer, 14 nodes in first hidden layer, 10 nodes in second hidden layer and 3 nodes 

in output layer) as shown in the Figure 5.9. 
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Figure 5.9 Neural network for forward model 
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Figure 5.10 Testing 1 results for the network prediction of concentration profile 
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Figure 5.11 Testing 1 results for the network prediction crystallizer temperature 

profile 
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Figure 5.12 Testing 1 results for the network prediction jacket temperature profile 
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Figure 5.13 Validation results for the network prediction of concentration profile 
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Figure 5.14 Validation results for the network prediction of crystallizer temperature 
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Figure 5.15 Validation results for the network prediction of jacket temperature 
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The neural network forward model shows good accuracy for the prediction of 

the system. The data of concentration, the crystallizer temperature and the jacket 

temperature from mathematical model and predicted by the neural network are 

presented in Figures 5.10-5.15. The mean squared error index for training, testing and 

validation of the optimal neural network forward model are shown in Table 5.1. 

 

Table 5.1 Mean squared error value of training, testing and validation in the neural 

network forward model 

 No. of samples Mean squared error 

Training data 2334 7.5124x10-5

Testing data 1 583 5.3528x10-5 

Testing data 2 583 8.0095x10-5 

Validation data 388 4.2852x10-5 

 

5.2 Neural network inverse model 
 

In this part, the neural network inverse model is used to control the crystallizer 

temperature. The steps of neural network structure designing are same as the neural 

network forward model (Figure 5.1). The neural network inverse model is applied to 

predict the present value of the manipulated variable (the jacket temperature set point, 

Tjsp). The input and output data pattern of the neural network inverse model is given 

in Figure 5.16 

 

Neural network inverse model 

 

 

Figure 5.16 Input and output data pattern for inverse model 
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The input and output data sets are generated from closed-loop control that is 

feedback controller (PID) to train the neural network (Karniel et al., 2001; Nakanishi 

and Schaal, 2004; Gomi and Kawato, 2001) as shown in Figure 5.17-5.20. In this 

section, the generated data for network training are same the forward model which 

consist of plant certainty case and plant uncertainty cases that is compose of -30% U, 

+30% Hcrys,-30% Hevap, +30% kg and +30% kp. In addition, the data sets which are 

trained the neural network inverse model are 18 sets. 
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Figure 5.17 The jacket temperature set point and the error profile from closed-loop 

control of data set 1 
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Figure 5.18 The crystallizer temperature and the concentration profile from closed-

loop control of data set 1 
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Figure 5.19 The jacket temperature set point and the error profile from closed-loop 

control of data set 2 
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Figure 5.20 The crystallizer temperature and the concentration profile from closed-

loop control of data set 2 
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Figure 5.21 The jacket temperature set point and the error profile from closed-loop 

control of sum training data 
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Figure 5.22 The crystallizer temperature, the concentration and the jacket temperature 

profile from closed-loop control of sum training data set 
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The data sets which are generated from mathematical model are normalized by 

Eq. 5.2. Then the data sets are combined and randomized. The data sets are divided 

into 3 groups which consist of 60% training data set, 30% testing data set and 10% 

validating data set. The data sets for training the network are shown in Figures 5.21-

5.22. 

The optimal neural network structure of the inverse model is shown in Figure 

5.23 which is 11 input nodes that consists of error(k-1), error(k), error(k+1), CS(k-1), 

CS(k), T(k-1), T(k), T(k+1), Tj(k-1), Tj(k) and Tjsp(k-1) as well as 1 output nodes that 

is Tjsp(k+1). 

In this part, the optimal structure of the neural network inverse model consists 

of 11 nodes in the input layer, 12 nodes in the first hidden layer, 8 nodes in the second 

hidden layer and 1 node in the output layer which is shown in Figure 5.23. The neural 

network inverse model show good accuracy for the prediction of the jacket 

temperature set point, Tjsp. Figures 5.24-5.26 show the profile of the jacket 

temperature set point which calculate from the mathematical model and the neural 

network inverse model. The mean squared error index of training, testing and 

validation of the optimal neural network inverse model are shown in Table 5.2. 

 

Table 5.2 Mean squared error value of training, testing and validation in the neural 

network inverse model 

 No. of samples Mean squared error (MSE) 

Training data 2334 3.0576x10-5 

Testing data 1 583 9.4699x10-6 

Testing data 2 583 8.3586x10-6 

Validation data 388 1.1091x10-5 

 



73 

 
Figure 5.23 Optimal structure of neural network for inverse model 
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Figure 5.24 Testing 1 results for the network prediction of the jacket temperature set 

point profile 
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Figure 5.25 Testing 2 results for the network prediction of the jacket temperature set 

point profile 
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Figure 5.26 Validating results for the network prediction of the jacket temperature set 

point profile 



CHAPTER VI 

 

THE CONTROLLER DESIGN BASED NEURAL 

NETWORK FOR THE TEMPERATURE 

CONTROL OF THE PROCESS 

 
In this section, the optimal temperature profile in chapter 4 is applied in PID, 

NNDIC and NNMPC controllers which control the crystallizer temperature to follow 

the desired profile by operating the set point of jacket temperature. The optimal 

crystallizer temperature profiles are shown in Figures 4.2-4.3. In this case, the 

optimization 1 (OPT1) is chosen to study. 

 

6.1. Neural Network Model Based Predictive Controller 
 

Model predictive control using a neural network has been focused by some 

researchers (Kittisupakorn et al., 2009; Yu and Gomm, 2003; Ławryńczuk, 2008; 

Georgieva and Azevedo, 2007). The neural network model based predictive control 

strategy in this work is shown in Figure 6.1. The neural network forward model is 

used to predict the future process outputs over the prediction horizon (p). The 

predictions are passed to the optimization which minimizes a specified objective 

function. Sequential quadratic programming (SQP) algorithm is used to solve the 

optimization problem of minimizing in Eq.6.1. The objective function of the model 

predictive control strategy is described as follows: 

[ ]∑ Δ++−+
=

p

i
jspsp

jsp

}T{W)}ik(T)ik(T{W
T
min

1

2
2

2
1

 (6.1) 

Subject to 

25 ๐C ≤ Tjsp(k+i) ≤ 100 ๐C, i = 1,2,3,…,p (6.2) 

T(k+p) = Tsp(k+p) (6.3) 
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where p is a parameter specifying the prediction horizon, W1 is weighting parameter 

used to give different weights to different squared tracking error, W2 is weighting 

parameter of different squared of manipulated variable and Tsp is the set point of 

crystallizer temperature as obtained from optimization. 

Optimizer

Neural network 
Model

Process
Tsp Tjsp(k)

T(k), T(k-1)
Cs(k), Cs(k-1)

Model predictive control

Tj(k), Tj(k-1)

Tjsp(k), Tjsp(k-1)

 
Figure 6.1 The neural network based model predictive control strategy 

 

The simulations have been done using the neural network model to find a set 

of suitable control parameter W1, W2, p and m. The prediction horizon p corresponds 

to the future time interval used to compute prediction with the neural network model. 

The control horizon is equal or less than the prediction horizon (m ≤ p). In the same 

IAE performance case, the choice of W1 and W2 are chosen 1 and 1, respectively. The 

prediction horizon and control horizon are set as 6 and 6, respectively. In the best 

performance case, the choice of W1 and W2 are chosen 3 and 3, respectively. The 

prediction horizon and control horizon are set as 10 and 1, respectively. 

 

6.2. Neural Network Direct Inverse Controller 
 

In this part, the neural network inverse model in chapter 5 is applied to control 

the crystallizer temperature. The optimal neural network inverse model (11-12-8-1 

structure) is utilized to predict the manipulated variable (jacket temperature set point). 

The prediction of manipulated variable for control requires the past and present values 

of the process outputs and the past values of manipulated variable as well as it 

requires the future value of crystallizer temperature set point. Figure 6.2 shows the 

structure of NNDIC strategy for controlling of the crystallizer temperature. 
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Neural network 
inverse model Process

Tsp Tjsp(k)

T(k), T(k-1), T(k+1)
Cs(k), Cs(k-1)

T(k), T(k-1), T(k+1)

Tjsp(k-1)

err(k), 
err(k-1), 
err(k+1)

Tj(k), Tj(k-1), Tj(k+1)

Figure 6.2 Neural network direct inverse control strategy 

6.3. Comparisons of Controller in Nominal and Mismatch Cases 
 

In this section, the comparisons of controller are based on 2 instances which 

consist of the same IAE performance and the best performance of controller. In each 

instance, the simulations are divided into 2 cases, the first case is a nominal case and 

the second case is a parameter mismatch case. 

 

6.3.1. Comparisons of the Same Controller Performance 

Nominal case 

 

First, the simulations are investigated in nominal case which all parameters in 

Table 4.1 are exact. The PID, NNDIC and NNMPC controllers are tuned as the same 

performance which is integral absolute error (IAE). Figures 6.3-6.5 show the response 

profiles of the crystallizer temperature and the jacket temperature set point. It can be 

seen that the control response of the PID and NNDIC controllers are corresponding. 

The PID and NNDIC controllers give some overshoot of the control variable (T) but 

the response of the control variable of the NNMPC controller is a little overshoot. The 

required time for the control variable to reach and remain to the set point of the 

NNMPC controller is less than the NNDIC and PID controllers. In term of the offset, 

the NNDIC controller give some offset which shows in Figure 6.4 but the NNMPC 

and PID controllers give a little offset. The response of the manipulating variable 

(Tjsp) of the NNMPC controller is smoother than the NNDIC and PID controllers. 
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Figure 6.3 The crystallizer temperature control and the manipulated variable (Tjsp) in 

nominal case using PID controller 
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Figure 6.4 The crystallizer temperature control and the manipulated variable (Tjsp) in 

nominal case using NNDIC controller 
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Figure 6.5 The crystallizer temperature control and the manipulated variable (Tjsp) in 

nominal case using NNMPC controller 
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Parameter mismatch case 

 

In this case, the performance of controller is investigated with parameters 

mismatch to test the robustness of controller (Kittisupakorn et al., 2009; Daosud et al., 

2005). The overall heat transfer coefficient, heat of crystallization, heat of 

vaporization, nucleation rate and crystal growth rate are considered as the parameter 

mismatch. The percent choosing for mismatch parameters is considered the percent 

changing from its nominal values that affect to the process response. The parameters 

mismatch are divided into 5 parameters consisting of decreasing 30% of U, increasing 

30% of Hcrys, decreasing 30% of Hevap, increasing 30% of kp and increasing 30% of kg 

from its nominal value. For robustness testing of the controller, the parameters 

mismatch cases are divided 6 cases which are shown in Table 6.1. Figures 6.6-6.11 

show the response profiles of the crystallizer temperature and the jacket temperature 

set point. 

 

Table 6.1 Performance of the same performance controller for nominal and 

parameters mismatch cases 

 

Cases 

IAE values 

NNMPC NNDIC PID 

Nominal 79.55 79.85 79.32 

-30%U 82.06 93.76 98.93 

+30%kp 80.22 80.29 79.38 

+30%kg 79.97 81.12 79.68 

+30%Hcrys 79.98 80.87 80.43 

-30%Hevap,  80.05 80.01 81.67 

-30%U, +30%Hcrys, -30%Hevap, +30%kg, +30%kp 83.86 98.13 106.76 
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Figure 6.6 The crystallizer temperature control and the manipulated variable (Tjsp) in 

parameter mismatch case (-30%U) using PID controller 
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Figure 6.7 The crystallizer temperature control and the manipulated variable (Tjsp) in 

parameter mismatch case (-30%U) using NNDIC controller 



86 

20

30

40

50

60

70

80

0 20 40 60 80 100

T
Tsp

T
em

pe
ra

tu
re

 (o C
)

Time (min)
 

0

20

40

60

80

100

120

0 20 40 60 80 100

Tj
Tjsp

T
em

pe
ra

tu
re

 (o C
)

Time (min)
 

Figure 6.8 The crystallizer temperature control and the manipulated variable (Tjsp) in 

parameter mismatch case (-30%U) using NNMPC controller 
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Figure 6.9 The crystallizer temperature control and the manipulated variable (Tjsp) in 

parameter mismatch case (+30%Hcrys) using PID controller 
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Figure 6.10 The crystallizer temperature control and the manipulated variable (Tjsp) in 

parameter mismatch case (+30%Hcrys) using NNDIC controller 
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Figure 6.11 The crystallizer temperature control and the manipulated variable (Tjsp) in 

parameter mismatch case (+30%Hcrys) using NNMPC controller 
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Table 6.1 summarizes the control performance of the PID, NNDIC and 

NNMPC controllers in terms of the integral absolute error (IAE). It can be seen that 

the NNMPC provides best control performance in all parameter mismatch cases. The 

robustness of the NNMPC can be explained by the fact that the obtained neural 

network which is applied with the MPC controller is trained with the wide range of 

operating conditions. 

 

6.3.2. Comparisons of the Best Controller Performance 

 

In this section, the best performance of the PID and NNMPC controllers are 

compared. It consists of 2 cases which are the nominal case and the parameter 

mismatch case that are same as the section 6.3.1. 

 

Nominal case 

 

In this case, the PID and NNMPC controller are tuned as the best performance 

of each controller. Table 6.4 shows the best performance of the PID and NNMPC 

controllers. Figures 6.12-6.13 show the response profiles of the crystallizer 

temperature and the jacket temperature set point. It can be seen that the both 

controllers can bring the temperature closely to set point with overshoot and 

oscillation. However, the PID controller gives more overshoot and oscillation than the 

NNMPC controller does. 
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Figure 6.12 The crystallizer temperature control and the manipulated variable (Tjsp) in 

nominal case based on the best performance of PID controller 
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Figure 6.13 The crystallizer temperature control and the manipulated variable (Tjsp) in 

nominal case based on the best performance of NNMPC controller 
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Parameter mismatch case 

 

For this case, the robustness of the controller is studied by mismatch the 

parameters which are same the section 6.3.1. The parameters mismatch are divided 

into 5 parameters consisting of decreasing 30% of U, increasing 30% of Hcrys, 

decreasing 30% of Hevap, increasing 30% of kp and increasing 30% of kg from its 

nominal value. The parameters mismatch cases are divided 6 cases which are shown 

in Table 6.4. Figures 6.14-6.17 show the response profiles of crystallizer temperature 

and the jacket temperature set point. 

 

Table 6.2 Performance of the best performance controller for nominal and parameters 

mismatch cases 

 

Cases 

IAE values 

NNMPC PID NNDIC 

Nominal 41.21 67.90 79.85 

-30%U 44.96 81.34 93.76 

+30%kp 41.43 67.91 80.29 

+30%kg 41.40 68.00 81.12 

+30%Hcrys 42.13 68.75 80.87 

-30%Hevap,  41.49 69.00 80.01 

-30%U, +30%Hcrys, -30%Hevap, +30%kg, +30%kp 45.42 84.70 98.13 

 

Table 6.4 summarizes the control performance of the best performance of the 

PID and NNMPC controllers in terms of the absolute error (IAE). It can be seen that 

the NNMPC controller provides superior control performance in all cases. 
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Figure 6.14 The crystallizer temperature control and the manipulated variable (Tjsp) in 

parameter mismatch case (-30%U) based on the best performance of PID controller 
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Figure 6.15 The crystallizer temperature control and the manipulated variable (Tjsp) in 

parameter mismatch case (-30%U) based on the best performance of NNMPC 

controller 
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Figure 6.16 The crystallizer temperature control and the manipulated variable (Tjsp) in 

parameter mismatch case (+30%Hcrys) based on the best performance of PID 

controller 
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Figure 6.17 The crystallizer temperature control and the manipulated variable (Tjsp) in 

parameter mismatch case (+30%Hcrys) based on the best performance of NNMPC 

controller 



CHAPTER VII 

 

CONCLUSIONS 

 

In this study, the implementation of a dynamic optimization and neural network 

is applied to improve the product quality of a batch heating/cooling evaporative 

crystallizer for production of citric acid. Combining heating/cooling and evaporation in 

batch crystallization can produce higher supersaturation, higher crystal yield and larger 

crystal size. The dynamic optimization computes the optimal operating temperature 

policy to maximize the crystal yield and the crystal size. The neural network is applied 

to model which is used in model predictive control and to control. This neural 

networks use tan-sigmoid and linear as activation functions. The Levenberg-Marquardt 

algorithm is applied for training the network. The objective of neural network training 

is to minimize the error function which is mean square error (MSE) between the 

predicted neural network values and actual targeted value. One goal in production is 

the control of product properties. In this work, the PID, NNDIC and NNMPC 

controllers are applied to control the process. 

In dynamic optimization, the optimization problems are 2 problems which are 

to maximize the average crystal size (OPT1) and maximize crystal yield (OPT2). The 

optimal product qualities in OPT1 provide average crystal size and crystal yield about 

451 µm and 1.585 kg, respectively and OPT2 provide average crystal size and crystal 

yield about 420 µm and 1.641 kg, respectively. The heating/cooling evaporative 

crystallization method produces the average crystal size of 19% and 30% larger than 

cooling and evaporation method, respectively as well as the crystal yield obtained from 

heating/cooling evaporative crystallization method is higher than cooling and 

evaporation method about 50%. 

The neural network forward model is used to predict the future value of the 

concentration, the crystallizer temperature and the jacket temperature profiles. The 
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optimal structure of neural network forward model consists of 8 nodes in input layer, 

14 nodes in first hidden layer, 10 nodes in second hidden layer, and 3 nodes in output 

layer. The neural inverse model is used to control the crystallizer temperature by 

predicting the value of the manipulated variable (the jacket temperature set point, 

Tjsp).The optimal structure of neural network inverse model is composes of 11 nodes in 

the input layer, 12 nodes in the first hidden layer, 8 nodes in the second hidden layer 

and 1 node in the output layer. Both neural network forward and inverse models show 

good accuracy for the prediction of the system. 

In the controller designing, the PID, NNDIC and NNMPC controllers are 

compared. In a nominal case, The PID and NNDIC controllers give some overshoot of 

the controlled variable (T) but the response of the control variable of the NNMPC 

controller is a little overshoot. The required time for the control variable to reach and 

remain to the set point of the NNMPC controller is less than the NNDIC and PID 

controllers. In term of the offset, the NNDIC controller give some offset but the 

NNMPC and PID controllers give a little offset. In robustness of controller, the 

parameter mismatch is used to test the performance of controller. It can be seen that 

the NNMPC controller provides superior control performance in all case. 
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APPENDIX A 

 

Proportional-Integral-Derivative Control 

 
A basic closed-loop control system is shown in Figure A.1 

 
Figure A.1 Block diagram of closed loop control with PID controller 

( )
msp

yy  te −=  

The combination of the proportional, integral and derivative control modes as 

a PID controller is given by (Seborg et al., 2004) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++= ∫ dt

)t(dedt)t(e)t(eKp)t(p D

t

I
c τ

τ 0

1

 
e(t) = error signal 

ysp = set point 

ym = measured value of the controlled variable 

p(t) = controller output 

p  = bias value 

Kc = controller gain 

Iτ  = integral time or reset time 

Dτ  = derivative time 
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APPENDIX B 

 

Tuning Relations Based on Integral Error Criteria 

 
Controller tuning relations have been developed that optimize the closed-loop 

response for a simple process model and a specified disturbance or set point change. 

The optimum settings minimize an integral error criterion. Three popular integral 

error criteria are: (Seborg et al., 2004) 

1. Integral of the absolute value of the error (IAE) 

( )dtte  IAE
0
∫
∞

=  

2. Integral of the squared error (ISE) 

( )( ) dtte  ISE
0

2∫
∞

=  

3. Integral of the time-weighted absolute error (ITAE) 

( )dttet  ITAE
0
∫
∞

=  

The ISE criterion penalizes large errors, while the ITAE criterion penalizes 

errors that persist for long periods of time. In general, the ITAE is the preferred 

criterion because it usually results in the most conservative controller settings. By 

contrast, the ISE criterion provides the most aggressive settings, while the IAE 

criterion tends to produce controller settings that are between those for the ITAE and 

ISE criteria. 

Figure B.1 illstrates the characteristics of the step response of a second-order 

underdamped process. The following terms are used to describe the dynamics of 

underdamped processes: 



107 
 

 
Figure B.1 Performance characteristics for the step response 

1. Rise Time. tr is the time the process output takes to first reach the new steady-

state value. 

2. Time to First Peak. tp is the time required for the output to reach its first 

maximum value. 

3. Settling Time. ts is the time required for the process output to reach and 

remain inside a band. 

4. Overshoot. OS = a/b 

5. Decay Ratio. DR = c/a 

6. Period of Oscillation. P is the time between two successive peaks or two 

successive valleys of the response. 
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APPENDIX C 

 

Activation Function 

 
The popular functions which are linear, sigmoid and tan-sigmoid are shown as 

follow. 

Linear transfer function 

The linear transfer function is utilized in the output layer for output expansion 

purpose. The result that receives from this transfer function is a linear as show in 

Figure C.1. 

 

 

Figure C.1 Linear transfer function 

Log-Sigmoid transfer function 

The Log-Sigmoid transfer function is a subset of nonlinear transfer functions. 

This transfer function will convert high positive value into 1 and converted high 

negative value into 0 that show in Figure C.2. 
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x 

+1 

-1 

0
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Figure C.2 Log-Sigmoid transfer function 

Tan-Sigmoid transfer function 

One of nonlinear transfer functions is Tan-Sigmoid transfer function. The 

transfer function will transform high positive value into 1 and converted high negative 

value into -1. The figure is shown below: 

 

 

Figure C.3 Tan-Sigmoid transfer function 
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APPENDIX D 

 

Mean Square Error of Neural Network Modeling 

 
Table D.1 Mean squared error value of the neural network forward model: 1 layer 

Number of Nodes in 
Hidden Layer 

Mean square error (MSE) 

Testing 1 Testing 2 Validating 

2 8.8217 x10-4 9.7749 x10-4 9.9292 x10-4 
3 6.0828 x10-5 9.1509 x10-5 1.4244 x10-4 
4 5.1708 x10-5 7.9370 x10-5 1.3763 x10-4 
5 6.9844 x10-5 6.9844 x10-5 1.3739 x10-4 
6 1.5297 x10-4 2.7864 x10-4 1.3451 x10-4 
7 4.7231 x10-5 8.0284 x10-5 1.3294 x10-4 
8 5.9365 x10-5 8.8135 x10-5 1.3491 x10-4 
9 1.0115 x10-4 1.1341 x10-4 1.3468 x10-4 
10 6.4585 x10-5 9.0959 x10-5 1.5158 x10-4 
11 7.6584 x10-5 1.1204 x10-4 1.2808 x10-4 
12 6.3076 x10-5 1.2005 x10-4 1.3302 x10-4 
13 9.8875 x10-5 1.3593 x10-4 1.3347 x10-4 
14 7.6312 x10-5 1.0599 x10-4 1.3174 x10-4 
15 9.6580 x10-5 1.4022 x10-4 1.5279 x10-4 
16 9.2859 x10-5 1.1242 x10-4 1.3324 x10-4 
17 8.1617 x10-5 1.0450 x10-4 1.3744 x10-4 
18 6.8858 x10-5 9.6370 x10-5 1.3644 x10-4 
19 8.5856 x10-5 9.5175 x10-5 1.4073 x10-4 
20 7.9227 x10-5 1.4413 x10-4 1.4577 x10-4 
21 5.7180 x10-5 8.9381 x10-5 1.2848 x10-4 
22 7.0760 x10-5 1.7023 x10-4 1.4047 x10-4 
23 9.2311 x10-5 1.0066 x10-4 1.3386 x10-4 
24 1.0974 x10-4 1.4240 x10-4 1.4870 x10-4 
25 7.2929 x10-5 1.2494 x10-4 1.5753 x10-4 
26 1.1704 x10-4 1.7373 x10-4 1.3900 x10-4 
27 8.6239 x10-5 1.2038 x10-4 1.4418 x10-4 
28 6.7093 x10-5 1.0353 x10-4 1.3970 x10-4 
29 1.3351 x10-4 2.2671 x10-4 1.6368 x10-4 
30 8.1444 x10-5 1.0393 x10-4 1.3094 x10-4 
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Table D.2 Mean squared error value of the neural network forward model: 2 layers 

Nodes in 1st
 

Hidden Layer 
Nodes in 2nd

 

Hidden Layer

Mean square error (MSE) 

Testing 1 Testing 2 Validating 

2 2 8.8513 x10-4 9.7777 x10-4 9.0362 x10-4 
2 4 4.0400 x10-4 4.3825 x10-4 4.2222 x10-4 
2 6 3.4685 x10-4 3.8635 x10-4 3.3236 x10-4 
2 8 3.6083 x10-4 3.6083 x10-4 3.4685 x10-4 
2 10 3.5483 x10-4 4.0414 x10-4 3.7156 x10-4 
2 12 3.5405 x10-4 4.0845 x10-4 3.7979 x10-4 
2 14 3.6042 x10-4 4.0001 x10-4 3.4024 x10-4 
2 16 4.0381 x10-4 4.3459 x10-4 4.0766 x10-4 
2 18 3.5154 x10-4 3.7802 x10-4 3.4029 x10-4 
2 20 4.0613 x10-4 3.8745 x10-4 3.7552 x10-4 
4 2 9.1417 x10-4 9.9822 x10-4 9.0947 x10-4 
4 4 7.4624 x10-5 6.7500 x10-5 5.0375 x10-5 
4 6 5.3209 x10-5 7.6657 x10-5 4.7539 x10-5 
4 8 6.9205 x10-5 1.0008 x10-4 4.3496 x10-5 
4 10 6.0294 x10-5 9.5339 x10-5 4.4318 x10-5 
4 12 7.0037 x10-5 9.0139 x10-5 4.1440 x10-5 
4 14 6.3131 x10-5 8.6716 x10-5 4.5455 x10-5 
4 16 6.5444 x10-5 8.4459 x10-5 4.0871 x10-5 
4 18 5.3810 x10-5 8.6184 x10-5 4.0476 x10-5 
4 20 4.7529 x10-5 1.1544 x10-4 4.3054 x10-5 
6 2 9.2238 x10-4 1.0123 x10-3 8.9907 x10-4 
6 4 5.6096 x10-5 9.0890 x10-5 4.2409 x10-5 
6 6 7.2272 x10-5 8.2234 x10-5 4.7499 x10-5 
6 8 8.0994 x10-5 1.0693 x10-4 4.1457 x10-5 
6 10 8.8883 x10-5 1.0912 x10-4 4.4070 x10-5 
6 12 7.0065 x10-5 9.3451 x10-5 5.1476 x10-5 
6 14 6.2777 x10-5 1.0129 x10-4 4.2674 x10-5 
6 16 6.6279 x10-5 1.0883 x10-4 3.4661 x10-5 
6 18 6.8695 x10-5 1.3045 x10-4 4.2778 x10-5 
6 20 7.3656 x10-5 8.8758 x10-5 3.7497 x10-5 
8 2 8.8214 x10-4 9.7540 x10-4 8.9833 x10-4 
8 4 5.9948 x10-5 8.0729 x10-5 4.2595 x10-5 
8 6 7.0770x10-5 9.6855 x10-5 4.9445 x10-5 
8 8 6.9597x10-5 8.8072 x10-5 3.5606 x10-5 
8 10 7.5452x10-5 1.0453 x10-4 4.2979 x10-5 
8 12 7.1768x10-5 9.4698 x10-5 3.8778 x10-5 
8 14 6.6969 x10-5 7.2741 x10-5 4.7018 x10-5 
8 16 7.1409 x10-5 8.6553 x10-5 4.7487 x10-5 
8 18 6.2238 x10-5 7.5661 x10-5 4.8296 x10-5 
8 20 5.9893 x10-5 8.8192 x10-5 3.5771 x10-5 
10 2 8.9202 x10-4 9.8112 x10-4 8.9630 x10-4 
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10 4 7.0370 x10-5 9.1563 x10-5 4.2839 x10-5 
10 6 6.9274 x10-5 8.4068 x10-5 3.4579 x10-5 
10 8 6.0260 x10-5 1.0029 x10-4 4.5900 x10-5 
10 10 7.0698 x10-5 1.0307 x10-4 4.3927 x10-5 
10 12 8.2606 x10-5 1.0876 x10-4 4.9808 x10-5 
10 14 7.3310 x10-5 1.0154 x10-4 4.5668 x10-5 
10 16 7.9318 x10-5 1.0928 x10-4 5.3045 x10-5 
10 18 6.8006 x10-5 1.0383 x10-4 4.2319 x10-5 
10 20 6.7937 x10-5 8.9056 x10-5 4.4358 x10-5 
12 2 8.9713 x10-4 9.8861 x10-4 9.0247 x10-4 
12 4 7.1713 x10-5 1.0219 x10-4 3.9757 x10-5 
12 6 7.0710 x10-5 9.0062 x10-5 4.1332 x10-5 
12 8 6.9432 x10-5 1.1090 x10-4 4.4064 x10-5 
12 10 8.1102 x10-5 1.0821 x10-4 4.0166 x10-5 
12 12 7.7474 x10-5 8.5441 x10-5 5.1478 x10-5 
12 14 6.0164 x10-5 9.9888 x10-5 3.3470 x10-5 
12 16 8.7309 x10-5 1.1029 x10-4 3.8526 x10-5 
12 18 7.0153 x10-5 9.2921 x10-5 3.2759 x10-5 
12 20 6.3022 x10-5 8.5883 x10-5 3.9336 x10-5 
14 2 9.0361 x10-4 9.7834 x10-4 9.0068 x10-4 
14 4 7.0976 x10-5 1.1512 x10-4 4.0620 x10-5 
14 6 6.2270 x10-5 9.8527 x10-5 4.5359 x10-5 
14 8 7.7009 x10-5 8.8414 x10-5 4.7957 x10-5 
14 10 5.3528 x10-5 8.0095 x10-5 4.2852 x10-5 
14 12 9.1510 x10-5 9.9554 x10-5 4.8431 x10-5 
14 14 7.1328 x10-5 7.6972 x10-5 4.0096 x10-5 
14 16 7.1333 x10-5 1.0117 x10-4 3.5078 x10-5 
14 18 9.3583 x10-5 1.0403 x10-4 4.1909 x10-5 
14 20 6.3798 x10-5 1.2995 x10-4 6.2331 x10-5 
16 2 8.9254 x10-4 1.0723 x10-3 9.0572 x10-4 
16 4 8.9830 x10-5 1.0333 x10-4 5.0201 x10-5 
16 6 7.2924 x10-5 1.2010 x10-4 5.4919 x10-5 
16 8 1.0226 x10-4 9.4781 x10-5 5.5904 x10-5 
16 10 6.3504 x10-5 1.3213 x10-4 2.5343 x10-5 
16 12 7.3632 x10-5 8.0208 x10-5 5.3674 x10-5 
16 14 6.3055 x10-5 9.2006 x10-5 4.2061 x10-5 
16 16 8.8626 x10-5 1.0649 x10-4 4.1502 x10-5 
16 18 7.8248 x10-5 9.7580 x10-5 5.1050 x10-5 
16 20 8.4419 x10-5 9.4878 x10-5 4.1260 x10-5 
18 2 9.2523 x10-4 1.016 x10-4 9.0409 x10-4 
18 4 7.2129 x10-5 8.9423 x10-5 4.2998 x10-5 
18 6 6.1599 x10-5 1.0050 x10-4 1.9665 x10-5 
18 8 5.0633 x10-5 1.2682 x10-4 3.4712 x10-5 
18 10 5.7775 x10-5 8.5784 x10-5 4.7833 x10-5 
18 12 7.1026 x10-5 1.0856 x10-4 3.9511 x10-5 
18 14 7.1900 x10-5 1.0833 x10-4 4.9672 x10-5 
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18 16 9.3586 x10-5 9.8010 x10-5 4.6477 x10-5 
18 18 8.1416 x10-5 1.0742 x10-4 4.7616 x10-5 
18 20 9.0775 x10-5 9.8666 x10-5 4.7085 x10-5 
20 2 9.1713 x10-4 1.0145 x10-3 8.9864 x10-4 
20 4 9.3584 x10-5 1.0579 x10-4 4.4224 x10-5 
20 6 5.7440 x10-5 1.1677 x10-4 5.1896 x10-5 
20 8 7.9857 x10-5 1.0126 x10-4 4.9341 x10-5 
20 10 7.8079 x10-5 9.4832 x10-5 4.7716 x10-5 
20 12 6.7162 x10-5 9.6116 x10-5 4.1185 x10-5 
20 14 7.8080 x10-5 1.1097 x10-4 4.5686 x10-5 
20 16 9.1510 x10-5 9.9554 x10-5 4.8431 x10-5 
20 18 9.8837 x10-5 8.9693 x10-5 4.5404 x10-5 
20 20 7.5558 x10-5 1.0906 x10-4 4.4632 x10-5 

 

Table D.3 Mean squared error value of the neural network inverse model: 1 layer 

Number of Nodes in 
Hidden Layer 

Mean square error (MSE) 

Testing 1 Testing 2 Validating 

2 6.7892 x10-5 6.7299 x10-5 9.7812 x10-5 
3 6.3053 x10-5 7.7620 x10-5 8.6339 x10-5 
4 4.1435 x10-5 4.2175 x10-5 4.3889 x10-5 
5 2.9266 x10-5 2.9439 x10-5 4.8736 x10-5 
6 2.9079 x10-5 2.4461 x10-5 2.8435 x10-5 
7 2.8766 x10-5 2.6343 x10-5 3.4507 x10-5 
8 2.9651 x10-5 4.2056 x10-5 2.8272 x10-5 
9 2.8616 x10-5 3.6158 x10-5 5.9800 x10-5 
10 2.3356 x10-5 2.8835 x10-5 3.1025 x10-5 
11 2.9644 x10-5 3.9956 x10-5 4.2961 x10-5 
12 2.5048 x10-5 2.7824 x10-5 2.2636 x10-5 
13 2.5265 x10-5 3.7118 x10-5 3.1295 x10-5 
14 2.7533 x10-5 3.0078 x10-5 2.7071 x10-5 
15 2.5853 x10-5 3.9235 x10-5 3.7244 x10-5 
16 2.1289 x10-5 4.0106 x10-5 3.8934 x10-5 
17 2.2432 x10-5 3.6299 x10-5 2.1381 x10-5 
18 2.5028 x10-5 3.6934 x10-5 2.9245 x10-5 
19 2.8252 x10-5 2.1007 x10-5 4.0422 x10-5 
20 3.6849 x10-5 3.5930 x10-5 4.1398 x10-5 
21 2.3776 x10-5 4.4725 x10-5 2.6453 x10-5 
22 4.4342 x10-5 3.7888 x10-5 2.7078 x10-5 
23 3.6222 x10-5 4.7238 x10-5 4.2800 x10-5 
24 8.4162 x10-5 2.7202 x10-5 2.8201 x10-5 
25 4.3825 x10-5 2.8991 x10-5 4.0402 x10-5 
26 3.7533 x10-5 4.5752 x10-5 3.8054 x10-5 
27 3.1711 x10-5 7.0382 x10-5 6.2546 x10-5 
28 4.1585 x10-5 2.0565 x10-5 3.0077 x10-5 



114 
 

29 5.4564 x10-5 1.9019 x10-5 5.0812 x10-5 
30 3.5845 x10-5 2.6031 x10-5 2.6796 x10-5 

 

Table D.4 Mean squared error value of the neural network inverse model: 2 layers 

Nodes in 1st
 

Hidden Layer 
Nodes in 2nd

 

Hidden Layer

Mean square error (MSE) 

Testing 1 Testing 2 Validating 

2 2 1.2854 x10-4 1.8138 x10-4 2.7845 x10-4

2 4 4.7814 x10-5 4.6166 x10-5 8.0396 x10-5

2 6 9.2592 x10-5 1.1665 x10-4 2.0055 x10-4

2 8 6.3215 x10-5 3.1069 x10-4 3.3293 x10-4

2 10 4.7261 x10-5 7.1462 x10-5 1.0506 x10-4

2 12 1.1136 x10-5 1.0746 x10-5 1.3370 x10-5

2 14 2.8641 x10-5 2.2946 x10-5 2.7543 x10-5

2 16 3.8795 x10-5 4.5988 x10-5 5.7267 x10-5

2 18 5.7374 x10-5 9.0723 x10-5 1.0914 x10-4

2 20 7.7564 x10-5 3.4993 x10-4 3.6291 x10-4

4 2 2.3498 x10-5 2.1960 x10-5 3.5731 x10-5

4 4 5.6127 x10-5 5.2628 x10-5 1.0683 x10-4

4 6 3.0501 x10-5 3.6601 x10-5 5.4781 x10-5

4 8 2.3760 x10-5 2.4529 x10-5 3.1269 x10-5

4 10 1.9128 x10-5 1.8378 x10-5 2.0734 x10-5

4 12 2.7579 x10-5 2.8297 x10-5 2.4806 x10-5

4 14 1.9299 x10-5 7.0348 x10-5 5.7984 x10-5

4 16 2.1000 x10-5 2.3315 x10-5 2.1981 x10-5

4 18 2.3915 x10-5 2.2139 x10-5 1.9696 x10-5

4 20 3.8257 x10-5 4.2760 x10-5 6.1646 x10-5

6 2 1.2432 x10-3 1.4411 x10-3 2.2888 x10-3

6 4 1.8704 x10-5 1.7533 x10-5 2.8070 x10-5

6 6 1.6095 x10-5 1.4716 x10-5 1.5937 x10-5

6 8 1.2001 x10-5 5.8153 x10-5 4.1113 x10-5

6 10 2.3047 x10-5 2.5435 x10-5 4.4809 x10-5

6 12 2.1304 x10-5 1.4459 x10-5 2.1802 x10-5

6 14 1.2903 x10-5 1.4557 x10-5 1.6791 x10-5

6 16 1.9970 x10-5 1.8929 x10-5 2.0920 x10-5

6 18 1.4267 x10-5 2.3553 x10-5 1.6972 x10-5

6 20 1.2869 x10-5 1.2776 x10-5 3.4611 x10-5

8 2 2.0426 x10-5 2.0179 x10-5 1.7998 x10-5

8 4 1.5057 x10-5 1.0550 x10-5 1.2901 x10-5

8 6 1.9577 x10-5 1.9679 x10-5 2.7125 x10-5

8 8 1.2838 x10-5 7.8442 x10-5 5.9341 x10-5

8 10 1.6998 x10-5 2.1322 x10-5 3.2040 x10-5

8 12 2.0937 x10-5 2.3008 x10-5 2.8916 x10-5

8 14 1.0787 x10-5 3.3123 x10-5 3.2644 x10-5

8 16 2.8798 x10-5 2.1136 x10-5 2.9163 x10-5
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8 18 1.7979 x10-5 1.4267 x10-5 2.1227 x10-5

8 20 2.0990 x10-5 1.7203 x10-5 1.8555 x10-5

10 2 1.2732 x10-5 1.3942 x10-5 2.0427 x10-5

10 4 1.3812 x10-5 1.1800 x10-5 1.6865 x10-5

10 6 1.3385 x10-5 3.3773 x10-5 3.2884 x10-5

10 8 2.1183 x10-5 1.8260 x10-5 1.4573 x10-5

10 10 1.8103 x10-5 1.7502 x10-5 2.0719 x10-5

10 12 1.4852 x10-5 1.9474 x10-5 4.2248 x10-5

10 14 1.5016 x10-5 1.8445 x10-5 1.6168 x10-5

10 16 1.1702 x10-5 4.9834 x10-5 3.8775 x10-5

10 18 1.4220 x10-5 1.2310 x10-5 1.8520 x10-5

10 20 1.1141 x10-5 2.6947 x10-5 2.3627 x10-5

12 2 3.4986 x10-3 3.9039 x10-3 4.1490 x10-3

12 4 1.3022 x10-5 2.6250 x10-5 2.2613 x10-5

12 6 1.4850 x10-5 1.5759 x10-5 2.0696 x10-5

12 8 9.4699 x10-6 8.3586 x10-6 1.1091 x10-5

12 10 1.8461 x10-5 2.2259 x10-5 1.8449 x10-5

12 12 2.9311 x10-5 1.9860 x10-5 1.1082 x10-5

12 14 1.1027 x10-5 2.3043 x10-5 2.2089 x10-5

12 16 7.7131 x10-6 6.6468 x10-6 1.6977 x10-5

12 18 1.7178 x10-5 1.5570 x10-5 1.2837 x10-5

12 20 2.0907 x10-5 3.1363 x10-5 1.8308 x10-5

14 2 2.1356 x10-5 2.0351 x10-5 1.5224 x10-5

14 4 2.0302 x10-5 1.9836 x10-5 1.2410 x10-5

14 6 1.1831 x10-5 5.4673 x10-5 5.9107 x10-5

14 8 1.1311 x10-5 3.4807 x10-5 3.2663 x10-5

14 10 6.4244 x10-6 2.5199 x10-5 2.4304 x10-5

14 12 1.0375 x10-5 1.1069 x10-5 1.7415 x10-5

14 14 1.2070 x10-5 1.6976 x10-4 1.2480 x10-4

14 16 1.5512 x10-5 2.5300 x10-5 2.9279 x10-5

14 18 1.1423 x10-5 2.1559 x10-5 2.6248 x10-5

14 20 1.1249 x10-5 2.9493 x10-5 2.4623 x10-5

16 2 1.2495 x10-5 1.1004 x10-5 2.2864 x10-5

16 4 1.7595 x10-5 1.2679 x10-4 9.2085 x10-5

16 6 1.9690 x10-5 1.5665 x10-5 1.5324 x10-5

16 8 1.4520 x10-5 1.3869 x10-4 1.1121 x10-4

16 10 1.9537 x10-5 1.4045 x10-5 2.1754 x10-5

16 12 1.0274 x10-5 3.7666 x10-5 2.8254 x10-5

16 14 9.4668 x10-6 8.4213 x10-6 1.2593 x10-5

16 16 1.2728 x10-5 1.1209 x10-5 1.2183 x10-5

16 18 1.3387 x10-5 1.6241 x10-5 1.9925 x10-5

16 20 1.2653 x10-5 1.8550 x10-5 1.7708 x10-5

18 2 4.4545 x10-4 4.5087 x10-4 7.6278 x10-4

18 4 1.4713 x10-5 1.6903 x10-5 2.8948 x10-5

18 6 9.7432 x10-6 1.6086 x10-5 2.2264 x10-5

18 8 1.1965 x10-5 1.3713 x10-5 2.0425 x10-5
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18 10 1.2086 x10-5 2.0246 x10-5 1.5270 x10-5

18 12 9.4217 x10-6 1.7299 x10-5 1.6088 x10-5

18 14 1.6815 x10-5 1.8562 x10-5 1.7054 x10-5

18 16 1.0268 x10-5 1.4965 x10-5 1.8288 x10-5

18 18 2.0788 x10-5 2.0653 x10-5 2.2088 x10-5

18 20 1.4056 x10-5 5.1414 x10-5 4.1619 x10-5

20 2 2.4115 x10-5 1.8761 x10-5 3.6002 x10-5

20 4 1.8038 x10-5 1.7876 x10-5 1.7633 x10-5

20 6 1.0925 x10-5 1.8703 x10-5 1.2474 x10-5

20 8 1.0809 x10-5 5.9887 x10-5 5.0402 x10-5

20 10 1.6433 x10-5 1.4560 x10-5 1.2805 x10-5

20 12 9.2806 x10-6 9.5827 x10-6 2.8928 x10-5

20 14 1.1638 x10-5 2.9143 x10-5 4.1149 x10-5

20 16 8.9123 x10-6 1.5661 x10-5 1.7695 x10-5

20 18 1.2854 x10-5 6.8700 x10-5 5.0646 x10-5

20 20 8.8964 x10-6 1.8117 x10-5 1.4916 x10-5
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